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Abstract

There is a strong demand for early stage identification of potential substances of very high 
concern (SVHC). SVHCs are substances that are classified as carcinogenic, mutagenic or 
reprotoxic (CMR); persistent, bioaccumulative and toxic (PBT) or very persistent and very 
bioaccumulative (vPvB); or as substances with an equivalent level of concern, like endocrine 
disruption (ED). The endeavor to improve the identification of potential SVHCs is also 
acknowledged by the European Commission, in their long-term vision towards a non-toxic 
environment. However, it has been shown difficult to identify substances as potentially 
harmful. 

With this goal in mind, we have developed a methodology that predicts whether a substance 
is a potential SVHC based on chemical similarity to chemicals already identified as SVHC. 
The approach is based on the structural property principle, which states that structurally 
similar chemicals are likely to have similar properties. 

We systematically analyzed the predictive performance of 112 similarity measures (i.e. all 
different combinations of 16 binary fingerprints and 7 similarity coefficients) classifying the 
substances in the dataset as (potential) SVHC or non-SVHC. The outcomes were analyzed for 
546 substances that we collected within the Dutch SVHC database – with identified CMR, 
PBT/vPvB and/or ED properties – and 411 substances that lack these hazardous properties. 
The best similarity measures showed a high predictive performance with a balanced accuracy 
of 85% correct identifications for the whole dataset of SVHC substances, and 80% for CMR, 
95% for PBT/vPvB and 99% for ED subgroups. 

This effective screening methodology showed great potential for early stage identification of 
potential SVHCs. This model can be applied within regulatory frameworks and safe-by-design 
trajectories, and hence can contribute to the EU goal of achieving a non-toxic environment.
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2.1 Introduction

In recent decades, exposure to specific chemicals appeared of greater concern than previously 
anticipated, including concerns for polychlorinated biphenyls (PCBs), dichloro diphenyl-
trichloroethane (DDT) and perfluorooctanesulfonic acid (PFOS) [20]. In many cases, when 
safety concerns are raised, widespread exposure has often already occurred, and typically 
the set of available toxicity data is inadequate to introduce risk management measures 
immediately. Consequently, chemicals of potential concern continue to be emitted, with the 
risk of significant effects on human and environmental health in the long-term. Therefore, it is 
important to signal emerging concerns and improve the early stage identification of hazardous 
chemicals before widespread exposure occurs. This endeavor is also acknowledged by the 
European Commission in their long-term vision towards a non-toxic environment [35,36]. In 
particular, high priority is given to so-called substances of very high concern (SVHC), which 
include substances with carcinogenic, mutagenic or reprotoxic (CMR) properties, substances 
with persistent, bioaccumulative and toxic (PBT) or very persistent and very bioaccumulative 
(vPvB) properties, or substances with endocrine disrupting (ED) properties [12]. Substances 
can be identified as SVHC following a regulatory decision process in which all available data 
is evaluated.

To improve the identification of potential SVHCs, it is essential to make efficient use of the 
limited amount of available (fate and toxicity) data. Several models have been described in 
the literature that predict hazard properties of chemicals from simple properties, like aquatic 
toxicity based on the octanol/water partition coefficient (Kow) and/or structural alerts [37–39], 
or based on more complex algorithms [40–45]. Many of these models are (at least partially) 
based on the structural property principle, which assumes that (structurally) similar chemicals 
are likely to have similar properties [30]. Although these models are very useful to predict 
the effect of a chemical on a specific endpoint, their applicability to identify potential SVHC 
substances is limited. This is a consequence of the fact that the group of SVHC substances 
covers a broad range of different toxicological endpoints and mode of actions - and are only 
identified following a regulatory decision process. Within current models it is difficult to 
simulate such a regulatory weight-of-evidence approach. Potentially, total chemical similarity 
to known SVHC substances can be a useful way to estimate (potential) SVHC status, as such 
a method might be able to cover more information on SVHC identification properties. 

To our knowledge, only two models, both with the aim of prioritization, attempt to identify 
potential SVHCs directly based on structural similarity to substances already identified as 
being SVHCs, including the SINimilarity tool developed by ChemSec [46], and screening 
scenarios as applied by the European Chemical Agency (ECHA) within the SVHC Roadmap 
program [47]. However, these methods do not provide optimized and cross-validated 
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methodologies, resulting in an unknown predictive performance. If a high predictive accuracy 
could be achieved using only chemical similarity information, the lack of toxicity information 
can be bypassed, and those substances of potential SVHC concern, that are currently deemed 
“safe” in the absence of toxicity information, can be prioritized for further follow-up action. 
In addition, the chemical similarity information also provides a clear follow-up direction, as 
the potential concern is directly related to the concern of the most similar SVHC substance. 

The aim of the present study was to evaluate the efficiency of a broad set of similarity measures 
for the identification of potential SVHCs, with a specific focus on separately identifying 
CMR, PBT/vPvB and ED concerns. We built upon the knowledge gained (see e.g. [32]) for 
calculating chemical similarity, that generally consists of two main elements: a descriptor 
(or representation) of the chemical structure and a similarity coefficient. First, descriptors 
are used to characterize the molecules that are compared by assigning numerical values to 
structures [32,33,48]. These values are in most methods related to the absence or presence of 
specific chemical substructures and are often encoded in fixed-length bit-strings (consisting 
of zeros and ones) [49]. These bit-strings are also known as fingerprints. Secondly, similarity 
coefficients are used to quantitatively express the similarity between two chemical descriptors 
[7,32,48]. For our purpose, the similarity between two fingerprints can be used to quantify 
the structural overlap between a chemical with unknown hazardous properties and known 
SVHCs. Many types of descriptors and similarity coefficients are available and there is no 
similarity measure that consistently is most effective (i.e. there is no single best “fingerprint 
- coefficient” combination for all applications) [32,49,50]. Our study outcome provides the 
most optimal set of similarity measures as a first screening model to identify substances of 
potential SVHC concern.

2.2 Methods

The study approach consists of four general steps (Figure 2.1). First, a dataset of substances 
with and without CMR, PBT/vPvB and/or ED properties was constructed (paragraph 2.2.1). 
Secondly, binary fingerprints were generated for all substances in the datasets (paragraph 
2.2.2). Thirdly, similarity values (i.e. quantitative values of chemical similarity) were calculated 
between substances by comparing the fingerprints with similarity coefficients (paragraph 
2.2.3). Only the extent of similarity to substances with identified CMR, PBT/vPvB and/
or ED properties leading to the SVHC status was investigated. Finally, we determined an 
optimal similarity threshold and the predictive performance of each “fingerprint-coefficient” 
combination (paragraph 2.2.4). Steps two to four were reiterated for multiple “fingerprint-
coefficient” combinations, as well as for different SVHC subgroups (i.e. for CMR, PBT/vPvB 
and ED separately and together), in order to identify the optimal model(s) based on balanced 
accuracy. A more elaborate description of these steps is provided in the following paragraphs.  
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Figure 2.1. Overview of the methodology divided into four steps. Steps two to four were reiterated for 
multiple fingerprint-coefficient combinations.

2.2.1 Dataset

In order to identify chemicals of (potential) concern based on structural similarity to known 
toxicants, a set of known CMR, PBT/vPvB and ED substances is required. For this purpose, 
a Dutch list of substances of very high concern was selected, as all substance on this list 
have CMR, PBT/vPvB and/or ED properties (see [51]; extracted on 01-03-2018). This list 
covers a broader range of chemicals than the EU-SVHC list under REACH, but are identified 
based on the same hazard criteria as the EU-SVHC substances (i.e. REACH article 57 [12]). 
The generation and composition of this list of substances is more elaborately described in 
Supplemental Material S.1. 

In addition, for modelling purposes we also compiled a list of substances that are known 
not to have CMR, PBT/vPvB and/or ED properties. All substances on the REACH Annex 
IV – which lists chemicals that are considered to be inherently safe – were selected for this 
purpose, as well as all approved biocides and pesticides (see [52,53]; extracted on 23-05-
2018). The list of biocides and pesticides is suited for our purpose as all substances approved 
for introduction on the European market have been tested experimentally and are negative 
for CMR, PBT/vPvB and ED endpoints, according to the SVHC criteria. 

Several adjustments were made to the compiled substance lists, as chemical similarity searches 
require a specific and unambiguous chemical structure as input information. In cases that a 
group of substances was included in one of the above-mentioned lists (e.g. polychlorinated 
naphthalenes), representative chemical structures were generated and selected for inclusion 
in order to ensure that the structures represent the varying types of branching and/or 
substituents (e.g. tri- up till octachloro naphthalene, with two isomers per chlorine-atom 



Chapter 2

34

count). When a substance is a mixture or a UVCB (Substances of Unknown or Variable 
composition, Complex reaction products or Biological materials), only the (representative) 
chemical structures of those components causing the concern were included (e.g. benzene 
in some of the UVCBs). When a substance is considered a non-SVHC substance, the main 
constituent(s) were included. Each unique chemical structure was included once in the 
final list. In addition, specific metal-complexes (i.e. based on arsenic, beryllium, cadmium, 
chromium, lead, mercury, nickel and cobalt) and fibers were excluded. For these metal-based 
complexes, it is generally the metal atom causing the concern, irrespective of the organic 
counterparts. In case of fibers, the toxicity is (also) determined by physical aspects other 
than their chemical structure (e.g. diameter, length and shape). In addition, all inorganic 
substances were removed from the list of non-SVHC substances. 

In total, a dataset of 546 SVHC and 411 non-SVHC single chemical structures was compiled 
(see Supplemental Material Excel). Of the 546 SVHC substances, 306 are known to have 
CMR properties, 209 to have PBT/vPvB properties, and 52 are known to have ED properties. 
All chemical structures were represented by a (single) SMILES code [54] and all charged 
structures were converted to their neutral counterparts, where possible (Supplemental 
Material S.2). These SMILES codes were used for the analyses. 

2.2.2 Fingerprints

We restricted this study to binary fingerprints based on 2D-fragments, as they tend to be 
more selective than whole molecule descriptors. Moreover, 2D-fragments descriptors are 
(computationally) easier to handle than 3D-fragment descriptors [32]. The fingerprints were 
selected in such a way to ensure maximum diversity and include dictionary-based, path-based, 
circular-based and pharmacophore-based fingerprints (Table 2.1) [34]. The fingerprints 
were generated using freely available resources, including the software packages RDkit and 
PaDEL-Descriptor (based on the Chemistry Development Kit (CDK) libraries) [6,55]. For all 
non-dictionary based fingerprints, a string length of 1024 bits was used. More details on the 
generation of the fingerprints are given in Supplemental Material S.3.

2.2.3 Similarity coefficients

The similarity between two 2D-binary fingerprints of known SVHCs and non-SVHC 
substances can be computed by using various formulas, the so-called similarity coefficients. 
When comparing two binary fingerprints, four different bit-combinations could be identified 
- denoted as a, b, c and d. A, b, c and d represent the counts that a feature is present in 
one structure and absent in the other (“x=1 and y=0”), absent in the first and present in 
the second structure (“x=0 and y=1”), present in both (“x=1 and y=1”) and absent in both 
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(“x=0 and y=0”), respectively. These four numbers are combined in similarity coefficients 
to quantify chemical similarity. In total, 44 different similarity coefficients are available to 
calculate similarity values between binary fingerprints [7]. We selected seven coefficients for 
our analysis based on diversity and based on their performance as observed by Todeschini 
et al. (2012) and Floris et al. (2014) [7,56] (see Table 2.2). Similarity coefficients “SS1”, “Ja” 
and “Gle” all showed a high performance within Todeschini et al. 2012, but have an exactly 
similar performance as the JT-coefficient. Therefore, it has been decided to only include the 
JT-coefficient within this study. All included similarity coefficients were rescaled to provide 
similarity values between 0 and 1 using Equation 2.1, similar to Todeschini et al. (2012) [7].

(2.1)

Where s is the original similarity value (Table 2.2), s’ is the rescaled function in the range [0, 
1], and α and β are numerical parameters whose values are reported in Table 2.2. When α = 0 
and β = 1, this means that no transformation has been applied [7].

Table 2.1. Binary fingerprints included in this study. 

Name Number 
of bits Type of fingerprint Source

Substructure Fingerprints 307

Dictionary based 
fingerprints PaDEL-

Descriptor [6]

MACCS Fingerprints 166
E-State Fingerprints 79
PubChem Fingerprints 881
Klekota-Roth Fingerprints 4860
CDK Extended Fingerprints 1024

Topological or Path-
based fingerprintsAtom Pairs Fingerprints 1024

RDkit [55]

Topological Torsion Fingerprints 1024
Extended Connectivity Fingerprints (diameter = 0) (ECFP0) 1024

Circular 
fingerprints *

Extended Connectivity Fingerprints (diameter = 2) (ECFP2) 1024
Extended Connectivity Fingerprints (diameter = 4) (ECFP4) 1024
Extended Connectivity Fingerprints (diameter = 6) (ECFP6) 1024
Functional-Class Fingerprints (diameter = 0) (FCFP0) 1024

Circular/pharma-
cophore fingerprints *

Functional-Class Fingerprints (diameter = 2) (FCFP2) 1024
Functional-Class Fingerprints (diameter = 4) (FCFP4) 1024
Functional-Class Fingerprints (diameter = 6) (FCFP6) 1024

*Morgan fingerprints were calculated using RDkit with radius of 0, 1, 2 and 3; which is roughly equivalent to ECFP and 
FCFP0, 2, 4, and 6. 
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Table 2.2. Similarity coefficients included in this study (obtained from [7]). 

Name Formula α β Class Conditions

Jaccard-Tanimoto  
(JT) 0 1 A c=0 à s=0

Harris-Lahey 
(HL) 0 p S c=p or d=p à s=1; 

den=0 à s=0

Consonni-Todeschini 4 
(CT4) 0 1 A None

Sokal-Sneath 3  
(SS3) 0 1 S c=p or d=p à s=1;

c=0 and d=0 à s=0

Cohen  
(Coh) +1 2 Q c=p or d=p à s=1; 

den=0 à s=0

Simple Matching  
(SM) 0 1 S None

Yule 2  
(Yu2) +1 2 Q c=p, d=p or ab=0 

à s=1

Names of the coefficients are provided as in accordance to Todeschini et al. 2012 [7], though the definition 
of a and c are switched in Todeschini et al. 2012 [7]. The column “Class” represents the type of coefficient: S 
= symmetric coefficient (counts a and d are considered equally); A = asymmetric coefficient (only count a 
is considered); Q = correlation based coefficients that are transformed to obtain a value between zero and 
one. The column “conditions” represents conditions that were assumed in order to avoid singularities. Den 
= denominator; p = a + b + c + d.

2.2.4 Performance assessment

Performance statistics
In total, 112 different similarity measures were selected (i.e. all different combinations of 
16 fingerprints and 7 similarity coefficients) and we analyzed their predictive performance 
on classifying the substances in the dataset as (potential) SVHC or non-SVHC. For non-
SVHC substances, similarities were calculated to all substances in the SVHC set based on the 
fingerprint-coefficient combination. Similarities for SVHC substances were calculated to all 
other substances on the SVHC set. Iteratively, one SVHC molecule at a time was left out of 
the dataset and compared to the other SVHC substances. For each substance, only the highest 
similarity value was retained. 

For each fingerprint-coefficient combination, we determined the maximum balanced accuracy 
(Equation 2.2), by selecting the optimal threshold (i.e. a value between 0 and 1) to predict 
(potential) SVHC status versus non-SVHC status. Substances with a similarity value equal 
to or above this threshold are predicted to be structurally similar to a substance with CMR, 
PBT/vPvB or ED properties to such an extent that they are potential CMR, PBT/vPvB or ED 
themselves (and vice versa). When using a threshold value, the number of ‘True Positives 
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(TP)’, ‘False Positives (FP)’, ‘False Negatives (FN)’ and ‘True Negatives (TN)’ predictions can 
be determined for a fingerprint-coefficient combination, as well as the balanced accuracy 
(Equation 2.2). By iteratively assessing the fingerprint-coefficient performance for all 
distinguishing threshold values (ranging from 0-1), the optimal threshold, with maximum 
balanced accuracy could be determined. The optimal threshold was selected for each specific 
fingerprint-coefficient combination to ensure equal model comparisons.  

(2.2)

Best model selection
In addition to the overall performance (with all CMR, PBT/vPvB and ED substances 
together in the reference set), also the predictive performance of all fingerprint-coefficient 
combinations for specific subgroups were analyzed (i.e. for the subgroups of CMR, PBT/vPvB 
and ED substances separately). The whole set of non-SVHC substances was used as truly 
negative data in each case. The best performing model was selected based on the balanced 
accuracy.

Best model evaluation
Within the best performing models, we analyzed whether potential bias was introduced by 
the optimal similarity coefficient. Specifically, symmetric similarity coefficients may tend to 
predict small substances - with many ‘0-bits’ - as similar to small SVHC substances, because 
of common absence of many features (i.e. d-fragments). Although such a model could be 
considered most optimal based on statistical performance of the dataset, the occurrence 
of this type of similarities is undesirable, as upon application many small substances will 
incorrectly be classified as (potential) SVHC. Therefore, when potential symmetric coefficient 
bias was identified in a best performing model, we decided to use an asymmetric similarity 
coefficient for substances with a low number of ‘1-bits’ (i.e. JT or CT4, which only considers 
c-fragments as similar). The most optimal fragment count cut-off was analyzed based on 
balanced accuracy. 

Furthermore, we analyzed the robustness of the best performing models by assessing the 
performance after two different robustness checks. Within the first robustness check, we 
extended the non-SVHC dataset by adding the substances of the “non-relevant” SVHC 
subgroup to the non-SVHC dataset. To illustrate, for the CMR-model, all PBT/vPvB and 
ED SVHC substances that do not have CMR properties were considered as not-CMR, and 
thus added to the non-SVHC set for this robustness check. This robustness check could not 
have been conducted on the overall model, as in this case all SVHC subgroups are relevant. 
Within a second robustness check, we reduced the number of representative structures of 
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group entries that were included within the SVHC as well as within the non-SVHC set to 
generally two structures (see Supplemental Material Excel). In addition, some structurally 
similar substances are represented various times in the SVHC or non-SVHC datasets, 
including a large number of individual PCB isomers, chlorinated dibenzofurans, chlorinated 
dibenzodioxins and polybrominated diphenyl ethers on the PBT/vPvB dataset. To determine 
the robustness of the best performing models, such groups have also been reduced to a 
representation of generally two representative structures (see Supplemental Material Excel). 
The performance of the adjusted datasets within the different robustness checks was assessed 
similarly as described above, using the optimal threshold of the best-performing model. 

In addition, hierarchical cluster diagrams were generated for the different SVHC subgroups 
in order to analyze the diversity within the subgroups. Hierarchical clusters were based on the 
similarity matrix of the subgroup, using single-linkage method. 

The performance of the best predictive models was also compared to existing methodologies 
– using the SVHC dataset – including Toxtree (i.e. Benigni/Bossa rulebase for mutagenicity 
and carcinogenicity), DART and the PB-score tool [38,39,57]. For this analysis, the presence 
of a structural alert from Toxtree and/or DART was interpreted as a prediction of SVHC 
status based on CMR properties. 

Besides performance evaluation, also applicability domain was analyzed by determining 
the 95th percentile of molecular weight, log Kow [37], number of atoms, number of rings and 
number of aromatic rings within the applied datasets.

All data was analyzed in R (version 3.5.1) [58], using caret, ChemmineR, caTools, ROCR and 
rcdk [59–63]. 

2.3 Results

2.3.1 Best model selection 

Overall model performance
Table 2.3 shows the ten best performing models when all CMR, PBT/vPvB and ED substances 
are taken together in a single SVHC dataset. A wide variety of fingerprints was identified in the 
top ten models, including dictionary-based, path-based, circular-based and pharmacophore-
based fingerprints. In contrast, one similarity coefficient, the Simple Matching (SM), is 
dominating the top ten models. Furthermore, it can be observed that relatively high optimal 
similarity thresholds are determined. The height of the threshold is highly related to the used 
similarity coefficient, and is specifically high for the SM coefficient (Figure S.1). This is a 
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consequence of the fact that c and d variables are treated as similar in this coefficient (Table 
2.2).

The overall best performing model, PubChem-SM combination, has an overall balanced 
accuracy of 0.846. However, this specific combination is not the most optimal for the specific 
subgroups, having different (toxicological) concerns. Therefore, we also analyzed model 
performances for the CMR, PBT/vPvB and ED groups separately.

Subgroup model performance
The best performing similarity models optimized for the separate CMR, PBT/vPvB and ED 
subgroups are shown in Table 2.4 (in row one till three, respectively). For the ED subgroup, 
30 out of the 112 tested different similarity measures showed similar predictive performance, 
but the rank of the fingerprints and coefficients separately shows a highest rank for the 
FCFP4 fingerprint and the SS3 similarity coefficient. The best performing combination of 
fingerprint and similarity coefficient is different for the different subgroups, and a (slightly) 
higher balanced accuracy is obtained when compared to the best performing overall model 
(Table 2.3). 

2.3.2 Best model evaluation

Symmetric coefficient bias
By applying the “Extended fingerprint – SM coefficient” combination for the CMR dataset, 
with a 0.944 similarity threshold, all substances with less than 63 fingerprint bits were 
considered to be similar to CMR-SVHCs (Figure 2.2A). This coefficient bias is also observed 
upon visual inspection of the FP-substances, perceiving a better similarity assessment with 
increased number of fingerprint bits (e.g. ‘Methyl octanoate’ and ‘3-propanolide’; or ‘Captan’ 
and ‘Captafol’; Figure 2.2B). 
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Based on our assessment, finding an optimal cut-off within the range of 63 to 100 fingerprint 
bits, the combination of the CT4 coefficient for substances with less than 85 fingerprint bits 
and the SM coefficient for substances with 85 or more fingerprint bits is most optimal, with 
a balanced accuracy of 0.800 and threshold values of 0.851 and 0.944, respectively (Table 
2.4, row 4). The statistical performance of the CT4-SM combination is lower than the SM 
coefficient only (when looking at the balanced accuracy), due to an increase in FN-classified 
substances. On the contrary, also more substances are correctly classified as negative, 
including structures with a relative low number of fingerprint bits, like methyl octanoate 
and the terpenoid blend QRD-460 (Figure 2.2B; Figure S.2). This results in a much better 
specificity and precision (Table 2.4; Table S.1). The PBT/vPvB and ED models do not require 
a combination of asymmetric and symmetric coefficients as no symmetric coefficient bias was 
observed (Supplemental Material S.4; Figure S.2).

Figure 2.2. Classification of the CMR-SVHC and non-SVHC substances using the “Extended Fingerprint – 
SM coefficient” combination. A) Fingerprint bit count distributions across the different classifications: True 
Positive, False Positives, True Negatives and False Negatives. All substances with less than 63 fingerprint bits 
are classified as positive (dashed-line). B) Illustration of some False Positive classified substances and the 
most similar CMR substance. With an increase in the number of fingerprint bits, less ambiguous similarities 
are established.

Robustness checks
The robustness of the best-performing subgroup models was investigated via two robustness 
checks (Table 2.4). Within the first robustness check, the SVHC substances that did not belong 
to the subgroup of concern were added to the dataset as non-SVHCs (i.e. ‘robustness check 
1’). For the best performing CMR model, 651 non-SVHC substances were included, for the 
best PBT/vPvB model 748 non-SVHC substances and for the best ED model 905 non-SVHC 
substances. Within the second robustness check, we reduced the number of representative 
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structures for group entries and structurally similar substances of the SVHC and non-SVHC 
set to generally two structures (i.e. ‘robustness check 2’). In total, 30 substances were excluded 
from the non-SVHC set, 35 from the CMR subset, 96 from the PBT/vPvB subset, and 34 from 
the ED subset. 

Adding the non-target SVHC-substances to the non-SVHC set lowered the balanced accuracy 
and hence the predictive performance, specifically for the CMR similarity model. Conversely, 
removal of close structural analogues resulted in a larger decrease in predictive performance 
for the PBT/vPvB and ED specific models. 

Single-point-of-knowledge 
The CMR and PBT/vPvB subgroup have a quite broad basis with 306 and 209 substances, 
respectively, whereas the ED subgroup only consists of 52 substances. Within the PBT/
vPvB and ED subgroups, some groups of very similar structures can be identified, and only 
a few single-point-of-knowledge structures (SPOKs) are included (Figure 2.3). SPOKs are 
substances that are not comparable to any other substance in the subgroup and thus are 
single-point-of-knowledges within the dataset (i.e. the FN). Within the ED substances, four 
groups and one distinct substance are present; in the PBT/vPvB subgroup, 15 groups and 
17 distinct substances were identified (giving 1 and 17 false negatives, respectively). On the 
contrary, the CMR-SVHC dataset is much more diverse in chemical structures and contains 
much more SPOKs, reflected in the high number of FN-classified substances (n=107). For 
the CMR subgroup, no unambiguous hierarchical clustering can be generated as the CT4-SM 
coefficient combination does not fulfill the mathematical conditions for all substances (i.e. 
similarity between substance x and y is not necessarily similar to the similarity between y and 
x). Nevertheless, some groups can be identified, including polycyclic aromatic hydrocarbons, 
haloalkanes, cyclic and acyclic ethers, alkyl phenols, phthalates, aromatic amines, 
nitroaromatics and chloroaromatics. As a consequence of the high structural diversity, the 
calculated balanced accuracy is also lower for the CMR subgroup compared to the PBT/vPvB 
and ED groups. It should be noted that the SPOK false negatives will be included in the full 
dataset of SVHC substances when applying the model to a new substance. 

Performance of existing models
The performance of a CMR model (i.e. the sum outcome from Toxtree and DART [39,57]) 
on the used SVHC-set was analyzed. Substances were considered as CMR by the model when 
a Toxtree or DART alert was identified. A balanced accuracy of 0.62 was determined, with a 
sensitivity of 0.78 and a specificity of 0.47. Furthermore, the performance of a PBT model was 
evaluated (i.e. PB-score tool [38]). For four substances no PB-score could be calculated as no 
log Kaw could be estimated. For the used dataset, a balanced accuracy of 0.73 was determined, 
with a sensitivity of 0.53 and a specificity of 0.93. No ED model was analyzed because of the 
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limitations identified in the ED-similarity model (see discussion). 

Figure 2.3. Hierarchical clustering for the ED and PBT/vPvB subgroups based on single linkage method. For 
ED, the FCFP4 fingerprint and SS3 coefficient are plotted, and for PBT/vPvB the MACCS fingerprint and 
SM coefficient. The y-axis describes the dissimilarity between the SVHC structures and is equal to 1 minus 
the similarity. The blue dotted line represents the used threshold (i.e. 1 minus threshold values). The red-
colored boxes represent clusters of similar substances. A) ED clusters. Five different clusters can be identified: 
1 = Diosgenin, 2 = Phthalates, 3 = Ethoxylated phenols, 4 = Nonyl and heptyl phenols, 5 = Octyl, pentyl and 
bi-phenols (Bisphenol A). B) PBT/vPvB clusters. Thirty-two different clusters can be identified, including 
some large clusters: 1 = Phenolic benzotriazoles, 2 = Halogenated Dioxins, 3 = Chlorinated paraffins, 4 = 
Brominated diphenyl ethers, 5 = Perfluorinated carboxylic acids, 6 = Polycyclic aromatic hydrocarbons, 7 
= Halogenated dibenzofurans, 8 = Halogenated aromatics and cycloalkanes. 

2.4 Discussion

As ever-increasing amounts of substances are produced, applied and emitted, it is important 
to focus attention on assessing the risks of those substances that are most likely to actually 
cause problems. Therefore, there is a need for efficient screening and prioritization methods 



Chemical Similarity to Identify Potential SVHCs 

45

2

to identify chemicals with a high potential of being hazardous. Within this study we evaluated 
the efficiency of a set of similarity measures for the identification of (potential) SVHCs. Based 
on our approach, we identified the three best performing models for CMR, PBT/vPvB and 
ED subgroups, that all show a promising balanced accuracy (≥0.8) based on the used dataset.

2.4.1 Model performance

The three subgroup-specific models showed a better performance than one single overall 
model. This is likely related to a difference in mode(s) of action between CMR, PBT/vPvB and 
ED substances, and is also reflected in the most optimal fingerprints. In addition, predictive 
performance appeared reasonably robust with less than 10% reduction of balanced accuracy 
following the two robustness checks for all best performing models. 

For the PBT/vPvB substances, the MACCS fingerprint performed best. The MACCS fingerprint 
contains only 166 predefined bits and was particularly developed to categorize substances 
in functional groups [64]. The PBT/vPvB dataset has a low structural diversity, with many 
substances sharing common structural features (Figure 2.3), including aromatic-rings and 
high levels of halogenation. In addition, small substances are often not considered PBT/vPvB, 
as in general a lower octanol-water-partitioning is observed for smaller substances, and this 
in turn is related to the bioaccumulation potential [19]. Apparently, the MACCS fingerprint 
is very effective in making a distinction between PBT/vPvB and non-PBT/vPvB substances 
based on these common features. Consequently, a high predictive performance is observed 
for this dataset (0.951). 

The CMR substances are structurally much more diverse, with 107 SPOKs in the SVHC dataset. 
This diversity is also reflected in the most optimal fingerprint, the Extended Fingerprint. This 
path-based fingerprint, which is based on the well-known Daylight fingerprint [65], recognizes 
all paths within a structure consisting of 1-9 atoms (i.e. search depth of 8 bonds) and also 
includes some additional bits that describe ring features [6]. Compared to dictionary-based 
fingerprints, it is assumed that this method is more suitable to capture the broad diversity in 
CMR substances, as it characterizes all possible fragments within a structure. 

As the balanced accuracy for the CMR subgroup was relatively low (compared to the PBT/
vPvB and ED groups), we added an extra fingerprint that encodes for the presence of CMR-
specific fragments identified in expert-models like Toxtree and DART [39,57]. Nonetheless, 
the inclusion of the mechanistically based substructures in the fingerprint did not lead to any 
improvement in the predictive performance (Supplemental Material S.5). Apparently, the size 
of the dataset and the fragments present in the optimal fingerprint already cover the specific 
structural features that have been linked to our collective knowledge of mechanisms of action 
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leading to CMR effects. The additional fingerprint is therefore excluded again.

For ED substances, the FCFP-4 is identified as best performing fingerprint. FCFP-4 identifies 
fragments based on functional group patterns. It recognizes atoms as hydrogen donors, 
hydrogen acceptors, aromatics, halogens, basic-atoms and acidic-atoms, and it identifies 
fragments based on patterns between these atoms (e.g. hydrogen donor – hydrogen acceptor 
– hydrogen donor) [55]. Endocrine disruptors generally interact with specific hormone 
receptors or interact with proteins in the hormone pathway [66], and such (receptor) binding 
properties are potentially identified best by the features covered in the FCFP-fingerprint. 
Furthermore, the diameter of 4 (FCFP-4) scored slightly better for the similarity search than 
a diameter of 2 or 6, which is in line with earlier findings [67]. Rogers and Hahn (2010) 
[67] concluded that a diameter of four is typically sufficient for similarity searches whereas a 
diameter of six or eight is best for activity learning methods. 

Despite the very high performance for the ED subgroup (0.990), prediction results from 
this model should be interpreted with caution. The currently used ED-SVHC dataset is 
limited as it only consists of a few number of substances that have a large structural overlap 
(Figure 2.3) and consequently results in higher uncertainty around the optimal threshold 
value compared to the other models (Figure S.3). In addition, there is only one substance 
on the ED-list with a hormone backbone (i.e. Diosgenin). The reason for the low number of 
identified ED-SVHC substances is partially related to the fact that only those substances are 
identified as ED for which SVHC-identification is of added regulatory value. In addition, only 
recently guidance and criteria are developed for the identification of ED substances [68]. It is 
recommended to further develop the ED model when more substances are classified as ED-
SVHC, or by including known endocrine disrupting substances such as the natural substrates 
(and synthetic variants derived thereof) interacting with estrogen/androgen/thyroid and 
steroidogenic pathways. With a broader dataset, a more sophisticated screening model will 
be possible. Based on the current dataset the ED-SVHC similarity model is expected to miss 
many (potential) ED substances.

A higher performance is observed for the best-scoring CMR and PBT/vPvB similarity models 
compared to existing models [38,39,57], when using the SVHC dataset. This indicates the 
value and relevance of the structural property principle for identifying potential SVHC 
substances. For the ED model, no comparison was made with existing models because of the 
limitations as mentioned above. 

2.4.2 Focus and restriction of the modelling

We limited our assessment to the performance of 2D-binary fingerprints, and the presence 
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or absence of 2D-fragments. More sophisticated fingerprints are also available, including 
count-based fingerprints, taking into account how many times a fragment is present, or 
3D-fingerprints that consider chemical conformation. Particularly, 3D-fingerprints could 
be relevant to identify potential ED substances, as receptor-binding properties are highly 
important for this group. In general, however, 2D-binary fingerprints are most popular as 
they are an acceptable trade-off between the wealth of (possible) information and simplicity, 
enabling an easy and quick comparison [32,56]. Especially for the proposed screening 
activities, the currently evaluated methodology is considered adequate. 

In principle, all non-SVHC substances that have been used for modelling purposes within 
this study are tested on CMR, PBT/vPvB and ED properties. Nevertheless, it is possible that 
some substances are currently not identified as such, but will become a SVHC substance in 
future, when new information becomes available or when new evaluations are conducted. 
For instance, glyphosate is included in the non-SVHC list used in this study, although its 
carcinogenicity is currently extensively discussed [69,70]. Furthermore, as shown in Figure 
2.2, Captafol is considered as CMR substance whereas its close structural analogue Captan is 
not (see Supplemental Material S.1). Captafol is classified as a carcinogen category 1B (leading 
to SVHC status), and Captan as a carcinogen category 2 [71]. Although the model identifies 
Captan as a false positive, the results could be very useful and may provide further arguments 
for (de)-classification of these substances. For instance, within European regulatory 
frameworks, a category 2 classification (for carcinogenicity but also for mutagenicity and 
reproductive toxicity) is often the highest classification that can be agreed upon when there 
are insufficient (experimental) data to support a category 1B classification [72]. 

Despite the conductance of a performance analysis, including robustness checks, we were not 
able to conduct a proper external validation in order to analyze the performance on an external 
dataset. As SVHCs are identified after a regulatory decision process in which all available data 
is evaluated, we are not in the position to mark substances as SVHC for external validation 
purposes. Similarly, non-SVHC substances are challenging to assign, as many substances are 
not extensively evaluated on all SVHC endpoints (i.e. CMR, PBT/vPvB and ED). A proper 
external validation set can therefore only be developed in future, when new SVHC and non-
SVHC substances are identified. Future work will focus on the application of the developed 
methodology to large sets of substances to obtain a better idea of the application performance. 

2.4.3 Use and applicability domain of the model

The assumption, that structurally similar substances are likely to have similar properties, seems 
valid based on our analysis and model performances. The proposed similarity models focus 
on multiple endpoints (i.e. CMR, PBT/vPvB and ED) and could be applied as a first screening 
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model, enabling to prioritize further follow-up analyses. The model directly highlights 
the most similar SVHC substance(s), which could provide additional information on the 
specific concerns. The absolute results should not be interpreted as a conclusive outcome. 
The methodology is framed to give systematic and transparent ways to identify relations that 
would not manually be identified. Based on the follow-up, it could be concluded that 1) the 
substance is likely to have similar effects, 2) that further data is required to substantiate the 
outcome, or 3) that the substance is not expected to have CMR, PBT/vPvB or ED properties. 

Furthermore, it should also be highlighted that the developed model considers a screening 
model to identify whether new chemicals are structurally similar to known SVHC substances. 
It should be kept in mind that SVHCs are identified based on a regulatory decision process in 
which available data is evaluated. Consequently, a negative model results (i.e. not structurally 
similar to a SVHC substance) does not necessarily means that the substance for instance 
has no carcinogenic, or persistent properties. What it does mean is that the chemical is not 
structurally similar to a SVHC and that related regulatory consequence may - at the moment 
- not be applicable for the new chemical. 

A short guide on the application of the methodology is provided in Supplemental Material S.3. 
With respect to the applicability domain, an increase in reliability is observed with an increase 
in structure complexity for all three models, especially for the CMR model (i.e. number of 
atoms and different atom types). The structure similarity models are not applicable to arsenic, 
beryllium, cadmium, chromium, lead, mercury, nickel and cobalt-metal derivatives. For these 
chemicals, the metal atoms (or ions) are thought to be the cause of concern, irrespective of 
the (organic) groups present in the inorganic molecule. These metal-based complexes are by 
definition predicted to be SVHC substances. However, the models can be used to generate 
a first prediction for non-dissociating metals (e.g. organotin substances). In principle, 
the chemical similarity itself is an applicability domain descriptor. If the new substance is 
sufficiently similar to an existing SVHC, the substance is clearly within the applicability 
domain of the model. Furthermore, physicochemical boundaries (i.e. 95th percentiles) have 
been calculated for the different models based on molecular weight, log Kow, number of atoms, 
number of rings and the number of aromatic rings (Table S.2). The similarity methodology 
does not discriminate between pristine substances or environmental and/or metabolic 
breakdown products; this model is applicable to both. Risk assessors, we therefore advise 
not only to apply the predictive model to the parent substance, but also to the breakdown 
products as well as possible tautomers, as these may give different similarity outcomes. 

This effective screening method can particularly be applied during product development and 
chemical synthesis. By enhancing attention on chemicals of potential SVHC concern as early 
as possible within regulatory frameworks and safe-by-design trajectories, this methodology 
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contributes to the transition towards a non-toxic environment.

2.5 Conclusions

Within this study, a systematic and transparent methodology was established that could 
identify potential SVHCs based on structural similarity to a known set of SVHCs. We have 
analyzed the influence of selected similarity characterizations (fingerprints and coefficients) 
on the identification of chemicals of potential SVHC concern. A good statistical performance 
was obtained for CMR, PBT/vPvB and ED substances, but nevertheless further work is 
considered necessary to improve the ED part due to the small reference dataset for this SVHC 
concern. 

Application of the developed methodology is considered useful to identify chemicals of 
potential concern as early as possible, and as such may ensure that up-front more adequate 
risk management measures can be applied to contribute towards a non-toxic environment. It 
is foreseen that this scientifically-based model is beneficial to (environmental) risk assessors, 
industrial partners and academia.
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