Open knot-tying skills: resident skills assessed Empel, P.J. van; Verdam, M.G.E.; Huirne, J.A.; Bonjer, H.J.; Meijerink, W.J.; Scheele, F. ### Citation Empel, P. J. van, Verdam, M. G. E., Huirne, J. A., Bonjer, H. J., Meijerink, W. J., & Scheele, F. (2013). Open knot-tying skills: resident skills assessed. *Journal Of Obstetrics And Gynaecology Research*, 39(5), 1030-1036. doi:10.1111/jog.12011 Version: Publisher's Version License: Licensed under Article 25fa Copyright Act/Law (Amendment Taverne) Downloaded from: https://hdl.handle.net/1887/3283599 **Note:** To cite this publication please use the final published version (if applicable). doi:10.1111/jog.12011 J. Obstet. Gynaecol. Res. Vol. 39, No. 5: 1030-1036, May 2013 # Open knot-tying skills: Resident skills assessed Pieter J. van Empel¹, Mathilde G. E. Verdam⁴, Judith A. Huirne², H. Jaap Bonjer¹, W. Jeroen Meijerink¹ and Fedde Scheele³ Departments of ¹Surgery and ²Obstetrics and Gynaecology, VU University Medical Centre, ³Department of Obstetrics and Gynaecology, Saint Lucas Andreas Hospital, and ⁴Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands #### **Abstract** *Aim:* Open knot-tying and suturing skills are fundamental surgical skills, founding many alternative knot-tying techniques. It is therefore mandatory for residents to possess adequate basic open knot-tying skills. The aim of this study was to compare an objective assessment of open knot-tying skills by residents to a resident's own estimation of his or her knot-tying skills, before and after a knot-tying course. *Material and Methods:* A prospective observational cohort study was performed. At baseline level, after 1 training day in the Advanced Suturing Course (ASC) in the Netherlands and Belgium and after 6 weeks of autonomous practice (i.e. self-practice), 99 residents' open knot-tying skills were objectively evaluated using the Objective Structured Assessment of Technical Skills (OSATS). The resident's own confidence in these skills was also evaluated. **Results:** The ASC substantially and significantly improved residents' knot-tying skills according to the OSATS between baseline and post-measurement. The observed improvement after 1 training day decreased after 6 weeks of autonomous practice. Self-confidence increased directly after the training program and was maintained 6 weeks later. Residents having completed the first 3 years of residency displayed an overall greater self-confidence than residents not having completed the first 3 years of residency, although the increase in self-confidence was significantly larger in the latter after 6 weeks' autonomous training. Conclusion: There is a divergence between residents' objectified open knot-tying skills and self-confidence in these skills. The ASC improved open knot-tying skills according to the OSATS, however this improvement decreased after a 6-week period of autonomous practice. Self-confidence, in contrast, was maintained or increased. Further research is needed to correlate validated training programs with clinical outcomes and to determine whether residents' open knot-tying skills and self-confidence are retained beyond 1 year. **Key words:** basic technical skills, knot-tying and suturing curriculum, self-confidence, skill acquisition, skills training/assessment. #### Introduction Despite the importance of technical skills, less than 1% of all surgical residents are tested on their open knottying techniques.¹ Open knottying and suturing skills are fundamental and critical to ensuring safe performance of all operations.² Training in basic surgical skills should be a primary component in the education of a surgical resident. Considering patient safety, working-hour restrictions and budgetary constraints, many hospitals have developed laboratory-based training programs using bench models and simulators to provide surgical skills. Several structured proficiency-based curricula for the education and assessment of Received: December 22 2011. Accepted: October 12 2012. Reprint request to: Pieter J. van Empel, Department of Surgery, VU University Medical Center, P.O. Box 7057, 1007 MB, Amsterdam, The Netherlands. Email: p.vanempel@vumc.nl 1030 © 2013 The Authors Tournal of Obstetrics and Gynaecology Research © 2013 Japan Society of Obstetrics and Gynaecology basic surgical skills have since been evolved, validated and implemented.³⁻⁶ Detailed curricula training in open knot-tying skills have not been extensively evaluated. To our knowledge, two prior studies focused on the utility of bench models for open knot-tying skills.^{2,7} However, these programs are provided during a medical student's surgical rotation, not surgical residency.^{8,9} The assessment of open knot-tying and suturing skills is typically performed at the end of a rotation and mostly based on a recollection of the student's performance during that rotation. This assessment has been proven to have poor reliability and validity and is often biased by factors other than technical skill. 10 The gap between a medical student's training and implementation of knot-tying skills during surgical residency results in a loss of skills during this time. Goova et al. assessed the baseline proficiency of primary-year surgical residents before and after participation in an open knot-tying and suturing training program, using the modified Fundamentals of Laparoscopic Surgery scoring system.11 They found a significant scoreincrease during the course.12 It may be important for trainees to rate their own personal skills and to assess the effect of training on these skills. This subsequently encourages a trainee's own responsibility for professional skill and competence development. The implementation of self-assessment moments within supervised training programs has been demonstrated to improve self-confidence. The aim of this study was to evaluate residents' self-confidence in open knot-tying techniques and compare this self-confidence with an objective measurement of these skills using the Objective Structured Assessment of Technical Skills (OSATS) assessment. The effect of an open knot-tying course was evaluated. #### Methods A prospective observational cohort study was conducted in the Netherlands and Belgium between 1 February and 30 April 2011. #### Study group A total of 99 surgical, gynecological and urological residents voluntarily participated in the Advanced Suturing Course (ASC), a laparoscopic and open knottying course organized by the VU Medical Center in Amsterdam, the Netherlands. Residents were allowed to enroll in this training program after having com- pleted the first 1.5 years of their residency program, as basic open and laparoscopic knot-tying trainings are then completed. #### Training program The ASC consists of 1 training day followed by 6 weeks of voluntary autonomous training at home. The first training day entails an extensive repetition of open, square, surgeon's and slipping knot-tying techniques. Training in these techniques was carried out using a knot-tying board and cotton thread. Training was intensively supervised by at least two senior (gynecological) surgeons providing instructions and feedback. The resident–supervisor ratio during the course was 4:1. All equipment and supervisors were kept identical during both training days. To perform an open knot, a valve-tube imitating a blood vessel put around an upside-down valve tightened to a board was used. A surgical clamp was held by the supervisor on the tube to enable participants to perform a square knot ligature around the valve-tube. #### **Evaluation of skills** The open knot-tying skills of each participant were evaluated immediately before and after the first course day, and again after the 6-week autonomous training period. This evaluation included an evaluation of self-confidence using a VAS of 0–100 and an objective assessment using the OSATS by senior laparoscopic surgeons of the department of surgery or gynecology. Regehr *et al.* demonstrated that a global rating scale, such as the OSATS, demonstrates a high inter-observer reliability between surgeons of different skill (construct validity).¹⁷ The OSATS consists of five scoring items covering the fundamental aspects of open knottying techniques (Appendix 1). A score of 1–5 is given for each item, resulting in a total score between 5 and 25. We did not score time as an indicator for performance as this is not necessarily a good surrogate for ability.¹⁸ Seventy-five percent of the maximum OSATS score was used as a cut-off value.^{19,20} Trainees were given 5 min to complete an open knot. #### Statistical analysis Data were analyzed using SPSS 15.0 for Windows. Data were tested for assumption of parametric testing, which revealed it is safe to perform parametric tests. Differences between the evaluation points in mean confidence scores and mean OSATS scores were assessed by using multilevel analysis statistics. A comparison was made between baseline measurement and post-measurement (effect of the training program) and between post-measurement and follow-up measurement (long-term effect of the training program after 6 weeks of self-practice). Additionally, differences between residents with fewer than 3 years of residency and residents with 4-6 years of residency and differences among residents from gynecology, urology and surgery were analyzed. The relation between self-confidence and OSATS scores was assessed using Pearson correlation analyses comparing difference scores between baseline measurement and postmeasurement (effect of the training program) and between post-measurement and follow-up measurement (long-term effect of the training program after 6 weeks of self-practice). Results are reported as mean (±SD) and all P-values reported are two-sided; a significance level of less than 0.05 was considered statistically significant. #### Results Out of 99 residents, 57.6% (n = 57) had completed less than 3 years of residency and 42.4% (n = 42) were between the 4th and 6th year of residency. Specializations included 81.8% (n = 81) in general surgery, 10.1% (n = 10) in urology and 7.1% (n = 7) in gynecology (one resident did not mention his or her specialization). #### Objective assessment Out of 99 residents, 70.7% (n = 70) were evaluated at the start of the training program (baseline), 67.8% (n = 67) after the first training day (post) and 48.5% (n = 48) after 6 weeks of autonomous training (follow up). OSATS scores are presented in Figure 1. OSATS scores increased significantly between baseline and post-measurement (P = 0.002); however, the objective evaluation of surgical technique OSATS scores did not change significantly between postmeasurement and follow-up measurement (P = 0.824). Overall, the changes in OSATS scores were similar for residents in their first 3 years of residency and residents after their first 3 years of residency (P = 0.841; P = 0.223). Overall, residents with 4–6 years of resident training demonstrated slightly higher mean OSATS scores compared to residents with 1-3 years of resident training, yet this was not statistically significant (P = 0.144). Overall, there was no significant difference in OSATS scores between residents from different specializations (P = 0.414). The changes in OSATS scores between baseline and post-measurement and between Figure 1 Means and standard errors of Objective Assessment of Surgical Techniques (OSATS-scores) for both experimental groups separately. (→), 1–3 years of residents training; (→), 4–6 years of residents training. Figure 2 Means and standard errors of residents' confidence of surgical techniques for both experimental groups separately. (—), 1–3 years of residents training; (—), 4–6 years of residents training. post-measurement and follow-up measurement were similar for residents from different specializations (P = 0.866, P = 0.866). #### Self-confidence Of participating residents, 100% (n = 99) evaluated their own self-confidence in open knot-tying skills at baseline, 92.9% (n = 92) at post-measurement and 87.9% (n = 84) at follow-up measurement. Self-confidence scores are presented in Figure 2. Mean confidence scores in open knot-tying skills increased significantly between baseline and post-measurement (P = 0.004). Also, mean confidence scores increased significantly between post- and follow-up measurement (P < 0.001). The increase in mean confidence scores between baseline and postmeasurement was similar for residents with different years of residency training (P = 0.580), but during the 6-week period of self-practice the increase in mean confidence scores was significantly greater for residents with fewer than 3 years of residency experience than for residents with 4-6 years of residency experience (P = 0.010). However, residents having completed 4-6 years of residency reported significantly higher mean confidence scores compared to residents with less than 3 years of residency (P = 0.002). Overall, there was no significant difference in self-confidence scores between residents from different specializations (P = 0.430). The changes between baseline and postmeasurement and between post-measurement and follow-up measurement were similar for residents from different specializations (P = 0.806, P = 0.779). # Self-confidence and objective measurement relations The increase in reported self-confidence in open knot-tying skills for both groups of residents between baseline and post-measurement was not significantly related to the increase in objective score of these skills (r = 0.282, P = 0.172; r = -0.007, P = 0.972). This relation was also not significant between post-measurement and follow-up measurement (r = 0.237, P = 0.234; r = 0.332, P = 0.193). #### Discussion Although it is known that basic skills acquired in a laboratory setting are transferable to the operating theatre, 21,22 there is a lack of longitudinal assessment with objective feedback regarding open knot-tying techniques. To our knowledge, this is the first study comparing an objective assessment of open knot-tying skills to self-confidence in these skills. Proficiency-based training curricula that consist of structured practice, using performance-derived training end-points that provide constructive feedback, optimal learning, repetition and durable skill acquisition have not been widely reported. Participating residents were relatively insecure regarding their open knot-tying skills at the start of the training program but did estimate their proficiency level in these skills as sufficient. The training program improved both residents' knot-tying performance and self-confidence. The increase in self-confidence over time was expected; experience in a procedure increases self-confidence.²³ Although self-confidence improved over time, the increase in self-confidence did not correlate to an objective improvement of performance. Residents were only minimally proficient 6 weeks posttraining. Self-assessment scores have been shown to poorly correlate with the objective assessment of these skills¹⁰ (as is shown in our study), and this essentially contributes to the motivation of trainees to improve their technical skill.15 Although self-assessment helps to recognize deficiencies and create an awareness of deficiencies, these results emphasize the need for repeated practice to improve not only residents' self-confidence but also objective performance. Draycott et al. found in a retrospective observational study that the introduction of shoulder dystocia training improved management and neonatal clinical outcomes of births complicated by shoulder dystocia.24 Further study is needed to determine whether residents' open knot-tying skills and selfconfidence are retained beyond 1 year. One training day induced only a temporary improvement in open knot-tying skills. The authors feel the initial improvement during day 1 may be caused by a refreshment and training of the resident's knowledge and techniques in open knot-tying skills during day 1. An absence in training or an absence of correction of skills during the 6-week autonomous training interval may explain unaltered scores on day 2. It is known that technical skills are better retained by residents when training is distributed over a number of training sessions.²⁵ Our results emphasize the requirement of repeated training of basic surgical skills, such as the open knot-tying technique in this study, to improve both confidence and objective performance of these skills. Objective feedback might be crucial in the acquisition of clinical skills. Feedback induces motivation, supplies reinforcement for correct actions, dissuades incorrect actions and may provide information on errors as a basis for correction. However, constant professional feedback outside the operating theatre is expensive and logistically infeasible. Thereby, feedback during operations is not always constructive as most of the current generation supervisors did not participate in an open knot-tying course themselves or assume residents to be suitably qualified. In contrast to our study, a self-practice format using video-based tutorials can minimize personnel resources and simplify scheduling issues. We think that a validated basic skills curriculum for open knot-tying techniques is needed to maintain a sufficient open knot-tying skill level. The task used in this study was robust and there were no problems with our training model. Although more complex assessment strategies, including global ratings, video-based scoring systems, motion tracking devices or tensiometers, have been successfully used in other studies, 7,17,22,27-32 we used a simple scoring system using the elaborated validated OSATS. Cut-off values for OSATS have only been defined in a study by Bijen *et al.* (2009) at 75% of the maximum OSATS score. ^{19,20} Further studies are needed to establish a benchmark proficiency level for credential purposes. Several previous studies have demonstrated the reliability and validity of the OSATS, ¹⁷ therefore inter-rater reliability was not assessed in this study. Our findings are limited for several reasons. We only assessed residents participating in the ASC. As the ASC is designed mainly to train in laparoscopic techniques, residents might have spent most of their time practicing laparoscopic skills and not their open knot-tying techniques. To more accurately assess the influence of autonomous home training on open knot-tying techniques, future studies should investigate the time spent on training on this skill. Second, objective evaluation of open knot-tying technique was by direct observation by a supervising surgeon. As such, observers were not blinded, introducing a possible risk of bias. A more objective – but expensive and time-consuming – form of evaluation could be video-guided assessment. Third, in contrast to other studies, we did not use time as a performance indicator. ¹² As there are limited studies available on open knot-tying techniques assessment, we could not set any evidence-based goals for assessment. However, we know that residents perform better if goals are set. ³³ Finally, we did not correlate this training with clinical outcome. Open knot-tying is considered a very important basic surgical skill, even though rates of complications associated with insufficient knot-tying skills are not known. The (surgical) consequences of poor knot-tying skills, and therefore procedural skill, seem obvious. Associating the implications of this study in a clinical setting would be compelling, however it is hard to relate a decline in clinical complications to participation in this course as many factors are associated with complications; it is also ethically challenging. #### Conclusion We emphasize the need for repeated training of basic surgical skills and continuous feedback on skills. The training program improved both residents' knot-tying performance and self-confidence. Residents appear to be unable to adequately estimate their open knot-tying skills. Further research is needed to correlate training programs with clinical outcomes and construct a validated basic skills curriculum, including certification. In our opinion, constructing a validated basic skill curriculum for open knot-tying techniques with predefined end-points, assessment and external feedback is mandatory to ensure adequate basic surgical skills. ## Acknowledgments The authors would like to thank Mr. R.P.M. de Hoon for his very important contributions to the organization and logistics of the ASC. #### References - Carter JT, Tafreshian S, Campos GM et al. Routine upper GI series after gastric bypass does not reliably identify anastomotic leaks or predict stricture formation. Surg Endosc 2007; 21: 2172–2177. - Scott DJ, Goova MT, Tesfay ST. A cost-effective proficiencybased knot-tying and suturing curriculum for residency programs. J Surg Res 2007; 141: 7–15. - 3. Grober ED, Hamstra SJ, Wanzel KR *et al.* The educational impact of bench model fidelity on the acquisition of technical skill: The use of clinically relevant outcome measures. *Ann Surg* 2004; **240**: 374–381. - Stefanidis D, Korndorffer JR Jr, Markley S, Sierra R, Scott DJ. Proficiency maintenance: Impact of ongoing simulator training on laparoscopic skill retention. J Am Coll Surg 2006; 202: 599–603. - Stefanidis D, Sierra R, Korndorffer JR Jr et al. Intensive continuing medical education course training on simulators results in proficiency for laparoscopic suturing. Am J Surg 2006; 191: 23–27. - Vassiliou MC, Dunkin BJ, Marks JM, Fried GM. FLS and FES: Comprehensive models of training and assessment. Surg Clin North Am 2010; 90: 535–558. - 7. Dubrowski A, Xeroulis G. Computer-based video instructions for acquisition of technical skills. *J Vis Commun Med* 2005; **28**: 150–155. - Xeroulis GJ, Park J, Moulton CA, Reznick RK, Leblanc V, Dubrowski A. Teaching suturing and knot-tying skills to medical students: A randomized controlled study comparing computer-based video instruction and (concurrent and summary) expert feedback. Surgery 2007; 141: 442–449. - Meyers M, Meyer A, Stewart R et al. Teaching technical skills to medical students during a surgery clerkship: Results of a small group curriculum. J Surg Res 2010; 166: 171– 175. 1034 © 2013 The Authors - Reznick RK. Teaching and testing technical skills. Am J Surg 1993; 165: 358–361. - 11. Peters JH, Fried GM, Swanstrom LL *et al*. Development and validation of a comprehensive program of education and assessment of the basic fundamentals of laparoscopic surgery. *Surgery* 2004; **135**: 21–27. - Goova MT, Hollett LA, Tesfay ST et al. Implementation, construct validity, and benefit of a proficiency-based knot-tying and suturing curriculum. J Surg Educ 2008; 65: 309–315. - Mandel LS, Goff BA, Lentz GM. Self-assessment of resident surgical skills: Is it feasible? Am J Obstet Gynecol 2005; 193: 1817–1822. - Moorthy K, Munz Y, Adams S et al. Self-assessment of performance among surgical trainees during simulated procedures in a simulated operating theater. Am J Surg 2006; 192: 114–118. - Evans AW, McKenna C, Oliver M. Self-assessment in medical practice. J R Soc Med 2002; 95: 511–513. - Gordon MJ. A review of the validity and accuracy of selfassessments in health professions training. Acad Med 1991; 66: 762–769. - 17. Martin JA, Regehr G, Reznick R *et al.* Objective structured assessment of technical skill (OSATS) for surgical residents. *Br J Surg* 1997; **84**: 273–278. - 18. Lentz GM, Mandel LS, Lee D, Gardella C, Melville J, Goff BA. Testing surgical skills of obstetric and gynecologic residents in a bench laboratory setting: Validity and reliability. *Am J Obstet Gynecol* 2001; **184**: 1462–1468. - van Hove PD, Tuijthof GJM, Verdaasdonk EGG, Stassen LP, Dankelman J. Objective assessment of technical surgical skills. Br J Surg 2010; 97: 972–987. - Bijen CBM, Briet JM, de Bock GH, Arts HJ, Bergsma-Kadijk JA, Mourits MJ. Total laparoscopic hysterectomy versus abdominal hysterectomy in the treatment of patients with early stage endometrial cancer: A randomized multi center study. BMC Cancer 2009; 9: 23–40. - Aggarwal R, Moorthy K, Darzi A. Laparoscopic skills training and assessment. Br J Surg 2004; 91: 1549–1558. - 22. Anastakis DJ, Regehr G, Reznick RK *et al.* Assessment of technical skills transfer from the bench training model to the human model. *Am J Surg* 1999; **177**: 167–170. - Vadnais M, Dodge L, Awtrey C, Ricciotti HA, Golen TH, Hacker MR. Assessment of long-term knowledge retention following single-day simulation training for uncommon but critical obstetrical events. J Matern Fetal Neonatal Med 2012; 25: 1640–1645. - Draycott TJ, Crofts JF, Ash JP et al. Improving neonatal outcome through practical shoulder dystocia training. Obstet Gynecol 2008; 112: 14–20. - Moulton CA, Dubrowski A, Macrae H, Graham B, Grober E, Reznick R. Teaching surgical skills: What kind of practice makes perfect?: A randomized, controlled trial. *Ann Surg* 2006; 244: 400–409. - Schmidt EA, Scerbo MW, Kapur G, Scerbo MW, Kapur G, Heyl AR. Task sequencing effects for open and closed loop laparoscopic skills. Stud Health Technol Inform 2007; 125: 412– 417 - Lossing AG, Hatswell EM, Gilas T, Gilas T, Reznick RK, Smith LC. A technical-skills course for 1st-year residents in general surgery: A descriptive study. Can J Surg 1992; 35: 536–540. - 28. Reznick R, Regehr G, Macrae H, Martin J, McCulloch W. Testing technical skill via an innovative 'bench station' examination. *Am J Surg* 1997; **173**: 226–230. - Mackay S, Datta V, Chang A, Shah J, Kneebone R, Darzi A. Multiple Objective Measures of Skill (MOMS): A new approach to the assessment of technical ability in surgical trainees. Ann Surg 2003; 238: 291–300. - Bann S, Davis IM, Moorthy K et al. The reliability of multiple objective measures of surgery and the role of human performance. Am J Surg 2005; 189: 747–752. - 31. Beard JD, Jolly BC, Newble DI, Thomas WE, Donnelly J, Southgate LJ. Assessing the technical skills of surgical trainees. *Br J Surg* 2005; **92**: 778–782. - Ritter EM, McClusky DA 3rd, Gallagher AG, Smith CD. Realtime objective assessment of knot quality with a portable tensiometer is superior to execution time for assessment of laparoscopic knot-tying performance. Surg Innov 2005; 12: 233–237. - Madan AK, Harper JL, Taddeucci RJ, Tichansky DS. Goaldirected laparoscopic training leads to better laparoscopic skill acquisition. *Surgery* 2008; 144: 345–350. # Appendix I ## OSATS form, open suture around vessel using clamp | 0 | | | | | |---------------------------------------------------------------------------------|--------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------| | Candidate name: | | | | | | Supervisor name: | | | | | | | | | | | | Time of assessment: baseline / post / follow-up | | | | | | | | | | | | | | | | | | 1. Knowledge and han | dling of ma | terials: Correct position of sutu | re around | clamp | | 1 | 2 | 3 | 4 | 5 | | · | | · | • | | | Suture too far under cl | • | | | re directly under clamp | | 2. Knowledge and handling of instrument: Correct utilization of thread in hands | | | | | | 1 | 2 | 3 | 4 | 5 | | No crossing of sutures knot <i>and</i> at second knorepacked | | No crossing of sutures at first knot <i>or</i> at next knot threads repacked | Sutures crossed at first knot and at second knot threads not repacked | | | 3. Use of assistants: C | rder for re | moval of clamp delivered at co | rrect time | | | 1 | 2 | 3 | 4 | 5 | | Removal of clamp too | early | No or too late clamp removal | Clamp r | emoved at correct time | | 4. Respect for Tissue: | Suture / ha | ands movement towards tissue | ! | | | 1 | 2 | 3 | 4 | 5 | | Tissue pulled towards hands during suture closure | | During closure of suture tissue pulled partially towards hands | Durin | g suture closure hands
moved toward tissue | | 5. Knowledge of specif | fic procedur | e: Square knots | | | | 1 | 2 | 3 | 4 | 5 | | No square knots | | Mostly square knots | | Only square knots | | 6. Time: Time to perform open suture around vessel using clamp: min sec | | | | | | | | | | | **OSATS** - open suture around vessel