
Time series encodings with temporal convolutional
networks
Thill, M.; Konen, W.; Bäck, T.H.W.; Filipic, B.; Minisci, E.; Vasile, M.

Citation
Thill, M., Konen, W., & Bäck, T. H. W. (2020). Time series encodings
with temporal convolutional networks. Bioinspired Optimization
Methods And Their Applications. Bioma 2020, 161-173.
doi:10.1007/978-3-030-63710-1_13
 
Version: Publisher's Version

License: Licensed under Article 25fa Copyright
Act/Law (Amendment Taverne)

Downloaded from: https://hdl.handle.net/1887/3282058
 
Note: To cite this publication please use the final published version
(if applicable).

https://hdl.handle.net/1887/license:4
https://hdl.handle.net/1887/license:4
https://hdl.handle.net/1887/3282058


Time Series Encodings with Temporal
Convolutional Networks

Markus Thill1(B) , Wolfgang Konen1 , and Thomas Bäck2

1 TH Köln – University of Applied Sciences, Gummersbach, Germany
{markus.thill,wolfgang.konen}@th-koeln.de

2 LIACS, Leiden University, Leiden, The Netherlands
t.h.w.baeck@liacs.leidenuniv.nl

Abstract. The training of anomaly detection models usually requires
labeled data. We present in this paper a novel approach for anomaly
detection in time series which trains unsupervised using a convolutional
approach coupled to an autoencoder framework. After training, only a
small amount of labeled data is needed to adjust the anomaly thresh-
old. We show that our new approach outperforms several other state-of-
the-art anomaly detection algorithms on a Mackey-Glass (MG) anomaly
benchmark. At the same time our autoencoder is capable of learning
interesting representations in latent space. Our new MG anomaly bench-
mark allows to create an unlimited amount of anomaly benchmark data
with steerable difficulty. In this benchmark, the anomalies are well-
defined, yet difficult to spot for the human eye.

Keywords: Time series representations · Temporal convolutional
networks · Autoencoder · Anomaly detection · Unsupervised learning ·
Mackey-Glass time series · Chaos

1 Introduction

For the operation of large machines in companies or other critical systems in
society, it is usually necessary to record and monitor specific machine or system
health indicators over time. In the past, the recorded time series were often
evaluated manually or by simple heuristics (such as threshold values) to detect
abnormal behavior. With the more recent advances in the fields of ML (machine
learning) and AI (artificial intelligence), ML-based anomaly detection algorithms
are becoming increasingly popular for many tasks such as health monitoring
and predictive maintenance. Supervised algorithms need labeled training data,
which are often cumbersome to get and to maintain in real-world applications.
Yet, unsupervised anomaly detection remains up to now a challenging task.

In this paper we propose a novel autoencoder architecture for sequences (time
series) which is based on temporal convolutional networks [3] and shows its effi-
cacy in unsupervised learning tasks. Our experiments show that the architecture
can learn interesting representations of sequences in latent space. The idea of
c© Springer Nature Switzerland AG 2020
B. Filipič et al. (Eds.): BIOMA 2020, LNCS 12438, pp. 161–173, 2020.
https://doi.org/10.1007/978-3-030-63710-1_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63710-1_13&domain=pdf
http://orcid.org/0000-0002-6429-180X
http://orcid.org/0000-0002-1343-4209
http://orcid.org/0000-0001-6768-1478
https://doi.org/10.1007/978-3-030-63710-1_13


162 M. Thill et al.

unsupervised anomaly learning is based on the assumption that in real-world
tasks the overwhelming part of the time-series data will be normal. Without the
need to label the data, we train a model that learns the normal behavior, i.e.
assigns a low score to normal and a higher score to anomalous data. Finally,
only a small fraction of labeled data is needed to find a suitable threshold for
the anomaly score. This can also be fine-tuned in operation, with an already
trained model.

For the initial benchmarking and comparison of our algorithm, we introduce
a new synthetic benchmark based on Mackey-Glass (MG) time series [21]. In
its current form, the Mackey-Glass Anomaly Benchmark (MGAB) consists of
10 MG time series in which anomalies were inserted using a clearly defined
procedure. Although the anomalies are inserted synthetically, spotting them is
rather difficult for the human eye. Due to the structured insertion process and the
clear labeling of nominal and anomalous data, no domain knowledge is required
to correctly label the data. Additionally, the difficulty of the anomaly detection
task is steerable by simply adjusting a few parameters of the MGAB generation
process (e.g. time delay, smoothness parameters).

2 Related Work

Other well known time series anomaly benchmarks are Yahoo Webscope S5 [16]
and NAB [17]. The Webscope S5 benchmark mostly contains simple/trivial spa-
tial anomalies. In NAB [17], the labeling process is not always immediately
comprehensible without having domain-dependent knowledge of the time series.
Furthermore, the amount of data is often too small for many deep learning
approaches. In [29], we introduce an anomaly benchmark based on electrocar-
diogram recordings of the MIT-BIH ECG dataset [10].

In recent years a lot of effort was put into the design of time series
anomaly detection algorithms and many new methods have been proposed:
A common approach is to use the prediction error of a time series regres-
sion model as anomaly score [23,29,30]. Commonly, also autoencoder-based
approaches are used [11,22], where the reconstruction error of the time series
serves as an indicator for anomalous behaviour. Other approaches are based
on generative adversarial networks (GANs) [13,18] or variational-based net-
works/autoencoders [26,27,32]. There exists also an architecture [33] where the
parameters of a deep autoencoder and of a Gaussian mixture model are simul-
taneously learned during training. Most of the aforementioned algorithms are
unsupervised.

In this work we will compare several state-of-the-art algorithms on MGAB:
The first one is DNN-AE, an anomaly detection algorithm based on a regular
deep neural network autoencoder [11]. DNN-AE takes short sequences from a
time series and attempts to encode and reconstruct these. Large reconstruc-
tion errors indicate anomalous behavior. Similar to DNN-AE, the algorithm
LSTM-ED [22] uses an encoder-decoder approach, but now based on LSTM
networks [12] to encode short sub-sequences taken from a time series. A third



Time Series Encodings with Temporal Convolutional Networks 163

algorithm, Numenta’s anomaly detection algorithm NuPIC [28] is based on the
hierarchical temporal memory (HTM) algorithm [9] which is biologically inspired
by the neocortex of the brain. Finally, the LSTM-AD algorithm [29] uses stacked
LSTM networks to predict a time series for several prediction horizons and learns
a statistical model of normal behavior in order to detect anomalous events. All
algorithms compared in this work are unsupervised, since no anomaly labels are
passed to the algorithms during training. Only during the test phase a small
fraction of the labels are used to determine a suitable anomaly threshold.

3 TCN Autoencoder

In computer vision architectures, convolutional neural networks (CNN) are very
popular due to their equivariance properties and sparse interactions. Temporal
convolutional networks (TCN) translate these convolutional advantages from
computer vision into the time domain, as we will detail in Sect. 3.1 and Sect. 3.2.

The central idea of the TCN autoencoder (TCN-AE) is to encode a sequence
of length T into a significantly shorter sequence of length T/s (where s ∈ Z

+ is a
sampling factor) and subsequently to reconstruct the original sequence from the
compressed sequence (using a decoder network). The idea is similar to a classi-
cal (deep) autoencoder, where fixed-sized inputs are encoded into a latent space
representation and the latent variables are used to reconstruct the original input.
Similarly, the TCN-AE encodes sequences along the temporal axis into a com-
pressed representation and then attempts to reconstruct the original sequence.
However, it differs from a regular autoencoder in so far that it replaces the dense
layer architecture of a regular autoencoder with the more powerful convolutional
architecture. Due to this, it is also more flexible with respect to the input length.
Our TCN autoencoder consists of two temporal convolutional neural networks
(TCNs) [3], one for encoding and one for decoding. Additionally, a downsam-
pling and upsampling layer are used in the encoder and decoder, respectively.
The individual components will be described in more detail in the following.

3.1 Discrete Dilated Convolutions

The dilated acausal convolution of a d-dimensional sequence x : {0, 1, . . . , T −
1} → R

d, and a discrete filter with a finite impulse response (FIR filter) h[n],
h : {0, 1, . . . , k − 1} → R

d, can be defined as:

y[n] = (x ∗q h)[n] =
k−1∑

i=0

h[i]ᵀ · x[n − q · (i − k/2)], (1)

where y[n] ∈ R is the output of the filter with size T − k + 1, q ∈ N is the
dilation rate, h[i] ∈ R

d is the impulse response of the filter with kernel size k.
While the regular convolution (q = 1) applies the filter to adjacent elements of
the input sequence, the dilated convolution ∗q allows to skip several values in
the input sequence before the next filter tap h[i] is applied. The convolution



164 M. Thill et al.

Fig. 1. A section of a Mackey-Glass time series containing three anomalies. For the
human eye these anomalies would be very hard to spot, if we took the red bars away.
(Color figure online)

operation slides a k × d-dimensional filter stepwise over the input sequence x[n]
and computes a weighted average of x[n] and the corresponding weights h[i] in
each step. Since the filter is only sled along the (discrete) time-axis, the oper-
ation is commonly referred to as one-dimensional convolution. The convolution
in Eq. (1) is slightly acausal due to the term k/2. In some applications it might
also be reasonable to use causal convolutions (Fig. 1).

Many neural network architectures for sequence modeling utilize dilated con-
volutions in order to build a hierarchical temporal model with a large receptive
field. These models are capable of learning long-term temporal patterns in the
input data. The main idea is to construct a stack of dilated convolutional layers,
where the dilation rate increases with every additional layer. A common choice
is to start with a dilation rate of q = 1 for the first layer of the network and to
double q with every new layer. This approach allows to increase the receptive
field of the model exponentially.

3.2 Temporal Convolutional Networks

The temporal convolutional network (TCN) [3] is inspired by several convolu-
tional architectures [6,8,14,24], but differs from these approaches, according to
the authors, insofar as it combines simplicity, auto-regressive prediction, residual
blocks and very long memory. A full description of TCN would be out of scope
for this paper, the reader is referred to [3] for the details. Its main elements are
however the dilated convolutions of Sect. 3.1. A TCN can be basically described
by three elements: a list of dilation rates (q1, q2, . . . , qnr

), the number of filters
nfilters, and the kernel size k, which is the same for all filters in a TCN.



Time Series Encodings with Temporal Convolutional Networks 165

Input (T , d)

TCN (q = (1, . . . , 16),
k = 20, nfilters = 20)

T × d

Conv1D (k = 1, nfilters = 8)

T × 20

Temporal Average
Pooling (s = 42)

T × 8

Upsampling (s = 42)

T
42 × 8

TCN (q = (1, . . . , 16),
k = 20, nfilters = 20)

T × 8

Conv1D (k = 1, nfilters = d)

T × 20

Output (T , d)

T × d

en
co

de
r deco der

Fig. 2. Architecture of TCN-AE. Each layer is described by its parameters inside the
box. The input of the TCN-AE is a sequence x[n] with length T and dimensionality d.

3.3 An Autoencoder Using TCNs

The novel element we propose in this paper is an autoencoder (AE) for time
series which employs TCNs as building blocks. This architecture, which we name
TCN-AE, is sketched in Fig. 2. Like any autoencoder, TCN-AE consists of an
encoder and a decoder. The encoder initially processes the input sequence x[n]
of length T and dimension d using a TCN. Subsequently, in order to reduce the
size of the feature map (dimensionality) of the TCN’s output, a one-dimensional
convolutional layer (1 × 1 convolution [19]) is used with q = 1, k = 1 and a
smaller number of filters (i.e., nfilters = 8). The temporal average pooling layer
is the last layer in the encoder and responsible for downsampling the series by a
factor s. It does so by averaging groups of size s along the time axis.

Right afterwards, the downsampled sequence is passed to the decoder mod-
ule and brought back to its original length using an upsampling layer which
simply performs a nearest neighbor interpolation. The upsampled sequence is
passed through a second TCN, which is parameterized in the same way as the
encoder-TCN, but has independent weights. Finally, the reconstruction of the
input sequence is generated with a Conv1D layer which ensures (by setting k = 1
and nfilters = d) that the dimensionality of the input is matched. Once TCN-AE
is trained, the input sequence and its reconstruction will be used for detecting
anomalies, as described in the next section.

3.4 Anomaly Detection with TCN-AE

A natural application of TCN-AE is the anomaly detection in time series. When
TCN-AE is trained on time series containing predominantly nominal data, the
network will attempt to minimize the reconstruction error for these nominal
patterns. At the same time, the reconstruction error for anomalous patterns
or patterns which differ significantly in their characteristics should be larger.
One possibility to identify these unusual patterns is to estimate a distribution



166 M. Thill et al.

for the reconstruction error. In our approach, we decide to slide a window of
length � over our reconstruction error and compute a mean vector µ and covari-
ance matrix Σ. Subsequently, the Mahalanobis distance can be used as anomaly
score. The unified algorithmic description of the anomaly detection procedure
in combination with TCN-AE is listed in Algorithm 1. Only for determining the
anomaly threshold, 10% of the true labels are used, as described in Sect. 5.3.

Algorithm 1. Anomaly detection algorithm using the TCN-AE architecture.
1: Adjustable parameters:
2: Mτ : anomaly threshold, obtained as described in Section 5.3
3: �: window length for constructing the error vectors
4: Ttrain: length of training sub-sequences
5:
6: function anomalyDetect(xtr[n],x[n]) � time series xtr,x : N → R

d of length T
7: Construct model tcnae() and Initialize the trainable parameters
8: for {1 . . . nepochs} do

9: Extract training sub-sequences X
(i)
train ∈ R

Ttrain×d from xtr[n], i = 1, . . . , B

10: ∀i ∈ {1, . . . , B} : train(tcnae,X
(i)
train) � Train net on mini-batches

11: end for
12: x̂[n] ← tcnae(x[n]) � Encode and reconstruct whole sequence
13: e[n] ← x[n] − x̂[n] � reconstruction error e : N → R

d of length T
14: E[n] ← slidingWindow(e[n], �) � E : N → R

T×�×d

15: E′[n] ← reshape(E[n]) � E′ : N → R
T×�·d

16: µ,Σ = estimate(E′[n]) � µ ∈ R
�·d,

17: M [n] ← (E′[n] − µ)ᵀΣ−1(E′[n] − µ) � Mahalanobis distance for each point

18: a[n] ←
{

0 if M [n] < Mτ

1 else
� Binary anomaly flags

19: return a[n] � Return anomaly flag for each time series point
20: end function

4 The Mackey-Glass Anomaly Benchmark

In this work we will compare various anomaly detection algorithms on a non-
trivial synthetic benchmark, named Mackey-Glass anomaly benchmark (MGAB)
in the following. Mackey-Glass time series are known to exhibit chaotic behavior
under certain conditions. MGAB contains 10 MG time series of length T = 105.
Into each time series 10 anomalies are inserted with a procedure described in
Sect. 4.1. In contrast to other synthetic benchmarks, the introduced anomalies
are for the human eye very hard to distinguish from the normal (chaotic) behav-
ior. Overall, we generate 100 anomalies in 106 time series points. The benchmark
data and the detailed procedure for generating these and similar benchmark data
are publicly available at GitHub [31].1

1 GitHub repository: https://github.com/MarkusThill/MGAB/.

https://github.com/MarkusThill/MGAB/


Time Series Encodings with Temporal Convolutional Networks 167

4.1 Generating Anomalies in Mackey-Glass Time Series

In order to create the Mackey-Glass Anomaly Benchmark, we first generate a
sufficiently long time series having a dimension of d = 1 using the JiTCDDE [2]
solver with the parameters τ = 18, n = 10, β = 0.25, γ = 0.1, h = 0.9. The
integration step size is set to 1. The maximal Lyapunov exponent (MLE) of
λmle = 0.0061 ± 0.0002 suggests that the generated time series is (mildly)
chaotic. Subsequently, we split this series into ten same-sized individual time
series and insert 10 anomalies into each time series.

5 Results

5.1 Experimental Setup

Anomaly Detection Algorithms. All training algorithms are unsupervised,
i.e. they do not need the true anomaly labels during the training process. Only
in order to find a suitable anomaly threshold, a small fraction of labels is used,
as described in Sect. 5.3. Otherwise, the anomaly labels are only used at test
time to evaluate the performance of the individual algorithms. In one run, each
algorithm is trained for 10 rounds: in the i-th round the algorithms are trained
on the i-th time series and evaluated on the time series {1, . . . , 10} \ {i}. In total,
we perform 10 runs with different random seeds. In order to find suitable hyper-
parameters for each algorithm, we use the hyperopt library [4] and optimize
the F1-score on a separate MG time series.

For all neural networks we use the Adam optimizer [15] to train the weights
by minimizing the MSE loss. Additionally, all time series (having a dimension
of d = 1) are standardized to zero mean and unit variance.

DNN-AE [7]: we use a PyTorch [25] implementation for the anomaly detec-
tion algorithm based on a deep autoencoder [11]. The algorithm requires several
parameters, which we choose as follows: batch size B = 100, number of training
epochs nepochs = 40, sequence length Ttrain = 150 and a hidden size of h = 10
for the bottle neck (which results in a compression factor of Ttrain/h = 15 for
each sequence). Finally, we set %Gaussian = 1%, which specifies that 99% of the
data is used to estimate a Gaussian distribution for the anomaly detection task.

LSTM-ED [22] is also implemented using PyTorch and uses the following
parameter setting: batch size B = 100, number of training epochs nepochs = 20,
sequence length Ttrain = 300, hidden size h = 100 and %Gaussian = 1%. Both,
encoder and decoder use a stacked LSTM network with two layers.

NuPIC [28]: Numenta’s anomaly detection algorithm has a large range of
hyper-parameters which have to be set. We use the parameters recommended
by the authors in [17]. It is possible to tune the parameters with an internal
swarming tool [1]. However, this is a time-expensive process which is not feasible
for the large MGAB dataset.

LSTM-AD [29]: here we select the following parameters: batch size B = 1024,
number of training epochs nepochs = 30, and sequence length Ttrain = 128.
A 2-layer LSTM network with 256 units in the first layer and 128 units in the
second layer is used. The target horizons are chosen to be H = (1, 3, . . . , 51).



168 M. Thill et al.

TCN-AE : The main TCN-AE parameters are given in Fig. 2. Additionally
we use the sequence length Ttrain = 1050, batch size B = 32 and nepochs = 40.

5.2 Learning Time Series Representations

In our first experiment we want to assess the capabilities of the TCN-AE architec-
ture to learn representations of time series. For this purpose we train a TCN-AE
model using many different MG time series with a varying time delay param-
eter τ . Ideally, TCN-AE should be able to learn the main characteristics of

Fig. 3. Top: 2d-representation of 105 (104 for each τ) different Mackey-Glass time
series using TCN-AE. The (unsupervised) algorithm is capable of learning an encoding
which separates the MG time series fairly well according to their τ value. Bottom:
2d-representation of the same MG time series, but now using t-SNE [20] to find suitable
encodings.



Time Series Encodings with Temporal Convolutional Networks 169

the individual time series and find suitable compressed representations. In our
experiment we use TCN-AE on 105 different Mackey-Glass time series (104 for
each τ in the range of τ = 11 . . . 20). Each time series of length 256 is encoded
into a 2-dimensional compressed representation. The algorithm is trained in an
unsupervised manner, hence, τ is not passed to the algorithm at any time. Sur-
prisingly, even with this large compression rate of 128, TCN-AE can find an
interesting embedding for the MG time series, as depicted in Fig. 3 (top). For a
certain τ , all samples are placed in only one connected cluster (with the exception
of a few satellites) and these clusters are mostly – with a few small exceptions –
non-overlapping.

For comparison, we repeated the same experiment with the popular t-
SNE [20] clustering algorithm. We executed t-SNE on a GPU with the help
of a certain CUDA implementation [5]. We tried different parameter settings
and finally fixed the perplexity parameter to 200, the learning rate to 10 and the
number of iterations to 104. The results for t-SNE in Fig. 3 (bottom) indicate
that it is not a trivial task to find suitable representations for MG time series.
t-SNE has in comparison to TCN-AE more difficulties to cluster all sequences
with a certain time delay parameter τ in only one connected region.

5.3 Algorithm Evaluation

Determining the Anomaly Threshold. All algorithms output an anomaly
score for each point of the time series. A low anomaly score indicates nominal
behavior and high scores suggest that anomalies are present. In order to classify
each point as nominal or anomalous a so-called anomaly threshold is required.
Points with a score above the threshold are classified as anomalous, all other
points are classified as nominal. We determine this threshold for all algorithms
as follows: A sub-sequence containing 10% of the data is taken and the anomaly
threshold is optimized on this short sequence, such that the F1-score is maxi-
mized. The optimal threshold is then fixed for the complete time series and the
overall results are obtained. Since the results can vary depending on which sub-
sequence is used for the threshold adjustment, we repeat the above procedure,
similarly to k-fold cross validation, for 10 different 10% sub-sequences of the
considered time series and record the results for the 10 different sub-sequences.

Performance Measures. In order to assess the performance of all algorithms
and to be able to compare the results, we use several common performance
metrics in this paper. Analogously to typical classification problems, a confusion
matrix can be constructed for time series anomaly detection tasks, containing
the number of true-positives (TP), false-positives (FP), false-negatives and true-
negatives (TN). TP indicates the number of anomalies, which were correctly
identified within an anomaly window (a small range around the actual anomaly
point). Only the first detection in an anomaly window is counted. On the other
hand, a missed anomaly window (no point inside the window is flagged) will be
judged as a FN. If a point is incorrectly presumed to be anomalous (detection



170 M. Thill et al.

outside any anomaly window), this will be considered as a FP. All other points,
which are not marked as anomalous, are considered as true-negatives (TN). From
these four quantities the well known performance measures precision, recall and
F1-score can be derived.

5.4 Anomaly Detection on the Mackey-Glass Anomaly Benchmark

In a second experiment, we compare TCN-AE to several state-of-the-art anomaly
detection algorithms on the Mackey-Glass Anomaly Benchmark. For each algo-
rithm, except NuPIC, 10 runs were performed. Hence, for each algorithm and
time series 10 different models are trained and each model is evaluated on the
other nine time series. NuPIC is completely deterministic and does not require
several runs. Additionally, as described in Sect. 5.1, the anomaly threshold for
each algorithm and time series is tuned on 10 different sub-sequences. We add up
the TP, FN and FP over all 10 time series and summarize the results in Table 1.
Up to 100 anomalies can be detected in total. We can see that the (deep) DNN-
AE detects most of the anomalies (approx. 92), missing only about 8 on average.
However, this result is achieved at the expense of producing many false-positives.
Overall, DNN-AE produces more than 60 false positives on average, while TCN-
AE produces less than one. Hence, DNN-AE achieves the highest recall among
all algorithms but ranks only 3rd in F1-score, due to its low precision. TCN-AE
scores best in F1-score and precision. NuPIC has the poorest performance in all
measures.

Table 1. Results for MGAB. The results shown here (mean and standard deviation
of 10 runs and 10 sub-sequences, Sect. 5.3) are for the sum of TP, FN and FP over all
10 time series. For each algorithm and time series the anomaly threshold was tuned
on 10% of the data using a cross-validation approach: the threshold is tuned on 10
different 10%-sequences of the data.

Algorithm TP FN FP Precision Recall F1-score

NuPIC [28] 3.00 ± 0.00 97.00 ± 0.00 132.00 ± 0.00 0.02 ± 0.00 0.03 ± 0.00 0.03 ± 0.00

LSTM-ED [22] 14.6 ± 5.86 85.4 ± 5.86 57.0 ± 20.43 0.21 ± 0.08 0.15 ± 0.06 0.17 ± 0.06

DNN-AE [11] 91.79 ± 1.22 8.21 ± 1.22 62.58 ± 13.65 0.6 ± 0.06 0.92 ± 0.01 0.72 ± 0.04

LSTM-AD [29] 88.8 ± 2.59 11.20 ± 2.59 0.62 ± 0.61 0.99 ± 0.01 0.89 ± 0.03 0.94 ± 0.01

TCN-AE

[this work]

90.54 ± 1.72 9.46 ± 1.72 0.20 ± 0.47 1.00 ± 0.01 0.91 ± 0.02 0.95 ± 0.01

5.5 Discussion

The initial results that we obtained with our new TCN-AE architecture are
promising. The learned representations (Fig. 3) on different MG time series
appear to be useful and may reveal interesting insights. For anomaly detection
we achieve with TCN-AE and LSTM-AD the highest F1-score on the non-trivial



Time Series Encodings with Temporal Convolutional Networks 171

MG benchmark. Remarkably, all algorithms except NuPIC require many train-
able weights. TCN-AE had 164 451 parameters, DNN-AE 241 526, LSTM-ED
244 101 and LSTM-AD 464 537. That is, the other high-performing algorithms
require 50%–300% more trainable weights than TCN-AE.

6 Conclusion and Future Work

In this work, we proposed with TCN-AE a novel autoencoder architecture for
multivariate time series and evaluated it on various Mackey-Glass (MG) time
series with respect to two relevant tasks: representation learning and anomaly
detection. TCN-AE could learn a very interesting representation in only two
dimensions which accurately distinguishes MG time series differing in their time
delay values τ (Sect. 5.2). On the Mackey-Glass Anomaly Benchmark (MGAB),
which was introduced in this paper, TCN-AE achieved better anomaly detection
results than other state-of-the-art anomaly detectors (Sect. 5.4).

Possibilities for future work on TCN-AE include: (a) Gaining more insights
from the representations that TCN-AE learns unsupervisedly (Fig. 3). (b) Since
the network architecture allows to train TCN-AE with training sequences of
arbitrary length, another improvement could be to start the training process
with short sequences and then successively increase the sequence length after
each epoch. This approach could enable a faster learning progress in the begin-
ning and allow fine tuning of the weights towards the end of the training. (c)
We are planning to evaluate TCN-AE on other real-world anomaly detection
benchmarks containing (multi-variate) time series. Possible options are electro-
cardiogram signals [10] or industrial monitoring tasks [16,17].

References

1. Ahmad, S.: Running swarms (2017). http://nupic.docs.numenta.org/0.6.0/guide-
swarming.html. Accessed 29 June 2020

2. Ansmann, G.: Efficiently and easily integrating differential equations with JiT-
CODE, JiTCDDE, and JiTCSDE. Chaos 28(4), 043116 (2018)

3. Bai, S., Kolter, J.Z., Koltun, V.: An empirical evaluation of generic convolutional
and recurrent networks for sequence modeling. CoRR abs/1803.01271 (2018)

4. Bergstra, J., et al.: Hyperopt: a Python library for model selection and hyperpa-
rameter optimization. Comput. Sci. Discov. 8(1), 014008 (2015)

5. Chan, D.M., Rao, R., Huang, F., Canny, J.F.: GPU accelerated T-distributed
stochastic neighbor embedding. JPDC 131, 1–13 (2019)

6. Dauphin, Y.N., Fan, A., Auli, M., Grangier, D.: Language modeling with gated
convolutional networks. In: ICML 2017, p. 933–941 (2017)

7. Fischer, M., et al.: Anomaly Detection on Time Series: An Evaluation of Deep
Learning Methods (2019). https://github.com/KDD-OpenSource/DeepADoTS

8. Gehring, J., Auli, M., Grangier, D., Yarats, D., Dauphin, Y.N.: Convolutional
sequence to sequence learning. CoRR abs/1705.03122 (2017)

9. George, D., Hawkins, J.: Towards a mathematical theory of cortical micro-circuits.
PLoS Comput. Biol. 5(10), e1000532 (2009)

http://nupic.docs.numenta.org/0.6.0/guide-swarming.html
http://nupic.docs.numenta.org/0.6.0/guide-swarming.html
https://github.com/KDD-OpenSource/DeepADoTS


172 M. Thill et al.

10. Goldberger, A.L., et al.: PhysioBank, PhysioToolkit, and PhysioNet: components
of a new research resource for complex physiologic signals. Circulation 101(23),
e215–e220 (2000)

11. Hawkins, S., He, H., Williams, G., Baxter, R.: Outlier detection using replicator
neural networks. In: Kambayashi, Y., Winiwarter, W., Arikawa, M. (eds.) DaWaK
2002. LNCS, vol. 2454, pp. 170–180. Springer, Heidelberg (2002). https://doi.org/
10.1007/3-540-46145-0 17

12. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

13. Jiang, W., Hong, Y., Zhou, B., He, X.: A GAN-based anomaly detection approach
for imbalanced industrial time series. IEEE Access 7, 143608–143619 (2019)

14. Kalchbrenner, N., Grefenstette, E., Blunsom, P.: A Convolutional neural network
for modelling sentences. In: ACL, Baltimore, Maryland, pp. 655–665 (2014)

15. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

16. Laptev, N., Amizadeh, S.: Yahoo anomaly detection dataset S5 (2015). http://
webscope.sandbox.yahoo.com/catalog.php?datatype=s&did=70

17. Lavin, A., Ahmad, S.: Evaluating real-time anomaly detection algorithms - the
Numenta anomaly benchmark. In: ICMLA (2015)

18. Li, D., Chen, D., Jin, B., Shi, L., Goh, J., Ng, S.-K.: MAD-GAN: multivariate
anomaly detection for time series data with generative adversarial networks. In:
Tetko, I.V., Kůrková, V., Karpov, P., Theis, F. (eds.) ICANN 2019. LNCS, vol.
11730, pp. 703–716. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
30490-4 56

19. Lin, M., Chen, Q., Yan, S.: Network in network. arXiv preprint arXiv:1312.4400
(2013)

20. van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn.
Res. 9, 2579–2605 (2008)

21. Mackey, M.C., Glass, L.: Oscillation and chaos in physiological control systems.
Science 197(4300), 287–289 (1977)

22. Malhotra, P., et al.: LSTM-based encoder-decoder for multi-sensor anomaly detec-
tion. CoRR abs/1607.00148 (2016)

23. Munir, M., et al.: DeepAnT: a deep learning approach for unsupervised anomaly
detection in time series. IEEE Access 7, 1991–2005 (2019)

24. van den Oord, A., et al.: WaveNet: a generative model for raw audio. CoRR
abs/1609.03499 (2016)

25. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning
library. In: Wallach, H., et al. (eds.) NIPS, pp. 8024–8035. Curran Assoc. (2019)

26. Pereira, J., Silveira, M.: Unsupervised anomaly detection in energy time series
data using variational recurrent autoencoders with attention. In: Wani, M.A., et al.
(eds.) ICMLA, pp. 1275–1282. IEEE (2018)

27. Sölch, M., et al.: Variational inference for on-line anomaly detection in high-
dimensional time series. CoRR abs/1602.07109 (2016)

28. Taylor, M., et al.: numenta/nupic: 1.0.5 (2018). https://doi.org/10.5281/zenodo.
1257382

29. Thill, M., Däubener, S., Konen, W., Bäck, T.: Anomaly detection in electrocar-
diogram readings with stacked LSTM networks. In: ITAT. CEUR Workshop Pro-
ceedings, vol. 2473, pp. 17–25 (2019)

30. Thill, M., Konen, W., Bäck, T.: Online anomaly detection on the Webscope S5
dataset: a comparative study. In: EAIS, pp. 1–8. IEEE (2017)

https://doi.org/10.1007/3-540-46145-0_17
https://doi.org/10.1007/3-540-46145-0_17
http://arxiv.org/abs/1412.6980
http://webscope.sandbox.yahoo.com/catalog.php?datatype=s&did=70
http://webscope.sandbox.yahoo.com/catalog.php?datatype=s&did=70
https://doi.org/10.1007/978-3-030-30490-4_56
https://doi.org/10.1007/978-3-030-30490-4_56
http://arxiv.org/abs/1312.4400
https://doi.org/10.5281/zenodo.1257382
https://doi.org/10.5281/zenodo.1257382


Time Series Encodings with Temporal Convolutional Networks 173

31. Thill, M., Konen, W., Bäck, T.: MGAB: The Mackey-Glass Anomaly Benchmark
(2020). https://doi.org/10.5281/zenodo.3762385

32. Xu, H., et al.: Unsupervised anomaly detection via variational auto-encoder for
seasonal KPIs in web applications. In: WWW, pp. 187–196 (2018)

33. Zong, B., et al.: Deep autoencoding Gaussian mixture model for unsupervised
anomaly detection. In: ICLR (2018)

https://doi.org/10.5281/zenodo.3762385

	Time Series Encodings with Temporal Convolutional Networks
	1 Introduction
	2 Related Work
	3 TCN Autoencoder
	3.1 Discrete Dilated Convolutions
	3.2 Temporal Convolutional Networks
	3.3 An Autoencoder Using TCNs
	3.4 Anomaly Detection with TCN-AE

	4 The Mackey-Glass Anomaly Benchmark
	4.1 Generating Anomalies in Mackey-Glass Time Series

	5 Results
	5.1 Experimental Setup
	5.2 Learning Time Series Representations
	5.3 Algorithm Evaluation
	5.4 Anomaly Detection on the Mackey-Glass Anomaly Benchmark
	5.5 Discussion

	6 Conclusion and Future Work
	References




