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Chapter 4

Tautological differential forms
on moduli of curves

In this section we will establish a theory of tautological differential forms on fam-
ilies of curves, that is meant to give an analytic analogue to the theory of tau-
tological rings and tautological cohomology. We first discuss a suitable definition
for the rings of tautological forms. This definition, however, introduces exact tau-
tological forms that cannot be detected by cohomology; it follows that the rings
of tautological forms are ‘bigger’ than the rings of tautological classes. Next, we
will describe a combinatorial framework, using marked graphs, that allows us to
generate tautological forms, and prove that in fact all tautological forms can be
constructed in this way, thereby showing that the rings of tautological forms are
not ‘too big’. Finally, we describe a method for generating relations in the rings
of tautological forms and fully compute the degree 2 parts of these rings.

4.1 Tautological morphisms and submersions
Fix an integer g ≥ 2. In Chapter 2 we have defined the universal family p :
Cg → Mg of genus g curves. Although Mg and Cg are not complex manifolds but
merely differentiable stacks, we will often treat these spaces as if they were honest
manifolds. The reader should understand that statements about this universal
family of genus g curves can in that case be interpreted as statements that hold
universally among all families of genus g curves. In Chapter 2 we have clarified
this correspondence between statements for the universal family and universal
statements for families.

Let us briefly recall the tautological morphisms we constructed in Chapter 2.
Let f : C → S be a family of genus g curves. Recall that to each pair of integers
r, s ≥ 0 and each map of sets ϕ : {1, . . . , s} → {1, . . . , r} we have associated a
morphism

fϕ : Cr → Cs : (x1, . . . , xr) 7→ (xϕ(1), . . . , xϕ(s)),

where Cr and Cs denote the r-fold and s-fold fiber products of C over S. This
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morphism is a submersion if and only if ϕ is injective. Universally, we obtain a
morphism

fϕ : Crg → Csg
and morphisms of this form are called tautological morphisms. The tautological
morphism fϕ is a submersion if and only if ϕ is injective.

The following examples list some tautological morphisms that we will be using
often.

Example 4.1.1. The tautological morphism associated to the unique map
{1, 2} → {1} is the diagonal morphism ∆ : Cg → C2

g .

Example 4.1.2. The tautological submersion associated to the unique map ∅ →
{1, . . . , r} is the projection morphism Crg → Mg.

Example 4.1.3. If 1 ≤ i ≤ r is an integer, the map {1} → {1, . . . , r} given by
1 7→ i induces the map Crg → Cg that projects onto the ith coordinate. We denote
this map by pi.
More generally, if 1 ≤ i1, . . . , is ≤ r are integers, we denote by

pi1,...,is : Crg → Csg

the tautological morphism associated to ϕ : {1, . . . , s} → {1, . . . , r} : k 7→ ik.

Example 4.1.4. Let 1 ≤ i1 < · · · < is ≤ r be integers. Consider the unique in-
creasing map ϕ : {1, . . . , r−s} → {1, . . . , r} whose image is {1, . . . , r}\{i1, . . . , is}.
Denote by

p(i1,...,is) : C
r
g → Cr−sg

the tautological morphism associated to ϕ (notice the parentheses!). Then p(i1,...,is)
is the tautological submersion that ‘forgets the coordinates i1, . . . , is’. For instance,
the map p(2) : C2

g → Cg equals the map p1 : C2
g → Cg.

Consider a commutative diagram of sets, together with the associated diagram
of moduli stacks.

{1, . . . , u} {1, . . . , s}

{1, . . . , t} {1, . . . , r}

η

χ

ψ

ϕ

Cug Csg

Ctg Crg

fη

fχ fϕ

fψ

As we have seen in Section 2.4, the diagram of moduli stacks is cartesian if and
only if the diagram of sets is a pushout diagram. We will be using such cartesian
diagrams often.
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4.2 Tautological classes

This section serves as a short introduction to tautological rings of moduli spaces
of curves. We will recall the definition of the tautological ring R∗(Crg) of Crg , which
is a subring of the Chow ring CH∗(Crg) of Crg with rational coefficients.

Let g ≥ 2 be an integer, and consider the universal family p : Cg → Mg of genus
g curves. We let ωCg/Mg

denote the relative cotangent bundle, and K ∈ CH1(Cg)
its first Chern class in the Chow ring with rational coefficients. For d ≥ 0 we
define the dth Mumford–Morita–Miller class κd by

κd = p∗K
d+1 ∈ CHd(Mg).

The tautological ring on Mg, defined by Mumford [Mum83], is the sub-Q-algebra
R∗(Mg) ⊆ CH∗(Mg) generated by these κ-classes. Mumford proved that the
tautological ring is generated by the tautological classes κ1, . . . , κg−2. He also
proved that all Chern classes of the Hodge bundle p∗ωCg/Mg

lie in the tautological
ring.

The Chow ring and the tautological ring vanish in degrees higher than dim(Mg)
= 3g− 3. Looijenga [Loo95] proved the stronger statement that R∗(Mg) vanishes
in degrees higher than g − 2, and that Rg−2(Mg) is at most one-dimensional,
spanned by the class κg−2. Faber [Fab97] then proved that κg−2 is nonzero, so
Rg−2(Mg) is one-dimensional. Faber also conjectured that the tautological ring
is a Gorenstein algebra.

Conjecture 4.2.1 ([Fab99]). For any g ≥ 2 the following holds.

1. Rd(Mg) = 0 for d > g − 2;
2. Rg−2(Mg) ∼= Q;
3. Multiplication in the Chow ring gives a perfect pairing

Rd(Mg)×Rg−2−d(Mg) → Rg−2(Mg) ∼= Q

for all 0 ≤ d ≤ g − 2.

This conjecture has been verified by Faber [Fab13] for all g ≤ 23, but not
enough relations have been found in genus 24 to verify the conjecture there.

More generally, the tautological ring R∗(Crg) of Crg (introduced in [Loo95]) is
defined to be the Q-subalgebra of CH∗(Crg) generated by the following classes:

• the classes κd (obtained from Mg by pullback);
• the classes Ki = p∗iK for 1 ≤ i ≤ r;
• the diagonal classes ∆ij = p∗ij∆, with ∆ ⊆ C2

g the diagonal, for 1 ≤ i < j ≤ r.

Note that the classes Ki can also be defined as follows: if p(i) : Crg → Cr−1
g is the

projection map that forgets the ith coordinate, then Ki is the first Chern class of
the relative cotangent bundle of this projection.
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In the ring R∗(Crg) we have the relations:

∆ij∆jk = ∆ij∆ik

∆2
ij =−∆ijKi.

where i, j, k are pairwise distinct. If ∆ : Cg → C2
g denotes the diagonal map, we

have:
∆∗∆ = −K.

Looijenga proved in [Loo95] that R∗(Crg) vanishes in degree d > g + r − 2.
Using the above relations, one can deduce that the pullbacks along tautological

morphisms of tautological classes are again tautological classes. Moreover, it is
straightforward to verify using the above relations and the projection formula that
the pushforward of every tautological class along every tautological morphism is
a tautological class. In other words: the system of Q-algebras {R∗(Crg) : r ≥ 0} is
closed under pushforward and pullback along tautological morphisms. If {S∗(Crg) :
r ≥ 0} is another system of Q-subalgebras of the Chow rings that is closed under
pushforwards and pullbacks along tautological morphisms, then

∆ = ∆∗(1) ∈ S∗(C2
g )

K = −∆∗∆ ∈ S∗(Cg)
κd = p∗K

d+1 ∈ S∗(Mg).

It follows that the classes κd, Ki and ∆ij lie in S∗(Crg), and therefore R∗(Crg) ⊆
S∗(Crg). We obtain the following.

Proposition 4.2.2. The system of Q-subalgebras R∗(Crg) ⊆ CH∗(Crg) (with r ≥
0) is the smallest system of Q-subalgebras that is closed under pullbacks and
pushforwards along tautological morphisms.

In fact, we can slightly rephrase this proposition to the following. It will be
this formulation that allows us to translate the language of tautological classes to
a language of tautological differential forms.

Proposition 4.2.3. The system of Q-subalgebras R∗(Crg) ⊆ CH∗(Crg) (with r ≥ 0)
satisfies:

1. ∆ ∈ R∗(C2
g );

2. the system is closed under pullbacks along tautological morphisms;
3. the system is closed under pushforwards along tautological submersions;
4. the system is the smallest system that satisfies 1–3.

Analogously, the tautological cohomology ring RH∗(Crg) is a subring of the
cohomology ring of Crg with rational coefficients. It is defined as the image of the
canonical map

R∗(Crg) → H2∗(Crg ,Q).
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Notice that the grading on cohomology is twice the grading in the Chow ring,
and that the tautological cohomology ring does not contain any odd-degree coho-
mology classes. So far, it seems to be unknown whether the canonical map from
tautological Chow classes to tautological cohomology classes is an isomorphism.

We will define a third tautological ring of a more analytical nature, the ring
of tautological differential forms, which is a subring of the ring of real differential
forms on Crg . These forms will be closed differential forms and we can take their
cohomology classes in H∗(Crg ,R). When we compare rings of tautological differ-
ential forms with tautological cohomology rings, we should consider cohomology
with real coefficients.

4.3 Rings of tautological differential forms
Fix an integer g ≥ 2. In Section 4.2 we have seen that there are multiple equivalent
ways to define the rings of tautological Chow or cohomology classes on the moduli
stacks Crg . A priori, these rings are defined to be the sub-Q-algebras of the Chow
or cohomology rings that are generated by the classes ∆ij , Ki and κd, and Propo-
sitions 4.2.2 and 4.2.3 yield two more equivalent definitions. In this section, we will
attempt to translate these definitions to an analytical setting. Rather than Chern
or cohomology classes, we will consider differential forms. Of the three equivalent
definitions for the ring of tautological forms given in Section 4.2, the one given by
Proposition 4.2.3 can be translated directly to the analytical setting, and we will
be using this translation to define rings of tautological differential forms on the
moduli stacks Crg .

Let us endow the line bundle O(∆) on C2
g with its canonical metric (see Section

1.4), and take the first Chern form of the resulting hermitian bundle to obtain a
closed real 2-form

h = c1(O(∆))

on C2
g that represents the diagonal. Let ω = ωCg/Mg

be the relative cotangent
bundle of the universal family of genus g curves Cg → Mg, endowed with its
canonical metric; recall from Section 1.4 that we have a canonical isometry

ω⊗−1 ≃ ∆∗O(∆)

of hermitian vector bundles on Cg. We therefore have

c1(ω) = −∆∗c1(O(∆)) = −eA ∈ A2(Cg)

where eA is defined to be the first Chern form of the relative tangent bundle

TCg/Mg
≃ ω⊗−1 ≃ ∆∗O(∆)

with the metric induced by the canonical metric on ω.
Recall that in the Chow ring CH∗(Mg) we have constructed the kappa-classes

κd by pushing forward powers of the canonical class K on Cg along the universal
family Cg → Mg. Analogously we define forms eAd ∈ A2d(Mg) for all d ≥ 0 by

eAd :=

∫
Cg/Mg

(eA)d+1.
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Let us consider the sub-R-algebras of A∗(Crg) generated by forms p∗ijh, p∗i eA

and eAd . Certainly, we want to consider forms in these rings to be tautological.
However, a problem arises: this system of rings is not closed under fiber integrals
along projection maps. For instance, consider the differential form

ν :=

∫
C2
g/Mg

h3 ∈ A2(Mg).

We have [dJon16]:

ν − eA1 =
∂∂φ

π
√
−1

,

where φ ∈ A0(Mg) is the Kawazumi-Zhang invariant, introduced by Kawazumi
[Kaw08; Kaw09] and Zhang [Zha10] in different contexts. Later we will see that
for g ≥ 3 the forms ν and eA1 are linearly independent (whereas for g = 2 there is a
linear relation), and thus we find that ν is not in the subring of A∗(Mg) generated
by the classes eAd for all g ≥ 3.

A second problem is the fact that, in the context of differential forms, proper
pushforwards or fiber integrals can only be taken along submersions. While the
tautological class ∆ on C2

g can be obtained by taking the pushforward of 1 along
the diagonal map Cg → C2

g , we can not obtain the corresponding form h in an
analogous way.

The following definition, based on Proposition 4.2.3, solves both our problems.

Definition 4.3.1. The rings of tautological forms R∗(Crg) (r ≥ 0) are the unique
sub-R-algebras R∗(Crg) ⊆ A∗(Crg) such that the following holds:

1. h ∈ R∗(C2
g );

2. If f : Crg → Csg is a tautological morphism, then f∗(R∗(Csg)) ⊆ R∗(Crg);
3. If f : Crg → Csg is a tautological submersion, then

∫
f
(R∗(Crg)) ⊆ R∗(Csg);

4. R∗(Crg) are minimal: if S∗(Crg) ⊆ A∗(Crg) (r ≥ 0) is another collection of
sub-R-algebras that satisfies 1–3, then R∗(Crg) ⊆ S∗(Crg) for all r ≥ 0.

Elements of these rings are called tautological (differential) forms.

Notice that this definition implies that there are no tautological forms of odd
degree. Indeed, taking pullbacks and fiber integrals of differential forms along
morphisms of complex manifolds changes the degrees of these differential forms by
an even number; see Proposition 1.3.19. It follows that removing the summands
of odd degree from the rings

R∗(Crg) =
⊕
d≥0

Rd(Crg)

still yields a system that satisfies properties 1–3, which is smaller than, and hence
equal to, the system of tautological differential forms.

Definition 4.3.1 implies that eA = ∆∗h is a tautological form on Cg, and eAd =∫
p
(eA)d+1 is a tautological form on Mg for all d ≥ 0. It follows that passing to
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cohomology yields a surjective map

R∗(Crg) → RH∗(Crg)⊗Q R.

However, as opposed to the settings of Chow rings and cohomology rings, the
tautological rings are not generated by pullbacks of classes h, eA and eAd . For
instance, the real 2-form

∂∂φ

π
√
−1

is a tautological form on Mg that is not in the subring generated by the eAd if
g ≥ 3. Such ‘extra’ tautological forms are introduced by the homogeneous ideal
I∗(Crg) of exact tautological forms:

0 → I∗(Crg) → R∗(Crg) → RH∗(Crg)⊗Q R → 0.

By Looijenga’s result [Loo95] we know that all tautological forms of degree d >
2(g + r − 2) are exact.

Of particular interest is the degree 2 part

I2(Mg) ⊆ I∗(Mg).

If g ≥ 3 then exact forms in this space can be written in the form

∂∂α

π
√
−1

with α a real-valued smooth function on Mg defined uniquely up to an additive
constant; see [Kaw09, Lemma 8.1]. For example, the Kawazumi–Zhang invariant φ
arises from the exact tautological form ν−eA1 in this way. One might wonder if it is
possible to obtain more such invariants for genus g curves from exact tautological
2-forms on Mg. As it will turn out, this is not the case. In Corollary 4.8.4 we will
find that I2(Mg) is spanned by

∂∂φ

π
√
−1

,

and that the Kawazumi–Zhang invariant is the only invariant, up to additive and
multiplicative constants, that arises in this way.

Next, we will prove some elementary equalities of tautological differential forms,
which we will use in the proof of Proposition 4.6.2.

Lemma 4.3.2. Let p : Cg → Mg be the universal family of genus g curves, and
let eA be the first Chern form of the relative tangent bundle TCg/Mg

≃ ω⊗−1 with
its canonical metric. Then ∫

p

eA = 2− 2g ∈ A0(Mg).

Proof. Recall that the cotangent bundle of any genus g curve has degree 2g − 2.
Applying Lemma 1.4.10 therefore gives the desired result.
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Lemma 4.3.3. Consider the tautological submersion p1 : C2
g → Cg. Then∫

p1

h = 1 ∈ A0(Cg).

Proof. This identity, too, follows immediately from Lemma 1.4.10.

Lemma 4.3.4. Consider the tautological submersion p1 : C2
g → Cg. If L is a

hermitian line bundle on C2
g which is fiberwise admissible with respect to p1, then∫

p1

h ∧ c1(L) = ∆∗c1(L) ∈ A2(Cg).

In particular, we have: ∫
p1

h2 = eA

and for i = 1, 2 we have ∫
p1

h ∧ p∗i eA = eA.

Proof. From Proposition 1.4.13 we obtain∫
p1

h ∧ c1(L) =
∫
p1

c1(O(∆)) ∧ c1(L) = c1(⟨O(∆), L⟩p1) = c1(∆
∗L) = ∆∗c1(L),

where the third equality follows from the fact that the canonical metric on O(∆)
has the useful property that the canonical isomorphism

⟨O(∆), L⟩p1
∼−→ ∆∗L

is an isometry; see Section 1.4. The other identities now follow from:

h = c1(O(∆)), and p∗i e
A = p∗i c1(ω

⊗−1) = c1(p
∗
iω

⊗−1).

Lemma 4.3.5. Let p12, p13, p23 : C3
g → C2

g be the three tautological submersions.
Then ∫

p12

p∗13h ∧ p∗23h = h ∈ A2(C2
g ).

Proof. Let σ1, σ2 : C2
g → C3

g be the two canonical sections of p12, such that p3◦σi =
pi : C2

g → Cg for i = 1, 2. Notice that p13 ◦ σ2 : C2
g → C2

g is the identity. Endow
the induced line bundles O(σ1), O(σ2) on C3

g with their canonical metrics. We use
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Proposition 1.4.13 to obtain∫
p12

p∗13h ∧ p∗23h =

∫
p12

p∗13c1(O(∆)) ∧ p∗23c1(O(∆))

=

∫
p12

c1(O(σ1)) ∧ c1(O(σ2))

= c1(⟨O(σ1), O(σ2)⟩p1)
= σ∗

2c1(O(σ1))

= σ∗
2p

∗
13c1(O(∆))

= c1(O(∆))

= h.

Recall from Section 1.4 that for each family f : C → S of genus g curves with
Jacobian family J → S we have canonical morphisms κ : C → J and δ : C2 → J .
The morphism κ takes a point x in a fiber Cs and maps it to the class of the
degree 0 line bundle O((2g− 2)x)⊗ω⊗−1

Cs in Js = Jac(Cs). The morphism δ is the
Abel–Jacobi morphism: it maps a pair (x, y) ∈ C2

s to the class of the line bundle
O(y − x) in Js = Jac(Cs).

Universally we obtain morphisms κ : Cg → Jg and δ : C2
g → Jg. Recall from

Section 2.7 that on the universal Jacobian Jg we have constructed a canonical
hermitian line bundle B. We denote by 2ω0 the first Chern form of B. As the form
2ω0 and the morphisms κ, δ are completely canonical, it makes sense to expect
that the forms 2κ∗ω0 and 2δ∗ω0 are tautological. Indeed, this is the case, as the
following proposition shows.

Proposition 4.3.6. The forms κ∗ω0 ∈ A2(Cg) and δ∗ω0 ∈ A2(C2
g ) are tautologi-

cal. More precisely, we have the following identities of 2-forms:

−2κ∗ω0 = 2g(2g − 2)eA + p∗eA1

−2δ∗ω0 = p∗1e
A + p∗2e

A − 2h.

Note that these identities match identities (K1) and (K3) in [dJon16, Theorem
1.4].

Proof. Denote by p : Cg → Mg the universal family of genus g curves. Recall from
Proposition 1.4.15 that we have canonical isometries

κ∗B⊗−1 ≃ ω−2g(2g−2) ⊗ p∗⟨ω, ω⟩p
δ∗B⊗−1 ≃ p∗1ω

⊗−1 ⊗ p∗2ω
⊗−1 ⊗O(∆)⊗−2

Taking first Chern classes and applying Proposition 1.4.13 then yields the desired
result.

One could argue, in fact, that the 2-form 2δ∗ω0 is the ‘prototypical’ tautological
form on C2

g , more so than h, and replace h by 2δ∗ω0 in Definition 4.3.1. We
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claim that this does not affect the resulting system of tautological rings. Indeed,
Proposition 4.3.6 states that 2δ∗ω0 is tautological. Conversely, it is possible to
obtain h from 2δ∗ω0 by using pullbacks and fiber integrals as follows. Squaring
−2δ∗ω0 = p∗1e

A+p∗2e
A−2h and integrating the result along the fibers of p1 : C2

g →
Cg yields: ∫

p1

(−2δ∗ω0)
2 =

∫
p1

c1(δ
∗B⊗−1)2 = c1(

〈
B⊗−1,B⊗−1

〉
p1
)

= c1(ω
⊗4g ⊗ p∗⟨ω, ω⟩p) = −4geA + p∗eA1 ,

where the second and third equalities follow from Propositions 1.4.13 and 1.4.15,
respectively. Squaring the resulting form and integrating it along the fibers of
p : Cg → Mg then gives:∫

p

(−4geA + p∗eA1 )
2 =

∫
p

(16g2(eA)2 − 8geA ∧ p∗eA1 + p∗(eA1 )
2)

We have: ∫
p

16g2(eA)2 = 16g2eA1 ,

and applying the projection formula and Lemma 4.3.2 yields∫
p

−8geA ∧ p∗eA1 = −8geA1 ∧
∫
p

eA = −8g(2− 2g)eA1 .

Another application of the projection formula gives∫
p

p∗(eA1 )
2 = (eA1 )

2

∫
p

1 = 0.

We conclude: ∫
p

(−4geA + p∗eA1 )
2 = 16g(2g − 1)eA1 .

We thus find that we can obtain eA1 , eA, and finally h from 2δ∗ω0 by taking fiber
integrals and pullbacks.

4.4 Tautological forms associated to marked graphs
Now that we have defined the rings of tautological forms, we need a method to
generate lots of tautological forms in order to be able to study relations of these
forms. We can start with some ‘basic’ tautological forms like h and eA and take
pullbacks, fiber integrals, and wedge products in order to generate more tautolog-
ical forms. The theory of marked graphs gives us a combinatorial framework for
generating such forms, and it will turn out that this framework is able to give us
all tautological forms.

In this section, we fix an integer g ≥ 2, and we will describe an operation that
takes an r-marked graph and outputs a tautological form on Crg .
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Let Γ = (V,E,m) be an r-marked graph, and let u be the number of unmarked
vertices of Γ. Choose a bijective extension

m̄ : {1, . . . , r + u} ∼−→ V

of the marking m : {1, . . . , r} → V . We will define a differential form µΓ on Cr+ug

that will depend on the choice of this extension m̄.
First, we associate to every edge e ∈ E a 2-form he on Cr+ug . This form is

defined as follows. Suppose that the endpoints of e are m̄(i) and m̄(j). We define

he = p∗i,jh ∈ R2(Cr+ug ),

where pi,j : Cr+ug → C2
g is the projection on the ith and jth coordinate. If e is a

loop based at vertex m̄(i), then

he = p∗i,ih = p∗i∆
∗h = p∗i e

A,

where pi : Cr+ug → Cg is the projection on the ith coordinate, and ∆ : Cg → C2
g is

the diagonal morphism. Notice that he does not depend on the order of i and j
as the form h is symmetric in the two coordinates of C2

g .
Now, we let µΓ denote the product of all these 2-forms:

µΓ =
∧
e∈E

he ∈ R2|E|(Cr+ug ).

This form depends on the choice of m̄. However, the form obtained from a different
choice of m̄ only differs from µΓ by permutation of the last u coordinates of Cr+ug .
Therefore, by Fubini’s theorem, the fiber integral

αΓ :=

∫
p1,...,r:Cr+ug →Crg

µΓ ∈ R2(|E|−u)(Crg) (4.4.1)

does not depend on the choice of m̄.

Definition 4.4.2. Let Γ be an r-marked graph. The form αΓ on Crg defined in
Equation 4.4.1 is the (tautological) form associated to Γ.

As the following examples show, many of the tautological differential forms we
found before can be expressed as tautological forms associated to marked graphs.

Example 4.4.3. Consider the unique 2-marked graph Γ with no unmarked ver-
tices and a single edge between the two marked vertices. The associated 2-form
αΓ on C2

g is h.

Γ =
1 2
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Example 4.4.4. Consider the unique 1-marked graph Γ with no unmarked ver-
tices and a single loop based at the unique vertex of Γ. The associated 2-form αΓ

on Cg is ∆∗h = eA.

Γ =
1

Example 4.4.5. Consider the two 0-marked graphs in the following picture.

Γ1 = Γ2 =

The associated forms on Mg are

αΓ1
=

∫
C2
g/Mg

h3 =: ν

and

αΓ2
=

∫
C2
g/Mg

h ∧ p∗1eA ∧ p∗2eA

=

∫
Cg/Mg

∫
p1:C2

g→Cg
h ∧ p∗1eA ∧ p∗2eA

=

∫
Cg/Mg

(
eA ∧

∫
p1

h ∧ p∗2eA
)

=

∫
Cg/Mg

(eA)2

= eA1 ,

where we have used the projection formula and Lemma 4.3.4. We therefore see
that the tautological form

∂∂φ

π
√
−1

= ν − eA1 ,

while not being associated to a graph itself, is in the linear span of forms on Mg

associated to 0-marked graphs.

In the next section we will prove that, in fact, every tautological form on Crg
can be written as the linear combination of forms associated to r-marked graphs.
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4.5 Graph operations and tautological forms
In the previous section we introduced a combinatorial method of defining tauto-
logical forms on Crg for all r ≥ 0 by associating them to r-marked graphs.

In this section we will study the various operations on marked graphs intro-
duced in Chapter 3 and observe how the corresponding differential forms are af-
fected. It turns out that these forms behave rather nicely with respect to pullbacks,
pushforwards, and coproducts of marked graphs. By using this fact, we will be
able to prove the following theorem.

Theorem 4.5.1. For every integer r ≥ 0, the ring of tautological differential
forms R∗(Crg) is spanned as an R-vector space by forms αΓ associated to r-marked
graphs Γ.

By Definition 4.3.1 it suffices to prove that the system of linear subspaces
S∗(Crg) ⊆ R∗(Crg) generated by forms associated to r-marked graphs is a system
of sub-R-algebras (that is: closed under wedge products and containing 1), that
the system is closed under pullbacks and fiber integrals, and that h is contained
in S∗(C2

g ).
We start by proving that S∗(Crg) ⊆ R∗(Crg) is a subring for every r ≥ 0. First

of all, the form associated to the unique r-marked graph consisting of r vertices
and no edges is 1. The following proposition implies that S∗(Crg) is closed under
wedge products and therefore a subring of R∗(Crg).

Proposition 4.5.2. Let Γ = (V,E,m) and Γ′ = (V ′, E′,m′) be two r-marked
graphs, and let αΓ and αΓ′ be the associated tautological forms on Crg . Then

αΓ ∧ αΓ′ = αΓ⊔rΓ′ .

Proof. Assume that Γ and Γ′ have respectively u and u′ unmarked vertices. Choose
bijective extensions

m̄ : {1, . . . , r + u} ∼−→ V

m̄′ : {1, . . . , r + u′} ∼−→ V ′

of m and m′. Let ϕ : {1, . . . , r + u} → {1, . . . , r + u + u′} be the inclusion, and
define the map

ψ : {1, . . . , r + u′} → {1, . . . , r + u+ u′} : k 7→

{
k if k ≤ r

k + u if k > r.

It follows that the diagram

{1, . . . , r + u+ u′} {1, . . . , r + u}

{1, . . . , r + u′} {1, . . . , r}

ϕ

ψ
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is a pushout diagram of sets, so we have the associated cartesian diagram of moduli
stacks

Cr+u+u′

g Cr+ug

Cr+u′

g Crg .

p1,...,r+u

p1,...,r,r+u+1,...,r+u+u′ p1,...,r

p1,...,r

Now let Γ′′ = (V ′′, E′′,m′′) = Γ ⊔r Γ′. By the universal property of the pushout,
we have an induced r + u+ u′-marking

m̄′′ : {1, . . . , r + u+ u′} ∼−→ V ′′

of the set of vertices V ′′ of Γ′′ that extends m′′. If e ∈ E is an edge in Γ between
vertices m̄(i) and m̄(j), then the corresponding edge in Γ′′ has endpoints m̄′′(ϕ(i))
and m̄′′(ϕ(j)). Similarly, if e ∈ E′ is an edge in Γ′ between vertices m̄′(i) and
m̄′(j), then the corresponding edge in Γ′′ has endpoints m̄′′(ψ(i)) and m̄′′(ψ(j)).
It follows that

µΓ′′ =
∧
e∈E′′

he

=
∧
e∈E

p∗1,...,r+uhe ∧
∧
e∈E′

p∗1,...,r,r+u+1,...,r+u+u′he

= p∗1,...,r+uµΓ ∧ p∗1,...,r,r+u+1,...,r+u+u′µΓ′ .

Using the base change formula 1.3.14 and the projection formula 1.3.1, we find
that the fiber integral αΓ⊔rΓ′ equals αΓ ∧ αΓ′ .

Next, we will show that the system of vector spaces S∗(Crg) ⊆ R∗(Crg) is closed
under pullbacks along tautological morphisms. Let fϕ : Crg → Csg be a tautological
morphism, induced by a map ϕ : {1, . . . , s} → {1, . . . , r}. Recall from Chapter
3 that ϕ induces a pushforward operator ϕ∗ : Gr → Gs from r-marked graphs to
s-marked graphs. The following proposition implies that the pullback map fϕ,∗

on differential forms is compatible with the pushforward map on graphs. From
this one easily deduces that the system of forms S∗(Crg) is closed under pullbacks
along tautological maps.

Proposition 4.5.3. Let fϕ : Crg → Csg be the tautological morphism associated
to a map ϕ : {1, . . . , s} → {1, . . . , r}. Suppose that αΓ ∈ S∗(Csg) is the form
associated to an s-marked graph Γ. Then

fϕ,∗αΓ = αϕ∗Γ

with ϕ∗Γ the pushforward of Γ along ϕ.

Proof. The proof is similar to the proof of Proposition 4.5.2, so only a short sketch
is given here. We extend the labeling on Γ to an (s+u)-labeling, with u the number
of unmarked vertices of Γ. This induces an (r + u)-labeling of ϕ∗Γ, and it follows
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that the pullback of µΓ along the induced map Cr+ug → Cs+ug equals µϕ∗Γ. By the
base change formula the desired result follows.

Now, let fϕ : Crg → Csg be a tautological submersion, associated to an injective
map ϕ : {1, . . . , s} ↪→ {1, . . . , r}. In Chapter 3 we introduced a pullback map ϕ∗ :
Gr → Gs. The following proposition shows that, analogously to the pushforward
map, the pullback map on graphs is compatible with the fiber integral map on
differential forms. This implies that the system S∗(Crg) ⊆ R∗(Crg) is closed under
fiber integrals.

Proposition 4.5.4. Let ϕ : {1, . . . , s} → {1, . . . , r} be an injective map, and
let fϕ : Crg → Csg be the associated tautological submersion. Let Γ ∈ Gr be an
r-marked graph, and let ϕ∗Γ be the s-marked graph induced by ϕ. Then∫

fϕ
αΓ = αϕ∗Γ

Proof. Let u be the number of unmarked vertices in Γ. Extend the inclusion
ϕ : {1, . . . , s} → {1, . . . , r} to a permutation {1, . . . , r} → {1, . . . , r}, and then join
this map with the identity on {r + 1, . . . , r + u} to obtain a bijective map

ϕ̄ : {1, . . . , r + u} ∼−→ {1, . . . , r + u}

that extends ϕ.
Moreover, choose a bijective extension m̄ : {1, . . . , r+ u} ∼−→ V of the marking

m of Γ. We immediately obtain an extension

mϕ = m̄ ◦ ϕ̄ : {1, . . . , r + u} ∼−→ V

of the marking mϕ of the s-marked graph ϕ∗Γ = (V,E,mϕ). We have a commu-
tative diagram of sets, inducing a commutative diagram of moduli stacks:

{1, . . . , r + u} {1, . . . , r}

{1, . . . , r + u} {1, . . . , s}

⊇

ϕ̄

⊇

ϕ

Cr+ug Crg

Cr+ug Csg

p1,...,r

f ϕ̄ fϕ

p1,...,s

If e is an edge in Γ with endpoints m̄(i), m̄(j), then the corresponding edge
ϕ∗e in ϕ∗Γ has endpoints mϕ(ϕ̄−1(i)) and mϕ(ϕ̄−1(j)). It follows that the corre-
sponding 2-forms on Cr+ug are related as follows:

he = f ϕ̄,∗hϕ∗e.

From this, we find that
µΓ = f ϕ̄,∗µϕ∗Γ,

so
µϕ∗Γ =

∫
f ϕ̄
µΓ.
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We therefore have:∫
fϕ
αΓ =

∫
fϕ

∫
p1,...,r

µΓ =

∫
p1,...,s

∫
f ϕ̄
µΓ =

∫
p1,...,s

µϕ∗Γ = αϕ∗Γ,

proving the proposition.

We have seen that differential forms associated to graphs are quite well-behaved
with respect to the graph operations defined in Chapter 3. Using this, we can quite
easily prove the main theorem of this section.

Proof of Theorem 4.5.1. By Proposition 4.5.2, and the fact that the form associ-
ated to the r-marked graph with no edges and no unmarked vertices equals 1, we
find that the subspaces S∗(Crg) ⊆ R∗(Crg) are, in fact, sub-R-algebras. Propositions
4.5.3 and 4.5.4 show that the system of subspaces S∗(Crg) ⊆ R∗(Crg) is closed under
taking pullbacks along tautological morphisms and fiber integrals along tautolog-
ical submersions. Example 4.4.3 shows that h is an element of S2(C2

g ).
But as the system of rings R∗(Crg) is defined in Definition 4.3.1 to be the

smallest system that satisfies these properties, we find that the two systems must
be equal.

4.6 Graph contractions and tautological forms
In the last section, we proved that every tautological form is a linear combination
of tautological forms associated to graphs. We did so by observing the behavior
of the resulting tautological forms when manipulating the marked graphs using
the pushforward, pullback, and gluing operations in Chapter 3. In Section 3.6
we defined contraction operations on r-marked graphs. In this section we will
show that these contractions are well-behaved with respect to taking associated
tautological forms. This will allow us to prove the following theorem.

Theorem 4.6.1. For all r ≥ 0 and g ≥ 2, the ring of tautological forms R∗(Crg)
is finite-dimensional.

In the following proposition, we consider the various graph contraction opera-
tions defined in Chapter 3, and see how contracting vertices on an r-marked graph
Γ influences the associated tautological form αΓ. The proposition will be proved
at the end of this section.

Proposition 4.6.2. Let Γ = (V,E,m) be an r-marked graph, and suppose that
Γ has an unmarked vertex v, such that either deg(v) ≤ 2, or deg(v) = 3 and v is
incident to precisely two edges. Let Γ′ be the graph obtained from Γ by contracting
v.

0. If deg v = 0, then αΓ = 0.
1. If deg v = 1, then αΓ = αΓ′ .

2a. Suppose that deg v = 2 and that v has two distinct neighbors w ̸= w′. Then
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αΓ = αΓ′ .
2b. Suppose that deg v = 2 and that v has a single neighbor w ̸= v. Then

αΓ = αΓ′ .
2c. Suppose that deg v = 2 and that v is its own neighbor; that is: there is a

loop based at v. Then αΓ = (2− 2g)αΓ′ .
3. Suppose that deg v = 3 and that v is incident to precisely two edges. Then
αΓ = αΓ′ .

Proposition 4.6.2 shows that we can contract every r-marked graph to a con-
tracted r-marked graph while leaving the resulting tautological form the same up
to multiplication by zero or a power of (2− 2g). Therefore, we find that the ring
of tautological forms R∗(Crg) is the linear span of the tautological forms associated
to contracted r-marked graphs.

Suppose that Γ is an r-marked graph with u unmarked vertices and e edges.
The Euler characteristic of Γ is χ(Γ) = r+u−e. After extending the marking of Γ
to an (r+u)-marking, we obtain the form µΓ that lives on Cr+ug and has degree 2e.
Now αΓ is the fiber integral of µΓ along the projection Cr+ug → Crg , whose fibers
are of real dimension 2u, and hence the degree of αΓ is 2e− 2u = 2r− 2χ(Γ). We
obtain the following.

Lemma 4.6.3. Let d ≥ 0 and r ≥ 0 be integers. The space R2d(Crg) of tautological
forms of degree 2d on Crg is the linear span of the forms αΓ associated to contracted
r-marked graphs Γ with Euler characteristic χ(Γ) = r − d.

In Theorem 3.7.1, we proved that there are (up to isomorphism) only finitely
many contracted r-marked graphs of any given characteristic χ ∈ Z. By combining
Lemma 4.6.3 with Theorem 3.7.1, we obtain the following.

Theorem 4.6.4. Let g ≥ 2. For all integers r ≥ 0 and d ≥ 0, the space R2d(Crg)
of tautological forms of degree 2d on Crg is finite-dimensional. More precisely:
the space R2d(Crg) is spanned by forms αΓ, where Γ ranges over all contracted
r-marked graphs of characteristic r − d. These graphs have at most 2d unmarked
vertices, and there are only finitely many such graphs up to isomorphism.

The main theorem of this section is now a simple consequence of the previous
theorem.

Proof of Theorem 4.6.1. Recall from Section 2.5 that there exists an inclusion
A∗(Crg) → A∗(X r

g ) where Xg → Tg is the universal family of genus g curves with
Teichmüller structure and X r

g denotes the r-fold fiber product of Xg over Tg. As
X r
g is a manifold of (real) dimension 6g − 6 + 2r, it follows that Ad(X r

g ) is zero
for all d > 2r + 6g − 6, and the same is true for Ad(Crg) and hence for Rd(Crg).
Moreover, the odd-degree subspaces R2d+1(Crg) are zero. Therefore

R∗(Crg) =
⊕
d≥0

R∗(Crg) =
3g−3+r⊕
d=0

R2d(Crg)
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is a direct sum of finitely many finite-dimensional subspaces, and therefore it is
itself finite-dimensional.

We devote the remainder of this section to proving Proposition 4.6.2. The
proof is merely technical, and does not introduce any new concepts.

Proof of Proposition 4.6.2. Let Γ = (V,E,m) be an r-marked graph, and let v be
an unmarked vertex of degree ≤ 2, or an unmarked vertex of degree ≤ 3 with a
loop. Define a graph Γ′′ by removing v, and all edges emanating from v, from Γ.
Moreover, we have the graph Γ′ that is obtained from Γ by contracting v.

The graph Γ′′ represents an ‘intermediate step’ in obtaining Γ′ from Γ. The
following picture describes the situation in the case where v has two distinct neigh-
bors.

w

v

w′
Γ

w w′
Γ′′

w w′
Γ′

Let u ≥ 0 be such that Γ has u + 1 unmarked points. Fix an extension of m
to an (r + u+ 1)-marking

m̄ : {1, . . . , r + u+ 1} ∼−→ V,

such that m̄(r + u+ 1) = v.
Restricting m̄ to {1, . . . , r + u} induces an (r + u)-marking on Γ′ and Γ′′ that

extends the r-marking on these graphs. We obtain differential forms µΓ, µΓ′ , and
µΓ′′ that live on Cr+u+1

g , Cr+ug , and Cr+ug , respectively.
The inclusions {1, . . . , r} ⊆ {1, . . . , r+u} ⊆ {1, . . . , r+u+1} induce tautological

submersions
Cr+u+1
g Cr+ug

Crg

q

pq
p

We have
αΓ =

∫
pq

µΓ and αΓ′ =

∫
p

µΓ′

If we can prove that ∫q µΓ = 0 in case 0, ∫q µΓ = µΓ′ in cases 1, 2a, 2b, and 3, and
∫q µΓ = (2− 2g)µΓ′ in case 2c, we are done.

0. Suppose v has degree 0. The set of edges of Γ is equal to the set of edges of
Γ′, so we obtain

µΓ = q∗µΓ′ .

Taking fiber integrals and applying the projection formula yields:∫
q

µΓ = µΓ′

∫
q

1 = 0,

and we find that αΓ = 0.
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1. Suppose v has degree 1; let i ∈ {1, . . . , r + u} be such that m̄(i) is the
neighbor of v. The graph Γ is obtained from Γ′ by adding the vertex v and
the edge between v and m̄(i). We therefore have:

µΓ = q∗µΓ′ ∧ p∗i,r+u+1h,

so ∫
q

µΓ = µΓ′ ∧
∫
q

p∗i,r+u+1h.

By using the base change formula with the cartesian diagram

Cr+u+1
g C2

g

Cr+ug Cg,
□

pi,r+u+1

q p1

pi

we find: ∫
q

p∗i,r+u+1h = p∗i

∫
p1

h = 1,

where the latter equality follows from Lemma 4.3.3. This shows that ∫q µΓ =
µΓ′ , so αΓ = αΓ′ .

2a. Suppose v has degree 2, and that v has two distinct neighbors w and w′. Let
i, j ∈ {1, . . . , r + u} be such that m̄(i) = w and m̄(j) = w′. In this case, we
find

µΓ = µΓ′′ ∧ p∗i,r+u+1h ∧ p∗j,r+u+1h,

and
µΓ′ = µΓ′′ ∧ p∗i,jh.

In this case, another application of the base change formula, together with
the identity of forms ∫

p12

p∗13h ∧ p∗23h = h

from Lemma 4.3.5 shows that
∫
q
µΓ = µΓ′ , and hence αΓ = αΓ′ .

2b. The proof in this case is very similar to the proofs for cases 1 and 2. In this
case, we use the identity ∫

p1

h2 = eA

from Lemma 4.3.4.
2c. Again, the proof of this case is similar to that of the previous cases. The

identity used here is ∫
Cg/Mg

eA = (2− 2g),

see Lemma 4.3.2.
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3. Finally, the proof in case 3 is analogous to that of earlier cases, where we
use the identity ∫

p1

h ∧ p∗2eA = eA

from Lemma 4.3.4.

4.7 The ring of tautological forms as a quotient
algebra

In the previous sections we proved that the ring of tautological forms R∗(Crg) is the
linear span of forms associated to r-marked graphs. In this section we will exploit
this and show that we can write the ring of tautological forms R∗(Crg) as a quotient
algebra of a graded R-algebra whose summands are effectively computable.

Recall from Chapter 3 that G(r) denotes the set of isomorphism classes of r-
marked graphs. The coproduct ⊔r on the category Gr of r-marked graphs induces a
binary operator on G(r), which gives G(r) the structure of a commutative monoid.
There is a homomorphism of monoids

χ̄r : G(r) → Z : Γ 7→ r − χ(Γ).

If d ∈ Z is an integer, the inverse image χ̄−1
r (d) is the set

G(r, r − d) = {r-marked graphs of characteristic r − d}/∼=.

The monoid ring of G(r) over R is the R-algebra

R[G(r)]

that has as the underlying R-module the vector space with the elements of G(r) as
its basis, and whose multiplication is defined uniquely by demanding it extends the
binary operator on G(r), where we view G(r) as a subset of R[G(r)] via the map
Γ 7→ 1 · Γ. The homomorphism χ̄r : G(r) → Z and the corresponding partition
of G(r) induce a grading on R[G(r)] whose degree d summand is spanned by the
graphs of characteristic r − d:

R[G(r)] =
⊕
d∈Z

R[G(r, r − d)].

The method described in Section 4.4 of taking a graph Γ ∈ G(r) and assigning
to it a tautological form αΓ ∈ R∗(Crg) induces a map of sets G(r) → R∗(Crg). This
map is in fact a homomorphism of monoids by Proposition 4.5.2, where the monoid
structure on R∗(Crg) is given by the wedge product. This monoid homomorphism
induces a homomorphism of R-algebras

α : R[G(r)] → R∗(Crg).
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By Theorem 4.5.1 it holds that this homomorphism is surjective.
If Γ is an r-marked graph of characteristic r − d, the corresponding form αΓ

is of degree 2d, and hence the above R-algebra homomorphism is in fact a homo-
morphism of graded R-algebras⊕

d∈Z
R[G(r, r − d)] →

⊕
d∈Z

R2d(Crg).

Next, consider the submonoid CG(r) ⊆ G(r) and the subsets CG(r, r − d) ⊆
G(r, r − d) consisting of graphs that are contracted. The inclusion map CG(r) →
G(r) induces a homomorphism of (graded) R-algebras

R[CG(r)] → R[G(r)],

and the composition of this map with α yields another graded homomorphism

α′ : R[CG(r)] → R2∗(Crg).

Theorem 4.6.4 says that this homomorphism is surjective.
By Theorem 3.8.1 the set CG(r, r−d) is empty for all d < 0. For each d ≥ 0 the

set CG(r, r− d) is effectively computable by using the algorithm found in Section
3.7. Moreover, for d > r + 3g − 3 the space R2d(Crg) is trivial, so for these d the
degree d summand of R[CG(r, r − d)] is contained in the kernel of α′. It follows
that, in order to compute R∗(Crg), we need to compute the kernel of the linear
map

R[CG(r, r − d)] → R2d(Crg)

for all 0 ≤ d ≤ r + 3g − 3. In any case, we obtain the following.

Theorem 4.7.1. The graded R-algebra R2∗(Crg) is a quotient of the monoid ring
R[CG(r)]. More precisely, it is a quotient of the quotient ring

R[CG(r)]

R[CG(r)]>(r+3g−3)
=

R[CG(r)]⊕
d>r+3g−3 R[CG(r, r − d)]

.

and that quotient ring is effectively computable; it is isomorphic as a vector space
to

r+3g−3⊕
d=0

R[CG(r, r − d)]

The inclusion CG(r) → G(r) has a retraction ϱ : G(r) → CG(r) which is the
contraction map. Therefore, the induced homomorphism R[G(r)] → R[CG(r)] is
a retraction of the inclusion R[CG(r)] → R[G(r)]. However, it turns out that this
retraction is not the right retraction for our purposes: this retraction is incompat-
ible with the homomorphisms from these monoid rings to the ring of tautological
forms. For instance, if Γ denotes the 0-marked graph with one vertex and one
loop, then the associated form αΓ is the constant function (2 − 2g). The con-
tracted graph ϱ(Γ) is the empty graph, and the associated form is the constant
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function 1; we therefore see that αΓ ̸= αϱ(Γ). It is more natural to define an
R-algebra homomorphism

ϱ̃g : R[G(r)] → R[CG(r)],

that depends on g, as follows.
Let Γ be an r-marked graph, and let ϱ(Γ) be the corresponding contracted

r-marked graph. Define the integer λΓ,g as:

λΓ,g = 0a · (2− 2g)b,

where a and b denote the number of contractions of type 0 and 2c, respectively, in
the contraction procedure. Equivalently, a and b equal the number of connected
components of Γ, without marked vertices, of characteristic 1 and 0, respectively.
It follows from Proposition 4.6.2 that

αΓ = λΓ,g · αϱ(Γ).

We define the R-algebra homomorphism ϱ̃g : R[G(r)] → R[CG(r)] by setting

ϱ̃g(Γ) = λΓ,g · ϱ(Γ) for all Γ ∈ G(r).

As λΓ,g = 1 for all contracted graphs, it follows that ϱ̃g is a retraction of the
inclusion map R[CG(r)] → R[G(r)]. Moreover, the following diagram commutes.

R[G(r)]

R2∗(Crg)

R[CG(r)]

ϱ̃g (4.7.2)

4.8 Tautological 2-forms
In this section we give a description of the vector spaces R2(Crg) of tautological
two-forms on the spaces Crg for all r ≥ 0. Recall that we have seen some examples
of these 2-forms already: on C2

g we have the 2-form h associated to the diagonal,
on Cg we have eA = ∆∗h associated to the tangent bundle, and on Mg we found
two more 2-forms

eA1 :=

∫
Cg/Mg

(eA)2 and ν :=

∫
C2
g/Mg

h3.

We will prove that these 2-forms are ‘all there is’: the tautological ring R2(Crg) is
spanned by pullbacks of h, eA, eA1 , and ν along tautological submersions.

Let r ≥ 0 be an integer. We wish to compute generators for R2(Crg). By
Theorem 4.6.4, we find that this space is spanned by forms αΓ, where Γ ranges
over all contracted r-marked graphs of characteristic r − 1. In Example 3.7.2 we
have computed the set CG(r, r − 1). We found the following graphs:
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• Graphs Γ with r marked vertices, no unmarked vertices, and a single edge.
If this edge is a loop based at vertex i then the associated form is

αΓ = p∗i e
A.

If the edge is not a loop, and its endpoints are vertices i and j, then the
associated form is

αΓ = p∗ijh.

• The graph Γ with r marked vertices, one unmarked vertex, and two loops
based at the unmarked vertex. The associated form is

αΓ =

∫
p1,...,r:Cr+1

g →Crg
p∗r+1(e

A)2 = eA1

by the base change formula. Note the slight abuse of notation here: we write
eA1 for the pullback of eA1 along the tautological morphism Crg → Mg.

• The graph Γ with r marked vertices, two unmarked vertices, and three edges
between the unmarked vertices. By using the base change formula we obtain

αΓ =

∫
p1,...,r:Cr+2

g →Crg
p∗r+1,r+2h

3 = ν

where we again abuse the notation by writing ν for the pullback of ν along
Crg → Mg.

We find that R2(Crg) is spanned by the following collection of 2-forms:

{p∗ijh : 1 ≤ i < j ≤ r} ∪ {p∗i eA : 1 ≤ i ≤ r} ∪ {eA1 , ν}. (4.8.1)

In the remainder of this section, we prove that, in fact, these 2-forms form a basis
of R2(Crg) if g > 2, and there is only one relation among these forms if g = 2.

Theorem 4.8.2. For all g ≥ 2 and r ≥ 0, we have

dimR2(Crg) = 1
2r(r + 1) + 2− ε(g),

where

ε(g) =

{
1 if g = 2

0 if g ≥ 3.

If g ≥ 3 a basis is given by the 2-forms

{p∗ijh : 1 ≤ i < j ≤ r} ∪ {p∗i eA : 1 ≤ i ≤ r} ∪ {eA1 , ν}.

If g = 2 a basis is given by the 2-forms

{p∗ijh : 1 ≤ i < j ≤ r} ∪ {p∗i eA : 1 ≤ i ≤ r} ∪ {eA1 },

and eA1 and ν are linearly dependent: we have

−8ν − 12eA1 = 0.

We will prove this theorem by induction on r. We start with the following
proposition.
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Proposition 4.8.3. If g = 2, then R2(Mg) is one-dimensional, and spanned by
eA1 . If g ≥ 3, then R2(Mg) is two-dimensional, and spanned by eA1 and ν.

Proof. Recall that the following identity holds:

ν − eA1 =
∂∂φ

π
√
−1

.

Before stating Theorem 4.8.2, we showed for all r ≥ 0 that R2(Crg) is spanned by
the forms listed in Equation 4.8.1. In particular, R2(Mg) is spanned by ν and eA1 .
Therefore, the dimension of R2(Mg) is at most two.

Suppose, first, that g = 2. In Example 4.10.5, which does not depend on any
of the material treated in this section, we obtain the relation

−8ν − 12eA1 = 0.

Moreover, the real 2-form
∂∂φ

π
√
−1

is nonzero; see [DG14]. We conclude that R2(M2) is one-dimensional.
Now, suppose that g ≥ 3. By observing the asymptotic behavior of φ around

the boundary of Mg studied in [dJon14], we find in particular that φ is not con-
stant. Using [Kaw09, Lemma 8.1] we deduce:

∂∂φ

π
√
−1

̸= 0

Moreover, the cohomology class κ1 associated to eA1 does not vanish. Indeed, one
can show (see, for instance, [Mum83]) that κ1 = 12λ1 with λ1 the first Chern class
of the Hodge bundle on Mg, and in [AC87] it is proved that λ1 freely generates
the Picard group of Mg, and is in particular not torsion. Consequently, eA1 is not
an exact form; we find therefore that eA1 and ∂∂φ

π
√
−1

are linearly independent.

Proof of Theorem 4.8.2. The case r = 0 is proved in Proposition 4.8.3. For the
case r = 1: by Lemma 2.5.4 the morphism p : Cg → Mg induces an inclusion
p∗ : R2(Mg) → R2(Cg). Moreover, forms pulled back from Mg are in the kernel
of the fiber integral along p: for each α ∈ A∗(Mg) we have by the projection
formula: ∫

p

p∗α = α ·
∫
p

1 = 0

As ∫
p

eA = (2− 2g) ̸= 0,

we find that eA is not an element of p∗R2(Mg). As R2(Cg) is spanned by the
forms eA, eA1 , and ν, we obtain:

dimR2(Cg) = dimR2(Mg) + 1 = 3− ε(g).
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4.8. Tautological 2-forms

Now let r ≥ 2, and assume that

dimR2(Csg) = 1
2s(s+ 1) + 2− ε(g)

for all 0 ≤ s < r. Consider the following three tautological morphisms:

p(r) : Crg → Cr−1
g : (x1, . . . , xr) 7→ (x1, . . . , xr−1);

p(r−1) : Crg → Cr−1
g : (x1, . . . , xr) 7→ (x1, . . . , xr−2, xr);

q(r−1) : Cr−1
g → Cr−2

g : (x1, . . . , xr−1) 7→ (x1, . . . , xr−2).

We have a cartesian square

Crg Cr−1
g

Cr−1
g Cr−2

g .

p(r)

p(r−1) □ q(r−1)

q(r−1)

These maps induce linear subspaces W1 := Im p∗(r), W2 := Im p∗(r−1), and W12 :=

W1 ∩W2 of R2(Crg). The forms eA1 , ν, p∗i eA, and p∗ijh, (possibly) except for the
form p∗r−1,rh, all lie in W1 or W2. It follows that

R2(Crg) = (W1 +W2) + R · p∗r−1,rh.

Obviously the pullback of each form on Cr−2
g along the composition q(r−1) ◦

p(r−1) = q(r−1) ◦ p(r) is an element of W12. Conversely, we claim that each form
in W12 is the pullback along this composition of some form on Cr−2

g . Indeed,
let α ∈ W12 be any form; we may write α = p∗(r)β = p∗(r−1)γ for forms β, γ ∈
R2(Cr−1

g ). Let µ ∈ R2(Cg) be the 2-form given by µ = eA/(2− 2g); it follows that∫
Cg/Mg

µ = 1, and by the base change formula we obtain∫
p(r)

p∗rµ = 1.

We then find by repeatedly using the base change formula and the projection
formula:

β = β ∧
∫
p(r)

p∗rµ

=

∫
p(r)

p∗(r)β ∧ p∗rµ

=

∫
p(r)

p∗(r−1)γ ∧ p∗rµ

=

∫
p(r)

p∗(r−1)(γ ∧ p∗r−1µ)

= q∗(r−1)

∫
q(r−1)

γ ∧ p∗r−1µ,
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and therefore
α = p∗(r)β = p∗(r)q

∗
(r−1)

∫
q(r−1)

γ ∧ p∗r−1µ,

which proves our claim.
As pullbacks along tautological submersions are injective, we obtain the fol-

lowing equalities from the induction hypothesis:

dimW1 = dimW2 = dimR2(Cr−1
g ) = 1

2r
2 − 1

2r + 2− ε(g)

dimW12 = dim Im(p∗(r) ◦ q
∗
(r−1)) = dimR2(Cr−2

g ) = 1
2r

2 − 3
2r + 3− ε(g)

dim(W1 +W2) = dimW1 + dimW2 − dimW12 = 1
2r

2 + 1
2r + 1− ε(g).

If we can prove that p∗r−1,rh /∈W1+W2 then dimR2(Crg) = 1
2r

2+ 1
2r+2−ε(g)

and we are done. Suppose, therefore, that p∗r−1,rh ∈ W1 + W2; we can write
p∗r−1,rh = p∗(r)α + p∗(r−1)β for some 2-forms α, β on Cr−1

g . As h is symmetric, we
may even assume with no loss of generality that α = β:

p∗r−1,rh = p∗(r)α+ p∗(r−1)α.

Consider the map

f : Cr−1
g → Crg : (x1, . . . , xr−1) 7→ (x1, . . . , xr−1, xr−1);

this map is a section of both p(r) and p(r−1) and fits in a cartesian diagram

Cr−1
g Crg

Cg C2
g .

f

pr−1 pr−1,r

∆

We then find:
p∗r−1e

A = p∗r−1∆
∗h = f∗p∗r−1,rh = 2α;

so α = 1
2p

∗
r−1e

A, and

p∗r−1,rh = 1
2p

∗
r−1e

A + 1
2p

∗
re
A ∈ R2(Crg).

Integration along the fibers of the morphism p(r) : Crg → Cr−1
g then yields:

1 =

∫
p(r)

p∗r−1,rh =

∫
p(r)

1
2 (p

∗
r−1e

A + p∗re
A) = 0 + 1

2 (2− 2g),

which contradicts with our assumption that g ≥ 2. We conclude that p∗r−1,rh is
not in the span of the subspaces W1 and W2, so we find:

dimR2(Crg) = dim(W1 +W2) + 1 = 1
2r

2 + 1
2r + 2− ε(g).

The theorem follows by induction.

Let us return to the discussion we started in Section 4.3.
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4.9. Tautological 2d-forms

Corollary 4.8.4. The subspace of exact 2-forms I2(Mg) ⊆ R2(Mg) is one-
dimensional. It is spanned by the form

∂∂φ

π
√
−1

= ν − eA1

where φ : Mg → R denotes the Kawazumi–Zhang invariant.

Proof. The cohomology classes of ν and eA1 are equal: if p : Cg → Mg, q : C2
g →

Mg, and p1, p2 : C2
g → Cg denote the tautological submersions, then

[ν] = q∗(∆
3) = q∗(p

∗
1K

2 ·∆) = p∗(K
2 · p1,∗∆) = p∗K

2 = κ1 = [eA1 ] ∈ RH2(Mg).

It follows that ν − eA1 is exact. It is moreover a nonzero form, as we saw in the
proof of Proposition 4.8.3, so the dimension of I2(Mg) is positive. If g = 2 this
concludes our proof, since dimR2(Mg) = 1. If g ≥ 3 then we saw in the proof of
4.8.3 that the class κ1 of eA1 does not vanish, so I2(Mg) is a proper subspace of
the two-dimensional space R2(Mg).

We therefore find that the Kawazumi–Zhang invariant is the only invariant
(up to additive and multiplicative constants) that arises on Mg from tautological
forms.

4.9 Tautological 2d-forms
In the previous section we have given a complete description of the vector space
R2(Crg) of tautological 2-forms on the space Crg . We observed that for high values
of r no ‘new’ tautological forms appear; that is: for r > 2 the space R2(Crg) is
spanned by pullbacks of 2-forms in R2(C2

g ) along tautological submersions.
This observation generalizes to higher degrees, too.

Theorem 4.9.1. Let d ≥ 0 be an integer. For all r > 2d the space R2d(Crg) is
spanned by pullbacks of tautological 2d-forms on C2d

g along tautological submer-
sions Crg → C2d

g .

Proof. Let r > 2d be given. By Theorem 4.6.4, it holds that the vector space
R2d(Crg) is spanned by tautological forms associated to contracted r-marked graphs
Γ of characteristic r − d. Let Γ be such a graph. Lemma 3.8.3 implies that the
number of marked vertices of positive degree is at most 2d. Let ϕ : {1, . . . , 2d} →
{1, . . . , r} be an injective map, such that every i ∈ {1, . . . , r} with deg(m(i)) > 0
lies in the image of ϕ. By Lemma 3.8.5 it follows that Γ is in the image of the
pushforward map

ϕ∗ : CG(2d, 2d− d) → CG(r, r − d),

and Proposition 4.5.3 thus implies that αΓ lies in the image of the pullback map

fϕ,∗ : R2d(C2d
g ) → R2d(Crg).

119



Chapter 4: Tautological differential forms on moduli of curves

4

In Theorem 4.8.2 we gave a closed formula for the dimension of R2(Crg) in terms
of r and g. In particular, we saw that the growth rate of dimR2(Crg) as r tends to
infinity is quadratic. This latter statement can be generalized to arbitrary degree.

Theorem 4.9.2. Let d ≥ 0. There exists a polynomial fd of degree 2d (that does
not depend on g), whose leading coefficient equals 1/(2d · d!), such that

dimR2d(Crg) ≤ fd(r) for all r ≥ 0, g ≥ 2.

Proof. By Theorem 4.6.4 R2d(Crg) is spanned by forms associated to contracted
r-marked graphs of characteristic r − d. Using Theorem 3.8.1 we find that the
number of such graphs in terms of r is given by a degree 2d polynomial fd with
leading coefficient equal to 1/(2d · d!).

In the case d = 1, we have seen in the last section that at most one relation
appears among the tautological forms associated to graphs that span R2(Crg), and
that this relation can be obtained from R2(Mg) via pullback. In other words: the
linear relations among tautological forms associated to graphs in R2(Crg) for low
values of r determine the linear relations among these forms in R2(Crg) for general
r. This allows us to prove that the dimension of R2(Crg) is given by a quadratic
polynomial. This polynomial does depend on g, but stabilizes for g > 2.

It seems natural that this result would generalize as follows. For any d ≥ 1,
any linear relations among forms associated to graphs in R2d(Crg) for high r (say,
r > 2d) would be obtained by pulling back such relations from R2d(C2d

g ). Then, by
combining arguments from sections 4.8 and 3.8, one might be able to prove that the
dimension of R2d(Crg) is given by a polynomial of degree 2d. The polynomial would
depend on g, but might stabilize for high values of g. One of the main problems
the author encounters is that the inclusion-exclusion principle, that aids us in
proving that the number of r-marked graphs of a certain characteristic is given by
a polynomial, does not translate well into the language of vector spaces we use in
this section: while taking the intersection of sets is distributive over taking unions,
the same cannot be said about taking intersections of vector subspaces and spans
of vector subspaces.

4.10 Relations induced by Abel–Jacobi maps

In [Ran12] Randal-Williams constructs cohomology classes ΩA ∈ H2(Crg ;Z) whose
(g + 1)st power is torsion and hence trivial when passed to cohomology with
rational coefficients. These cohomology classes are tautological and can therefore
be expressed as linear combinations of the ‘standard’ tautological classes ∆ij , Ki,
and κi. Taking the (g+1)st power, then, yields relations between these tautological
classes. Moreover, fiber integrating these relations then gives relations between
tautological classes on Mg.

In this section we will take a similar approach to obtain relations between tau-
tological differential forms. Recall from Sections 1.4 and 2.7 that on the universal
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4.10. Relations induced by Abel–Jacobi maps

Jacobian we have a canonical line bundle B, equipped with a canonical admissible
metric. We denote by 2ω0 the first Chern form of this hermitian line bundle. In
this section we will construct morphisms Crg → Jg and show that the pullbacks
of 2ω0 along these morphisms are tautological differential forms. Moreover, we
will see that the (g + 1)st power of ω0 vanishes, and we will use this to generate
relations among tautological forms.

Let f : C → S be a family of curves of genus g ≥ 2, and let J → S denote the
associated Jacobian family. Let r ≥ 0 be any integer, and let m = (m1, . . . ,mr)
be an r-tuple of integers whose sum equals zero. Consider the submersion

p = p(r) : Cr+1 → Cr : (x1, . . . , xr+1) 7→ (x1, . . . , xr)

and its r sections

σi : Cr → Cr+1 : (x1, . . . , xr) → (x1, . . . , xr, xi) (1 ≤ i ≤ r)

Now consider the following line bundle on Cr+1:

Lm = O(m1σ1 + · · ·+mrσr) = O(σ1)
⊗m1 ⊗ · · · ⊗O(σr)

⊗mr

The restriction of this line bundle to each fiber of p has degree 0, and this line
bundle hence determines a section of the Jacobian family J ×S Cr → Cr associated
to p. The composition of this section with the projection J ×S Cr → J is the
morphism

fm : Cr → J : ((x1, . . . , xr) ∈ Crs ) 7→ ([O(m1x1 + · · ·+mrxr)] ∈ Js = Jac(Cs)).

We obtain from Proposition 1.4.14 a canonical isometry

f∗mB⊗−1 ∼−→ ⟨Lm, Lm⟩p.

As the Deligne pairing is bilinear, we find another canonical isometry

⟨Lm, Lm⟩p
∼−→

r⊗
i=1

r⊗
j=1

⟨O(σi), O(σj)⟩⊗mimj .

Notice that for all 1 ≤ j ≤ r we have a canonical isometry

O(σj)
∼−→ p∗j,r+1O(∆)

so taking the pullback along σi yields yet another canonical isometry

σ∗
iO(σj) ≃ σ∗

i p
∗
j,r+1O(∆) ≃

{
p∗jiO(∆) = p∗ijO(∆) if i ̸= j

p∗j∆
∗O(∆) = p∗jω

⊗−1 if i = j.

By combining the above canonical isometries we obtain

f∗mB⊗−1 ≃
⊗

1≤i<j≤r

p∗ijO(∆)⊗2mimj ⊗
r⊗
i=1

p∗iω
⊗−m2

i .

Universally we obtain the following result.

121



Chapter 4: Tautological differential forms on moduli of curves

4

Proposition 4.10.1. Let r ≥ 0 be an integer, and let (m1, . . . ,mr) be a tuple of
integers whose sum equals zero. Consider the morphism of stacks

fm : Crg → Jg

that takes a family f : C → S with sections σ1, . . . , σr and maps it to the pair
(f, σ), with σ the following section of the Jacobian family Jf → S:

σ : S → Jf : s 7→ [O(m1σ1(s) + · · ·+mrσr(s))] ∈ Jac(Cs).

Then we have a canonical isometry of line bundles on Crg :

f∗mB⊗−1 ≃
⊗

1≤i<j≤r

p∗ijO(∆)⊗2mimj ⊗
r⊗
i=1

p∗iω
⊗−m2

i .

Taking first Chern forms then yields:

Corollary 4.10.2. Let r ≥ 0 be an integer, and let m = (m1, . . . ,mr) be a
tuple of integers whose sum equals zero. Consider the induced morphism of stacks
fm : Crg → Jg as described in Proposition 4.10.1. Then we have the following
equality of 2-forms on Crg :

−2f∗mω0 =
∑

1≤i<j≤r

2mimjp
∗
ijh+

r∑
i=1

m2
i p

∗
i e
A ∈ A2(Crg).

In particular the form f∗mω0 is tautological.

Example 4.10.3. Set r = 2 and m = (−1, 1), then the associated morphism

f(−1,1) : C2
g → Jg

equals the Abel–Jacobi morphism δ defined in Section 1.4 and Section 2.7. From
Proposition 4.10.1 we retrieve the canonical isometry

δ∗B⊗−1 ∼−→ O(∆)⊗−2 ⊗ p∗1ω
⊗−1 ⊗ p∗2ω

⊗−1

that we already encountered in Proposition 1.4.15. Taking Chern forms, then,
yields the identity

−2δ∗ω0 = −2h+ p∗1e
A + p∗2e

A

that was proved in Proposition 4.3.6 and [dJon16, Theorem 1.4].

The following proposition will be used to obtain relations among tautological
differential forms.
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4.10. Relations induced by Abel–Jacobi maps

Proposition 4.10.4 ([dJon20, Proposition 5.1]). Let 2ω0 ∈ A2(Jg) be the first
Chern form of the canonical line bundle B on Jg with its canonical admissible
metric. Then we have

ωg+1
0 = 0 ∈ A2g+2(Jg).

For instance, the (g+1)st power of the form induced by the Abel–Jacobi map
in Example 4.10.3 is zero, and we can express this (g + 1)st power in terms of
tautological forms. In this example we will compute the resulting relation in the
case g = 2, as this is still feasible to do by hand.

Example 4.10.5. Suppose that g = 2 and r = 2. In this case, we obtain from
Example 4.10.3 and Corollary 4.10.4:

(−2h+ p∗1e
A + p∗2e

A)3 = 0 ∈ R6(C2
2).

By expanding parentheses we obtain a linear combination of 10 tautological forms
on C2

g associated to 2-marked graphs. Of these tautological forms we can take the
fiber integral along the map C2

g → Mg. For instance, consider the form

α = h ∧ p∗1eA ∧ p∗2eA ∈ R6(C2
2).

This form is the tautological form associated to the 2-marked graph

Γ =

(
1 2

)
.

The projection C2
g → Mg is the tautological morphism associated to the map

∅ → {1, 2}. Therefore, by Proposition 4.5.4, the fiber integral of α along this
projection is the tautological form associated to the graph

ϕ∗Γ =

( )
We can compute the tautological form associated to ϕ∗Γ by contracting this graph:
we have:

αϕ∗Γ = αϱ̃2(ϕ∗Γ) = αϱ(ϕ∗Γ),

and ϱ(ϕ∗Γ) is the contracted graph

ϱ(ϕ∗Γ) =

( )
The tautological form associated to this graph is eA1 , and we find:∫

C2
2→M2

h ∧ p∗1eA ∧ p∗2eA = eA1 .

By repeating this procedure for all the 10 tautological forms we found earlier, we
obtain the following identity:

−8ν − 12eA1 = 0 ∈ A2(Mg).
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The identity we obtain in Example 4.10.5 can be derived directly from [dJon16].
Proposition 9.1 of loc. cit. gives an identity of 2-forms on Mg

eJ1 − eA1 =
2g − 2

2g + 1
· ∂∂φ

π
√
−1

,

where eJ1 is a 2-form on Mg that vanishes on the locus of hyperelliptic curves in
Mg (by loc. cit., Proposition 10.7). Every curve of genus 2 is hyperelliptic, so for
g = 2 we obtain the following relation:

−eA1 =
2

5
· ∂∂φ

π
√
−1

=
2

5
· (ν − eA1 ),

from which one easily derives the identity found in Example 4.10.5.

4.11 Computations in higher degrees and genera
In Example 4.10.5 we used Corollary 4.10.2 and Corollary 4.10.4 to obtain a re-
lation among tautological forms in R2(M2). This was relatively easy, as we only
needed to work with the third power of ω, and hence needed to compute the fiber
integral of ‘only’ 10 differential forms. Of course, if we want to construct similar
relations in higher genera, or in higher degrees, it quickly becomes infeasible to do
this by hand. In this section, we describe an algorithm for finding relations among
generators of spaces R2d(Csg), and provide some example computations.

Recall that in Section 4.7 we have constructed a surjective graded homomor-
phism R[CG(r)] → R2∗(Crg). We will denote this morphism by αr. Computations
in the ring R[CG(r)] can be carried out effectively. We will be using the following
lemma to construct elements in the kernel of αr.

Lemma 4.11.1. Let r ≥ 2 be an integer. For 1 ≤ i, j ≤ r let Γij be the r-marked
graph with no unmarked vertices and a single edge between the vertices marked
i and j; notice that Γij is contracted as it has no unmarked vertices, and notice
that Γij = Γji. Consider the polynomial ring

R[CG(r)][x1, . . . , xr−1],

and define xr = −x1 − · · · − xr−1. Now define the polynomial

Wr =

r∑
i,j=1

Γij · xixj ∈ R[CG(r)][x1, . . . , xr−1].

Then W g+1
r lies in the kernel of the homomorphism

ᾱr : R[CG(r)][x1, . . . , xr−1] → R2∗(Crg)[x1, . . . , xr−1]

induced by αr. In particular, all coefficients of W g+1
r lie in the kernel of αr.

124



4

4.11. Computations in higher degrees and genera

Proof. Set wr = αr(Wr). By Corollary 4.10.2 we then have for all m1, . . . ,mr−1 ∈
Z:

wr(m1, . . . ,mr−1) = −2f∗mω0 ∈ R2(Crg)

where m denotes the tuple (m1, . . . ,mr−1,−m1 − · · · − mr−1). By Proposition
4.10.4 we then see that wg+1

r vanishes on Zr−1, which implies that it must be the
zero polynomial.

Let s ≤ r be an integer, and consider the inclusion map ϕ : {1, . . . , s} →
{1, . . . , r}. From Diagram 4.7.2 and Proposition 4.5.4 we obtain a commutative
diagram

R[CG(r)] R2∗(Crg)

R[G(s)] R2∗(Csg)

R[CG(s)]

ϕ∗

αr

∫
fϕ

ϱ̃g
αs

(4.11.2)

In particular, we may pass the coefficients of W g+1
r through the homomorphism

ϱ̃g ◦ ϕ∗ to obtain elements in the kernel of αs.

Example 4.11.3. Let r = 2, s = 0, g = 2. We have:

Wr = Γ11x
2
1 + Γ12x1x2 + Γ21x2x1 + Γ22x

2
2 = (Γ11 − 2Γ12 + Γ22)x

2
1,

and
W 3
r = (Γ11 − 2Γ12 + Γ22)

3x61.

From Lemma 4.11.1 we find that (Γ11 − 2Γ12 + Γ22)
3 lies in the kernel of αr. In

other words: we have the following identity of tautological forms on C2
2 :

(p∗1e
A − 2h+ p∗2e

A)3 = 0,

which was already clear from Proposition 4.3.6 and Proposition 4.10.4. A compu-
tation by hand shows:

(ϱ̃g ◦ ϕ∗)((Γ11 − 2Γ12 + Γ22)
3) = −12 ( )− 8 ( ) ∈ Ker(αs),

and applying αs to this element of R[CG(s)] then yields the identity

−12eA1 − 8ν = 0 ∈ R2(M2)

we found in Example 4.10.5.

Another trick we can use is the following. Instead of viewing the genus g as a
constant, we view it as a variable. In Diagram 4.11.2 we replace the base ring R
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in the left column by the polynomial ring R[g′]. We thus obtain for all g ≥ 2 a
commutative diagram

R[g′][CG(r)] R2∗(Crg)

R[g′][G(s)] R2∗(Csg)

R[g′][CG(s)]

ϕ∗

αr

∫
fϕ

ϱ̃
αs

(4.11.4)

Here ϱ̃ denotes the unique morphism of R[g′]-algebras that maps a graph Γ ∈ G(s)
to λΓ · ϱ(Γ), where λΓ is given by

λΓ = 0a(2− 2g′)b ∈ R[g′]

with a and b the number of connected components of Γ with no marked vertices of
characteristic 1 and 0, respectively. The maps from left to right in diagram 4.11.4
are the unique extensions of the corresponding maps in diagram 4.11.2 that map
g′ to g.

Our algorithm for finding elements in the kernel of αs is as follows. We pick
r ≥ 2, 0 ≤ s ≤ r, and G ≥ 2. We then compute WG+1

r ∈ R[CG(r)][x1, . . . , xr−1].
Then for each of the coefficients c ∈ R[CG(r)] of WG+1

r , compute ϱ̃(ϕ∗c). The
resulting element is in the kernel of the homomorphism R[g′][CG(s)] → R2∗(Csg)
for all 2 ≤ g ≤ G.

An implementation of this algorithm in Sage is provided in [vdLug21]. We will
list some results for low values of r, s,G.

Example 4.11.5. If we set r = 2, s = 0, and G = 4, we find that for all 2 ≤ g ≤ 4,
the following element lies in the kernel of the map R[CG(0)] → R2(Mg):

−3(g − 4)(g − 3)(g − 1) ( )− 2(g − 4)(g − 3) ( ) .

If g = 2 we retrieve Example 4.11.3. For g = 3 and g = 4 we retrieve nothing at
all, as the above vector vanishes.

Example 4.11.6. If we set r = 2, s = 0 and G = 3, we obtain the following
element in the kernel of R[CG(0)] → R2∗(Mg) for all g ∈ {2, 3}:

−8g
( )

+ 3
( )

− 32 ( ) + 24 ( ) + 8 ( )

In terms of differential forms we obtain the following relation among tautological
forms in R4(Mg) for g ∈ {2, 3}:

−8g · eA2 + 3(eA1 )
2 − 32

∫
(p∗1e

A ∧ h3) + 24

∫
(p∗1e

A ∧ p∗2eA ∧ h2) + 8

∫
h4 = 0
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where the integral symbol denotes fiber integration along the map C2
g → Mg.

Example 4.11.7. If we set r = 4, s = 0 and G = 5, we obtain another element
in R[CG(0)] that involves all the 11 contracted unmarked graphs of characteristic
−2. For 2 ≤ g ≤ 5, the following element lies in the kernel of the map R[CG(0)] →
R4(Mg).

− 8(g − 4)(4g2 − 20g + 3)
( )

+ (9g2 − 87g + 201)
( )

− 32(g − 5)(4g − 15) ( ) + (72g2 − 696g + 1608) ( )

+ 24(g − 5)(g − 4) ( )− 4(g − 2)

( )
− 48(g − 2)

( )
− 48(g − 5)

( )
− 4

( )
− 72

( )
− 48

( )
.

Our algorithm takes integers r, s,G and gives relations in R2d(Csg), where d =
G + 1 − r + s. It is interesting to observe what happens to these relations when
we fix s and d and let G (and hence r = G+ 1 + s− d) increase.

For example, fixing s = 0, d = G + 1 − r + s = 1 and running our algorithm
with G increasing from 2 to 5 yields the following elements of R[g][CG(0)]:

G vectors in R[g][CG(0)]

2 (−3(g − 1) ( )− 2 ( ))
3 (g − 3) (−3(g − 1) ( )− 2 ( ))
4 (g − 4)(g − 3) (−3(g − 1) ( )− 2 ( ))
5 (g − 5)(g − 4)(g − 3) (−3(g − 1) ( )− 2 ( ))

The pattern is clear: it seems that for G ≥ 2 the following vector is obtained
in R[g][CG(0,−1)]:(

G∏
k=3

(g − k)

)
· (−3(g − 1) ( )− 2 ( )) .

In particular, the only value of g for which this vector yields a nontrivial relation
in the ring of tautological forms would then be g = 2.

A similar phenomenon occurs if we increase G in examples 4.11.6 and 4.11.7.
This suggests that relations (or at least, relations found using ω0) among elements
of R∗(Mg) for low values of g vanish if we let g increase. These observations
prompt the following question.

Question 4.11.8. Suppose we are given integers r ≥ 0 and d ≥ 0. Does there
exist a g0 ≥ 2 such that for all g ≥ g0 the linear map

R[CG(r, r − d)] → R2d(Crg)
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is an isomorphism? Is there an expression for g0 in terms of r and d?

Recall that an analogue in rings of tautological classes is given by Mumford’s
conjecture (proved in [MW07]) that for any d > 0 there exists a g0 ≥ 2 such that
the map Q[κ1, κ2, . . . ] → RH∗(Mg) is an isomorphism in degree d for all g ≥ g0.

Theorem 4.8.2 moreover states that the above question can be answered with
‘yes’ if d = 1. In this case, we have:

dimR[CG(r, r − 1)] = 1
2r

2 + 1
2r + 2

by Example 3.7.2, and for all g ≥ g0 = 3 we have:

dimR2(Crg) = 1
2r

2 + 1
2r + 2

by Theorem 4.8.2, and the linear map

R[CG(r, r − d)] → R(Crg)

is therefore an isomorphism, as it is a surjective map between vector spaces of the
same dimension. It is moreover interesting to see that in this case the value g0 = 3
does not depend on r.
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