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Chapter 3

Marked graphs

In this chapter we will study r-marked graphs, where r ≥ 0 is an integer. These are
finite graphs of which r of the vertices are labeled with the integers 1, . . . , r. We
define categories of r-marked graphs, show that these categories have pushouts,
and construct pushforward and pullback functors between these categories.

A contracted r-marked graph is an r-marked graph whose vertices have a suf-
ficiently high degree, and any r-marked graph can be turned into a contracted
r-marked graph by means of certain contraction operations. It turns out that for
each r ≥ 0 and each χ ∈ Z there are only finitely many isomorphism classes of
contracted r-marked graphs of characteristic χ. We will describe an algorithm to
compute the number of isomorphism classes.

The reason we are interested in r-marked graphs is that they provide us with
a combinatorial framework that can be used to work with tautological differential
forms. Fix an integer g > 1. In Chapter 4, we will describe a method of assigning
to each r-marked graph Γ a tautological differential form αΓ ∈ R∗(Crg). It turns
out that there is an interaction between r-marked graphs and tautological forms
on Crg , where taking pushouts corresponds to taking wedge products, and taking
pushforwards and pullbacks of graphs corresponds to taking pullbacks and fiber
integrals of forms.

Moreover, it turns out that all tautological differential forms on Crg arise from
contracted r-marked graphs. We can give upper bounds to the dimensions of
spaces of tautological forms by computing the number of marked graphs. In short,
the combinatorial heavy lifting will be done in this chapter, and we use the results
from this chapter to bound dimensions of spaces of tautological forms in Chapter
4.

3.1 The category of r-marked graphs
In this thesis, a graph is a pair (V,E), consisting of a finite set V of vertices, and a
finite multiset E of edges consisting of unordered pairs (multisets of cardinality 2)
of elements of V . If e ∈ E is an edge, its two elements are called the endpoints of
e. If these endpoints are the same, we call e a loop. The degree of a vertex v ∈ V ,
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denoted deg v, is the number of times v occurs as an endpoint of an edge of E;
that is: the multiplicity of v in the multiset sum of all edges e ∈ E. In particular,
we see that each loop contributes 2 to the degree of the vertex it is based on.

In short, we assume our graphs to be finite and undirected, and our graphs are
allowed to have multiple edges and loops. Moreover, our graphs do not necessarily
have to be connected.

If Γ = (V,E) is a graph, then the (Euler) characteristic of Γ is defined as

χ(Γ) = |V | − |E|.

The Euler characteristic is additive on disjoint unions of graphs.
Let r ≥ 0 be an integer. An r-marked graph (V,E,m) is a graph Γ = (V,E)

equipped with a marking m; that is: an injective map m : {1, . . . , r} → V . So a
marked graph can be seen as a graph of which r vertices are labeled 1, . . . , r. An
unmarked graph is a 0-marked graph, which is the same as an ‘ordinary’ graph.

Let Γ = (V,E,m) be an r-marked graph. A vertex v ∈ V is marked if it is in
the image of m, and unmarked otherwise. We have a partition of V in a subset
V+ of marked vertices and a subset V− of unmarked vertices.

Let Γ = (V,E,m) and Γ′ = (V ′, E′,m′) be two r-marked graphs. A morphism
of r-marked graphs f : Γ → Γ′ is a pair of maps (fv : V → V ′, fe : E → E′), such
that fv respects the r-marking (that is: fv ◦m = m′), and such that for each edge
e ∈ E with endpoints v, w, the edge fe(e) ∈ E′ has endpoints fv(v) and fv(w).

We obtain a category Gr of r-marked graphs. Two r-marked graphs Γ and Γ′

are isomorphic if and only if there exists a bijection on vertices that respects the
markings of Γ and Γ′, such that for each pair of vertices v, w of Γ the number
of edges between v and w equals the number of edges between the corresponding
vertices of Γ′.

Example 3.1.1. The following two 1-marked graphs are not isomorphic:

1 1
and

Indeed, the marked vertex in the leftmost graph has degree 4, while the marked
vertex in the rightmost graph has degree 2.
The corresponding 0-marked graphs, obtained by ‘forgetting’ the 1-markings, are
isomorphic.

The following construction will return in the next sections. Assume that Γ =
(V,E) is a graph, and let f : V → V ′ be a map of finite sets. The graph induced
(from Γ) by f , notation Γf , is the graph (V ′, E′) with set of vertices equal to V ′,
and with edges

E′ = {{f(v1), f(v2)} : {v1, v2} ∈ E}.

Notice that in particular we have |E| = |E′|.
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3.2. Gluing marked graphs

The characteristic of Γf equals

χ(Γf ) = χ(Γ) + |V ′| − |V |.

If v′ ∈ V ′ is a vertex in V ′, its degree is given by:

deg(v′) =
∑

v∈f−1(v′)

deg(v).

3.2 Gluing marked graphs
In this section we define a binary operation ⊔r on the category of r-marked graphs
Gr. It turns out that ⊔r is the coproduct in the category Gr. We define the
binary operation ⊔r on two r-marked graphs Γ,Γ′ by gluing their marked vertices
pairwise. More precisely, we proceed as follows.

Let Γ = (V,E,m) and Γ′ = (V ′, E′,m′) be two r-marked graphs, and let
Γ⊔ Γ′ = (V ⊔ V ′, E +E′) denote the disjoint union of the underlying (unmarked)
graphs. Consider the set V ′′ defined by the pushout diagram

{1, . . . , r} V

V ′ V ′′.

m

m′
⌟

(3.2.1)

In other words, V ′′ is the set (V ⊔ V ′)/ ∼, where ∼ is the smallest equivalence
relation on V ⊔ V ′ such that m(i) ∼ m′(i) for all i ∈ {1, . . . , r}. Note, moreover,
that the map m′′ : {1, . . . , r} → V ′′ induced by the above diagram is injective,
since m and m′ are injective.

Definition 3.2.2. The r-marked graph Γ ⊔r Γ′ is the graph induced from the
disjoint union Γ ⊔ Γ′ by the natural map V ⊔ V ′ → V ′′, endowed with the r-
marking m′′ : {1, . . . , r} → V ′′ obtained from pushout diagram 3.2.1.

In short: we take the disjoint union of Γ and Γ′, and identify the vertices in V
and V ′ whose markings are equal.

Example 3.2.3. The following picture illustrates the operation ⊔2 on G2.

1

2

⊔2

1

2

=
1

2

Suppose that Γ has u unmarked vertices and e edges, and that Γ′ has u′
unmarked vertices and e′ edges. It follows that Γ ⊔r Γ′ has u + u′ unmarked
vertices and e+ e′ edges. Therefore, the characteristic of Γ ⊔r Γ′ is given by

χ(Γ ⊔r Γ′) = χ(Γ) + χ(Γ′)− r. (3.2.4)
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The set of vertices of Γ ⊔r Γ′ is the pushout of the maps m and m′. It is
therefore straightforward to verify the following.

Proposition 3.2.5. For each pair of r-marked graphs Γ1,Γ2, the graph Γ1 ⊔r Γ2

is the coproduct of Γ1 and Γ2 in the category Gr.

We find that the operator ⊔0 on G0 is simply the disjoint union. On G1 the
operator ⊔1 is the wedge sum.

Proposition 3.2.6. The category Gr has all finite coproducts.

Proof. The graph consisting of r marked vertices, no unmarked vertices, and no
edges is the initial object of Gr. As Gr has an initial object and all binary coprod-
ucts, it follows that Gr has all finite coproducts.

3.3 Pushforward maps on marked graphs
Let ϕ : {1, . . . , s} → {1, . . . , r} be a map of sets. We will define a pushforward
functor ϕ∗ : Gs → Gr. Given a graph Γ ∈ Gs, the pushforward ϕ∗Γ is obtained
from Γ by replacing the s marked vertices by r marked vertices, as follows.

Let Γ = (V,E,m) be an s-marked graph. Consider the pushout diagram (of
sets)

{1, . . . , s} V

{1, . . . , r} V ′.

m

⌟
ϕ ϕV

m′

(3.3.1)

As m is injective, it follows that m′ must be injective.
We define ϕ∗Γ to be the graph (V ′, E′,m′), where (V ′, E′) is the graph induced

from (V,E) by ϕV , and m′ is the map defined in diagram 3.3.1. Notice that ϕV
then induces a bijection between the unmarked vertices of Γ and ϕ∗Γ.

Alternatively, we can construct the graph ϕ∗Γ as follows: first, we construct
a graph Γ′′ by adding r vertices v′′1 , . . . , v′′r to Γ. Next, we define the equivalence
relation ∼ on the set of vertices V ′′ to be the smallest equivalence relation such
that vi ∼ v′′ϕ(i) for all i ∈ {1, . . . , s}, where v1, . . . , vs are the marked vertices of Γ.
Then ϕ∗Γ is the graph quotient Γ′′/ ∼.

The characteristic of ϕ∗Γ is given by

χ(ϕ∗Γ) = χ(Γ)− s+ r.

Example 3.3.2. Let ϕ : {1, 2} → {1} be the unique map. The pushforward
ϕ∗ : G2 → G1 identifies the two marked points of a 2-marked graph. The following
picture illustrates taking the pushforward ϕ∗Γ of a graph Γ ∈ G2:
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3.3. Pushforward maps on marked graphs

1

2

ϕ∗ 1

Example 3.3.3. Consider the map ϕ : {1} → {1, 2} that maps 1 to 1. The
pushforward map ϕ∗ adds a second marked vertex to any 1-marked graph Γ. This
second marked vertex is not the endpoint of any edge.

1 ϕ∗
1

2

Moreover, if f : Γ1 → Γ2 is a morphism of s-marked graphs, we obtain an
induced morphism of r-marked graphs ϕ∗f : ϕ∗Γ1 → ϕ∗Γ2, via the universal
property of the pushout diagram 3.3.1. We obtain a covariant functor

ϕ∗ : Gs → Gr.

It is not hard to see that the pushforward functor is well-behaved with respect
to compositions.

Proposition 3.3.4. Let ϕ : {1, . . . , s} → {1, . . . , r} and ψ : {1, . . . , t} →
{1, . . . , s} be maps. Then the functors ϕ∗ψ∗ and (ϕψ)∗ from Gt to Gr are nat-
urally isomorphic.

The pushforward operator is compatible with gluing.

Proposition 3.3.5. Let ϕ : {1, . . . , s} → {1, . . . , r} be a map. Let Γ and Γ′ be
two s-marked graphs. Then there is a canonical isomorphism of graphs

ϕ∗(Γ ⊔s Γ′) ≃ ϕ∗(Γ) ⊔r ϕ∗(Γ′).

Proof. Let V and V ′ denote the sets of vertices of Γ and Γ′, respectively. The set
V1 of vertices of ϕ∗(Γ ⊔s Γ′) can be obtained by repeatedly taking pushouts:

V1 = (V ⊔{1,...,s} V
′) ⊔{1,...,s} {1, . . . , r}

The same holds for the set V2 of vertices of ϕ∗(Γ) ⊔r ϕ∗(Γ′):

V2 = (V ⊔{1,...,s} {1, . . . , r}) ⊔{1,...,r} (V
′ ⊔{1,...,s} {1, . . . , r}),

By the universal property of pushouts these sets are canonically isomorphic. It
is straightforward to verify that the canonical isomorphism induces a bijection on
edges.
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3.4 Pullback maps on marked graphs

The next operation we will consider is a pullback operation. Let

ϕ : {1, . . . , s} → {1, . . . , r}

be an injective map. Then we define a pullback functor

ϕ∗ : Gr → Gs

as follows. For any r-marked graph Γ = (V,E,m) we simply define ϕ∗Γ by pre-
composing the marking m with the injection ϕ:

ϕ∗(Γ) = (V,E,m ◦ ϕ).

So all the pullback functor does is maybe re-ordering and possibly forgetting some
markings of vertices.

It follows that
χ(ϕ∗Γ) = χ(Γ).

If f : Γ1 → Γ2 is a morphism of r-marked graphs, then f induces a morphism
ϕ∗f : ϕ∗Γ1 → ϕ∗Γ2 in a natural way. It is straightforward to verify that ϕ∗ is a
functor from Gr → Gs.

Example 3.4.1. Let ϕ : {1} → {1, 2} be the inclusion. The pullback ϕ∗ : G2 → G1

takes a 2-marked graph and turns it into a 1-marked graph by forgetting the
marking of the second marked point.

1

2

ϕ∗
1

Similarly to the pushforward, it is easy to see that the pullback is well-behaved
with respect to compositions.

Proposition 3.4.2. Let ϕ : {1, . . . , s} → {1, . . . , r} and ψ : {1, . . . , t} →
{1, . . . , s} be injective maps. Then the functors ψ∗ϕ∗ and (ϕψ)∗ from Gr to Gt
are equal.

There is an adjointness between the pushforward and pullback functor. Con-
trary to what the terms ‘pushforward’ and ‘pullback’ might suggest to a geometer,
the pushforward functor is left adjoint to the pullback. To ease our minds, we
recall that the (left adjoint) pushforward functor does pushouts on sets of ver-
tices, and the (right adjoint) pullback functor is a functor that forgets some of the
markings.
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3.5. The monoid of r-marked graphs

Proposition 3.4.3. If ϕ : {1, . . . , s} → {1, . . . , r} is an injective map, the push-
forward functor ϕ∗ : Gs → Gr is left adjoint to the pullback functor ϕ∗ : Gr → Gs.

Proof. The statement follows from the universal property of the pushout diagram
3.3.1, together with the fact that the pushforward and pullback maps do not alter
the sets of edges.

3.5 The monoid of r-marked graphs
In the previous sections we have defined the categories of marked graphs, showed
that these categories have coproducts, and constructed pushforward and pullback
functors between these categories. Later on, we will try to classify such r-marked
graphs, or rather a specific subset of contracted r-marked graphs. In Chapter 4
we will use this classification of r-marked graphs in order to classify tautological
differential forms. For these purposes, categories of marked graphs are too big; we
only need to find all r-marked graphs up to isomorphism.

Definition 3.5.1. Let r ≥ 0 be an integer. Then we denote by G(r) the set
of isomorphism classes of r-marked graphs. If χ ∈ Z is another integer, we let
G(r, χ) ⊆ G(r) denote the subset of the isomorphism classes of r-marked graphs
with characteristic χ. Lastly, if u ≥ 0 is an integer, the subset G(r, χ, u) ⊆ G(r, χ)
denotes the subset of the classes of the graphs that have u unmarked vertices.

Of course, we need to be a bit careful here and remark that this definition
of G(r) does not yield a set under the ZFC axioms, as almost every element of
G(r) will be a proper class. However, it is straightforward to construct a set S of
r-marked graphs such that every r-marked graph is isomorphic to one in S, and
we can then view G(r) as the quotient set S/∼=.

Given isomorphisms of r-marked graphs Γ1
∼= Γ2 and Γ′

1
∼= Γ′

2, there exists a
natural isomorphism (Γ1 ⊔r Γ′

1)
∼= (Γ2 ⊔r Γ′

2). This implies that the operator ⊔r
defines a binary operation on the set G(r). We immediately obtain the following
proposition.

Proposition 3.5.2. Equipping the set G(r) with the binary operation ⊔r yields a
commutative monoid, whose identity element is (the class of) the r-marked graph
with no edges and no unmarked vertices.

It follows from Equation 3.2.4 that the map

χr : G(r) → Z : Γ 7→ χ(Γ)− r

is a homomorphism of monoids.
Suppose, now, that ϕ : {1, . . . , s} → {1, . . . , r} is a map of sets. This map

defines a pushforward functor on marked graphs ϕ∗ : Gs → Gr. This functor
induces a map ϕ∗ : G(s) → G(r). The following proposition follows directly from
Proposition 3.3.5.
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Proposition 3.5.3. For every map ϕ : {1, . . . , s} → {1, . . . , r}, the map G(s) →
G(r) induced by the functor ϕ∗ : Gs → Gr is a homomorphism of monoids.

If ϕ is an injective map, we also have a pullback functor ϕ∗ : Gr → Gs. The
induced map on monoids G(r) → G(s), however, is almost never a homomorphism.
For instance, consider the identity element Γ ∈ G(r), which is the r-marked graph
with no edges and no unmarked vertices. Then ϕ∗Γ is an s-marked graph with
(r− s) unmarked vertices, so this graph is not the identity element of G(s) unless
r = s.

3.6 Contracted graphs

In Chapter 4 we will fix an integer g > 1, and associate to any r-marked graph
Γ a differential form αΓ on the moduli stack Crg . It will turn out that the form
αΓ is invariant under certain contraction operations on these r-marked graphs.
This will allow us to restrict ourselves to studying differential forms associated to
graphs which cannot be contracted any further. We will study such graphs in this
section.

Definition 3.6.1. Let Γ be an r-marked graph. Then Γ is contracted if all its
unmarked vertices have degree at least 3, and each unmarked vertex of degree 3
is incident to three distinct edges.
We denote by CG(r) ⊆ G(r) the subset of isomorphism classes of contracted r-
marked graphs.

Equivalently, a marked graph is contracted if each unmarked vertex has degree
at least 3, and there are no loops at any of the unmarked vertices of degree 3.

Notice that, by construction of the binary operation ⊔r, the subset CG(r) ⊆
G(r) is in fact a submonoid.

Example 3.6.2. The following marked graphs are contracted.

1 1 2

The following marked graphs are not contracted.

1
1

If a graph is not contracted, we can attempt to turn this graph into a contracted
graph by altering the problematic vertices.
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3.6. Contracted graphs

Definition 3.6.3. Let Γ = (V,E,m) be an r-marked graph, and let v ∈ V be an
unmarked vertex such that deg(v) ≤ 2, or such that deg(v) = 3 and v is incident
to a loop. The graph obtained from Γ by contracting v is an r-marked graph Γ′

defined by the following operation:

0. If deg v = 0, remove v;
1. If deg v = 1, remove v and the unique edge incident to v;
2. If deg v = 2, smooth out the vertex v; that is:

(a) If v is incident to two distinct edges, whose other endpoints w,w′ are
distinct, remove v and these two edges, and add an edge between w and
w′;

(b) If v is incident to two distinct edges, whose second endpoint is the same
vertex w, remove v and these two edges, and add a loop at w;

(c) If v is incident to a single loop, remove v and this loop;

3. If deg v = 3, and w is the other endpoint of the non-loop edge incident to v,
remove v, this edge, and the loop at v, and add a loop at w.

It follows that the vertex set of the graph obtained from Γ by contracting v is
equal to V \ {v}.

Example 3.6.4. The following example illustrates all of the graph manipulations
listed in the above definition. The graph is unmarked.

(0) (1) (2a)

(2b)

(2c)(3)

If we are given an r-marked graph Γ, we can always reduce Γ to a contracted
r-marked graph by applying a finite amount of graph contractions. We hence
obtain a map

ϱ : G(r) → CG(r),

and this map is a retraction of the inclusion CG(r) ⊆ G(r). Moreover, as the con-
traction operations only apply to unmarked vertices, it follows that the contraction
map commutes with gluing of r-marked graphs:

ϱ(Γ1 ⊔r Γ2) = ϱ(Γ1) ⊔r ϱ(Γ2).

81



Chapter 3: Marked graphs

3

In other words: CG(r) is a submonoid of G(r) and the contraction map ϱ : G(r) →
CG(r) is a homomorphism of monoids.

3.7 Counting contracted graphs

The number of contracted r-marked graphs is infinite. For instance, for r = 0,
and e ≥ 2, we can consider the unmarked graph consisting of 1 vertex and e
loops. This example gives us an infinite family of contracted unmarked graphs.
However, a finiteness result does hold if we only consider r-marked graphs of a
fixed characteristic.

Theorem 3.7.1. Let r ≥ 0, and χ ∈ Z. There are, up to isomorphism, only
finitely many contracted r-marked graphs of characteristic χ. These graphs have
at most 2(r − χ) unmarked vertices.

Proof. Let Γ be a contracted r-marked graph of characteristic χ, and let u denote
its number of unmarked vertices, and e its number of edges. We have:

χ = r + u− e.

Moreover, every unmarked vertex has degree at least 3. It follows that

2e =
∑
v∈Γ

deg(v) ≥ 3u.

After substituting e = r + u− χ, we find:

u ≤ 2r − 2χ,

and hence
e = r + u− χ ≤ 3r − 3χ.

We have obtained upper bounds for the number of vertices and edges of Γ, and
a simple combinatorial argument then shows that there can only be finitely many
graphs of this form up to isomorphism.

We let CG(r, χ) ⊆ CG(r) denote the set of equivalence classes of contracted
r-marked graphs of characteristic χ. By Theorem 3.7.1 the cardinality of this set
is finite. Moreover, we denote by CG(r, χ, u) ⊆ CG(r, χ) the set of isomorphism
classes of graphs with u unmarked vertices. Theorem 3.7.1 yields:

CG(r, χ) =

2(r−χ)⊔
u=0

CG(r, χ, u).

Example 3.7.2. In this example we will compute the set CG(r, r − 1) for all
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3.7. Counting contracted graphs

r ≥ 0. By Theorem 3.7.1 we have:

CG(r, r − 1) = CG(r, r − 1, 0) ⊔ CG(r, r − 1, 1) ⊔ CG(r, r − 1, 2).

Note that for each graph Γ ∈ CG(r, r − 1, u) with r marked vertices, u unmarked
vertices, and e edges, one has χ(Γ) = r + u− e = r − 1, so e = u+ 1.

• Every graph Γ ∈ CG(r, r − 1, 0) has no unmarked vertices and one edge
(possibly a loop) between two (not necessarily distinct) marked vertices. It
follows that there are 1

2r(r + 1) such graphs.

1 2 1 2 1 2

• Every graph Γ ∈ CG(r, r− 1, 1) has two edges and one unmarked vertex. As
Γ is contracted and contains only two distinct edges, its unmarked vertex
has degree at least 4, so the two edges of Γ must be two loops based at the
unmarked vertex. We find that CG(r, r − 1, 1) only has one element.

1 2

• Every graph Γ ∈ CG(r, r− 1, 2) has three edges and two unmarked vertices.
As each unmarked vertex must have degree ≥ 3 and there are only three
edges in Γ, it follows that the degree of both unmarked vertices equals 3,
and that they are both incident to each of the three edges of Γ. Therefore
CG(r, r − 1, 2) has only one element.

1 2

We find that the number of elements of CG(r, r − 1) equals

|CG(r, r − 1)| = 1
2r(r + 1) + 1 + 1 = 1

2r
2 + 1

2r + 2.

In general the set CG(r, χ, u) can be computed with an algorithm as follows:

Algorithm 3.7.3. The following (pseudocode) algorithm computes all isomor-
phism classes of contracted r-marked graphs with u unmarked vertices and char-
acteristic χ.

def compute_CG(r,χ,u):
L = ∅ # list of graphs
e = r + u - χ # number of edges
Γ = (r-marked graph with u unmarked vertices, no edges)
P = {unordered pairs of vertices of Γ} # possible edges
# loop over all possible configurations of edges:
for E in {multisets of size e with elements from P}:
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ΓE = Γ equipped with edges from E
# check if ΓE is contracted, and if ΓE was not found before:
if ΓE.is_contracted() and ΓE ≇ Γ2 for all Γ2 in L:

# if so, add Γ to the list
L.add(ΓE)

return L

Moreover, Theorem 3.7.1 implies that we can compute the set CG(r, χ) in finite
time by computing CG(r, χ, u) for 0 ≤ u ≤ 2(r−χ) and taking their disjoint union.

Of course, the combinatorial complexity of constructing graphs, checking if
they are contracted, and checking if they are isomorphic to any of the graphs we
found before, will become worse and worse if r increases and if χ decreases. In
Section 3.8 we will show that for all d ≥ 0 the size of CG(r, r−d) in terms of r can
be expressed as a polynomial of degree 2d; so if we are given d, we can compute a
formula for |CG(r, r − d)| for all r ≥ 0 in finite time. In Section 3.9 we will then
compute these polynomials for d ≤ 4 by computing its first values and applying
Lagrange interpolation.

3.8 The size of CG(r, r − d) in terms of r
In this section we will prove that, given an integer d ≥ 0, one can compute a closed
formula for the number of contracted r-marked graphs of characteristic r − d for
all r ≥ 0. This will prove useful in Chapter 4, as it allows us to compute upper
bounds for the dimensions of spaces of tautological forms on Crg that do not depend
on the genus g.

Theorem 3.8.1. Let d ∈ Z be an integer. If d is negative, CG(r, r − d) is empty
for all r ≥ 0. If d ≥ 0, then there exists a polynomial fd ∈ Q[x] of degree 2d such
that

|CG(r, r − d)| = fd(r) for all r ≥ 0.

The leading coefficient of fd is 1/(2d · d!).

In fact, the following stronger theorem directly implies Theorem 3.8.1.

Theorem 3.8.2. Let d ∈ Z and u ≥ 0 be integers. If 2d − u is negative, then
CG(r, r−d, u) is empty for all r ≥ 0. If 2d−u ≥ 0, then there exists a polynomial
fd,u ∈ Q[x] of degree at most 2d− u such that

|CG(r, r − d, u)| = fd,u(r) for all r ≥ 0.

If u = 0, then fd,0 has degree 2d, and the leading coefficient of fd,0 is 1/(2d · d!).

To see that Theorem 3.8.2 implies Theorem 3.8.1, notice that

|CG(r, r − d)| =
∞∑
u=0

|CG(r, r − d, u)| =
2d∑
u=0

|CG(r, r − d, u)| =
2d∑
u=0

fd,u(r),
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3.8. The size of CG(r, r − d) in terms of r

where the middle equality follows from Theorem 3.7.1.
It remains to prove Theorem 3.8.2. The crucial observation here is that after r

becomes large enough, no ‘new’ contracted graphs appear, and the only contracted
graphs that do appear come from lower values of r. This is implied by the following
lemmas.

Lemma 3.8.3. Let Γ ∈ CG(r, r − d, u) be a contracted graph. The number
of marked vertices that have positive degree is at most 2d − u. In particular, if
r > 2d− u, there are marked vertices in Γ of degree 0.

Proof. Let Γ ∈ CG(r, r− d, u). Denote by r+ the number of marked vertices with
positive degree. As Γ is contracted, it follows that each unmarked vertex has
degree at least 3. We obtain:

2e =
∑
v∈Γ

deg(v) ≥ r+ + 3u.

The characteristic of Γ equals r − d, so we have:

r − d = χ = r + u− e.

Substituting e = u+ d into the above inequality yields r+ ≤ 2d− u. If r > 2d− u
we must conclude that r+ < r, so Γ has a marked vertex of degree 0.

Lemma 3.8.4. Let 0 ≤ s ≤ r be integers, and let ϕ : {1, . . . , s} → {1, . . . , r}
be an injection. Set C = {1, . . . , r} \ Im(ϕ). Recall that the pushforward functor
induces a map

ϕ∗ : G(s) → G(r).

This map is injective, and its image consists of those classes of r-marked graphs
whose ith marked vertex has degree 0 for all i ∈ C.

Proof. Let Γ = (V,E,m) be an s-marked graph, and let Γ′ = ϕ∗Γ = (V ′, E′,m′).
The following diagram is a pushout diagram

{1, . . . , s} V

{1, . . . , r} V ′.

m

ϕ
⌟

ϕv

m′

As m and ϕ are injective, it follows that:

Im(ϕv) ∩ Im(m′) = Im(ϕv ◦m) = Im(m′ ◦ ϕ).

If v′ = m′(i) is a marked vertex of Γ′ of positive degree, then v′ must lie in
the image of ϕv, as the endpoints of every edge in Γ′ lie in the image of ϕv, by
construction. As v′ = m′(i) ∈ Im(ϕv) ∩ Im(m′), we see that i ∈ Im(ϕ), so i /∈ C.
In other words: for each i ∈ C the marked vertex m′(i) has degree 0.
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Assume, now, that Γ′ = (V ′, E′,m′) is an r-marked graph such that the vertex
m′(i) has degree 0 for all i ∈ C. We construct an s-marked graph Γ = (V,E,m)
as follows: we let V = V ′ \ m′(C), E′ = E, and m = m′ ◦ ϕ. It follows that
this construction is inverse to the construction done in the first paragraph of this
proof. This observation hinges on the fact that the following diagram is a pushout
diagram.

{1, . . . , s} V ′ \m(C)

{1, . . . , r} V ′.

m′◦ϕ

ϕ
⌟

m′

It follows that ϕ∗ induces a bijection from classes of s-marked graphs to classes of
r-marked graphs whose ith marked vertex has degree 0 for all i ∈ C.

Lemma 3.8.5. Let 0 ≤ s ≤ r be integers, and let ϕ : {1, . . . , s} → {1, . . . , r} be
an injection. The pushforward functor ϕ∗ induces an injective map

ϕ∗ : CG(s) → CG(r),

and hence injective maps for d ≥ 0

ϕ∗ : CG(s, s− d) → CG(r, r − d),

and for d, u ≥ 0
ϕ∗ : CG(s, s− d, u) → CG(r, r − d, u),

The images of these maps consist of the classes of those graphs whose ith marked
vertex has degree 0 for all i ∈ {1, . . . , r} \ Im(ϕ).

Proof. The constructions made in the proof of Lemma 3.8.4 (deleting degree 0
marked vertices, taking pushforwards) do not affect unmarked vertices. Therefore
it follows that an s-marked graph Γ is contracted if and only if ϕ∗Γ is contracted.
As we observed in Section 3.3, the pushforward operator increases the character-
istic of a graph by r − s, so ϕ∗ maps graphs of characteristic s − d to graphs of
characteristic r − d. The number of unmarked vertices remains the same.

We are almost ready to prove Theorem 3.8.2. In the proof of this theorem we
will use a combinatorial argument to show that |CG(r, r − d, u)| can be expressed
as a polynomial in r of degree at most 2d − u. More precisely, we will show that
|CG(r, r − d, u)| is fully determined by the values it takes for 0 ≤ r ≤ 2d− u, and
given by a recurrence relation. We will then apply the following recurrence relation
for polynomials to see that |CG(r, r − d, u)| can be expressed as a polynomial in
r.

Lemma 3.8.6. Let R be a commutative ring, let r ≥ 0, and let f ∈ R[x] a
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polynomial of degree less than r. Then

r∑
k=0

(−1)r−k
(
r

k

)
f(x+ k) = 0.

Proof. The forward difference operator ∆ : R[x] → R[x] maps a polynomial f to
f(x + 1) − f(x). This map is R-linear, and maps polynomials of degree ≤ d to
polynomials of degree ≤ d − 1. It follows that ∆r annihilates all polynomials of
degree less than r.

Moreover, one can prove using an inductive argument the identity

∆rf =

r∑
k=0

(−1)r−k
(
r

k

)
f(x+ k),

for all f ∈ R[x] and all r ≥ 0. If deg f < r the desired identity follows.

Proof of Theorem 3.8.2. If u > 2d, then there are no contracted r-marked graphs
of characteristic r − d; this follows from Theorem 3.7.1.

Assume, from now on, that u ≤ 2d. For each subset A ⊆ {1, . . . , r} of cardi-
nality k, we define a subset

SA ⊆ CG(r, r − d, u)

as follows: we let ϕA : {1, . . . , r− k} → {1, . . . , r} denote the increasing map with
image {1, . . . , r} \A. Then SA is the image of the (injective!) pushforward map

ϕA,∗ : CG(r − k, r − k − d, u) → CG(r, r − d, u).

It follows from Lemma 3.8.5 that a graph Γ ∈ CG(r, r − d, u) lies in SA if and
only if for all i ∈ A the vertex m(i) has degree 0. We therefore have, for subsets
A1, . . . , Am ⊆ {1, . . . , r}:

SA1 ∩ · · · ∩ SAm = SA1∪···∪Am .

If r > 2d−u, it follows from Lemma 3.8.3 that at least one of the marked vertices
of each graph in CG(r, r−d, u) has degree 0. We can therefore write CG(r, r−d, u)
as:

CG(r, r − d, u) =

r⋃
i=1

S{i}.
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The inclusion–exclusion principle then gives, for all r > 2d− u:

|CG(r, r − d, u)| =

∣∣∣∣∣
r⋃
i=1

S{i}

∣∣∣∣∣
=

r∑
k=1

(−1)k+1

 ∑
A⊆{1,...,r}

|A|=k

|SA|


=

r∑
k=1

(−1)k+1

(
r

k

)
|CG(r − k, r − k − d, u)|.

So, if we let g : Z≥0 → Z≥0 denote the function

g(r) = |CG(r, r − d, u)|,

we see that g(r) is determined by its values in 0, . . . , 2d − u and the recursive
formula

g(r) =

r∑
k=1

(−1)k+1

(
r

k

)
g(r − k).

Let fd,u be the unique polynomial in Q[x] of degree at most 2d − u that satisfies
fd,u(r) = g(r) for all 0 ≤ r ≤ 2d − u. Using Lemma 3.8.6 one can show that
fd,u satisfies the same recurrence relation as g does, and hence we conclude that
fd,u(r) = g(r) for all r ≥ 0.

Assume now that u = 0. Then fd,0(r) counts the number of contracted r-
marked graphs with no unmarked vertices of characteristic r−d (so the number of
edges equals d). Every graph with no unmarked vertices is contracted, so fd,0(r)
simply counts the number of ways we can put d edges in an r-marked graph with
no unmarked vertices. There are up to ordering 1

2r(r + 1) pairs of not necessarily
distinct vertices in such a graph. Therefore, fd,0(r) equals the number of multisets
of cardinality d with elements taken from a set of cardinality 1

2r(r+1). It follows
that

fd,0(r) =

(( 1
2r(r + 1)

d

))
=

( 1
2r(r + 1) + d− 1

d

)
.

After expanding the binomial coefficient, we see that fd,0(r) is a degree 2d poly-
nomial whose leading coefficient equals 1/(2d · d!).

Remark 3.8.7. The polynomials fd,u ∈ Q[x] are integer-valued. The coefficients
of fd,u, however, are not. By the theory of integer-valued polynomials (see, for
instance, [CC16]), we can write

fd,u =

2d−u∑
k=0

ck

(
x

k

)
,
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where c0, . . . , c2d−u are integers, defined recursively by the following formula:

ck = fd,u(k)−
k−1∑
j=0

cj

(
k

i

)
.

3.9 Computing closed formulas for |CG(r, r − d)|
In the previous section we proved that given nonnegative integers d, u there is a
polynomial fd,u of degree at most 2d− u such that for all r ≥ 0 one has

|CG(r, r − d, u)| = fd,u(r).

By Theorem 3.7.1 we then find for all d, r ≥ 0:

|CG(r, r − d)| = fd(r) :=

2d∑
u=0

fd,u(r).

In this section we will use Algorithm 3.7.3 to compute the polynomial fd for
low values of d. An implementation of this algorithm in Python 3 (along with
numerous optimizations to the ‘naive’ Algorithm 3.7.3) can be found in [vdLug21].

Using the algorithm, we can compute the polynomials fd,u and fd for all d ≤ 4
and u ≥ 0.

• d < 0: By Theorem 3.8.2 we have fd,u = 0 for all u ≥ 0, and hence fd = 0.
• d = 0: Theorem 3.8.2 implies that f0,u = 0 for all u > 0. We have f0,0 = 1

since there is a unique r-marked graph with no unmarked vertices and no
edges, and this graph is automatically contracted. We obtain f0 = 1.

• d = 1: Using our algorithm, we find the following values for f1,u(r) for
r + u ≤ 2:

r f1,0(r) f1,1(r) f1,2(r)

0 0 1 1
1 1 1
2 3

Lagrange interpolation gives us the following expressions for the polynomials
f1,u:

f1,0 = 1
2r

2 + 1
2r

f1,1 = 1

f1,2 = 1

By summing these polynomials, we find

f1 = 1
2r

2 + 1
2r + 2.

Note that this agrees with the formula for CG(r, r−1) we computed by hand
in Example 3.7.2.
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• d = 2: The algorithm produces the following values for f2,u(r) for r+u ≤ 4:

r f2,0(r) f2,1(r) f2,2(r) f2,3(r) f2,4(r)

0 0 1 4 3 3
1 1 5 8 4
2 6 13 14
3 21 26
4 55

By interpolation, we find the polynomial equations

f2,0 = 1
8r

4 + 1
4r

3 + 3
8r

2 + 1
4r

f2,1 = 1
6r

3 + 3
2r

2 + 7
3r + 1

f2,2 = r2 + 3r + 4

f2,3 = r + 3

f2,4 = 3.

Hence we obtain

f2 = 1
8r

4 + 5
12r

3 + 23
8 r

2 + 79
12r + 11.

• d = 3: We find the following values for f3,u(r) for r + u ≤ 6:

r f3,0(r) f3,1(r) f3,2(r) f3,3(r) f3,4(r) f3,5(r) f3,6(r)

0 0 1 7 18 23 15 9
1 1 10 33 49 44 20
2 10 51 104 106 73
3 56 176 257 197
4 220 475 541
5 680 1086
6 1771

Interpolation of the found data yields the following polynomial expressions.

f3,0 = 1
48r

6 + 1
16r

5 + 3
16r

4 + 13
48r

3 + 7
24r

2 + 1
6r

f3,1 = 1
12r

5 + 3
4r

4 + 25
12r

3 + 13
4 r

2 + 17
6 r + 1

f3,2 = 1
2r

4 + 19
6 r

3 + 19
2 r

2 + 77
6 r + 7

f3,3 = 4
3r

3 + 9r2 + 62
3 r + 18

f3,4 = 4r2 + 17r + 23

f3,5 = 5r + 15

f3,6 = 9

We therefore find that the number of contracted r-marked graphs of charac-
teristic r − 3 is equal to:

f3 = 1
48r

6 + 7
48r

5 + 23
16r

4 + 329
48 r

3 + 625
24 r

2 + 117
2 r + 73
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• d = 4: After a while the algorithm outputs the following values for f4,u(r)
for u+ r ≤ 8.

r f4,0(r) f4,1(r) f4,2(r) f4,3(r) f4,4(r) f4,5(r) f4,6(r) f4,7(r) f4,8(r)

0 0 1 11 47 123 172 160 79 32
1 1 16 93 257 425 423 282 105
2 15 136 496 948 1131 854 443
3 126 742 1897 2707 2513 1515
4 715 2971 5756 6485 4916
5 3060 9542 14 786 13 687
6 10 626 26 047 33 538
7 31 465 62 812
8 82 251

We therefore obtain the following polynomial expressions for f4,u(r):

f4,0 = 1
384r

8 + 1
96r

7 + 3
64r

6 + 5
48r

5 + 27
128r

4 + 25
96r

3 + 23
96r

2 + 1
8r

f4,1 = 1
48r

7 + 5
24r

6 + 101
120r

5 + 9
4r

4 + 63
16r

3 + 109
24 r

2 + 16
5 r + 1

f4,2 = 23
144r

6 + 73
48r

5 + 1013
144 r

4 + 875
48 r

3 + 1037
36 r2 + 105

4 r + 11

f4,3 = 3
4r

5 + 23
3 r

4 + 397
12 r

3 + 229
3 r2 + 553

6 r + 47

f4,4 = 73
24r

4 + 325
12 r

3 + 2387
24 r2 + 2069

12 r + 123

f4,5 = 25
3 r

3 + 65r2 + 533
3 r + 172

f4,6 = 39
2 r

2 + 205
2 r + 160

f4,7 = 26r + 79

f4,8 = 32

By summing these polynomials, we obtain the polynomial f4 that counts the
number of contracted r-marked graphs of characteristic r − 4.

f4 = 1
384r

8+ 1
32r

7+ 239
576r

6+ 193
60 r

5+ 23275
1152 r

4+ 8729
96 r3+ 84637

288 r2+ 24013
40 r+625

While our algorithm can quickly compute all values for fd,u(r) with u+ r ≤ 2d
for all d ≤ 3, it takes a very long time in the case d = 4 on the same server. We
observe the following runtimes:

d Runtime (s)

1 4.3× 10−4

2 2.3× 10−2

3 3.6
4 8.2× 103

It seems unlikely that f5 can be computed in reasonable time without significant
improvements to either the algorithm or the hardware.
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