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Chapter 2

The moduli space of genus g
curves

Moduli spaces can be thought of as spaces that parametrize objects of a certain
type. For example, if V is a complex vector space and k ≥ 0 an integer, the
Grassmannian Gk,V is a complex manifold whose underlying set is the set of k-
dimensional linear subspaces of V , so Gk,V parametrizes k-linear subspaces of
V . There is a universal vector bundle Ek,V → Gk,V that induces every other
family of k-dimensional subspaces via base change. By studying this universal
family we can make statements that are valid ‘universally’ among families of k-
dimensional subspaces of V . In Section 2.1 we will see which cohomology classes
occur universally among such families.

This thesis is aimed at the moduli space Mg of compact Riemann surfaces of
genus g ≥ 2 and the universal family Cg → Mg. Unfortunately, such a fine moduli
space does not exist in the category of complex manifolds. In Section 2.2 we will
see why the existence of nontrivial automorphisms on genus g curves prevents the
existence of a fine moduli space for genus g curves.

Riemann surfaces were first studied by Riemann [Rie51; Rie57] in the context of
multi-valued functions on the complex plane. Riemann already knew heuristically
that a compact Riemann surface of genus g ≥ 2 depends on 3g − 3 parameters,
or in a more modern terminology, that the moduli space Mg should be (3g − 3)-
dimensional. Teichmüller [Tei44] made this statement more formal. He realized
that it is impossible to endow the moduli space of genus g curves Mg with a well-
behaved complex structure, as this space has certain singularities. He therefore
constructed a covering Tg of Mg whose points are isomorphism classes of genus g
curves with Teichmüller structure, and endowed this space with the structure of
a complex manifold. Moreover, Teichmüller constructed a family Xg → Tg that
is universal in the sense that any other family of genus g curves with Teichmüller
structure can be obtained from this universal family by base change. He remarked
that the complex manifold Tg is (3g − 3)-dimensional, and hence gave a formal
meaning to Riemann’s heuristic argument.

In a series of 10 talks at Henri Cartan’s seminar, Grothendieck [Gro60] refor-
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mulated Teichmüller’s results in a language of algebraic geometry. More precisely,
he proved that the functor from complex analytic spaces to sets mapping a com-
plex analytic space S to the set of isomorphism classes of families of genus g curves
with Teichmüller structure over S is representable by the Teichmüller space Tg.
This means that Tg is the fine moduli space for families of genus g curves with
Teichmüller structure. In Section 2.3 we will discuss the Teichmüller space Tg.

Another approach at tackling the moduli space Mg was made by Deligne and
Mumford [DM69]. They view Mg as a stack, rather than a complex manifold.
This is the approach we will also be taking in this thesis. This approach will give
us a moduli space Mg and a universal family Cg → Mg. Although these are not
honest complex manifolds, some theory about complex manifolds generalizes to
stacks. For example, it is still possible to define differential forms and hermitian
line bundles on stacks, which we will do in Sections 2.5 and 2.6.

As it turns out, it is possible to understand these differential forms and her-
mitian vector bundles without understanding much about the underlying stacks
at all. Any reader who is not comfortable with (or interested in) using stacks
can read Section 2.1 for a motivation, and afterwards read Proposition 2.5.10 and
Example 2.6.1 to get some intuition for working with differential forms and vector
bundles on moduli stacks.

In Chapter 4 we will often treat Mg and Cg as if they were honest complex
manifolds. In such cases, the reader should understand that there is an argument
being made ‘behind the scenes’: the given statements hold universally for families
of genus g curves, and hence on the moduli stacks themselves.

In this section we will be working over the category CMan of complex man-
ifolds. We also fix a Grothendieck topology on CMan, where a collection of
morphisms {Xi → X} is a covering if and only if all these morphisms are open
immersions and their images cover X. It now makes sense to talk about stacks
over CMan. In this entire section every stack is assumed to be over CMan, so
we will often abbreviate ‘stack over CMan’ to ‘stack’.

2.1 Motivating example: the Grassmannian man-
ifold

To motivate our study of families and moduli spaces of curves, we first look at a
simpler and better understood example of a moduli space, the Grassmannian. We
will see that studying moduli spaces can yield information on properties that hold
universally on the families they classify. We refer to [BT82, §23] and [GH94, §1.5]
for a more detailed treatment of the material in this section.

Definition 2.1.1. Let V be a complex vector space. A family of k-dimensional
subspaces of V over a complex manifold S is a holomorphic sub-vector bundle
f : E → S of the trivial vector bundle V × S → S, such that every fiber of f is
k-dimensional.

For instance, consider the complex manifold S = PnC whose points correspond
to lines through the origin in Cn+1. Let E → S be the subbundle of Cn+1×S → S
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2.1. Motivating example: the Grassmannian manifold

whose fiber over a point s ∈ S is the line in Cn+1 that corresponds to s. Then
E → S is a family of one-dimensional subspaces of Cn+1.

More generally, for all k ≥ 0 and all complex vector spaces V , we can consider
the Grassmannian manifold Gk,V . Its underlying set is the set of k-dimensional
subspaces of V :

|Gk,V | = {W ⊆ V : dim(W ) = k}
For example, the Grassmannian G1,Cn+1 is the projective space PnC. Recall that
the complex structure on PnC is constructed by gluing affine charts; the complex
structure on general Grassmannians is constructed in a similar way.

The Grassmannian Gk,V comes with a canonical family of k-dimensional sub-
spaces of V . It is the subbundle u : Ek,V → Gk,V of the trivial bundle V ×Gk,V →
Gk,V whose fiber over a point in Gk,V equals the corresponding k-dimensional sub-
space of V .

Now let us assume that f : E → S is any family of k-dimensional subspaces.
Then associated to f we have a morphism Φf : S → Gk,V , which maps any point
s ∈ S to the fiber Es ∈ Gk,V . Moreover, the bundle E → S is the pullback of the
canonical bundle Ek,V → Gk,V along the morphism Φf :

E Ek,V

S Gk,V .

f □ u

Φf

It follows that the family u : Ek,V → Gk,V induces every other family f : E → S
by pullback along a unique morphism Φf : S → Gk,V . We therefore call u :
Ek,V → Gk,V the universal family of k-dimensional subspaces of V . We say that
Gk,V is a fine moduli space for k-dimensional subspaces of V .

Suppose that f : E → S is any family of k-dimensional subspaces of V . Asso-
ciated to f we have some cohomology classes on S, the Chern classes

c1(E), . . . , ck(E) ∈ H∗(S).

Moreover, we have a vector bundleQ over S defined by the following exact sequence

0 → E → V × S → Q→ 0.

Associated to Q we have some more cohomology classes on S:

c1(Q), . . . , cn−k(Q) ∈ H∗(S),

where n = dim(V ). These classes have the following relation:

(1 + c1(E) + · · ·+ ck(E))(1 + c1(Q) + · · ·+ cn−k(Q)) = 1.

Moreover, these cohomology classes behave well with respect to base change: if
g : T → S is any morphism, and g∗E → T is the pullback of E → S along g, then
g∗Q→ T is the quotient bundle associated to g∗E → T , and we have equalities

ci(g
∗E) = g∗ci(E) and ci(g

∗Q) = g∗ci(Q).
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In particular we have for each family f : E → S of k-dimensional subspaces of V
equalities of Chern classes

c1(E) = Φ∗
fc1(Ek,V ) and c1(Q) = Φ∗

fc1(Qk,V ),

where Qk,V is the universal quotient bundle on Gk,V defined by the exact sequence

0 → Ek,V → V ×Gk,V → Qk,V → 0.

It follows that these Chern classes are in some sense universal on families of
subspaces, and the relation we found among them is a universal relation. One
might wonder if there are any more such universal classes or relations on families
of subspaces. We can answer this question by studying the cohomology ring of
the Grassmannian. Indeed, any cohomology class on the Grassmannian yields a
cohomology class on the base of every family of subspaces f : E → S via pullback
along Φf . Conversely, every universal class on bases of families of subspaces gives
in particular a class on the base of the bundle u : Ek,V → Gk,V . The cohomology
of the Grassmannian is

H∗(Gk,V ) =
Z[c1(E), . . . , ck(E), c1(Q), . . . , cn−k(Q)]

((1 + c1(E) + · · ·+ ck(E))(1 + c1(Q) + · · ·+ cn−k(Q))− 1)
,

where E = Ek,V and Q = Qk,V is the associated quotient bundle. In particular, it
follows that there are no further cohomology classes or relations that are universal
on families of subspaces.

Similarly, we can study other types of objects, such as Chow classes or differ-
ential forms, that are universal on families of subspaces simply by studying these
objects on the Grassmannian.

The main takeaway from this section is the following.

Making statements about (objects on) moduli spaces is equivalent to
making statements that hold universally among the families these mod-
uli spaces classify.

2.2 Fine moduli spaces
In Section 2.1 we constructed the Grassmannian Gk,V that parametrizes k-dimen-
sional subspaces of a complex vector space V , together with a universal family
u : Ek,V → Gk,V that induces every other family of k-dimensional subspaces of V
via base change. We called Gk,V a fine moduli space for families of k-dimensional
subspaces of V . In this section we will generalize this discussion. We will start
with some abstract nonsense, and then apply this to some concrete examples, such
as the Grassmannian we studied in Section 2.1.

Definition 2.2.1. Let C be a category, let Set denote the category of sets, and
let F : C → Set be a contravariant functor. A representation of F consists of an
object M of C together with a natural isomorphism τ from F to the functor of
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2.2. Fine moduli spaces

points M(−) = HomC(−,M). In this case, we say that M is a fine moduli space
for F .

It follows from Yoneda’s lemma that a representation is unique up to a unique
isomorphism. In particular a fine moduli space is unique up to isomorphism.

Assume that F is representable, and fix a representation τ : F
∼−→ M(−).

Then under the bijection τM : F (M)
∼−→ M(M), the identity idM : M → M

corresponds to an element u ∈ F (M). We call this element the universal element.
Let α : S → M be a morphism. We obtain a commutative diagram of sets:

F (M) M(M)

F (S) M(S),

α∗

τM
∼

−◦α

τS
∼

where we denote by α∗ the map F (α) : F (M) → F (S) induced by α : S → M. By
chasing through this diagram we find that τS(α∗u) = α. In particular, for every
f ∈ F (S) there exists a unique morphism Φf : S → M (namely Φf = τS(f))
for which Φ∗

fu = f . In other words: for every object S of C and every element
f ∈ F (S) we can obtain f from the universal element u by pulling u back along a
unique morphism Φf : S → M.

For example, let k be a nonnegative integer, and let V be a complex vector
space. Consider the following contravariant functor from the category of complex
manifolds to the category of sets:

F : CMan → Set

S 7→ {families E → S of k-dimensional subspaces of V }.

A morphism of complex manifolds T → S is mapped to the pullback operator that
transforms families over S into families over T . We claim that the Grassmannian
Gk,V is a fine moduli space for F . Indeed, for any complex manifold S we define
a map

τS : F (S) → Gk,V (S) = Hom(S,Gk,V )

that sends a family f : E → S to the morphism Φf : S → Gk,V given by Φf (s) =
f−1(s) ⊆ V for all s ∈ S. Notice that τS is in fact a bijection. The maps τS induce
a natural isomorphism τ : F → Gk,V (−).

The universal element of the functor F is the universal family u : Ek,V → Gk,V .
Indeed, under the bijection τGk,V : F (Gk,V ) → Gk,V (Gk,V ) this family is mapped
to the identity Gk,V → Gk,V . It follows once again that every family E → S of
k-dimensional subspaces of V can be obtained from the universal family by taking
its pullback along a unique morphism Φf : S → Gk,V .

Analogous to the Grassmannian we would like to construct a moduli space
Mg that classifies genus g curves for a fixed integer g ≥ 0. As there are too many
genus g curves to fit into a set, we cannot expect the points of Mg to correspond
bijectively with genus g curves. Our next best bet is to try to construct a moduli

47



Chapter 2: The moduli space of genus g curves

2

space Mg whose points correspond to isomorphism classes of genus g curves. We
proceed as follows.

Two families f : X → S and f ′ : X ′ → S are isomorphic if there exists an
isomorphism g : X → X ′ with f ′ ◦ g = f . We can then consider the following
functor:

F : CMan → Set

S 7→ {families X → S of genus g curves}/ ∼= .

Let us assume that F is representable by a complex manifold Mg. Under the
bijection F (Mg)

∼−→ Mg(Mg) the identity Mg → Mg corresponds to a universal
family p : Cg → Mg of genus g curves. The bijection F (∗) ∼−→ Mg(∗) gives us
a bijective correspondence between the points of Mg and isomorphism classes of
genus g curves. If f : X → S is a family of genus g curves, then the associated
morphism Φf : S → Mg maps a point s ∈ S to the point of Mg that corresponds
to the isomorphism class of the curve Xs, and we obtain a cartesian diagram

X Cg

S Mg.

f □ p

Φf

Now let f : X → S be an isotrivial family of genus g curves. That is, the fibers of
f are pairwise isomorphic. Then the induced morphism Φf : S → Mg is constant,
and factors over the singleton manifold. We obtain the following diagram with
cartesian squares:

X C Cg

S {∗} Mg

f □ □ p

Φf

where C is a genus g curve that is isomorphic to the fibers of f . We therefore see
that f is a trivial family: it is isomorphic to the family C × S → S.

So the existence of a moduli space of genus g curves would imply that every
isotrivial family of genus g curves is trivial. However, as the next proposition
states, it is possible to construct nontrivial isotrivial families, and thus show that
a fine moduli space Mg cannot exist.

Proposition 2.2.2. Let g ≥ 0 be an integer. There exists an isotrivial family
of genus g curves which is not trivial. In particular, there is no fine moduli space
Mg of genus g curves in the category of complex manifolds.

Let us first prove this proposition in the case g = 0.

Proof for g = 0. First, assume that g = 0. Consider the projective plane P2 and
fix a point x ∈ P2, and blow up the plane at this point. In other words, the set S
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2.3. Mapping class groups and Teichmüller structures

of lines through x can be identified with P1 and hence be given the structure of a
complex manifold, and we consider the complex manifold

X = {(y, ℓ) ∈ P2 × S : y ∈ ℓ}.

The morphism f : X → S : (y, ℓ) 7→ ℓ is an isotrivial family of genus 0 curves:
we have f−1(ℓ) ∼= ℓ ∼= P1 for all ℓ ∈ S. However, we claim that f is not a trivial
family. If it were, it would have to be isomorphic to P1 × S ∼= P1 × P1. One
can show, for instance by using intersection theory, that this is not the case. The
exceptional locus

E = {(x, ℓ) : ℓ ∈ S} ⊆ X

is a prime divisor of X with self-intersection −1 ([Har77, Proposition V.3.1]),
whereas P1×P1 can be shown not to have any such prime divisors ([Har77, Example
V.1.4.3]).

For genus g > 0 we can construct nontrivial isotrivial families by taking a
genus g curve C with a nontrivial automorphism and using this automorphism to
‘twist’ C. Compare this to the construction of the Möbius strip by twisting a line
segment onto itself. We will finish the proof of this proposition in the next section.

2.3 Mapping class groups and Teichmüller struc-
tures

In this section we will prove Proposition 2.2.2, proving that there is no fine moduli
space for genus g curves. The problem here is that genus g curves admit ‘too
many’ automorphisms, allowing us to twist trivial families into nontrivial isotriv-
ial families. Teichmüller [Tei44] realized this and added extra structures (which
we now call Teichmüller structures) to the curves we are trying to classify. He
thus obtained a universal family Xg → Tg of genus g curves with Teichmüller
structures. Grothendieck [Gro60] was able to rephrase Teichmüller’s results in a
language of algebraic geometry. We will first discuss the results from Teichmüller
and Grothendieck, and finish the section by proving that a fine moduli space Mg

does not exist in the category of complex manifolds.
For a more detailed treatment of the material in this section we refer to

Grothendieck [Gro60]; see also [AJP16] for a survey of Grothendieck’s work on
Teichmüller theory.

If X ′, X are two topological spaces, we denote by I(X ′, X) the set of home-
omorphisms X ′ → X modulo homotopy. If X ′ = X then composition induces a
group structure on I(X,X); the resulting group is called the mapping class group
of X and denoted MCG(X). In general MCG(X) acts from the left1 on I(X ′, X)
by composition.

1In fact, Grothendieck considers the right action of MCG(X) on I(X,X′). In the proof of
Lemma 2.3.1 we will be using the left action of the mapping class group to construct a monodromy
representation. As taking inverses yields a bijective correspondence between left and right actions
we lose no information if we consider left actions instead.
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Assume, now, that f : X → S is a fiber bundle whose fiber F is a finite
simplicial complex. The disjoint union of sets⊔

s∈S
I(Xs, F )

has a natural structure of a MCG(F )-covering space over S. We denote this
topological space by R(X/S). For fixed F and S the assignment X 7→ R(X/S)
is functorial. Moreover it is compatible with base changes of fiber bundles: for a
continuous map T → S we have

R(X ×S T/T ) = R(X/S)×S T.

Similarly, if F is a compact connected oriented manifold, then we can consider
the group MCG+(F ) of F consisting of homotopy classes of orientation-preserving
homeomorphisms F → F , which is a subgroup of MCG(F ) of index at most 2. In
this context the group MCG(F ) is often called the extended mapping class group
of F , and MCG+(F ) is the mapping class group of F . If X → S is an oriented
fiber bundle with fiber F , then analogous to the MCG(F )-covering R(X/S) of
S we construct an MCG+(F )-covering P(X/S) of S, whose fiber over a point
s ∈ S consists of the homotopy classes of orientation-preserving homeomorphisms
Xs → F .

In particular, if f : C → S is a family of genus g curves, then f is also a fiber
bundle whose fiber is the compact oriented surface Σg of genus g, and Grothendieck
calls the MCG+(Σg)-covering P(C/S) → S the Teichmüller covering of S. The
topological space P(C/S) obtains the structure of a complex manifold: it is the
unique structure for which P(C/S) → S is locally an isomorphism. A Teichmüller
structure on the family f is a section of the Teichmüller covering P(C/S) → S. In
other words: giving a Teichmüller structure on f is equivalent to giving a homotopy
class of a homeomorphism Σg

∼−→ Cs for each s ∈ S, such that these classes ‘vary
continuously’ with s.

Adding Teichmüller structures rigidifies the genus g curves we are working
with. More precisely: families of genus g curves with Teichmüller structure do not
admit nontrivial automorphisms. From this Grothendieck then deduces that the
functor

S 7→ {families of genus g curves f : C → S with Teichmüller structure}/ ∼=

is representable. Let Tg be a representing object; we hence obtain a universal
family Xg → Tg of genus g curves with Teichmüller structure. Grothendieck,
moreover, remarks that Tg is homeomorphic to a ball.

Notice, moreover, that there is a natural action of the mapping class group
Γg = MCG+(Σg) on the Teichmüller space Tg. The set of orbits of this action is
in bijective correspondence with the set of isomorphism classes of genus g curves.
We may therefore view the quotient Mg = Tg/Γg as the moduli space of genus
g curves. The quotient Mg, however, does not obtain the structure of a complex
manifold.
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2.3. Mapping class groups and Teichmüller structures

In the remainder of this section we will finish the proof of Proposition 2.2.2.
We will be using the following lemma to construct an nontrivial isotrivial family
of genus g curves.

Lemma 2.3.1. Let Y and F be topological spaces, and let G be a discrete group.
Assume that G acts from the left on Y and F , and assume moreover that the
action of G on Y is a covering space action (as defined in [Ful95, Section 1.3]).
Note that the actions of G on Y and F induce a G-action on Y × F . Define
S = Y/G and X = (Y × F )/G. Then the quotient map p : Y → S is a covering,
and the induced map

f : X → S

is a fiber bundle with fiber F . If, moreover, Y is path-connected and the homo-
morphism G → MCG(F ) induced by the G-action on F is nontrivial, then the
fiber bundle f is nontrivial.

Proof. As the action of G on Y is a covering space action, the quotient map
Y → Y/G = S is a covering map. Moreover, it is straightforward to prove that f
is a fiber bundle with fiber F .

Fix points y ∈ Y , z ∈ F , and set s = p(y) and let x ∈ X be the image of (y, z)
under the quotient map Y × F → X. Note that the composition

F
∼−→ {y} × F ↪→ Y × F ↠ X

induces a homeomorphism F
∼−→ Xs = f−1(s); we denote the inverse of this

homeomorphism by φ : Xs
∼−→ F .

The monodromy representation of the pointed G-covering p : (Y, y) → (S, s)
induces a homomorphism

ρ : π1(S, s) → G

(c.f. [Ful95, §14a]); it is uniquely determined by the property that ρ(α) · y = y ∗α,
where ∗ denotes the monodromy right action of π1(S, s) on the fiber Ys.

Likewise, the fiber bundle f induces a MCG(F )-covering R(X/S) → S. The
homeomorphism φ induces a point in R(X/S) over s, and the monodromy repre-
sentation yields a homomorphism

ρ′ : π1(S, s) → MCG(F ).

It is now a routine exercise to prove that these two monodromy representations
are compatible in the following sense. The action of G on F induces a homomor-
phism G→ MCG(F ), and the following diagram is commutative:

π1(S, s) G

MCG(F )

ρ′

ρ

Assume that f is a trivial fiber bundle. Then R(X/S) → S is a trivial covering,
and the monodromy representation π1(S, s) → MCG(F ) is trivial. If moreover Y
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is path-connected then the monodromy representation π1(S, s) → G is surjective,
which implies that the homomorphism G→ MCG(F ) must be trivial.

Proof of Proposition 2.2.2 with g > 0. Assume that g > 0. Let C denote the (hy-
per)elliptic curve of genus g given by the equation

y2 =

2g+1∏
λ=0

(x− λ).

Consider the involution σ : C → C given by (x, y) 7→ (x,−y). Note that σ induces
a Z-action on C:

Z → Aut(C) : 1 7→ σ

and hence a homomorphism Z → MCG(C) that maps 1 to the class of σ. We
claim that the class [σ] ∈ MCG(C) is nontrivial. In that case, we can consider the
Z-covering

f : C → C× : z 7→ exp(2πiz),

and use Lemma 2.3.1 to construct a nontrivial isotrivial family of genus g curves
with fiber C, finishing the proof of Proposition 2.2.2. Note that since f and σ are
holomorphic the family obtained from 2.3.1 is a holomorphic fiber bundle.

The involution σ acts as multiplication with −1 on the first (singular) homology
group H1(C) ∼= Z2g. Indeed, the group H1(C) is generated by classes of the form
[γ1 − γ2], where γ1, γ2 are the two lifts of a path in P1 between two branch points
of the morphism C → P1 : (x, y) 7→ x. The involution σ, then, permutes γ1 and
γ2, and therefore acts as multiplication by −1 on these classes and hence the whole
group. In particular the action of σ on H1(C) is nontrivial. The automorphism
σ, therefore, is not homotopic to the identity idC , and its class in MCG(C) is
nontrivial.

2.4 Stacks
As we have seen in Section 2.2 there is no fine moduli space for genus g curves.
The reason is the existence of nontrivial automorphisms that we can exploit to
‘twist’ trivial families into nontrivial isotrivial families. This is a common reason
for nonexistence of a fine moduli space for many types of families. We can fix the
problem in multiple ways.

One way is to impose extra structure on the objects we classify, as we have
seen in Section 2.3. Adding Teichmüller structures to our curves annihilates any
nontrivial automorphisms, and a fine moduli space for curves with Teichmüller
structure exists.

Another way to circumvent the nonexistence of a fine moduli space for genus g
curves is by enlarging our category of complex manifolds by introducing stacks over
the category of complex manifolds, as was done by Deligne and Mumford [DM69].
For an introduction to stacks we refer to [Fan01], a more thorough treatment is
given in [FGI+05]. We also refer to [BX11] and [Hei05] for a treatment of stacks
in the context of manifolds.
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2.4. Stacks

Roughly speaking, a stack (over CMan) is a category M equipped with a
functor F : M → CMan that allows base changes, gluing of isomorphisms, and
gluing of objects.

For instance, consider the category Mg, whose objects are families f : C → S of
genus g curves, and whose morphisms (f ′ : C′ → S′) → (f : C → S) are cartesian
diagrams

C′ C

S′ S.

f ′ □ f

Moreover, consider the functor F : Mg → CMan that maps a family f : C → S
to its base S.

We observe the following properties:

• If f : C → S is a family of genus g curves, and h : S′ → S is any morphism
of complex manifolds, then we can take the base change C ×S S′ → S′ of f
along h, and this is again a family of genus g curves;

• We can glue isomorphisms of families. Let S be a complex manifold with an
open covering S =

⋃
i∈I Si, and let f : C → S and f ′ : C′ → S be families

of genus g curves. If we are given isomorphisms between the restrictions
of f and f ′ to Si for each i ∈ I, and these isomorphisms are compatible
on overlaps, then we may glue them to obtain an isomorphism between the
families f and f ′.

• We can glue objects of Mg. If we are given a complex manifold S, an open
covering S =

⋃
i∈I Si, for each i ∈ I a family fi : Ci → Si of genus g curves,

and appropriate gluing data, then we can glue these families together to
obtain a family C → S of genus g curves.

These three properties ensure that the category Mg with the functor Mg →
CMan is a stack.

Definition 2.4.1. The stack Mg is the stack of (families of) genus g curves.

We can view complex manifolds as stacks, too, as the following example demon-
strates.

Example 2.4.2. Let S be a complex manifold. Consider the category [S]. Objects
of [S] are morphisms f : T → S of complex manifolds. Morphisms (f : T → S) →
(f ′ : T ′ → S) in [S] are morphisms of complex manifolds g : T → T ′ that satisfy
f ′ ◦ g = f . We fix the functor [S] → CMan that maps an object (f : T → S) of
[S] to the complex manifold T . This functor gives [S] the structure of a stack.
Let S′ be another complex manifold. If f : S′ → S is a morphism of complex
manifolds, then composition with f yields a functor [f ] : [S′] → [S], and this
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functor is a morphism of stacks: the diagram

[S′] [S]

CMan

[f ]

is commutative.
Conversely, if F : [S′] → [S] is a morphism of stacks, then F (idS′) is a morphism
S′ → S of complex manifolds.
One checks that these two operations are inverses, and we therefore see that mor-
phisms of complex manifolds S′ → S correspond bijectively with morphisms of
stacks [S′] → [S].
We will often identify a complex manifold S with its associated stack [S].

Stacks form a 2-category. This means that the morphisms between any two
stacks form a category rather than a set. In other words: the category of stacks
consists of objects, morphisms, and morphisms between morphisms (which are
called 2-morphisms).

Let F : M → CMan be a stack and let S be a complex manifold. We
denote by MS the subcategory of M whose objects are those objects x of M
that satisfy F (x) = S, and whose morphisms are those morphisms f of M that
satisfy F (f) = idS . The 2-Yoneda lemma [SP, Tag 004B] states that there is an
equivalence of categories

Hom([S],M)
∼−→ MS

given by F 7→ F (idS).
Consider the stack Mg of families of genus g curves, and let S be a complex

manifold. Then (Mg)S is the category of genus g curves over S, and the 2-Yoneda
lemma gives us an equivalence of categories

Hom([S],Mg)
∼−→ (Mg)S .

So morphisms [S] → Mg induce families of genus g curves over S. An inverse of
Yoneda’s equivalence is found as follows: to a family f : C → S of genus g curves
we associate the functor Φf : [S] → Mg given by (T → S) 7→ (fT : C ×S T → T ).

Example 2.4.3. Let Cg be the category whose objects are pairs (f, σ) where
f : C → S is a family of genus g curves and σ : S → C is a section of f . Morphisms
(f ′, σ′) → (f, σ) in Cg are cartesian diagrams of the form

C′ C

S′ S

f ′

h′

□ f

h

such that h′ ◦ σ′ = σ ◦ h. As families with sections are well-behaved with respect
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to base changes and gluing, it follows that the functor

Cg → CMan : (f : C → S, σ : S → C) 7→ S

gives Cg the structure of a stack over CMan. There is a morphism of stacks
p : Cg → Mg that forgets the sections.
Let f : C → S be a family of genus g curves. The 2-Yoneda lemma implies that
f corresponds to a morphism of stacks Φf : [S] → Mg. We obtain a morphism
Ψf : [C] → Cg as follows. An object of [C] is a morphism g : T → C of complex
manifolds. The functor Ψf then maps g to the family C×S T → T with the section
(g, idT ) : T → C ×S T . We obtain a diagram of stacks

C Cg

S Mg

f

Ψf

p

Φf

and this diagram 2-commutes: there is a 2-isomorphism between the two induced
morphisms C → Mg. In fact, the diagram induces a representation of the fiber
product S×Mg

Cg by C. We see that the morphism of stacks p : Cg → Mg behaves
like a universal family of genus g curves.

Definition 2.4.4. The universal family of genus g curves is the morphism of
stacks p : Cg → Mg defined in Example 2.4.3.

Recall that a morphism of stacks f : X → S is representable if for each complex
manifold and each morphism of stacks S → S the fiber product X ×S S is again
representable by a complex manifold. Equivalently, for each morphism of stacks
Φ : S → S there exists a 2-cartesian diagram of the form

X X

S S
□ f

Φ

where X is a complex manifold. We say that the morphism X → S is a sub-
mersion if it is representable and for each cartesian diagram of the above form
the morphism of complex manifolds X → S is a submersion. Analogously, any
property of morphisms of complex manifolds that is stable under base change can
be generalized to morphisms of stacks. It follows from the discussion in Example
2.4.3 that the universal family of genus g curves Cg → Mg is, indeed, a family of
genus g curves.
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Example 2.4.5. This example generalizes Example 2.4.3. Let r ≥ 0 be an integer,
and define the category Crg as follows. Objects of Crg are tuples (f, σ1, . . . , σr) where
f is a family of genus g curves, and σ1, . . . , σr are sections of f . Morphisms are
cartesian diagrams of families compatible with the sections. The functor Crg →
CMan that maps a tuple (f, σ1, . . . , σr) to the base of f gives Crg the structure of
a stack.
Let f : C → S be a family of curves. Let Cr denote the r-fold fiber product

Cr = C ×S · · · ×S C.

and for i = 1, . . . , r let pi : Cr → C denote the projection onto the ith coordinate.
Then f induces a morphism of stacks Ψrf : [Cr] → Crg as follows. An object of
[Cr] is a morphism of manifolds g : T → Cr. Such a morphism induces a family
fT : C ×S T → T , together with r sections σi given by σi = (pi ◦ g, idT ) : T →
C ×S T . The functor Ψrf maps g to the object (fT , σ1, . . . , σr) of Crg . Moreover,
the morphism Ψrf , together with the morphism Cr → S induced by f , gives rise to
a representation by Cr of the fiber product Crg ×Mg

S:

Cr Crg

S Mg

Ψrf

□

Φf

Here the morphism Crg → Mg simply forgets all sections.

The stack Crg defined in Example 2.4.5 is the r-fold fiber product

Crg = Cg ×Mg
· · · ×Mg

Cg.

Note that C1
g = Cg, and C0

g = Mg.
Let f : C → S be a family of genus g curves. For each integer r ≥ 0 denote by

Cr the r-fold fiber product

Cr = C ×S · · · ×S C.

Let r, s ≥ 0 be integers, and let ϕ : {1, . . . , s} → {1, . . . , r} be a map of sets. Then
we define a morphism fϕ of complex manifolds:

fϕ : Cr → Cs : (x1, . . . , xr) 7→ (xϕ(1), . . . , xϕ(s)).

In other words, fϕ permutes, forgets, and repeats coordinates of the fiber product
Cr. Note that, if s = 0, then fϕ is the morphism Cr → S induced by f .

This construction can be generalized to the universal family f : Cg → Mg as
follows. To ϕ we associate a functor fϕ : Crg → Csg :

fϕ : (f, σ1, . . . , σr) 7→ (f, σϕ(1), . . . , σϕ(s)).

Morphisms in Crg and Csg are cartesian diagrams of families; these are left in place
by the functor fϕ. It is easy to verify that fϕ is a morphism of stacks.
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Definition 2.4.6. A tautological map is a morphism of stacks of the form fϕ :
Crg → Csg , with r, s ≥ 0 integers and ϕ a map {1, . . . , s} → {1, . . . , r}.

Let fϕ : Crg → Csg be a tautological map associated to a map ϕ : {1, . . . , s} →
{1, . . . , r}. Moreover, let h : C → S be a family of curves of genus g. Then the
diagram

Cr Crg

Cs Csg

Ψrh

hϕ □ fϕ

Ψsh

(2.4.7)

is cartesian.
Let f : C → S be a family of genus g curves, let r, s, t, u ≥ 0 be integers, and

consider the following commutative diagram of sets and the associated commuta-
tive diagram of complex manifolds:

{1, . . . , t} {1, . . . , r} Ct Cr

{1, . . . , u} {1, . . . , s} Cu Cs

ψ fψ

fη fϕη

χ

ϕ

fχ

Using the Yoneda lemma it is straightforward to show that if the leftmost diagram
is a pushout diagram in the category of sets, then the rightmost diagram is a
cartesian diagram. Similarly, if the leftmost diagram is a pushout diagram, the
associated diagram of tautological maps between stacks

Ctg Crg

Cug Csg

fψ

fη fϕ

fχ

is cartesian.

Lemma 2.4.8. If ϕ : {1, . . . , s} → {1, . . . , r} is injective, then for each family
f : C → S of genus g curves the induced morphism fϕ : Cr → Cs is a submersion.
Likewise, if ϕ is injective, then the associated tautological map fϕ : Crg → Csg is a
submersion.

Proof. Assume, first, that s = 0. Let f : C → S be a family of genus g curves.
Now fϕ is the morphism Cr → S. As submersions are stable under compositions
and base changes, the morphism Cr → S is a submersion.

As s = 0 we have Csg = Mg. We wish to prove that the morphism Crg → Mg is
a submersion. Let S be a complex manifold and let Φ : S → Mg be a morphism.
Then Φ corresponds to a family f : C → S of genus g curves, and the fiber product

57



Chapter 2: The moduli space of genus g curves

2

Crg ×Mg S is represented by Cr. The induced morphism of complex manifolds
Cr → S is the tautological morphism associated to ϕ. As we have seen, this
morphism is a submersion of complex manifolds. We may therefore conclude that
the tautological map Crg → Mg is a submersion.

More generally, let s ≥ 0 be any integer, and choose an injective map η :
{1, . . . , r − s} → {1, . . . , r} whose image is disjoint from the image of ϕ. Let
f : C → S be a family of genus g curves. We obtain a pushout diagram of sets,
and an associated cartesian diagram of complex manifolds:

{1, . . . , r} {1, . . . , r − s} Cr Cr−s

{1, . . . , s} ∅ Cs S

ψ

fϕ

fψ

ϕ

The morphism Cr−s → S is a submersion by the first part of this proof, so fϕ

must be a submersion, too, as submersions are stable under base change.
Analogously, the tautological map fϕ : Crg → Csg can be written as the base

change of the submersion Cr−sg → Mg by some tautological map Csg → Mg, and
therefore fϕ is a submersion.

Remark 2.4.9. As we already saw in Section 2.3 the Teichmüller space Tg is
closely related to the moduli space of genus g curves. The mapping class group
Γg = MCG+(Σg) of the compact oriented genus g surface Σg acts on Tg, and
the points in the quotient Tg/Γg are in bijective correspondence with isomorphism
classes of genus g curves. This quotient, however, does not admit the structure of
a complex manifold.
Instead of looking at the topological quotient Tg/Γg, one could consider the quo-
tient stack

[Tg/Γg],
which is defined (in a more general setting of a complex Lie group acting on a
complex manifold) as follows. Objects of [Tg/Γg] are pairs of morphisms (P →
S, P → Tg), where the morphism P → S is a Γg-covering and the morphism
P → Tg is Γg-equivariant. Morphisms are cartesian diagrams of Γg-coverings
compatible with the equivariant morphisms to Tg. The functor mapping (P →
S, P → Tg) 7→ S gives [Tg/Γg] the structure of a stack.
Suppose, now, that f : C → S is a family of genus g curves. Recall from Section
2.3 that we obtain a Γg-covering P(C/S) → S. Points of P(C/S) over s ∈ S are
Teichmüller structures on Cs, so we obtain a canonical morphism

P(C/S) → Tg,

and this morphism is clearly Γg-equivariant.
We hence obtain a canonical morphism of stacks

Mg → [Tg/Γg],

We leave it to the reader to verify that this is an isomorphism of stacks and to
construct an inverse.
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2.5 Differential forms on stacks

2.5.1 Differential forms

Differential forms on complex manifolds can be pulled back along morphisms of
manifolds. Moreover, it is possible to glue differential forms along open coverings.
As differential forms are well-behaved with respect to pullbacks and gluing, it
makes sense to construct a stack of differential forms.

Indeed, let us consider the category A∗ whose objects are simply differential
forms on any complex manifold. If η and ω are some differential forms on complex
manifolds T and S, respectively, then the morphisms η → ω in A∗ are precisely
those morphisms f : T → S of the underlying manifolds for which f∗ω = η. We
consider the functor A∗ → CMan that maps a differential form to its underlying
complex manifold. Note that this functor is faithful. It is not difficult to verify
that this functor makes A∗ a stack over CMan.

Let S be a complex manifold, and let Φ : [S] → A∗ be a morphism of stacks.
Then Φ(idS) is a differential form on S. Conversely, given a differential form ω
on S we can define a morphism Φω : [S] → A∗ of stacks that maps a morphism
f : T → S of complex manifolds (that is, an object of [S]) to the differential form
f∗ω on T . These constructions are inverses; we see therefore that differential forms
on S correspond one-to-one with morphisms of stacks [S] → A∗. This legitimizes
the following definition.

Definition 2.5.1. Let X be a stack over CMan. A differential form on X is a
morphism of stacks X → A∗.

Notice that, by the above discussion, differential forms on a complex manifold
S correspond canonically to differential forms on the underlying stack [S]. In
other words: differential forms on stacks generalize differential forms on complex
manifolds. From now on, we may identify the differential forms on a complex
manifold S with the differential forms on the associated stack [S].

Let X be a stack, and denote by π : X → CMan the corresponding functor. As
the functor A∗ → CMan is faithful, any morphism of stacks X → A∗ over CMan
is uniquely determined by its action on the objects of X . Giving a differential form
ω on X is, therefore, equivalent to giving for each object x of X a differential form
ω(x) on the complex manifold π(x), such that for each morphism f : x → y in X
we have the equality π(f)∗ω(y) = ω(x) of differential forms on π(x).

Recall that stacks form a 2-category, so morphisms between two stacks do not
form a set but a category. For an arbitrary stack X we obtain a category (and
not a set) A∗(X ) of differential forms on X . Fortunately, it is easy to verify that
there are no 2-morphisms between two differential forms on any given stack, apart
from identity morphisms. So A∗(X ) is a discrete category; differential forms on X
form a class. If X = [S] is the stack associated to a complex manifold, then the
objects of A∗([S]) are in bijective correspondence with differential forms on S. We
can therefore view the discrete category A∗([S]) as a set by identifying its objects
with the elements of A∗(S).
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2.5.2 Pullbacks

Suppose that f : S′ → S is a morphism of complex manifolds, and let [f ] : [S′] →
[S] denote the associated morphism of stacks. Let ω ∈ A∗(S) be a differential form
on S. Recall that differential forms on a complex manifold correspond bijectively
to differential forms on the associated stack. If ω corresponds to the morphism
of stacks Φω : [S] → A∗, then the pullback f∗ω corresponds to the composition
Φω ◦ [f ] : [S′] → A∗. So it makes sense to define pullbacks of differential forms
along morphisms of stacks as follows.

Definition 2.5.2. Let f : X ′ → X be a morphism of stacks. Given a differential
form ω : X → A∗ we define the pullback of ω along f to be the differential form
f∗ω := ω ◦ f : X ′ → A∗ on X ′.

This definition generalizes the definition of pullbacks of differential forms on
complex manifolds.

Example 2.5.3. The following example allows us to switch seamlessly between
evaluating differential forms on objects of stacks and taking pullbacks of differential
forms.
Let X be a stack with a differential form ω : X → A∗. Let X be any complex
manifold. Recall the 2-Yoneda equivalence

Hom(X,X )
∼−→ XX : Φ 7→ Φ(idX).

Let Φ : X → X be a morphism of stacks and let x be an object of XX . If
Φ(idX) ∼= x in XX , then we have an equality

Φ∗ω = ω(x) ∈ A∗(X).

The following observation is useful when working with differential forms on
stacks. Let f, g : X ′ → X be two morphisms of stacks, and let ω : X → A∗ be a
differential form on X . Assume that there exists a 2-isomorphism between f and
g. Then the compositions ω ◦ f and ω ◦ g : X ′ → A∗ are 2-isomorphic as well. As
there are no nontrivial 2-isomorphisms between differential forms, it follows that
f∗ω = g∗ω.

The following is a generalization of Lemma 1.1.6.

Lemma 2.5.4. Let f : X → S be a submersion of stacks. Then the functor
f∗ : A∗(S) → A∗(X ) is injective.

Proof. Let ω and η be two differential forms on S such that f∗ω = f∗η. In order
to prove that ω = η, it suffices to show that these functors evaluate equally on all
objects of S. Let s be an object of S over the complex manifold S. By using the
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2-Yoneda lemma, we can construct a 2-cartesian diagram of the form

X X

S S

Ψ

□fS f

Φ

such that X is a complex manifold, and such that Φ(idS) ∼= s in S. We now have
the following equality of differential forms on X:

f∗S(ω(s)) = f∗SΦ
∗ω = Ψ∗f∗ω = Ψ∗f∗η = f∗SΦ

∗η = f∗S(η(s)).

As fS is a submersion, we deduce from Lemma 1.1.6 that ω(s) = η(s).

2.5.3 Fiber integrals
Now, let us generalize taking fiber integrals to the setting of stacks. Recall that a
morphism X → S of stacks is a submersion if it is representable and a submersion.
That is, for each complex manifold S and each morphism Φ : S → S there exists
a 2-cartesian diagram of the form

X X

S S

Ψ

□fS f

Φ

(2.5.5)

where X is a complex manifold, and the morphism fS : X → S is a submersion of
complex manifolds.

We must first generalize the notion of differential forms with proper support
over the base of a submersion to the setting of stacks. By Proposition 1.3.14 this
property is stable under base change, and therefore it makes sense to generalize it
as follows.

Definition 2.5.6. Let f : X → S be a submersion of stacks, and let ω be a
differential form on X . We say that ω has proper support over S if for each 2-
cartesian diagram of the form 2.5.5 the pullback Ψ∗ω ∈ A∗(X) has proper support
over S.

It follows from Proposition 1.3.14 that for each submersion f : X → S of
complex manifolds, and each differential form ω ∈ A∗(X), the form ω has proper
support over S if and only if the corresponding differential form on the stack [X]
has proper support over [S].

Now, let us generalize the fiber integral operator along submersions of complex
manifolds to the setting of stacks. Let f : X → S be a submersion of stacks, and
let ω be a differential form on X with proper support over S. Moreover, we denote
the (implicitly given) functor S → CMan by π. We will construct a differential
form

∫
f
ω on S as follows. Let s be any object of S, and let S = π(s). The functor∫

f
ω should assign to s a differential form on S. By applying the 2-Yoneda lemma,
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we can construct a cartesian diagram of the form 2.5.5, such that Φ(idS) ∼= s in
SS . We obtain a differential form on S by pulling back ω along the morphism
Ψ : X → X , and then taking the fiber integral of the resulting form along the
submersion fS : X → S.

The following lemma implies that the resulting form (
∫
f
ω)s on S does not

depend on any choices. Moreover, one can show using this lemma that the above
construction indeed defines a differential form on S.

Lemma 2.5.7. Let F : X → S be a submersion of stacks. Assume we have two
2-cartesian diagrams of stacks

X1 X X2 X

S S S S

f1

Ψ1

□ F f2

Ψ2

□ F

Φ1 Φ2

where X1, X2, S are complex manifolds, and assume that there exists a 2-
isomorphism Φ1 ⇒ Φ2, or, equivalently, that Φ1(idS) ∼= Φ2(idS) in SS . Then
for each differential form ω on X with proper support over S we have∫

f1

Ψ∗
1ω =

∫
f2

Ψ∗
2ω ∈ A∗(S).

Proof. Any 2-isomorphism Φ1 ⇒ Φ2 induces a morphism u : X1 → X2 that makes
the following cube-shaped diagram 2-commute:

X1 X

X2 X

S S

S S

f1

Ψ1

u =
F

Ψ2

F

=

Φ1

=

Φ2

f2

See [SP, Tag 02XA]. Of this cube, the front, back, and rightmost face are 2-
cartesian, so the same holds for the leftmost face, which is therefore a cartesian
square of complex manifolds. By chasing through the above diagram we find the
equality ∫

f1

Ψ∗
1ω =

∫
f1

u∗Ψ∗
2ω = id∗S

∫
f2

Ψ∗
2ω =

∫
f2

Ψ∗
2ω,

where the middle equality follows from Proposition 1.3.14.

The defining property of the fiber integral can therefore be given as follows.

62



2

2.5. Differential forms on stacks

Definition 2.5.8. Let f : X → S be a submersion of stacks, and let ω : X → A∗

be a differential form on X with proper support over S. The fiber integral of
ω along f is the unique differential form

∫
f
ω : S → A∗ on S that satisfies the

following property: for each cartesian diagram of the form 2.5.5, one has:

Φ∗
(∫

f

ω

)
=

(∫
f

ω

)
(Φ(idS)) =

∫
fS

Ψ∗ω ∈ A∗(S).

The properties of the fiber integral, as listed in Section 1.3, can be generalized
immediately to the setting of stacks. For example, the base change formula 1.3.14
generalizes as follows.

Proposition 2.5.9 (Base change formula for stacks). Consider a 2-cartesian
diagram of stacks

X ′ X

S ′ S

f ′

h

□ f

g

where f and f ′ are submersions. If ω is a differential form on X that has proper
support over S, then h∗ω has proper support over S ′, and the following equality
holds:

g∗
(∫

f

ω

)
=

∫
f ′
h∗ω.

Proof. Suppose that we are given a 2-cartesian diagram of the form

X X ′

S S ′

Ψ

□fS f ′

Φ

where X and S are complex manifolds. Then the following diagram is 2-cartesian,
too:

X X

S S

h◦Ψ

□fS f

g◦Φ

By assumption the pullback (h ◦ Ψ)∗ω = Ψ∗h∗ω has proper support over S. We
deduce that h∗ω has proper support over S ′.

Let s′ be any object of S ′, and let S be its image under the functor S ′ →
CMan. Define s = g(s′). By the 2-Yoneda lemma, we can construct 2-cartesian
diagrams as in the first part of this proof, such that Φ(idS) ∼= s′ in S ′

S . We then
have, by definition of the fiber integral along f ′:(∫

f ′
h∗ω

)
(s′) =

∫
fS

Ψ∗h∗ω ∈ A∗(S′).
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Note, moreover, that we have an isomorphism (g ◦ Φ)(idS) ∼= g(s′) = s in SS .
Applying the definition of the fiber integral along f now yields(

g∗
∫
f

ω

)
(s′) =

(∫
f

ω

)
(g(s′)) =

(∫
f

ω

)
(s) =

∫
fs′

(h ◦Ψ)∗ω ∈ A∗(S).

We find that the two differential forms evaluate equally on objects of S ′, so they
are equal.

2.5.4 Differential forms on moduli stacks
Let p : Cg → Mg be the universal family of genus g curves. In this thesis we are
mostly interested in differential forms on the moduli stacks Crg = Cg×Mg

· · ·×Mg
Cg

for r ≥ 0, where C0
g = Mg and C1

g = Cg. In this section we will see that we can
often pretend that these stacks are honest complex manifolds, when it comes to
studying differential forms on them. In particular, we will be able to view pullbacks
and fiber integrals along morphisms between these stacks in an intuitive way.

Let f : C → S be a family of genus g curves. Recall that f corresponds to a
morphism Φf : S → Mg, and that for all r ≥ 0 we have morphisms Ψrf : Cr → Crg
that make the following diagram cartesian:

Cr Crg

S Mg

Ψrf

□ p

Φf

Proposition 2.5.10. Let r ≥ 0 be an integer. Let ω be a differential form on
Crg . For every family f : C → S denote by ωf the differential form on Cr obtained
by pulling back ω along the canonical morphism Ψrf : Cr → Crg . The forms ωf are
compatible with base change: if we have a cartesian diagram

C′ C

S′ S

f ′ □ f

where f and f ′ are families of genus g curves, then the pullback of ωf along the
induced morphism C′r → Cr equals ωf ′ .
Conversely, if we are given a differential form ωf ∈ A∗(Cr) for each family f :
C → S of genus g curves, and these forms are compatible with base change, then
there is a unique differential form ω on Crg such that (Ψrf )

∗ω = ωf for each family
f : C → S of genus g curves.

In other words: differential forms on Mg are differential forms that occur
universally on the bases of families of genus g curves, differential forms on Cg
are differential forms that occur universally on the sources of families of genus g
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curves, and analogous statements hold for differential forms on Crg for r ≥ 2. We
will prove Proposition 2.5.10 later in this section.

The proposition also implies that taking pullbacks and fiber integrals along
tautological maps works ‘as expected’. Indeed, let r, s ≥ 0 be integers, let ϕ :
{1, . . . , s} → {1, . . . , r} be a map, and let pϕ : Crg → Csg be the associated tauto-
logical map. Recall that we have for each family f : C → S an induced 2-cartesian
diagram of stacks (2.4.7):

Cr Crg

Cs Csg

Ψrf

fϕ □ pϕ

Ψsf

Let ω be a differential form on Csg . By the proposition, ω induces for each family
f : C → S a differential form ωf := (Ψsf )

∗ω on Cs. Likewise, the pullback ω′ :=

(pϕ)∗ω on Crg associates to each family f : C → S a differential form ω′
f := (Ψrf )

∗ω′

on Cr. But as the above diagram 2-commutes, we simply find that ω′
f = (fϕ)∗ωf

for each family f . So, roughly speaking, under the correspondences of Proposition
2.5.10, taking pullbacks of differential forms along tautological maps works ‘as
expected’.

An analogous statement can be made for fiber integrals. Suppose ϕ is injective,
so pϕ is a submersion. Let ω be a differential form on Crg , and set ω′ :=

∫
pϕ
ω. By

the base change formula we have (Ψsf )
∗ω′ =

∫
fϕ

Ψrfω. Therefore the fiber integral
is compatible with the correspondences of Proposition 2.5.10, too.

These observations will allow us to pretend that moduli stacks behave like
honest complex manifolds in Chapter 4 when we are working with differential
forms on these stacks.

Another observation we should make is the following. Assume that g ≥ 2.
Recall from Section 2.3 that the stack Tg of families of genus g curves with Teich-
müller structure is representable by a complex manifold. We have, moreover, a
morphism of stacks Tg → Mg. This is a covering map. Indeed, let S be any
complex manifold, and let Φ : S → Mg be any morphism. Then Φ corresponds
to a family of curves f : C → S. Consider the covering P(C/S) → S as defined
in Section 2.3, and notice that the base change P(C/S)×S C → P(C/S) is a fam-
ily of genus g curves with a canonical Teichmüller structure. We hence obtain a
canonical morphism P(C/S) → Tg. The following diagram is 2-commutative:

P(C/S) Tg

S Mg
Φ

In fact, this diagram is 2-cartesian: it induces a representation of the fiber product
Tg×MgS by the complex manifold P(C/S). It follows that the morphism Tg → Mg

is representable, and a covering, and in particular a submersion. This implies that
the pullback operator

A∗(Mg) → A∗(Tg)
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is injective. We may therefore view A∗(Mg) as a subset of A∗(Tg).
Analogously, the induced morphism X r

g → Crg is a covering map for all r ≥ 1,
and we obtain inclusions

A∗(Crg) → A∗(X r
g ).

We will finish this section by proving Proposition 2.5.10. We will use the
following lemmas.

Lemma 2.5.11. Recall that the objects of the stack Cg are pairs (f, σ), where
f is a family of genus g curves and σ is a section of f . Let ω : Cg → A∗ be a
differential form. Let f : C → S be a family of genus g curves, and let Ψf : C → Cg
be the canonical morphism. Then we have an equality of differential forms

Ψ∗
fω = ω(p1,∆) ∈ A∗(C),

where p1 : C2 → C is the projection and ∆ : C → C2 is its diagonal section.
If, moreover, σ : S → C is a section of f , then

ω(f, σ) = σ∗Ψ∗
fω ∈ A∗(S).

Proof. The morphism of stacks Ψf : [C] → Cg maps the canonical object idC of [C]
to the pair (p1,∆), which proves the first statement.

For the second statement, consider the cartesian diagram with sections

C C2

S C

f

(σf,idC)

□ p1

σ

σ ∆

As ω is a functor, we find:

σ∗Ψ∗
fω = σ∗ω(p1,∆) = ω(f, σ).

Lemma 2.5.12. Assume we are given for each family f : C → S of genus g curves
a differential form ωf ∈ A∗(C), compatible with base change. Then for each family
f : C → S we have an equality

∆∗ωp1 = ωf

where p1 : C2 → C is the projection and ∆ : C → C2 is its diagonal section.

Proof. Consider the cartesian diagram

C2 C

C S

p1

p2

□ f

f
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We find: p∗2ωf = ωp1 , and pulling this equality back along the diagonal gives the
desired result.

Proof of Proposition 2.5.10. Verifying Proposition 2.5.10 is straightforward if r =
0.

Suppose, now, that r = 1. Let ω : Cg → A∗ be a differential form, and for each
family f : C → S set

ωf := Ψ∗
fω ∈ A∗(C).

If we have a cartesian diagram as in the statement of the proposition, then the
following diagram is 2-commutative:

C′

C Cg

S′

S Mg

Ψf′

f ′
Ψf

p
Φf′

Φf

f

We therefore find that the pullback of ωf along the morphism C′ → C equals ωf ′ .
Conversely, suppose that we have for each family f : C → S a differential

form ωf ∈ A∗(C), compatible with base change. We then construct a functor
ω : Cg → A∗ as follows: ω sends a pair (f, σ), with f a family and σ a section,
to the differential form σ∗ωf ∈ A∗(S). As the forms ωf are compatible with base
change, this defines a morphism of stacks, so we obtain a differential form ω on
Cg.

Lemmas 2.5.11 and 2.5.12 now imply that the two constructions we described
above are inverses.

The proof for r ≥ 2 is very similar and hence omitted.

Remark 2.5.13. Recall from Remark 2.4.9 that we may view Mg as the quotient
stack [Tg/Γg], where Γg is the mapping class group of the compact oriented genus
g surface Σg that acts on the Teichmüller space Tg. Moreover we have a canonical
submersion Tg → Mg, and the corresponding pullback operator gives an inclusion
A∗(Mg) → A∗(Tg). The image of this inclusion consists of the Γg-invariant forms
on Tg. This gives us yet another way of thinking about differential forms on Mg.

2.6 Hermitian vector bundles on moduli spaces of
curves

Vector bundles on complex manifolds are well-behaved: we can take pullbacks of
vector bundles, glue vector bundles on open coverings, and glue isomorphisms of
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vector bundles. It therefore makes sense to construct a stack of vector bundles
on complex manifolds, as follows. The stack of (rank n) vector bundles Vn has as
its objects holomorphic vector bundles E → S of rank n, and its morphisms are
pullback diagrams of vector bundles

E′ E

S′ S.

□

The functor Vn → CMan sends a vector bundle E → S to its base space S.
If X is any other stack over CMan, then a vector bundle (of rank n) on X is a

morphism of stacks X → Vn. We obtain a category Vn(X ) = Hom(X ,Vn) of rank
n vector bundles on X . If S is a complex manifold, the 2-Yoneda lemma gives
an equivalence of categories between the category Vn([S]) of vector bundles on
the stack [S] and the category (Vn)S of vector bundles on the complex manifold
S. Note that, unlike in the setting of differential forms, this is not a bijection
but ‘merely’ an equivalence of categories. This is to be expected: the pullback
of a vector bundle along a morphism of manifolds is only defined up to a unique
isomorphism.

If f : X ′ → X is a morphism of stacks, and E : X → Vn a rank n vector
bundle on X , we can define the pullback f∗E to be the rank n vector bundle
E ◦ f : X ′ → Vn on X ′. We obtain a pullback functor f∗ : Vn(X ) → Vn(X ′).

Analogously, one can define the stack of hermitian vector bundles (of rank
n) Vn in a similar way: its objects are hermitian vector bundles of rank n, and
its morphisms are base change diagrams that induce isometries on all fibers. A
hermitian vector bundle of rank n on a stack X is then a morphism of stacks
X → Vn. For each morphism f : X ′ → X we obtain a pullback functor f∗ :
Vn(X ) → Vn(X ′).

Analogous to Proposition 2.5.10 we have:

Example 2.6.1. The category Vn(Mg) of rank n vector bundles on Mg has as
its objects functors Mg → Vn over CMan. That is: a rank n vector bundle E
on Mg assigns to each family f : C → S of genus g curves a rank n vector bundle
E(f) → S, and to each cartesian square of the form

C′ C

S′ S

f ′ □ f

h

a pullback diagram
E(f ′) E(f)

S′ S,

□
h
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under the obvious compatibility criterion with respect to compositions of cartesian
squares.
Let E1, E2 be two rank n vector bundles on Mg. A morphism of vector bundles
ϕ : E1 → E2 is a morphism of functors over CMan. That is: ϕ assigns to each
family of genus g curves a morphism ϕ(f) : E1(f) → E2(f) of vector bundles over
S, such that for each cartesian diagram of curves as above the following induced
diagram is commutative:

E1(f
′) E2(f

′)

S′ E1(f) E2(f)

S

ϕ(f ′)

h

ϕ(f)

Hermitian vector bundles on Mg can be described analogously.

Analogous to the situation with differential forms, one can show that giving a
(hermitian) vector bundle on Crg is equivalent to assigning to every family f : C → S
of genus g curves a (hermitian) vector bundle on the r-fold fiber product Cr over
S, under the corresponding base change compatibility criterion.

Example 2.6.2. Suppose that f : C → S is a family of curves. On the diagonal
bundle O(∆) we have constructed a canonical hermitian metric in Chapter 1.
This construction is stable under base change, so universally we obtain a hermitian
line bundle O(∆) on C2

g .

Example 2.6.3. Let f : C → S be a family of curves. Recall that we have a
canonical isomorphism

∆∗O(∆)
∼−→ ω⊗−1

f

and this canonical isomorphism induces a canonical metric on the relative cotan-
gent bundle ω.
This construction, too, is compatible with base change. We therefore obtain a
canonical hermitian line bundle ω = ωCg/Mg

on the universal family Cg of genus g
curves.

The first Chern form is a differential form c1 on the stack of hermitian line
bundles V1, defined as follows. The functor c1 : V1 → A∗ takes a hermitian line
bundle L → S and maps it to the differential form c1(L) ∈ A∗(S), where c1(L)
denotes the first Chern form of L on the complex manifold S. This gives a well-
defined functor as taking first Chern forms on complex manifolds commutes with
taking pullbacks. It follows that for each stack X and each hermitian line bundle
L on X we can take the first Chern form of L by composing with c1 to obtain a
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differential form c1(L) on X . Notice that this construction generalizes taking the
first Chern form of a hermitian line bundle on a complex manifold.

Next, we will generalize the construction of the Deligne pairing to the setting
of stacks. Suppose that f : X → S is a morphism of stacks, and suppose moreover
that f is a family of curves. Let L,M : X → V1 be two hermitian line bundles on
Cg. We will define a hermitian line bundle ⟨L,M⟩ : S → V1 as follows. For each
object s of S over the complex manifold S choose a cartesian diagram of the form

X X

S S.

fs

Ψs

□ f

Φs

where X is a complex manifold, and Φs is such that Φs(idS) ∼= s in SS . Then
L(Ψs(idX)) and M(Ψs(idX)) are line bundles on X. Taking the Deligne pair-
ing of these line bundles along the family fs of curves then yields a line bundle
⟨L(Ψs(idX)),M(Ψs(idX))⟩ on S. The functor ⟨L,M⟩ : S → V1 maps s to this
line bundle. A morphism in S is mapped to the canonically induced pullback dia-
gram of corresponding line bundles. Note that the functor ⟨L,M⟩ : S → V1 does
depend on choices, and is only determined up to 2-isomorphism. In other words:
the Deligne pairing of L and M is a line bundle on S, defined up to isomorphism.

It follows immediately that Proposition 1.4.13 generalizes to the setting of
stacks: we have the following equality of differential forms on S:

c1(⟨L,M⟩) =
∫
f

c1(L) ∧ c1(M).

In particular, the Deligne pairing along tautological submersions Cr+1
g → Crg be-

haves as expected.

Example 2.6.4. Consider the diagonal bundle O(∆) on C2
g and the relative

cotangent bundle ω = ωCg/Mg
on Cg with their canonical metrics. We have an

equality of differential forms on Cg:∫
p1:C2

g→Cg
c1(O(∆))2 = c1(⟨O(∆), O(∆)⟩) = c1(∆

∗O(∆)) = −c1(ω).

2.7 The universal Jacobian bundle
The Jacobian of the universal family p : Cg → Mg is a stack whose objects are
pairs (f, σ) where f : C → S is a family of genus g curves and σ : S → JC/S is a
section of the Jacobian family JC/S associated to f . Morphisms (f ′, σ′) → (f, σ)
in Jg are cartesian diagrams

C′ C

S′ S

f ′ □ f
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such that the induced diagram

JC′/S′ JC/S

S′ S

σ′ σ

is commutative. The functor Jg → CMan that maps a pair (f, σ) to the base of f
gives Jg the structure of a stack. Forgetting sections yields a canonical morphism
of stacks Jg → Mg.

Recall that every family f : C → S of genus g curves gives rise to a morphism
of stacks Φf : S → Mg. It is straightforward to show that the fiber product of
stacks S ×Mg

Jg is then represented by the relative Jacobian JC/S of f . More
precisely: there is a natural morphism JC/S → Jg, and the following diagram of
stacks is 2-cartesian:

JC/S Jg

S Mg

□
Φf

It follows that the morphism of stacks Jg → Mg is a family of complex tori.
The following analogue to Proposition 2.5.10 is easily seen to hold:

Proposition 2.7.1. Let ω be a differential form on Jg. For each family f : C → S
of genus g curves let Jf → S denote the relative Jacobian family of f , and let
ωf ∈ A∗(Jf ) denote the pullback of ω along the induced morphism of stacks
Jf → Jg. The forms ωf are compatible with base change: for each cartesian
diagram

C′ C

S′ S

f ′ □ f

with f and f ′ families of genus g curves, the pullback of ωf along the induced
morphism Jf ′ → Jf equals ωf ′ .
Conversely, if we are given a differential form ωf ∈ A∗(Jf ) for each family f of
genus g curves, satisfying the necessary compatibility conditions under pullbacks,
then there is a unique differential form ω on Jg such that the pullback of ω along
the canonical morphism Jf → Jg equals ωf for each family f of genus g curves.

Similarly, (hermitian) vector bundles on Jg can be viewed as (hermitian) vector
bundles that occur universally on the relative Jacobians of all families of genus
g curves. For instance, we obtain the canonical hermitian line bundle B on the
universal Jacobian bundle Jg. This allows us to generalize the results from Section
1.4 to the universal setting. For instance, we have canonical morphisms of stacks

δ : C2
g → Jg and κ : Cg → Jg.
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Here δ maps a family f : C → S with sections σ1, σ2 : S → C to the pair (f, σ) in
Jg, with σ the section

σ : S → Jf : s 7→ [O(σ2(s)− σ1(s))] ∈ Jac(Cs).

Likewise, the morphism κ maps a family f : C → S with section σ to the pair
(f, σ) in Jg, where σ is the section

σ : S → Jf : s 7→ [O((2g − 2)σ(s))⊗ ω⊗−1] ∈ Jac(Cs).

We then have canonical isometries

δ∗B⊗−1 ∼−→ p∗1ω
⊗−1 ⊗ p∗2ω

⊗−1 ⊗O(∆)⊗−2

and
κ∗B⊗−1 ∼−→ ω−2g(2g−2) ⊗ p∗⟨ω, ω⟩p.

of hermitian vector bundles on C2
g and Cg, respectively.
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