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5| Accumulation Bias:
How to handle it as a Bayesian

Blog post
This chapter appeared as a blog post and gives more context to the claims in
Chapter 3 on accumulation bias. These claims are paradoxical, after all: how
can we possibly encounter enormous bias in our meta-analysis estimates and
still do valid Bayesian inference? This blog post tries to give some intuition
by introducing a very extreme and simple version of accumulation bias and
showing by simulation code and plots in R what counteracts the bias in a
Bayesian analysis.1

An estimated 85% of global health research investment is wasted (Chalmers and Glasziou,
2009); a total of one hundred billion US dollars in the year 2009 when it was estimated.
The movement to reduce this research waste recommends that previous study results be
taken into account when prioritizing, designing, and interpreting new research (Chalmers
et al., 2014; Lund et al., 2016). Yet any recommendation to increase efficiency this way
requires that researchers evaluate whether the studies already available are sufficient
to complete the research effort; whether a new study is necessary or wasteful. These
decisions are essentially stopping rules – or rather noisy accumulation processes, when
no rules are enforced – and unaccounted for in standard meta-analysis. Hence reducing
waste invalidates the assumptions underlying many typical statistical procedures.

Chapter 3 details all the possible ways in which the size of a study series up for meta-
analysis, or the timing of the meta-analysis, might be driven by the results within those
studies. Any such dependency introduces accumulation bias. Unfortunately, it is often im-
possible to fully characterize the processes at play in retrospective meta-analysis; the bias
cannot be accounted for.

1The introduction to this blog post is the same as in Chapter 4 as they describe the same example accumu-
lation bias but a different approach to counteracting it.
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148 ALL-IN meta-analysis

This is the second blog post about this type of bias and how to handle it. The first blog
post (Chapter 4) detailed how it can be that ALL-IN meta-analysis handles accumulation
bias. This second blog post deals with the Bayesian approach. We revisit the same example
accumulation bias process, which can be one of many influencing a single meta-analysis,
and use it to illustrate the following key points:

• Standard meta-analysis does not take into account that researchers decide on new
studies based on other study results already available. These decisions introduce
accumulation bias because the analysis assumes that the size of the study series is
unrelated to the studies within; it essentially conditions on the number of studies
available.

• A Bayesian analysis also conditions on the number of studies available, but can still
handle accumulation bias well because it compares the biased sampling distribution
under the null hypothesis to those under the alternative hypothesis.

• A Bayesian analysis can have error control under accumulation bias, but this cru-
cially depends on the ratio of null and alternative hypotheses: the prior odds. No
Bayesian analysis can handle accumulation bias when the prior odds cannot be
specified.

• Specifying prior odds might be difficult for a meta-analysis in retrospect: if informa-
tion from the study results included in the meta-analysis seeps into the prior odds,
they become invalid.

• The e-values that follow from ALL-IN meta-analysis can also be combined with prior
odds in a Bayesian analysis. They combine into pseudo-Bayes posterior odds that
allow Bayesian error control. By using e-values rather than standard Bayes factors
we can avoid specifying prior densities on the parameters within the null and the
alternative; but prior odds on H0 and H1 are still needed and have to be trusted.

• If trustworthy prior odds can be specified, pseudo-Bayes posterior odds allow for
continuous monitoring of the evidence as new studies arrive, even as new interim
results arrive. Any decision to start, stop or expand studies is possible while keeping
valid inference and Bayesian error control intact. Such decisions can be strategic:
increasing the value of new studies, and reducing research waste.

5.1 Our example: extreme Gold Rush accumulation bias
We imagine a world in which a series of studies is meta-analyzed as soon as three studies
become available. Many topics deserve a first initial study, but the research field is very
selective with its replications. Nevertheless, for significant results in the right direction,
a replication is warranted. We call this the Gold Rush scenario because after each finding
of a positive significant result – the gold in science – some research group rushes into
a replication, but as soon as a study disappoints, the research effort is terminated and
no one bothers to ever try again. This scenario was first proposed by Ellis and Stewart
(2009) and formulated in detail and under this name in Chapter 3. Here we consider
the most extreme version of the Gold Rush where finding a significant positive result not
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only makes replication more probable but even inevitable: the dependency of occurring
replications on their predecessor’s result is deterministic.

The first blog post gave a precise definition of this extreme Gold Rush accumulation bias
and showed by simulation that the sampling distribution under the null hypothesis is
affected by such a process or stopping rule. This is shown in Figure 5.1 for the fixed-effect
meta-analysis z(3)-scores for a three-study series. The theoretical sampling process, in the
pink histogram, is centered around zero and the blue histogram, under accumulation
bias process A(t), does not behave like this theoretical distribution at all. It has a smaller
variance and is shifted to the right – representing the bias. Here A(3) = 1 indicates that we
accumulate and analyze 3 studies under the Gold Rush process. (For a precise definition,
please refer to the blog post Accumulation Bias: How to handle it ALL-IN in Chapter 4.)
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Figure 5.1. Sampling distributions under the null hypothesis of fixed-effects meta-analysis
Z-scores Z (3) of three studies with and without extreme Gold Rush accumulation bias A(t),
under the assumption of equal study sample size and variance.

Bayesians claim that they can deal with any such stopping rules. So how can this be when
the sampling distribution in Figure 5.1 is so much affected?

5.2 Likelihood ratios

We first turn our attention from the meta-analysis Z (3) statistic for three studies, to a
likelihood ratio statistic LR(3) for three studies. We summarize the results of individual
studies into a single per-study Z-score (z1 for the first study, z2 for the second, etc), where
we follow the same procedure that generated Figure 5.1, but calculate for each sample
a likelihood ratio LR of two standard normal distributions, one with unit variance and
mean 1 (φ1) and one with unit variance and mean 0 (φ0):

LR(3) =
φ1 (z1, z2, z3)
φ0 (z1, z2, z3)

=
3
∏

i=1

φ1(zi)
φ0(zi)

.

Assume that we are in the scenario that only true null effects are studied in our Gold Rush
world, such that any new study builds on a false-positive result. How large would the
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bias be in our likelihood ratio statistic LR(3) if we analyze at the three-study series? We
illustrate this by simulating this Gold Rush world using the R code below.

Figure 5.2. Code to create Figure 5.3
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Figure 5.3. Sampling distributions under the null hypothesis of likelihood ratios LR(3) =
∏3

i=1φ1(Zi)/φ0(Zi) of three studies with and without extreme Gold Rush accumulation bias
A(t). Note that the x-axis is on a log scale.

Theoretical sampling process: A log-likelihood ratio of standard normal data has a
normal sampling distribution. The R code in Figure 5.2 illustrates this sampling process:
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First, a large population is simulated of possible first (Z1), second (Z2) and third (Z3)
studies from a standard normal distribution. In the line of code for LRmeta3, each in-
dex i represents a possible study series, such that c(Z1[i], Z2[i], Z3[i]) samples
an unbiased study series and calcLRmeta calculates its likelihood ratio LR(3). So the
large number of Z-scores in LRmeta3 captures the unbiased sampling distribution of the
likelihood ratios.

Gold Rush sampling process: In contrast, the code resulting in A3 selects only those
study series for which A(3) = 1 under extreme Gold Rush accumulation bias. So the large
number of LR-scores in LRmeta3.A3 capture a biased sampling distribution for LR(3) |
A(3) = 1.

Likelihood ratios under Gold Rush accumulation bias: The final lines of code in Fig-
ure 5.2 plot two histograms of LR(3) samples, one without and one with the Gold Rush
A(t) accumulation bias process, based on LRmeta3 and LRmeta3.A3 respectively. Each
is given on the log-scale such that their normal sampling distributions become apparent.
Figure 5.3 gives the result.

Here the likelihood ratio is just another statistic, with a sampling distribution that is af-
fected by the Gold Rush decision making. The sampling distributions for LR(3) on a log-
scale (so logLR(3)) in Figure 5.3 look very similar to those for Z (3) in Figure 5.1.

5.3 Two simple hypotheses
A Bayesian does not only care about the sampling distribution under the null hypothesis in
Figure 5.3 but also about the sampling distribution under a competing alternative hypoth-
esis. For simplicity, we first assume that we have two simple hypotheses, one representing
the null (Ho) and one representing the alternative (H1). Two simple hypothesis means
that each can be represented by a single sampling distribution. We again summarize the
results of individual studies into a single per-study Z-score (z1 for the first study, z2 for
the second, etc). Under the null hypothesis, these Z-scores are generated by a normal
distribution φ0 with unit variance and mean 0; under the alternative hypothesis, these
Z-scores are generated by an alternative distribution φ1 with unit variance and mean 1.

The code in Figure 5.4 follows the same steps as the code in Figure 5.2 but it repeats each
step for both both H0 and H1 in the lapply statements. We observe in Figure 5.5 that the
same bias appears for the alternative hypothesis that we observe for the null hypothesis
sampling distribution if we condition on arriving at our meta-analysis under extreme Gold
Rush accumulation bias (A(3) = 1).

As a Bayesian, we simply do not care that our estimates are biased, as long as our poste-
riors are calibrated. We will first explain what calibration means for a Bayesian before we
show that calibration stays intact under accumulation bias.
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Figure 5.4. Code to create Figure 5.5
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Figure 5.5. Sampling distributions under the null (H0) and alternative (H1) hypothesis
of likelihood ratios LR(3) =

∏3
i=1φ0(Zi)/φ0(Zi) of three studies with and without extreme

Gold Rush accumulation bias A(t). Note that the x-axis is on a log scale.
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Bayesian calibration of posterior odds and Bayesian error control
No accumulation bias To introduce the notion of Bayesian calibration of the posterior
odds and Bayesian error control, we first turn to a situation without accumulation bias.
Here we consider the posterior odds, but our discussion is closely related to the literature
on Bayes factor calibration (De Heide and Grünwald, 2021; Hendriksen et al., 2020). We
obtain the posterior odds by multiplying the likelihood ratio LR(3) (LRmeta3) with a prior
odds π(H1)/π(H0) as follows:

π (H1 | z1, z2, z3)
π (H0 | z1, z2, z3)

=
P (z1, z2, z3 |H1) ·π(H1)
P (z1, z2, z3 |H0) ·π(H0)

=
φ1 (z1, z2, z3) ·π(H1)
φ0 (z1, z2, z3) ·π(H0)

= LR(3) ·
π(H1)
π(H0)

.

Figure 5.6. Code to create Figure 5.7
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Figure 5.7. Sampling distributions under the null (H0) and alternative (H1) hypothesis of
π(H1 | z1,z2,z3)
π(H0 | z1,z2,z3)

= LR(3) · (1/10) with accumulation bias. The vertical line indicates the threshold
for the posterior odds at r = 16. Note that the x-axis is on a log scale.
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We take the unbiased sample of likelihood ratios in LRmeta3 from the code Figure 5.4
and obtain the posterior odds (postOdds) in the code in Figure 5.6 for each likelihood
ratio by multiplication with a prior odds odds of (1/10):

π (H1 | z1, z2, z3)
π (H0 | z1, z2, z3)

= LR(3) ·
π(H1)
π(H0)

= LR(3) · (1/10).

The result of this code is given by Figure 5.7 in two histograms for our sampled poste-
rior odds. One using the statement ..density.. and one using ..count... The first
normalizes the histogram bars such that they add up to one. This is the same plot as Fig-
ure 5.5, just with the x-axis scaled by (1/10) because we show posterior odds instead
of the likelihood ratio. The second histogram does something different: it just counts
the samples and so the histogram bars scale with the number of samples we take in the
sample statement in calculating LRmeta3 in Figure 5.4.

Bayesian calibration With calibration of the Bayes posterior odds we mean that if we
sample from both H1 (which is φ1 in our example) and H0 (which is φ0 in our exam-
ple) and look at a posterior odds with value opost, observing this value for the posterior
odds makes (H1) our alternative hypothesis opost times more probable than (H0) our null
hypothesis. In other words: the posterior odds of obtaining posterior odds of opost are
opost.

P
�

H1

�

�

�

π(H1 | Z1,Z2,Z3)
π(H0 | Z1,Z2,Z3)

= opost

�

P
�

H0

�

�

�

π(H1 | Z1,Z2,Z3)
π(H0 | Z1,Z2,Z3)

= opost

�
= opost

because
P
�

π(H1 | Z1,Z2,Z3)
π(H0 | Z1,Z2,Z3)

= opost

�

�

�H1

�

P
�

π(H1 | Z1,Z2,Z3)
π(H0 | Z1,Z2,Z3)

= opost

�

�

�H0

�
·
π(H1)
π(H0)

= opost.

We can observe Bayesian calibration in the count plot in Figure 5.7, for example by looking
at a posterior odds of 1.00 that has exactly the same count in both the histogram generated
by H1 and the one by H0, which means that the ratio of counts is 1.00. This ratio of counts
is calibrated, while the ratio of densities is not. The reason is that the ratio of densities
does not take into account the prior odds: we take ten times as many samples from H0
as from H1 in the code in Figure 5.4. This agrees with the prior odds of (1/10) that we
assume in calculating the posterior odds.

The ratio of densities gives:

P
�

π(H1 | Z1,Z2,Z3)
π(H0 | Z1,Z2,Z3)

= opost

�

�

�H1

�

P
�

π(H1 | Z1,Z2,Z3)
π(H0 | Z1,Z2,Z3)

= opost

�

�

�H0

�
,
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while the ratio of counts gives:

P
�

π(H1 | Z1,Z2,Z3)
π(H0 | Z1,Z2,Z3)

= opost

�

�

�H1

�

P
�

π(H1 | Z1,Z2,Z3)
π(H0 | Z1,Z2,Z3)

= opost

�

�

�H0

�
·
π(H1)
π(H0)

.

Because we look at ratios, as we do if we look at odds, the scale of the counts in the figure
does not matter. For simplicity, we are abusing notation a little bit and referring with
probabilities P to densities, because our histograms of sampling distributions discretize
our statistics in small intervals to give a probability instead of a density.

Bayesian error control From the calibration of the Bayes posterior odds we can obtain
a notion of Bayesian error control as follows:

P
�

π(H1 | Z1,Z2,Z3)
π(H0 | Z1,Z2,Z3)

≥ r
�

�

�H1

�

P
�

π(H1 | Z1,Z2,Z3)
π(H0 | Z1,Z2,Z3)

≥ r
�

�

�H0

�
·
π(H1)
π(H0)

≥ r.

This Bayesian calibration is indeed the case for counts of LR(3) (LRmeta3) in Figure 5.7
with the vertical dashed line r = 16. Figure 5.8 gives the calculation.

Figure 5.8. Code to show Bayesian error control for a threshold of r = 16 for the Bayes
posterior odds.

P
�

π(H1 | Z1,Z2,Z3)
π(H0 | Z1,Z2,Z3)

≥ r
�

�

�H1

�

P
�

π(H1 | Z1,Z2,Z3)
π(H0 | Z1,Z2,Z3)

≥ r
�

�

�H0

�
·
π(H1)
π(H0)

= 31.59 ≥ r = 16.

If we use r as a threshold to decide that we believe H1 is true and H0 is false, the probability
that we make an error is r smaller than the probability that we are right. In other words:
if we use r as a threshold for the posterior odds, the odds for a correct decision are at
least r.

5.4 Bayesian error control under extreme Gold Rush accumulation bias
We can make the same plots under our scenario of extreme Gold Rush accumulation bias
and observe calibration. In the count plot in Figure 5.7, the posterior odds of 1.0, for
example, has exactly the same count in the histogram for H0 as it has for H1, which
means that the ratio of counts is 1.0.
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Figure 5.9. Code to create Figure 5.10
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Figure 5.10. Sampling distributions under the null (H0) and alternative (H1) hypothesis of
π(H1 | z1,z2,z3)
π(H0 | z1,z2,z3)

= LR(3) · (1/10) with accumulation bias. The vertical line indicates the threshold
for the posterior odds at r = 16. Note that the x-axis is on a log scale.
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Now the ratio of densities gives:

P
�

π(H1 | Z1,Z2,Z3,A(3)=1)
π(H0 | Z1,Z2,Z3,A(3)=1) = opost

�

�

�A(3) = 1, H1

�

P
�

π(H1 | Z1,Z2,Z3,A(3)=1)
π(H0 | Z1,Z2,Z3,A(3)=1) = opost

�

�

�A(3) = 1, H0

�
,

while the ratio of counts gives:

P
�

π(H1 | Z1,Z2,Z3,A(3)=1)
π(H0 | Z1,Z2,Z3,A(3)=1) = opost

�

�

�A(3) = 1, H1

�

P
�

π(H1 | Z1,Z2,Z3,A(3)=1)
π(H0 | Z1,Z2,Z3,A(3)=1) = opost

�

�

�A(3) = 1, H0

�
·

P (A(3) = 1 |H1)
P (A(3) = 1 |H0)

·
π(H1)
π(H0)

.

What counteracts the accumulation bias is illustrated in Figure 5.12. The posterior odds
conditions on accumulating and analyzing three studies, A(3) = 1, which means that we
are in a very biased sample. But because this situation occurs much more often under H1
than under H0

P (A(3) = 1 |H1)>> P (A(3) = 1 |H0) ,

our biased sample statistic LR(3) | A(3) = 3 can still achieve calibration if we take into
account our prior odds.

In the ratio of counts, we also still have Bayesian error control under extreme Gold Rush
accumulation bias:

Figure 5.11. Code to show Bayesian error control for a threshold for the Bayes posterior
odds of r = 16.

P
�

π(H1 | Z1,Z2,Z3,A(3)=1)
π(H0 | Z1,Z2,Z3,A(3)=1) ≥ r

�

�

�A(3) = 1, H1

�

P
�

π(H1 | Z1,Z2,Z3,A(3)=1)
π(H0 | Z1,Z2,Z3,A(3)=1) ≥ r

�

�

�A(3) = 1, H0

�
·
P (A(3) = 1 |H1)
P (A(3) = 1 |H0)

·
π(H1)
π(H0)

= 29.88 ≥ r = 16.

We don’t have to know the accumulation bias
How can it be that we never have to include anything about A(3) in our calculations? The
x-axis label of Figure 5.10 states that

π (H1 | z1, z2, z3, A(3) = 1)
π (H0 | z1, z2, z3, A(3) = 1)

=
π (H1 | z1, z2, z3)
π (H0 | z1, z2, z3)

,
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Figure 5.12. Likelihood ratios LR(1),LR(2),LR(3) when studies accumulate from 1 to 3 under
the extreme Gold Rush accumulation bias process. Data simulated under prior odds
H1 : H0 = 1 : 10. Note that the y-axis is logarithmic.

Figure 5.13. Code to create Figure 5.12

which follows because
π (H1 | z1, z2, z3, A(3) = 1)
π (H0 | z1, z2, z3, A(3) = 1)

=
P (z1, z2, z3, A(3) = 1 |H1) ·π(H1)
P (z1, z2, z3, A(3) = 1 |H0) ·π(H0)

=
φ1 (z1, z2, z3) · A(3 | z1, z2, z3) ·π(H1)
φ0 (z1, z2, z3) · A(3 | z1, z2, z3) ·π(H0)

=
φ1 (z1, z2, z3) ·π(H1)
φ0 (z1, z2, z3) ·π(H0)

=
π (H1 | z1, z2, z3)
π (H0 | z1, z2, z3)

= LR(3) ·
π(H1)
π(H0)

.
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This is the reason that given the sample values z1, z2, z3, the only calculations we per-
formed were to get LR(3) in the LRmeta3.A3 statement in Figure 5.2. We obtained our
posterior odds in Figure 5.11 by simply multiplying LR(3) with the prior odds (1/10).

Given that we know the data, the probability of accumulating our studies is the same
under the null and the alternative hypothesis and drops out of the ratio. We do not need
to know what these are to calculate our posterior odds. What matters is how often we
are in the null and the alternative situation: our prior odds. This is known as stopping
rule independence (Hendriksen et al., 2020; Berger and Berry, 1988). If we know our
prior odds, we do not need to know the accumulation bias process under which our study
results z1, z2, z3 were obtained (the probability A(3 | z1, z2, z3), see Chapter 3). We can
just calculate our posterior odds in the usual way and decide on a threshold r on that
posterior odds.

Prior odds
How often we reach A(3) = 1 under H0 in comparison to under H1 needs a statement of
the relative occurrences of H0 and H1: a prior oddsπ(H1)/π(H0). In the code in Figure 5.4
and Figure 5.13 we sample ten times as many null effects as alternative effects, so we
assume that for every clinical trial that studies an effective treatment π(H1), we have
π(H0)/π(H1) = 10 clinical trials that study an ineffective treatment, so π(H1)/π(H0) =
1/10. In Figure 5.12 we show that even if ten times as many studies observe data from
the null hypothesis, still a lot more from the alternative hypothesis make it to a three-
study-series under extreme Gold Rush accumulation bias.

5.5 The prior odds are crucial
The Bayesian calibration is driven by the fact that accumulation bias processes like the
extreme Gold Rush make it much more likely for study series generated by H1 to reach the
meta-analysis than for study series generated by H0. How much more depends on how
many times either of them can try. As a Bayesian meta-analyst, we can think of this as a
property of the research field that we might know and include in the analysis. How many
initial studies are measuring a true effect from H1 for each one that measures a null effect
from H0?

Bayesian calibration does rely crucially on getting the prior odds right. If we set our prior
odds to a default 1 : 1 and there is extreme Gold Rush accumulation bias in our field, we
are actually assuming that hardly any series of clinical trials studying a null effect will
accumulate three studies. Figure 5.14 shows what we are assuming in this case. For these
plots we have set the following in the code in Figure 5.4 and Figure 5.13
numSim.study <- c("H0" = numSim.study, "H1" = numSim.study/1)
and we calculate the posterior odds based on our assumed 1 : 1 prior odds:

π (H1 | z1, z2, z3, A(3) = 1)
π (H0 | z1, z2, z3, A(3) = 1)

=LR(3) ·
π(H1)
π(H0)

= LR(3) ·
1
1
= LR(3) . (5.1)

Figure 5.14 shows that assuming 1:1 prior odds in the calculations based on our data,
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Figure 5.14. Likelihood ratios LR(1),LR(2),LR(3) when studies accumulate from 1 to 3 under
the extreme Gold Rush accumulation bias process. Data simulated under prior odds H1 :
H0 = 1 : 1. Note that the y-axis is logarithmic.
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Figure 5.15. Sampling distributions under the null (H0) and alternative (H1) hypothesis
of LR(3) · (1/1) under extreme Gold Rush accumulation bias. The upper panels are sampled
using H1 : H0 = 1 : 10 and the lower panels using H1 : H0 = 1 : 1. The upper right
panel shows that mistakenly assuming 1 : 1 in the posterior odds LR(3) · (1/1) does not give
calibration under H1 : H0 = 1 : 10, e.g. LR(3) = 10 does not happen ten times as often under
H0 than under H1. Note that the x-axis is on a log scale.
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when the true number of null hypotheses studied is ten times larger – the ratio in our
research field is 1:10 – breaks the calibration of our posterior odds. For example, for an
incorrectly calculated posterior odds LR(3) · (1/1) = 10, we are in a situation that happens
just as often under the null as under the alternative (the top-right panel of Figure 5.15)
which should not give much evidence in favor of the alternative. As a result, also Bayesian
error control breaks.

Setting prior odds is not that easy
We do want to stress that in the setting of retrospective meta-analysis, where the results
of individual trials can be known to the meta-analyst before performing the analysis, it
might be very difficult to establish prior odds that are not influenced by the data. In
such scenarios, relying upon field-specific priors, e.g. established by prediction markets
involving many peers (Potthoff, 2007; Dreber et al., 2015), might achieve more reliable
prior odds.

What is more, these prior odds need to represent the ratio of alternative to null initial
studies and not the ratio in meta-analyses. Reaching enough studies – e.g. t = 3 under
extreme Gold Rush – and doing the meta-analysis is part of the data in the likelihood, not
part of the prior. We encounter trouble with Bayesian calibration when we use different
priors for individual studies than we use for a meta-analysis.

Doing so is appealing, though, since meta-analyses seem to be wrong less often than in-
dividual studies. The famous paper “Why Most Published Research Findings Are False”
(Ioannidis, 2005b), for example, specifies different prior odds for a clinical trial analysis
in comparison to a meta-analysis of clinical trials. This was the paper that introduced the
concept of field-specific prior odds to a large audience as “Ratio of True to Not-True Rela-
tionships (R)”. The different types of prior odds include one for “Adequately powered RCT
with little bias” and one for “Confirmatory meta-analysis of good-quality RCTs”. The first
is set to an R of 1:1 and the second R to 2:1. This means that information seeped into the
prior odds about what type of RCTs end up in meta-analyses; getting to the meta-analysis
stage is assumed to be more likely under the alternative than the null otherwise the two
prior odds would be the same. The meta-analysis prior odds that Ioannidis (2005b) speci-
fies are essentially P(A(t)=1 |H1)

P(A(t)=1 |H0)
·π(H1)
π(H0)

with P (A(1) = 1 |H1) = 1 and P (A(1) = 1 |H0) = 1 for
primary studies. This invalidates the stopping rule principle. Including information about
the accumulation process into the prior biases the Bayes posterior and requires that the
same information is included in the likelihood as well for Bayesian calibration. We need
to know the accumulation bias process A(t) in that case, which is usually impossible.

5.6 Beyond simple hypotheses
The situation with two simple hypotheses that we discussed so far, where each trial is ei-
ther collecting data from φ0 or φ1, is not very realistic. More generally, we like to vary the
parameter µ of our normal distributionφµ and allow for all possible normal distributions.

We assume we are given a minimum relevant effect size µmin as well as a µ0 < µmin, which
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respectively define the alternative hypothesis H1 and the null hypothesis H0:

H0 = {φµ : µ≤ µ0}, H1 = {φµ : µ≥ µmin}.

We can distinguish two types of prior probabilities: π(H1) and π(H0) for the hypotheses
H1, H0, and π1(µ) and π0(µ) for {µ : µ ≥ µmin} and {µ : µ ≤ µ0} respectively. Instead
of a likelihood ratio of two simple hypotheses, we specify a Bayes Factor of two Bayes
marginal distributions, using the priors on µ:

BF(z1, . . . , zt) =
φ̄1(z1, . . . , zt)

φ̄0(z1, . . . , zt)
,

with φ̄1(z) =

∫

φµ(z)π1(µ)dz and φ̄0(z) =

∫

φµ(z)π0(µ)dz;

φ̄1(z1, . . . , zt) =
t
∏

i=1

φ̄1(z) and φ̄0(z1, . . . , zt) =
t
∏

i=1

φ̄0(z).

If π j puts all its mass on a particular element µ∗, then φ̄ j(z) = φµ∗(z).

Combining the Bayes Factor with the prior odds gives us the posterior odds, that just like
the earlier posterior odds for two simple hypotheses, does not depend on the accumulation
bias process for reaching e.g. A(3) = 3.

π(H1 | z1, z2, z3, A(3) = 1)
π(H0 | z1, z2, z3, A(3) = 1)

=
φ̄1(z1, z2, z3) · A(3 | z1, z2, z3)

φ̄0(z1, z2, z3) · A(3 | z1, z2, z3)
·
π(H1)
π(H0)

(5.2)

=
φ̄1(z1, z2, z3)

φ̄0(z1, z2, z3)
·
π(H1)
π(H0)

(5.3)

=BF(z1, z2, z3) ·
π(H1)
π(H0)

. (5.4)

The pseudo-Bayes posterior odds
What if we cannot come up with a good prior on the µs? In that case we may want to
‘represent’ the set of distributions H0 and H1 by their ‘least extreme elements’ respectively,
i.e. φµ0

and φµmin
. This gives the pseudo-Bayes posterior odds,

πps(H1 | z1, z2, z3)
πps(H0 | z1, z2, z3)

=
φµmin

(z1, z2, z3)

φµ0
(z1, z2, z3)

·
π(H1)
π(H0)

= BFps(z1, z2, z3) ·
π(H1)
π(H0)

.

which is just the ‘real’ posterior odds (5.2) that we would get if we had put all our prior
mass on µmin and µ0 respectively.

We can use the ‘pseudo-Bayes posterior odds’ when (with a Bayesian mindset) we have
no good idea about ‘good’ priors on the µs or (with a frequentist mindset) about what
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value of µ may be true if H1 is true, or what value of µ may be true if H0 is true. Note in
particular that in the pseudo-Bayes posterior odds, we use the same priors on H0 and H1
as in the ‘real’ posterior, but different, degenerate priors on the µs.

The GROW e-values that we calculate in ALL-IN meta-analysis (Chapter 1) are pseudo-
Bayes factors BFps. So in ALL-IN meta-analysis, we can very simply extend our conclusions
with Bayesian statements by combining our e-values with prior odds to obtain pseudo-
Bayes posterior odds. Moreover, with these pseudo-Bayes posterior odds, we can also
obtain Bayesian error control.

5.7 Pseudo-Bayesian error control
Throughout this blog post we have shown that if we get the prior odds right, the posterior
odds is calibrated under accumulation bias, i.e.:

P
�

π(H1 | Z1,Z2,Z3,A(3)=1)
π(H0 | Z1,Z2,Z3,A(3)=1) = opost

�

�

�A(3) = 1, H1

�

P
�

π(H1 | Z1,Z2,Z3,A(3)=1)
π(H0 | Z1,Z2,Z3,A(3)=1) = opost

�

�

�A(3) = 1, H0

�
·

P (A(3) = 1 |H1)
P (A(3) = 1 |H0)

·
π(H1)
π(H0)

=
P
�

π(H1 | Z1,Z2,Z3)
π(H0 | Z1,Z2,Z3)

= opost

�

�

�A(3) = 1, H1

�

P
�

π(H1 | Z1,Z2,Z3)
π(H0 | Z1,Z2,Z3)

= opost

�

�

�A(3) = 1, H0

�
·

P (A(3) = 1 |H1)
P (A(3) = 1 |H0)

·
π(H1)
π(H0)

= opost

such that
P
�

H1

�

�

�

π(H1 | Z1,Z2,Z3)
π(H0 | Z1,Z2,Z3)

= opost, A(3) = 1
�

P
�

H0

�

�

�

π(H1 | Z1,Z2,Z3)
π(H0 | Z1,Z2,Z3)

= opost, A(3) = 1
�
= opost.

The outer probabilities combine a prior odds with a likelihood ratio of the observing
the posterior odds of opost, which is a statistic of our data, with the likelihood ratio of
observing a three study series (A(3) = 1), also part of the data. The likelihood ratio of the
data combined with prior odds forms posterior odds for the hypotheses conditioned on
the data.

We can use this fact of calibration to specify the Bayesian error control further for the
pseudo-Bayes posterior odds. We define a threshold on the pseudo-Bayes posterior odds
r and decide to reject the null hypothesis and believe the alternative if

πps(H1 | z1, . . . , zt)
πps(H0 | z1, . . . , zt)

≥ r.

We can set a threshold such that if we cross it, we reject the null hypothesis and denote so
by REJECT [A(t) = 1, r] based on crossing the threshold with our pseudo-Bayes posterior
odds conditioned on accumulating t studies.

For a subset of all accumulation bias processes A(t) which includes the extreme Gold rush
and variations of it, we have the following: for all t = 1,2, . . . r > 1 : the true Bayes
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posterior odds – so not only the pseudo-Bayes posterior odds! – of H0 satisfies:

π (H1 | REJECT [A(t) = 1, r])
π (H0 | REJECT [A(t) = 1, r])

≥ r. (5.5)

This expresses that, as long as the priors on H0 and H1 are chosen correctly, we have
Bayesian error control for the pseudo-Bayes posterior odds: a Bayesian’s real posterior
odds of an incorrect decision can be no larger than the odds to make an error according
to the pseudo-Bayes posterior odds on {H0, H1}, even though that the priors on the µs
are, according to that same Bayesian, incorrect. Note that this is merely a ‘one-sided’
calibration, but the inequalities go the right (i.e. practically useful) way. The result holds
not just for the normal location family but for a general class of models including all 1-
dimensional exponential families and the 1-sample t-test setting. This general result is
stated and proved in Appendix Section 5.A and Section 5.B.

5.8 Conclusion
In our imaginary world of extreme Gold Rush accumulation bias, the sampling distribu-
tion of the meta-analysis Z-score behaves very different from the sampling distribution
assumed to calculate p-values and confidence intervals. A meta-analysis sampling dis-
tribution conditions on the available number of studies, which means that we are in a
situation that is influenced by a selection effect: only some series get there, not others.
Bayesian analysis also conditions on the number of studies and therefore also likelihood
ratios and Bayes factors have biased sampling distributions. For Bayesian error control,
however, we do not need unbiased sampling; we need calibration.

Some accumulation bias is at play in almost any retrospective meta-analysis. Bayesian cal-
ibration holds no matter the accumulation bias process, as long as the prior odds are trust-
worthy. The e-values from ALL-IN meta-analysis can also be used to combine with prior
odds and obtain pseudo-Bayes posterior odds to obtain Bayesian error control through
calibration, although now calibration may only hold for a subset of all accumulation bias
processes – which however include the extreme Gold Rush scenario. This also allows for
continuous monitoring; multiple testing is no problem, as long as the prior odds are cor-
rect. Setting trustworthy prior odds in meta-analysis is not easy, however. As long as the
prior odds can be trusted, a Bayesian perspective on meta-analysis will reduce research
waste by allowing efficient data-driven decisions – not letting them invalidate the infer-
ence – and still analyze the posterior odds for any particular meta-analysis, conditioned
on arriving at the number of studies so far.

Code availability
This blogpost’s R code is available on https://osf.io/p2rtw/ (Ter Schure, 2021a).

https://osf.io/p2rtw/
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Appendices

5.A Pseudo-Bayes posterior odds for exponential families and beyond

5.A.1 Exponential families
LetM = {Pδ : δ ∈ ∆} with ∆ a (possibly unbounded) open interval in R represent a 1-
dimensional exponential family of probability distributions for some random variable Y ,
given in its mean-value parameterization. While this already includes important models
such as the normal location family (z-test), the Bernoulli model, the Poisson model, and so
on, we will later, in Theorem 5.B.1, extend our result to some multi-dimensional families
that are not of exponential form. Each Pδ has a density (for continuous-valued Y ) or mass
function (for discrete-valued Y ) pδ. Pδ and pδ are extended to i.i.d. sequences by taking
product distributions.

We assume we are given two parameter values δ− and δ+ in ∆ with δ− < δ+ which
respectively define the alternative hypothesis H1 and the null hypothesis H0:

H0 = {Pδ : δ ∈∆0}, ∆0 = {δ ∈∆ : δ ≤ δ−}, H1 = {Pδ : δ ∈∆1}, ∆1 = {δ ∈∆ : δ ≥ δ+}.

In the case treated in the main text, M denotes the normal location family, δ+ = µmin
is the minimum clinically relevant effect size, and δ− = µ0. The fact that the treatment
below is entirely symmetric in δ+ and δ− (if we swap δ+ and δ− and take the reciprocal of
all Bayes factors and posterior odds, we get the same result) motivates the switch of nota-
tion. Still, in practice we will often have δ+ interpretable as minimal effect size, ∆ = R+0
and δ− = 0. We need the concept of a stopping time. We define this in a standard way
in terms of a randomized stopping rule. This is any function f from outcome sequences
of arbitrary length to [0,1]. The interpretation is that for any actually generated initial
sequence of data yn = y1, y2, . . . , yn, we toss an independent coin with bias f (yn) after
having observed yn. If the coin lands tails, we stop. If not, we generate yn+1 and repeat
the procedure for n+ 1, etc. The stopping time τ is then the random variable set equal
to the smallest n at which the coin has landed tails. Gold Rush accumulation bias (Chap-
ter 3) defines such a stopping rule. The extreme version of Gold Rush accumulation bias
presented in this blog post is a non-randomized version of this stopping rule.

5.A.2 The Bayes and the pseudo-Bayes posterior
We can distinguish two types of prior probabilities: π(H1) and π(H0) for the hypotheses
H0, H1, and Π1 and Π0 for the parameter spaces ∆1 = {δ : δ ≥ δ+} and ∆0 = {δ : δ ≤
δ−}. Π j can be interpreted as the prior of δ conditioned on it lying in ∆ j; in general, we
will allow priors that do not restrict δ to lie in ∆ j (i.e. we may have Π(δ 6∈ ∆0 ∪∆1) =
π′ > 0 and then π(H1) + π(H0) + π′ = 1). We can calculate conditional and posterior
probabilities and odds in the standard way using Bayes’ theorem: illustrating a particular
case we need later on, for general measurable events E1,

π(H1 | E1)
π(H0 | E1)

=
P̄1(E1)
P̄0(E1)

·
π(H1)
π(H0)

, (5.A.1)
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where P̄j is the Bayes marginal distribution based on the prior Π j . If Π j has density π j ,
then P̄j(E ) =

∫

Pδ(E )π j(δ). IfΠ j puts all its mass on a particular element δ∗, then P̄j(E ) =
Pδ∗(E ).

In our setting, we observe a sequence y1, . . . , yn, where n is itself the value that the stop-
ping time τ (whose general underlying definition in terms of some stopping rule f may
be unknown to us) takes; so we really observe Y n = yn;τ= n. Because of the well-known
fact that the Bayes posterior does not depend on the definition of the stopping time as
long as it is defined in the (standard) way above (Hendriksen et al., 2020), we have for all
n that π(H1 | Y n = yn,τ = n) = π(H1 | Y n = yn). i.e. if a variable stopping time is used
and we happen to stop at τ = n, the posterior is the same as if the sample size had been
fixed in advance to n. This allows to express the Bayes factor BF(Y τ) and the posterior
odds π(H1 | Y τ)/π(H0 | Y τ) compactly as follows:

p̄ j(Y
τ) =

∫

δ∈∆+
pδ(Y

τ)dπ j(δ) , for all n, for j ∈ {0,1} .

BF(Y τ) =
p̄1(Y τ)
p̄0(Y τ)

,
π(H1 | Y τ)
π(H0 | Y τ)

= BF(Y τ) ·
π(H1)
π(H0)

.

where we again assume thatΠ j has densityπ j; again, ifΠ j puts all its mass on a particular
element δ∗, then p̄ j(Y τ) = pδ∗(Y τ).

The pseudo-Bayes posterior odds What if we cannot come up with a good prior on
∆0 and/or∆1? In that case we may want to ‘represent’ the set of distributions H0 and H1
by their ‘least extreme elements’ respectively, i.e. Pδ− and Pδ+ . This gives the pseudo-Bayes
posterior odds (given E1,E2 based on a prior that was already conditioned on E1)

πps(H1 | E1,E2)
πps(H0 | E1,E2)

=
Pδ+(E1 | E2)
P̄δ−(E1 | E2)

·
π(H1 | E2)
π(H0 | E2)

, (5.A.2)

which is just the ‘real’ posterior odds that we would get if we had put all our prior mass
on δ+ and δ− respectively. Similarly we get the pseudo-Bayes factor

BFps(Y τ) =
pδ+(Y τ)
pδ−(Y τ)

.

We can use the ‘pseudo-Bayes factor’ when (with a Bayesian mindset) we have no good
idea about what might be a ‘good’ prior conditioned on δ ∈ ∆+ and/or conditioned on
δ ∈ ∆− or (with a frequentist mindset) about what value of δ in ∆+ may be true if H1
is true, or what value of δ in ∆− may be ‘true’ if H0 is true. Based on the pseudo-Bayes
factor, we can also calculate the pseudo-Bayes posterior odds as if the Bayes factor were
correct:

πps(H1 | Y τ)
πps(H0 | Y τ)

= BFps(Y τ) ·
π(H1)
π(H0)

. (5.A.3)
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In case π(H0) +π(H1) = 1, the pseudo-Bayes posterior probability of H0 is given by:

πps(H0 | Y τ) =
pδ−(Y τ) ·π(H0)

pδ+(Y τ) ·π(H1) + pδ−(Y τ) ·π(H0)
=

1
BFps(Y τ) · (π(H1)/π(H0)) + 1

.

Note in particular that in the pseudo-Bayes posterior, we use the same priors on H0 and
H1 as in the ‘real’ posterior, but different, degenerate priors on ∆0 and ∆1.

5.A.3 The Result
Fix a significance threshold r > 1 and let τ be an arbitrary stopping time. We will reject
H0 if πps(H1 | Y τ)/πps(H1 | Y τ) ≥ r, and accept H0 otherwise. Let REJECTτ,r be the
event that we reject at level r when using stopping time τ (importantly, in practice it
may be unknowable what stopping rule τ is actually being used; to calculate posterior
probabilities we only need to know the observed data Y τ and the sample size of the
observed data, and not the general definition of τ, i.e. we do not need to know if we
would have stopped at the same n if the data had been different).

Theorem 5.A.1. Let {Pδ : δ ∈ ∆} represent a 1-dimensional exponential family as above.
Fix some δ− < δ+ and define H1, H0 and BFps correspondingly; also fix some arbitrary priors
π(H0),Π0 on ∆0, Π1 on ∆1. We have the following: for each n and each r > 1 and each
stopping time τ such that

P̄1(τ= n)
Pδ+(τ= n)

·
Pδ−(τ= n)
P̄0(τ= n)

≥ 1, (5.A.4)

we have: the posterior odds given rejection at time n are well-defined and satisfy

π
�

H1 | REJECTτ,r ,τ= n
�

π
�

H0 | REJECTτ,r ,τ= n
� ≥ r. (5.A.5)

The theorem implies the statement (5.5) in the main text for the Gaussian location family.
The t there corresponds to the n here, and the statement A(t) = 1 to τ = n; the process
A(t) defines the stopping rule τ. The required condition (5.A.4) is easily seen to hold
for the Gold rush scenario in which we evaluate invariably at t(= n) = 3: inspecting the
definition of A(t), we see that the probability of reaching time 3 (i.e. A(3) = 1) under
Pδ increases monotonically with δ if δ represents the mean of a normal distribution. P̄1
being a mixture of Pδ ’s with δ ≥ δ+ and P̄0 being a mixture of Pδ ’s with δ ≤ δ0, (5.A.4)
then follows.

In caseπ(H0)+π(H1) = 1 (we rule out that δ does not lie in∆0∪∆1), we can alternatively
work on the scale of probabilities rather than probability ratios and fix a significance level
0 < α < 1/2 and reject H0 if πps(H0 | Y τ) ≤ α. This is equivalent to the event rejectτ,rα
with rα = (1−α)/α. (5.A.5) then expresses that for each 0< α < 1/2

π
�

H0 | REJECTτ,rα

�

≤ α. (5.A.6)
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The theorem expresses that, as long as the priors on H0 and H1 are chosen correctly, the
error probabilities of decisions on the pseudo-Bayes posterior are calibrated: a Bayesian’s
real posterior odds of the decision ‘reject’ being correct (given by conditioning the true
prior on the observed stopping time and the fact that at that stopping time, we rejected)
can be no smaller than the posterior odds that this decision is correct according to the
pseudo-Bayes posterior distribution on {H0, H1}, even though that distribution is, accord-
ing to that same Bayesian, incorrect. Note that this is merely a ‘one-sided’ calibration, but
the inequalities go the right (i.e. practically useful) way.

In a more frequentist interpretation, we may think of π(H0) as the ‘population frequency’
that the null is true in the particular field of science that we are working in. Whenever
in a study H0 is true, a particular δ0 ∈ ∆0 will be ‘true’ and generate the data , and
whenever in a study H1 is true, a particular δ1 ∈∆1 will be ‘true’ and generate the data.
Theorem 5.A.1 expresses that our conditional error probability for rejecting/accepting H0
is smaller than α, even though we do not know the true δ0 and δ1’s.

From both a Bayesian and a frequentist stance, the result says that as long as our prior
π(H0) on H0 reflects what happens in the real world and we use if for reject/accept decisions
of the kind above, it is o.k. to use the pseudo-Bayes posterior, and we can get away with
not having a ‘correct’ or ‘better’ prior on the parameters in ∆+ and ∆−.

5.B Extension and Proof of Theorem 5.A.1
Our result holds more generally than for i.i.d. exponential families. Namely, we can more
generally let M = {Pδ,γ : δ ∈ ∆,γ ∈ Γ } with ∆ a (possibly unbounded) interval in R
denote a family of distributions for some random process U1, U2, . . .. Again, δ denotes
the 1-dimensional parameter of interest (e.g. an effect size) and now γ denotes potential
nuisance parameters. We assume again a δ+ and a δ− < δ+ are given, defining the null
and alternative hypotheses

H0 = {Pδ,γ : δ ≤ δ−,γ ∈ Γ } H1 = {Pδ,γ : δ ≥ δ+,γ ∈ Γ }.

Our result is valid for general families of this form, if furthermore the following holds:
there exists a sequence of random vectors Y1, Y2, . . . such that Yn is determined (can be
written as a function of) Un = (U1, . . . , Un) and the following two properties hold:

Irrelevance of γ and Full Support The distribution P(n)
δ

of Y n under process Pδ,γ is the

same for all γ (hence we can omit it from the notation in P(n)
δ

). It has a density p(n)
δ

relative to some fixed underlying measure, and this density has the same support for
all δ ∈ ∆. That is, we require for all yn ∈ Rn that if for some δ ∈ ∆, p(n)

δ
(yn) > 0,

then for all δ ∈ ∆, p(n)
δ
(yn) > 0. As a consequence, for any stopping rule τ, for

every n, if for some δ ∈ ∆ we have Pδ(τ = n) > 0 then for all δ ∈ ∆ we have
Pδ(τ= n)> 0. We call the set of n with Pδ(τ= n)> 0 the support of τ.

Monotone likelihood ratio (MLR) Property There exists a function sn on Rn such that

for each δ0 < δ1 with δ0,δ1 ∈∆, the likelihood ratio
p(n)
δ1
(Y n)

p(n)
δ0
(Y n)

is an increasing func-
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tion of random variable Sn := sn(Y n).

Note that both properties automatically hold for 1-dimensional i.i.d. exponential fami-
lies as above – then we can set Γ to be a singleton, then γ plays no role, we can take
Yn = Un and Sn = sn(Y n) to be the sufficient statistic for n outcomes (if Y1 is the sufficient
statistic for one outcome, then Sn =

∑n
i=1 Yi) and then both properties are easily verified

(Lehmann, 1986). But they also hold in the t-test setting, where Pδ,γ states that the un-
derlying data Ui are i.i.d. normally distributed with variance γ and effect size δ (i.e. mean
µ = δγ). We can then take Yi := Ui/|U1| to be the so-called ‘maximal invariant statistic’
(Hendriksen et al., 2020) and Sn to be the t-statistic based on Un, which can be written
as a function of Y n. It is a well-known fact that Sn has a non-central t-distribution and
that this satisfies the MLR property (Lehmann, 1986). We note that the set of allowed
stopping rules/times remains unchanged in this more general set-up. Thus, in the t-test
setting, and more generally in settings with Ui 6= Yi , the stopping rule f (Y n) at time n
must be writeable as a function of the Y n which is a coarsening of (contains less informa-
tion than) the data Un. Since the condition above implies that the likelihood ratio can be
written as a function of Y n, and we usually use stopping rules that depend on the likeli-
hood ratio observed so far and possibly some additional data that is independent of the
observed data, but nothing else, this poses no great restriction in practice.

We now formulate and prove the theorem for this more general setup. Generalizing
(5.A.3), the pseudo-Bayes posterior odds are now defined as:

πps(H1 | Y τ)
πps(H0 | Y τ)

= BFps(Y τ) ·
π(H1)
π(H0)

with BFps(Y τ) =
p(τ)
δ+
(Y τ)

p(τ)
δ−
(Y τ)

. (5.B.1)

Let again REJECTτ,r be the event that πps(H1 | Y τ)/πps(H1 | Y τ)≥ r.

Theorem 5.B.1. Let {Pδ,γ : δ ∈∆,γ ∈ Γ } represent a family that satisfies the two properties
above for all n. Fix some δ− < δ+ and define H1, H0 and BFps correspondingly; also fix some
arbitrary priors π(H0),π(H1) and Π0 on ∆0, Π1 on ∆1. We have the following for each
r > 1 and each stopping time τ and each n in the support of τ: the true posterior odds of H1
vs. H0 satisfy:

π
�

H1 | REJECTτ,r ,τ= n
�

π
�

H0 | REJECTτ,r ,τ= n
� ≥ r ·

P̄1(τ= n)
P̄0(τ= n)

·
Pδ−(τ= n)
Pδ+(τ= n)

. (5.B.2)

The earlier Theorem 5.A.1 is immediately seen to be a special case.

Remark The fact that we can go beyond exponential families raises the question of
how general the result is. In this respect, we note that our conditions imply that the se-
quence of pseudo-Bayes factors BFps(Y 1), BFps(Y 2), . . . in (5.B.1) define a test martingale
or equivalently, a product of conditional E-values under H0 (Grünwald et al., 2019). In-
terestingly, unconditional frequentist error control under arbitrary stopping times can be
given for arbitrary test martingales. All Bayes factors satisfying the conditions of the gen-
eral version of the theorem below define two-sided test martingales: by this, we mean
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that 1/BFps(Y 1), 1/BFps(Y 2), . . . defines a test martingale under H1. One might therefore
suspect that our result continues to hold whenever we set our pseudo-Bayes factor equal
to a two-sided test martingale, even if the MLR property does not hold. But it is not clear
whether this really is the case. An example is the safe logrank test of Ter Schure et al.
(2020b) (Chapter 2). The pseudo-Bayes factor we develop there is a ratio of partial like-
lihoods, and it defines a two-sided test martingale. Nevertheless, it is easily seen that due
to the data not being i.i.d. the MLR property does not hold, and this property seems cru-
cial for the argument used in the proof. Whether or not a (perhaps slightly weakened, i.e.
≥ r in (5.A.6) replaced by ≥ cr for some c < 1) version of the theorem holds for general
pseudo-Bayes factors given by general two-sided test martingales is an interesting topic
for future research.

Proof of Theorem 5.B.1
Fix n ∈ N in the support of τ. The proof makes crucial use of Lemma 5.B.2, which we
state and prove first. We prove the theorem and the lemma only for the discrete case (with
each Yi taking values in a countable setYi ⊂ R), for which all densities become probability
mass functions. It is straightforward to extend the results to the general case by replacing
all probability mass functions with appropriate densities and sums by integrals.

Lemma 5.B.2. Suppose that the MLR Property holds for some given n in the support of τ
relative to some Sn as above. Then

1. The MLR Property holds for the set of distributions {P(n)
δ
(· | τ = n) : δ ∈ ∆} relative

to Sn. That is, for each δ0 < δ1 with δ0,δ1 ∈∆, p(n)
δ1
(yn | τ = n)/p(n)

δ0
(yn | τ = n) is

an increasing function of sn(yn), on the set of all yn with p(n)
δ
(y (n) | τ = n) > 0 for

some δ ∈∆.

2. As a consequence, for all a > 0,

Pδ

�

p(n)
δ+
(Y n | τ= n)

p(n)
δ−
(Y n|τ= n)

≥ a | τ= n

�

(5.B.3)

is increasing in δ for all a.

Proof. For the first part, note that for each yn as above, we have:

p(n)
δ1
(yn | τ= n)

p(n)
δ0
(yn | τ= n)

=
p(n)
δ1
(yn)

p(n)
δ0
(yn)

·
P(n)
δ1
(τ= n | yn)

P(n)
δ0
(τ= n | yn)

·
Pδ0
(τ= n)

Pδ1
(τ= n)

=

p(n)
δ1
(yn)

p(n)
δ0
(yn)

·
Pδ0
(τ= n)

Pδ1
(τ= n)

,

where the first equality is Bayes’ theorem and the second equality follows, because for
the type of stopping rule we employ, conditioned on the sequence yn, the probability of
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stopping exactly after having seen outcomes is independent of δ. But the rightmost ex-
pression shows that the likelihood ratio for the densities conditioned on τ= n must be an
increasing function of sn(yn) since, by assumption, the original, unconditional likelihood
ratio is as well.

The second part follows immediately from the well-known connection (Lehmann, 1986)
between monotone likelihood ratios and stochastic dominance; see
https://math.stackexchange.com/questions/733291/
why-mlr-monotone-likelihood-ratio-implies-stochastic-increasing for
a very short, simple, yet correct proof.

In the remainder of the proof, we write pδ(· | τ = n) instead of p(n)(· | τ = n) for brevity.
Let Er,n be the event that πps(H1 | Y n)/πps(H0 | Y n) ≥ r. Since by the irrelevance of the
stopping rule we have

πps(H1 | Y n)
πps(H0 | Y n)

=
πps(H1 | τ= n, Y n)
πps(H0 | τ= n, Y n)

=
πps(H1 | τ= n)
πps(H0 | τ= n)

·
pδ+(Y n | τ= n)
pδ−(Y n | τ= n)

we have that Er,n is equivalent to the event that pδ+ (Y
n|τ=n)

pδ− (Y n|τ=n) ≥ r π
ps(H0|τ=n)
πps(H1|τ=n) . We then have:

π
�

H1 | Er,n,τ= n
�

π
�

H0 | Er,n,τ= n
�

(a)
=

P̄1

�

Er,n | τ= n
�

π(H1 | τ= n)

P̄0

�

Er,n | τ= n
�

π(H0 | τ= n)

(b)
≥

Pδ+
�

Er,n | τ= n
�

π(H1|τ= n)

Pδ−
�

Er,n | τ= n
�

π(H0|τ= n)

(c)
=
π(H1 | τ= n) ·

∑

yn pδ+(yn | τ= n) · 1 pδ+ (y
n |τ=n)

pδ− (y
n |τ=n)≥

πps(H0 |τ=n)
πps(H1 |τ=n) ·r

π(H0 | τ= n) ·
∑

yn pδ−(yn | τ= n) · 1 pδ+ (y
n |τ=n)

pδ− (y
n |τ=n)≥

πps(H0 |τ=n)
πps(H1 |τ=n) ·r

(d)
≥

π(H1 | τ= n) ·
�

r · π
ps(H0|τ=n)
πps(H1|τ=n)

�

·
∑

yn pδ−(yn | τ= n) · 1Er,n

π(H0 | τ= n) ·
∑

yn pδ−(yn | τ= n) · 1Er,n

(e)
= r ·

P̄1(τ= n)
P̄0(τ= n)

·
Pδ−(τ= n)
Pδ+(τ= n)

.

Here (a) is an instance of (5.A.1). We note that this inequality still holds in our generalized
set-up as long as the probability of the set E1 under Pδ,γ does not depend on γ. (b) follows
by first applying Lemma 5.B.2. (5.B.3) gives, using that P̄1 is a mixture of Pδ with δ ≥ δ+,
that P̄1(pδ+(yn)/pδ−(yn) ≥ r | τ = n) ≥ Pδ+(pδ+(yn)/pδ−(yn) > r | τ = n). Similarly
it gives that P̄0(pδ+(yn)/pδ−(yn) ≥ r | τ = n) ≤ Pδ−(pδ+(yn)/pδ−(yn) > r | τ = n),
and then (b) follows. (c) is merely writing out the definition, (d) follows by applying the
inequality in the event in the indicator function and for (e) we used Bayes’ theorem again.

This chain of inequalities gives (5.B.2), thus finishing the proof for the discrete case.

https://math.stackexchange.com/questions/733291/



