s

: HER o .
) Leiden
& ;é"

b&atwq

“!_! The Netherlands

ALL-IN meta-analysis

Schure, J.A. ter

Citation

Schure, J. A. ter. (2022, April 7). ALL-IN meta-analysis. Retrieved from
https://hdl.handle.net/1887/3281933

Version:

License:

Downloaded from:

Publisher's Version

Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

https://hdl.handle.net/1887/3281933

Note: To cite this publication please use the final published version (if

applicable).


https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3281933

4 ‘ Accumulation Bias:
How to handle it ALL-IN

Blog post

This chapter appeared as a blog post and gives more context to the claims in
Chapter 3 on accumulation bias. These claims are paradoxical, after all: How
can we possibly encounter enormous bias in our meta-analysis estimates and
still do valid ALL-IN inference? This blog post tries to give some intuition
by introducing a very extreme and simple version of accumulation bias and
showing by simulation code and plots in R what counteracts the bias in an
ALL-IN analysis. '

An estimated 85% of global health research investment is wasted (Chalmers and Glasziou,
2009); a total of one hundred billion US dollars in the year 2009 when it was estimated.
The movement to reduce this research waste recommends that previous study results be
taken into account when prioritising, designing and interpreting new research (Chalmers
et al.,, 2014; Lund et al., 2016). Yet any recommendation to increase efficiency this way
requires that researchers evaluate whether the studies already available are sufficient
to complete the research effort; whether a new study is necessary or wasteful. These
decisions are essentially stopping rules — or rather noisy accumulation processes, when
no rules are enforced — and unaccounted for in standard meta-analysis. Hence reducing
waste invalidates the assumptions underlying many typical statistical procedures.

Chapter 3 details all the possible ways in which the size of a study series up for meta-
analysis, or the timing of the meta-analysis, might be driven by the results within those
studies. Any such dependency introduces accumulation bias. Unfortunately, it is often im-
possible to fully characterize the processes at play in retrospective meta-analysis; the bias
cannot be accounted for. In this blog post we revisit an example accumulation bias pro-

I The introduction to this blog post is the same as in Chapter 5 as they describe the same example accumu-
lation bias but a different approach to counteracting it.
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128 ALL-IN meta-analysis

cess, that can be one of many influencing a single meta-analysis, and use it to illustrate
the following key points:

» Standard meta-analysis does not take into account that researchers decide on new
studies based on other study results already available. These decisions introduce
accumulation bias because the analysis assumes that the size of the study series is
unrelated to the studies within; it essentially conditions on the number of studies
available.

* Accumulation bias does not result from questionable research practices, such as
publication bias from file-drawering a selection of results. The decision to replicate
only some studies instead of all of them biases the sampling distribution of study
series, but can be a very efficient approach to set priorities in research and reduce
research waste.

* ALL-IN meta-analysis stands for Anytime, Live and Leading INterim meta-analysis.
It can handle accumulation bias because it does not require a set number of stud-
ies, but performs analysis on a growing series — starting from a single study and
accumulating as many studies as needed.

* ALL-IN meta-analysis also allows for continuous monitoring of the evidence as new
studies arrive, even as new interim results arrive. Any decision to start, stop or
expand studies is possible, while keeping valid inference and type-I error control
intact. Such decisions can be strategic: increasing the value of new studies, and
reducing research waste.

4.1 Our example: extreme Gold Rush accumulation bias

We imagine a world in which a series of studies is meta-analyzed as soon as three studies
become available. Many topics deserve a first initial study, but the research field is very
selective with its replications. Nevertheless, for significant results in the right direction, a
replication is warranted. We call this the Gold Rush scenario, because after each finding
of a positive significant result — the gold in science — some research group rushes into
a replication, but as soon as a study disappoints, the research effort is terminated and
no-one bothers to ever try again. This scenario was first proposed by Ellis and Stewart
(2009) and formulated in detail and under this name in Chapter 3. Here we consider
the most extreme version of the Gold Rush where finding a significant positive result not
only makes a replication more probable, but even inevitable: the dependency of occurring
replications on their predecessor’s result is deterministic.

Biased Gold Rush sampling We denote the number of studies available on a certain
topic by t. This number t can also indicate the timing of a meta-analysis, such that a
meta-analysis can possibly occur at number of studies t = 1,2, 3, ... up to some maximum
number of studies T. This notation follows from Chapter 3; the Technical Details at the
end of this blog post make the notation involved in this blog post more explicit.

We summarize the results of individual studies into a single per-study Z-score (z; for the
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first study, z, for the second, etc), such that we have the following information on a series
of size t:

Z1,%9, 5%t

We distinguish between Z-scores that are significant and in the right direction, and Z-
scores that are not. A first significant positive study is indicated by z; (z; > 2, with z, =
1.96 for a = 2.5%). A first nonsignificant or negative study is indicated by 2] (z; < z,).
We use the same notation for the second and third study and limit our world to three
studies (our maximum T = 3). After all, we meta-analyze studies on all topics and only
those topics that have spurred a series of three studies. Our Gold Rush world consists of
the following possible study series:

Gold Rush world
% A(1)=0 A(2)=0 A(3)=0
,25 A(1)=0 A(2)=0 A(3)=0
25,25 — 2% A(1)=0 A(2)=0 AB)=1
,ZE, - 2O A(1)=0 A(2)=0 AB3)=1

Here A(t) denotes whether we accumulate and analyze t studies: It can be that A(2) =0
and A(3) = 0 because we are stuck at one study, but also A(1) = 0 because we don’t “meta-
analyze” that single study. It can only be that A(2) = 1 if we accumulate and meta-analyze
a two-study series and A(3) = 1 if we accumulate and meta-analyze a three-study series.
In our Gold Rush world a very specific subset of studies accumulate into a three-study
series such that they are meta-analyzed (A(3) = 1).

23 denotes the Z-score of a fixed effects meta-analysis. This meta-analysis Z-score is
simply a re-normalized average and can, assuming equal (large) sample size and (known)
variances in all studies, be obtained from the individual study Z-scores as follows: z(3 =
%3 Z?:l ;. The effects of accumulation bias are not limited to fixed-effects meta-analysis
(see for example Kulinskaya et al. (2016)), but fixed-effects meta-analysis does provide
us with a simple illustration for the purposes of this blog post.

We observe in our Gold Rush world above that the study series that are eventually meta-
analyzed into a Z-score z(®) are a very biased subset of all possible study series. So we
expect these (3 scores to be biased as well. In the next section, we simulate the sampling
distribution of these z(® scores to illustrate this bias.

4.2 The conditional sampling distribution under extreme Gold Rush ac-
cumulation bias

Assume that we are in the scenario that only true null effects are studied in our Gold Rush
world, such that any new study builds on a false-positive result. How large would the bias
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be if the three-study series are simply analyzed by standard meta-analysis? We illustrate
this by simulating this Gold Rush world using the R code below.

# pumsim.study = number of simulated first studies

# you need 1/(0.025%0.025) = 1600 first studies for each series starting with two significant studies
# 40000 series, so 64 million studies for smooth plot (takes ~2 minutes for simulation + pleotting)
numsim. study <- 64000000

71 <- rnorm{numSim.study)
Z2 <- rnorm{numSim.study)
Z3 <- rnorm{numSim.study)

# selection based on Gold Rush accumulation bias A(3) =1
A3 <- which((Z1 > 1.96) & (22 » 1.96))

calcZmeta <- function(Zs) {
t <- length(zs)
_ 1/sgre(t)*sum(Zs)

# meta Zscores for a random sample of 3-study series (you don't need all 64 million for a smooth plot)
Zmeta3 <- sapply(sample(1:numSim.study, size = 40000), function(i) calcZmeta(c(zi[i], z2[i], z3[i1)))

# meta Zscores for a biased sample of 3-study series, biased by GoldRush A(3) =1
Zmetal. A3 <- sapply(A3, function(i) calczZmetalc(zl[i], 22[i], Z3[i1)))

Zmeta3s, GoldRush = ")

ggplot(rbind(data.frame(Zscore =
Zmeta3.A3, GoldRush = "A3"))) +

data.frame(Zscore
geom_histogram(aes (x = Zscore,
y = ..density.., # ..density.. normalizes by group with/without A(3) GoldRush
fi11 = Goldrush), # each with their own fi11
alpha = 0.2, bins = 120, position = "identity") +
scale_fill_discrete(name = "Conditioned on ‘n Gold Rush A(t)",
Tabels = c(bquote(zA(3)), bguote(zA(3) ~ " | A(3) = 1")))

Figure 4.1. Code to create Figure 4.2

Theoretical sampling process: A fixed-effects meta-analysis assumes that if three stud-
ies 21, %5, 25 are each sampled under the null hypothesis, each has a standard normal with
mean zero and the standard normal sampling distribution also applies to the combined
23 score. The R code in Figure 4.1 illustrates this sampling process: First, a large popu-
lation is simulated of possible first (Z1), second (Z2) and third (Z3) studies from a stan-
dard normal distribution. Then in Zmeta3 each index i represents a possible study series,
suchthatc(Z1[i], Z2[i], Z3[i]) samplesan unbiased study series and calcZmeta
calculates its fixed-effects meta-analysis Z-score z(*). So the large number of Z-scores
in Zmeta3 captures the unbiased sampling distribution that is assumed for fixed-effects
meta-analysis z-scores.

Gold Rush sampling process: In contrast, the code resulting in A3 selects only those
study series for which A(3) = 1 under extreme Gold Rush accumulation bias. So the large
number of Z-scores in Zmeta3.A3 capture a biased sampling distribution for the fixed
effects meta-analysis z(®-scores.

Meta-analysis under Gold Rush accumulation bias: The final lines of code in Fig-
ure 4.1 plot two histograms of z(®) samples, one without and one with the Gold Rush A(t)
accumulation bias process, based on Zmeta3 and Zmeta3.A3 respectively. Figure 4.2
gives the result.
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0.6- Conditioned on
204- Gold Rush A(t)
2 . (3)

3 o02- z
29 A@)=1
0.0-

-4 -2 0 2 4 6
Zscore

Figure 4.2. Sampling distributions under the null hypothesis of fixed-effects meta-analysis
Z-scores Z®) of three studies with and without extreme Gold Rush accumulation bias A(t),
under the assumption of equal study sample size and variance.

We observe in Figure 4.2 that the theoretical sampling process, resulting in the pink his-
togram, gives a distribution for the three-study meta-analysis z(®-scores that is centered
around zero. Under the Gold Rush sampling process, however, our three-study z*)-scores
do not behave like this theoretical distribution at all. The blue histogram has a smaller
variance and is shifted to the right — representing the bias.

We conclude that we should not use conventional meta-analysis techniques to analyze our
study series under Gold Rush accumulation bias: Conventional fixed-effects meta-analysis
assumes that any three-study summary statistic Z is sampled from the pink distribution
in Figure 4.2 under the null hypothesis, such that the meta-analysis is significant for Z®-
scores larger than z, = 1.96 for a right-sided test with type-I error control a = 2.5%. Yet
the actual blue sampling distribution under this accumulation bias process shows that a
much larger fraction of series that accumulate three studies will have Z®-scores larger
than 1.96 than is assumed by the theory of random sampling. This (extremely) inflated
proportion of type-I errors is 88% instead of 2.5% in our extreme Gold Rush, and can be
obtained from our simulation by the code in Figure 4.3.

> typelerror.pink <- mean(Zmeta3 > 1.96)

» typelerror.pink

[1] 0.0250669

= typelerror.blue <- mean(Zmeta3.A3 » 1.96)
> typelerror.blue

[1] 0.8785025

Figure 4.3. Code to calculate type-I error probability with and without extreme Gold Rush
accumulation bias.

4.3 Accumulation bias can be efficient

The steps in the code from Figure 4.1 that arrive at the biased distribution in Figure 4.2
illustrate that accumulation bias is in fact a selection bias. Nevertheless, accumulation
bias does not result from questionable research practices, such as publication bias from
file-drawering a selection of results. The selection to replicate only some studies instead



132 ALL-IN meta-analysis

of all of them biases the sampling distribution of study series, but can be a very efficient
approach to set priorities in research and reduce research waste.

By inspecting our Gold Rush world a bit closer, we observe that a fixed-effects meta-
analysis of three studies actually conditions on this number of studies ((A(t) needs to
be A(3) to be 1), and that this conditional nature is what is driving the accumulation
bias; in Appendix Section 4.B we show this explicitly. In the next section we take the
unconditional view.

4.4 The unconditional sampling distribution under extreme Gold Rush
accumulation bias

We need to look at these sampling distributions from a different angle, to still achieve
type-1 error control. We will now introduce the unconditional sampling distribution. For
this, we first adapt our Gold Rush accumulation bias world a bit, and not only meta-
analyze three-study series but one-study “series” and two-study series as well. All possible
scenarios for study series in this “all-series-size” Gold Rush world are illustrated below. We
assume that we only meta-analyze series in a terminated state, and therefore first await a
replication for significant studies before performing the meta-analysis. So a single-study
“meta-analysis” can only consist of a negative or nonsignificant initial study (z]); only in
that case we are in a terminated state with A(1) = 1 and the series does not grow to two
(A(2) = 0). In a two-study meta-analysis the series starts with a significant positive initial
study and is replicated by a nonsignificant or negative one; only in that case A(2) = 1,
and the series does not grow to three so A(3) = 0. And only three-study series that start
with two significant positive studies are meta-analyzed in a three-study synthesis; only in
that case A(3) = 1.

Gold Rush world; all-series-size

z; - W Al)=1 A(2)=0 AB3)=0
iz, — 2@ A(1)=0 A(2)=1 A(3)=0
25,2, — 2% A(1)=0 A(2)=0 AB3) =1
,Z5, - 20 A(1)=0 A(2)=0 AB) =1

The R code in Figure 4.4 calculates the fixed-effects meta-analysis 2, 2 and z® scores,
conditional on meta-analyzing a one-study, two-study, or three-study series in this ad-
justed Gold Rush accumulation bias scenario. The histograms of these conditional z(*)
scores are shown in Figure 4.5, including the theoretical unbiased z‘® histogram that was
also shown in Figure 4.2 and largely overlaps with the “A(1) = 1, A(2) = 0, A(3) = 0”-
scenario. The difference between these two sampling distributions is only visible in their
right tail, with the red histogram excluding values larger than z, = 1.96 and redistributing
their mass over other values.

Figure 4.5 clarifies that single studies are hardly biased in this extreme Gold Rush scenario,
that the bias is problematic for two-study series and most extreme for three-study ones.
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AlnotA2 =- which(Z1 <= 1.96)
A2notA3 =- which((Z1 = 1.96) & (22 <= 1.96))

# meta Zscores for a biased sample of 1-study series, biased by GoldRush A(1) = 1 and A(2) =0
# meta Zscore of a single study is its study Zscore
Zmetal.AlnotA? <- Z1[AlnotA2]

# meta Zscores for a biased sample of 2-study series, biased by GoldRush A(2) =1 and A(3) =0
Zmeta2.A2notA3 <- sapply(A2notA3, function(i) calcZmeta(c(z1[il, z2[i1)))

ggplot(rbind(# You don't need all for a smooth plot, so sample:

data.frame(Zscore = sample(Zmetal.AlnotA2, 40000), GoldRush = "Alnota2"),
data.frame(Zscore = sample(Zmeta2.A2notA3, 40000). GoldRush = “"A2notA3"),
data.frame(Zscore = sample(Zmeta3.A3, 40000), GoldrRush = "A3"),
data.frame(Zscore = sample(Zmeta3, 40000), GoldRush = ""))) =
geom_histogram(aes(x = Zscore, y = ..density.., # ..density.. normalizes by GoldRush group
Ti11 = factor(GoldRush, Tevels = c("AlnotA2", "AZnotA3"™, "A3", ")),
alpha = 0.2, bins = 120, position = "identity") +
scale_fill_discrete(name = "Gold Rush A(t)",
labels = c(bquote(zA(1) ~ " A(1) =1, A(2) =0, A(3) =0"),
bguote(zA(2) ~ " | A(1) =1, A(2) =1, A(3) = 0"),
bguote(zA(3) ~ " | A(1) =1, A(2) =1, A(3) = 1"),
bguote(zA(3))))
Figure 4.4. Code to create Figure 4.5
0.6- Gold Rush A(t)
> 04- 29 | A =1,A@) =0,A@) =0
a 22 | AL =1,AQ)=1,A@3)=0
(0]
S 0.2- 29| AD=1AQ)=1A@)=1
MO
OO L ] ] ] ] ] ]
-4 -2 0 2 4 6
Zscore

Figure 4.5. Sampling distributions under the null hypothesis of fixed-effects meta-analysis
Z-scores Z of one, two and three studies with extreme Gold Rush accumulation bias and a
three-study meta-analysis without accumulation bias, under the assumption of equal study
sample size and variance.

However, what this plot does not show us is how often we are in the one-study, two-study
and three-study case.

To illustrate the relative frequencies of one-study, two-study and three-study meta-analyses,
the code in Figure 4.6 samples the series in their respective numbers, instead of in equal
numbers (which happens in the sample statements in Figure 4.4, part of creating the
data frame). Plotting the total number of sampled Z-scores is dangerous for the single
study z(D-scores, however, since there are so many of them (it can crash your R studio).
So before plotting the histogram, a smaller sample is drawn that keeps the ratios between
zWs, 2(@s and z®s intact.

The histogram in Figure 4.7 illustrates an unconditional distribution by the raw counts
of the z(9-scores: many result from a single study, very few from a two-study series and



134 ALL-IN meta-analysis

ggplot(rbind(# You don't need all, so sample but keep ratio intact

data. frame(Zscore = sample(Zmetal.AlnotA2, Tength(AlnotA2)/1000), GoldRush = "AlnotA2™),
data. frame(Zscore = sample(Zmeta2.A2notA3, Tength(AZnotA3)/1000), GoldRush = "AZnotA3"),
data.frame(Zscore = sample(Zmeta3.A3, Tength(A3)/1000), GoldRush = "A3"))) =
geom_histogram(aes(x = Zscore, y = ..count.., # ..count.. does not normalize by GoldRush group
fill = factor(GoldrRush, levels = c("AlnotA2", "A2notA3", "A3"))),

alpha = 0.2, bins = 120, position = "identity") +
scale_fill_discrete(name = "Gold Rush A(t)",

labels = c(hquote(z# ~ " A1) =1, A(2) = 0, A(3) =0")
bquote(zA ~ "] A(L) =1, A(2) =1, A(3) =0"),
bquote(zA(3) ~ " | A1) =1, A(2) =1, A(3) =1")))

Figure 4.6. Code to create Figure 4.7

1500-
Gold Rush A(t)
—— 1000' (1)

= 2 | A)=1,A@)=0,A@3)=0
8 29 | AL =1,A@ =1 AQB) =0
2| AQ)=1,A@)=1A@3)=1

500 -

0 -

-4 -2 0 2 4
Zscore

Figure 4.7. Unconditional sampling distributions under the null hypothesis of fixed-effects
meta-analysis Z-scores Z) of either one, two or three studies under extreme Gold Rush
accumulation bias, under the assumption of equal study sample size and variance.

almost none from a three-study series. In fact, this unconditional sampling distribution is
hardly biased, as we will illustrate with our table further below.

We first introduce an example of an ALL-IN meta-analysis to argue that such an uncondi-
tional approach can in fact be very efficient.

4.5 ALL-IN meta-analysis

Figure 4.8 shows an example of an ALL-IN meta-analysis. Each of the red/orange/yellow
lines represents a study out of the ten separate studies in as many different countries.
The blue line indicates the meta-analysis synthesis of the evidence; a live account of the
evidence so far in the underlying studies. In fact, ALL-IN meta-analysis stands for Any-
time, Live and Leading INterim meta-analysis, in which the Anytime Live property assures
valid inference under continuously monitoring and the Leading property allows the meta-
analysis results to inform whether individual studies should be stopped or expanded.
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It should be noted that such data-driven decisions would invalidate conventional meta-
analysis by introducing accumulation bias.

e-yalue
BN

DK
DE
AF
NL
HU
META

112
114
18
me
1132

000000 D E NN

20/03/23 20/04/20 20/05118 20/06/15 20/0713 20/08/10 20/09/07 20/10/05 20/11/02 20/11/30 20M12/28 21/01/25

Calendar days

Figure 4.8. Dashboard of an ALL-IN meta-analysis of between one and ten studies, some of
which have not even started recruiting participants in the current status of this dashboard.
Note that the y-axis is logarithmic.

To interpret Figure 4.8, we observe that initially only the Australian (AU) study contributes
to the meta-analysis and the blue line completely overlaps with the red one. Very quickly,
the Dutch (NL) study also starts contributing and the blue meta-analysis line captures a
synthesis of the evidence in two studies. Later on, also the study in the US, France (FR)
and Uruguay (UY) start contributing and the meta-analysis becomes a three-study, four-
study and five-study meta-analysis. How many studies contribute to the analysis, however,
does not matter for its evidential value. Some studies (like the Australian one) are much
larger than others, such that under a lucky scenario this study could reach the evidential
threshold even before other studies start observing data. This threshold (indicated at 400)
controls type-I errors at a rate of & = 1/400 = 0.0025 (details in the final section). So
in repeated sampling under the null, the combined studies will only have a probability to
cross this threshold that is smaller than 0.25%. In this repeated sampling the size of the
study series is essentially random: we can be lucky and observe very convincing data in
the early studies, making more studies superfluous, or we can be unlucky and in need of
more studies. The threshold can be reached with a single study, with a two-study meta-
analysis, with a three-study;,.. etc, and the repeated sampling properties, like type-I error
control, hold on average over all those sampling scenarios (so unconditional on the series
size).

ALL-IN meta-analysis allows for meta-analyses with Type-I error control, while completely
avoiding the effects of accumulation bias and multiple testing. This is possible for two
reasons: (1) we do not just perform meta-analyses on study series that have reached a
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certain size, but continuously monitor study series irrespective of the current number of
studies in the series; (2) we use likelihood ratios (and their cousins, e-values (Griinwald
et al.,, 2019)) instead of raw Z-scores and p-values; we say more on likelihood ratios
further below.

4.6 Accumulation bias from ALL-IN meta-analysis vs Gold Rush

The ALL-IN meta-analysis in Figure 4.8 illustrates an improved efficiency by not setting
the number of studies in advance, but let it rely on the data and be — just like the data
itself — essentially random before the start of the research effort. This introduces depen-
dencies between study results and series size that can be expressed in similar ways as
Gold Rush accumulation bias. Yet this field of studies might make decisions differently
to our Gold Rush: a positive nonsignificant result might not terminate the research ef-
fort, but encourage extra studies. And instead of always encouraging extra studies, a very
convincing series of significant studies might conclude the research effort. If a series of
studies is dependent on any such data-driven decisions, the use of conventional statistical
methods is inappropriate. These dependencies actually do not have to be extreme at all:
Many fields of research might be a bit like the Gold Rush scenario in their response to
finding significant negative results of harm. A widely known study result that indicated
significant harm might make it very unlikely that the series will continue to grow. So large
study series will very rarely have a completely symmetric sampling distribution, since ini-
tial studies that observe results of significant harm do not grow into large series. Hence
this small aspect of accumulation bias will already invalidate conventional meta-analysis,
when it assumes such symmetric distributions under the null hypothesis with equal mass
on significant effects of harm and benefit.

4.7 Properties averaged over time

Accumulation bias can already result from simply excluding results of significant harm
from replication. This exclusion also takes place under extreme Gold Rush accumulation
bias, since results of significant harm as well as all nonsignificant results are not replicated.
Fortunately, any such scenarios can be handled by taking an unconditional approach to
meta-analysis. We will now give an intuition for why this is true in case of our extreme
Gold Rush scenario: initial studies have bias that balances the bias in larger study series
when averaged over series size and analyzed in a certain way.

Table 4.1 is inspired by Senn (2014) (different question, similar answer) and represents
our extreme Gold Rush world of study series. It takes the same approach as Figure 4.7
and indicates the probability to meta-analyze a one-study, two-study or three-study series
of each possible form under the null hypothesis. The three study series are very biased,
with two or even three out of three studies showing a positive significant effect. But the
P, column shows that the probability of being in this scenario is very small under the
null hypothesis, as was also apparent from Figure 4.7. In fact, most analysis will be of the
one-study kind, that hardly have any bias, and are even slightly to the left of the theoretic
standard null distribution. Exactly this phenomenon balances the biased samples of series
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of larger size.

Table 4.1. Possible study series under extreme Gold Rush accumulation bias, with their
respective probabilities P to occur under the null hypothesis. A Z-score is marked by a * and
color orange (e.g. 7)) in case the individual study result is significant and positive (z; = 2z,
(one-sided test)) and by a — (e.g. z7) otherwise. The column t indicates the number of studies
and the column x counts the number of significant studies. The fifth and sixth column multiply
P, with the * column and t column to arrive at an expected value E[ ] and Ey[ t ] respectively
in the bottom row.

t * Py *- Py t-Py

1 27 0 l1—a 0 l—a

2 ,%5 1 a(l—a) a(l—a) 20(1—a)

3 275,25 2 a’(l1—a) 2d%(1—a) 3a*(1—a)

3 ,Z3, 3 ol 3a® 3a®
> 1 at+ta’+a® 1+a+a?

The bottom row of Table 4.1 gives the expected values for the number of significant studies
per series in the x - Py column, and the expected value for the total number of studies per
series in the t-P, column. If we use these expressions to obtain the proportion of expected
number of significant to expected total number of studies, we get the following:

Eolx] a+a’+a® a(l+a+a?®)
Eft] 1+a+a? 1+a+a?

4.1)

The proportion of expected significant effects to expected series size is still a in Table 4.1
under extreme Gold Rush accumulation bias, as it would also be without accumulation
bias.

This result is driven by the fact that there is a martingale process underlying this table. If
a statistic is a martingale process and it has a certain value after t studies, the conditional
expected value of the statistic after t + 1 studies, given all the past data, is equal to the
statistic after t studies. So if our proportion of significant positive studies is exactly a for
the first study (t = 1), we expect to also observe a proportion a if we grow our series with
an additional study (t = 1+1 = 2). The accumulation bias does not affect such statistics
when averaged over time if martingales are involved (Doob’s optional stopping theorem
for martingales). You can verify this aspect by deleting the last row for z’,z;,z; from
our table and adding two rows for t = 4 in its place with z',z},z. and either a fourth
significant or a nonsignificant study. If you calculate the expected significant effects to
expected series size, you will again arrive at a.

Martingale properties drive many approaches to sequential analysis, including the Se-
quential Probability Ratio Test (SPRT), group-sequential analysis and alpha spending.
When applied to meta-analysis, any such inferences essentially average over series size,
just like ALL-IN meta-analysis.
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4.8 Multiple testing over time

Just having the expectation of some statistics not affected by stopping rules is not enough
to monitor data continuously, as in ALL-IN meta-analysis. We need to account for the
multiple testing as well. In that respect, the approaches to sequential analysis differ by
either restricting inference to a strict stopping rule (SPRT), or setting a maximum sample
size (group-sequential analysis and alpha spending).

ALL-IN meta-analysis takes an approach that is different from its predecessors and is part
of an upcoming field of sequential analysis for continuous monitoring with an unlim-
ited horizon. These approaches are called Safe for optional stopping and/or continuation
(Griinwald et al., 2019) or any-time valid (Ramdas et al., 2020). Their methods rely
on nonnegative martingales (Ramdas et al., 2020); with its most well-known and use-
ful martingale: the likelihood ratio. For a meta-analysis Z-score, a martingale process of
likelihood ratios could look as follows:

LRlo(l), LRIO(Z), LRIO(B), . LR]O(I_]], LRuo™
$1(z1) $1(21,2)  P1(21,25,25) ,

¢olz1) Polz1,22)  Polz1,22,23)

Figure 4.9. Likelihood Ratio martingale

The subscript 10 indicates that the denominator of the likelihood ratio is the likelihood of
the Z-scores under the null hypothesis of mean zero, and in the numerator is some alter-
native mean normal likelihood. The likelihood ratio becomes smaller when the data are
more likely under the null hypothesis, but the likelihood ratio can never become smaller
than O (hence the “nonnegative” martingale). This is crucial, because a nonnegative mar-
tingale allows us to use Ville’s inequality (Ville, 1939), also called the universal bound by
Royall (1997). For likelihood ratios, this means that we can set a threshold that guarantees
type-I error control under any accumulation bias process and at any time, as follows:

1

P, [LRm(t) > — forsome t =1,2,.. :| <a. (4.2)
a

The ALL-IN meta-analysis in Figure 4.8 in fact is based on likelihood ratios like this, and
controls the type-I error by the threshold 400 at level 1/400 = 0.25%.

The code below illustrates that likelihood ratios can also control type-I error rates under
continuous monitoring when extreme Gold Rush accumulation bias is at play. Within our



Judith ter Schure 139

previous simulation, we again assume a Gold Rush world with only true null studies and
very biased two-study and three-study series. The code in Figure 4.11 calculates likelihood
ratios for the growing study series under accumulation bias. So, here we assume that a
series is analyzed for each size it reaches (so after each new study), as indicated below.
Figure 4.11 illustrates that still very few likelihood ratios ever grow very large.

numsim. study <- 10000 # we're not plotting histograms, so a smaller simulation will do

Z1 <- rnorm(numSim.study)
Z2 <- rnorm(numSim.study)
73 <- rnorm(numSim.study)

AlnotA2 <- which(Z1l <= 1.96)
A2notA3 <- which(({Z1l = 1.96) & (22 <= 1.96))
A3 «<- which((Z1 = 1.96) & (Z2 > 1.96))

calclR <- function(Zs) {
prod(dnorm(Zs, mean = 1)/dnorm(Zs, mean = 0))
1

LR1.AlnotA2 <- sapply(AlnotA2, function(i) calcLR(Z1[i]))
LR1.A2notA3 <- sapply(A2notA3, function(i) calcLR(Z1[i]))

LR1.A3 <- sapply(A3, function(i) calcLR(Z1[i]))

LR2.A2notA3 <- sapply(AZnotA3, function(i) calcLR(c(Z1[i], Z2[i1)))
LR2.A3 <- sapply(A3, function(i) calcLR(c(Z1[i], Z2[il1)))

LR3.A3 <- sapply(A3, function(i) calcLR(c(Z1[i], Z2[i], Z3[i1)))

ggplot(rbind(data.frame(t = 0, LR = 1, GoldRush = "AlnotA2", series = AlnotA?2),
data.frame(t = 0, LR = 1, GoldRush = "A2notA3", series = A2notA3),
data.frame(t = 0, LR = 1, GoldRush = "A3", series = A3),
data.frame(t = 1, LR = LR1.AlnotA2, GoldRush = "AlnotA2", series = AlnotA2),
data.frame(t = 1, LR = LR1.A2notA3, GoldRush = "AZnotA3", series = A2notA3),
data.frame(t = 1, LR = LR1.A3, GoldRush = "A3", series = A3),
data.frame(t = 2, LR = LR2.A2notA3, GoldRush = "AZnotA3", series = A2notA3),
data.frame(t = 2, LR = LR2.A3, GoldRush = "A3", series = A3),
data.frame(t = 3, LR = LR3.A3, GoldRush = "A3", series = A3))) =+
geom_line(aes(x = t, ¥ = LR, colour = GoldRush, group = series)) +
geom_hTine(yintercept = 20, linetype = "dashed") +
scale_y_continuous(trans = "logl0') +
scale_color_discrete(name = "Gold Rush A(t)",
labels = c(bquote(LRA(L) ~ " | AC1) =1, A(2) =0, A(3) = 0"),
bguote(LRACL) ~ " | A(1l) = 1, A(2) =1, A(3) =0"),
buote(LRACL) ~ " | A(1) =1, A(2) =1, A(G3) =1")))

Figure 4.10. Code to create Figure 4.11

If we set our type-I error rate a to 5%, and compare our likelihood ratios to 1/a = 20 we
observe that less than 1/20 = 5% of the study series ever achieves a value of LR larger
than 20 (Figure 4.12). The simulated type-I error is even much smaller than 5% since
in our Gold Rush world series stop growing at three studies, yet this procedure controls
type-I error also in the case none of these series stops growing at three studies, but all
continue to grow forever.
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10.0-
Gold Rush A(t)
S (t) = = =
- LRY | A@)=1,A@)=0,A@3)=0
J— LR(‘) | A1)=1,A2)=1,A3)=0
— Lr® | A1)=1,A(2)=1,AQR) =1
0.1-

Figure 4.11. Unconditional sampling distributions under the null hypothesis of LR® of
colored one, two or three studies under extreme Gold Rush accumulation bias. A threshold
is shown at 20. Note that the y-axis is logarithmic.

> typelerrorlR <- mean(c(LR1.AlnotAZ,

+ pmax(LR1.A2notA3, LR2.A2notA3),
+ pmax(LR1.A3, LR2.A3, LR3.A3))
+ > 20)

> typelerrorLR

[1] 0.0023

Figure 4.12. Code to calculate type-I error probability for LR averaged over series size t
under extreme Gold Rush accumulation bias and continuous monitoring.

Gold Rush world; all-series-size /continuous monitoring

o Al)=1 A2)=0 A(3)=0
7,5, Al =1 AQ2)=1 A(3)=0
7.,7,,25 Al =1 A2)=1 AB3)=1
z,7., 7, Al)=1 AQ2)=1 AB3)=1

Note that continuous monitoring changes our Gold Rush world as indicated above. We can,
however, also keep type-I error control if we do not continuously monitor, but only analyze
the terminated series, such as in Gold Rush world; all-series-size, as shown in Figure 4.13.

The type-I error control is thus conservative, and we pay a small price in terms of power.
That price is quite manageable, however, and can be tuned by setting the mean value
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> typelerrorLR <- mean(c(LR1.AlnotA2,
LR2.AZnotA3,
LR3.A3)

= 200

+ o+ o+

> typelerrorLR
[1] 0.0016

Figure 4.13. Code to calculate type-I error probability for LR® averaged over series size t
under extreme Gold Rush accumulation bias, with analysis only at the terminated series.

of the alternative likelihood (arbitrarily set to mean = 1 in the code for calcLR of Fig-
ure 4.10). More on that in Griinwald et al. (2019) and in Chapter 1.

It is this small conservatism in controlling type-I error that allows for full flexibility: There
isn’t a single accumulation bias process that could invalidate the inference. Any data-
driven decision is allowed. And data-driven decisions can increase the value of new studies
and reduce research waste.

4.9 Conclusion

In our imaginary world of extreme Gold Rush accumulation bias, the sampling distribu-
tion of the meta-analysis Z-score behaves very different from the sampling distribution
assumed to calculate p-values and confidence intervals. A meta-analysis p-value condi-
tions on the available sample size — on the sample size of the studies and on the number
of studies available — and represents the tail area of this conditional sampling distribution
under the null based on the observed Z-statistic. Analogously, a meta-analysis confidence
interval provides coverage under repeated sampling from this conditional distribution.
So if this sample size is driven by the data, as in any accumulation bias process, there is
a mismatch between the assumed sampling distribution of the meta-analysis Z-statistic,
and the actual sampling distribution.

We believe that some accumulation bias is at play in almost any retrospective meta-
analysis, such that p-values and confidence intervals generally do not have their promised
type-I error control and coverage. ALL-IN meta-analysis based on likelihood ratios can
handle accumulation bias, even if the exact process is unknown. It also allows for contin-
uous monitoring; multiple testing is no problem. Hence taking the ALL-IN perspective on
meta-analysis will reduce research waste by allowing efficient data-driven decisions — not
letting them invalidate the inference — and incorporating single studies and small study
series into meta-analysis inference.

Code availability
This blogpost’s R code is available on https://osf.io/p2rtw/ (Ter Schure, 2021a).
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Appendices

This blog post discusses approaches to meta-analysis that control type-I error averaged
over study series size. This is called error control surviving over time in Chapter 3, as will
become more clear in the technical details below.

Time: timing and chronology

Following notation from Chapter 3, we denote the number of studies available on a cer-
tain topic by t. This number t can also indicate the timing of a meta-analysis, such that
a meta-analysis can possibly occur at time t = 1,2,3,... up to some maximum number
of studies T. The number of studies and the timing of a meta-analysis share the notion
of chronology; of past, present and future studies. At t = 3, we have three studies avail-
able that we can possibly meta-analyse. The fact that a third study exists can depend on
the result of the first and second, but can never depend on the result of a future fourth
study. Analogously, our timing of a meta-analysis after three studies can depend on the
results of those three studies, but never on future meta-analyses. Note that dependen-
cies in time are possible, but not necessary, to apply the notation from the accumulation
bias framework (Chapter 3). Simultaneous studies can also be described, in which case
their existence cannot depend on each other. A “no dependency”-relation does require
the simultaneous studies to be assigned an arbitrary chronology, but their order plays
no further role than to express a set of studies as a series. In the example of this blog
post, however, the extreme Gold Rush scenario, we assume a very real chronology and
deterministic dependency between all the studies in a series.

4.A Extreme Gold Rush expressed in accumulation bias framework

A(t) denotes the probability that t studies accumulate and are analysed together in a
meta-analysis. A(t) has two components, the first indicates whether the topic “survives”
the (t — 1) study, in which case the maximum number of studies T is larger than t —1
(T = tor T > t—1 captured by the survival function S(t — 1)), and the second indicates
whether we bother to meta-analyze the series at its size t (the event .o/ (). In our extreme
Gold Rush world we assume that only three-study series are synthesized in a meta-analysis,
such that P[.&#(©] is only 1 for .&#® and always 0 for .#® and .#(") (we do not perform
any 2-study or 1-study meta-analyses). In general, A(t) depends on S(t) and .&#(*) as
follows:

Alt]2y...2) =Pl | T>t,2...2]-S(t—1]|2...21) (4.A.1)

In this simplified version of the Gold Rush scenario S(t) is always either O or 1 if the study
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results z; and 2, are known:

if 2, is of the form

S(11z) = {(1)

. otherwise.
(4.A.2)
if 2,2, are of the form 77,

1,
S(2|21,25) ={

0, otherwise.

S(t) is a survival probability, because a series can only grow to three studies (it has sur-
vive the second study (S(2))) if it has also grown to two studies (it has survived the first
study (S(1)). In contrast to the deterministic extreme Gold Rush in this paper, Chapter 3
describes a probabilistic version where the probability of a replication study is larger fol-
lowing a significant positive result, but not always zero following a nonsignificant one. In
that case we specify hazards of stopping after observing a certain result, which are prob-
abilities of stopping, given that the series accumulated so far. The survival probability is
defined in terms of these hazards, following standard survival analysis notation.

In our extreme Gold Rush any meta-analysis has zero probability to occur except for the
three-study meta-analysis (P[.##®] = 1 and for all other t P[.&#()] = 0 independent of
the observed results z;,2,,...2,), we find nonzero A(t) only for the last two scenarios
below:

A2 |2])=Plo/@|T>2]-S(1]2;)=0-0=0 (4.A.3)

A2|7z,2;) =P/ |T>2]-5(1|2)=0-1=0 (4.A.4)
AQ2]7z,2)=PlLg®|T>2]-S(1]2)=0-1=0 (4.A.5)
ABlz,,2,,2; | T<3)=PLag®|T>3]-5(2|z,2,)=1-1=1 (4.A.6)
ABB|z,7,,2.)=PLg® | T>3]-512|2z,z)=1-1=1 (4.A.7)

4.B Extreme Gold Rush conditional sampling distribution

The sampling distribution of Z(*) under accumulation bias is a distribution that conditions
on having t studies available and analyzing them, which happens with probability A(t)
given the data.

Using notation from Chapter 3 we express the accumulation of ¢ studies as T > t, in-
dicating that once we have t studies available, our maximum amount of studies T is at
least t (it is either t or larger). .o#(*) indicates the event that we perform a meta-analysis
of the t studies available. We denote the conditional sampling distribution of a z(*)-score
by ¢o(z'?) | @D, T > t), and obtain its expression by observing that A(t) is a probabil-
ity of a t-study meta-analysis conditioned on the data, and we need a probability of the
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data conditioned on the occurrence of a t-study meta-analysis; Bayes’ rule transposes the
conditional in the following expression:

$o(z0) - Py [, T > t]20]
Py, T >t]
$o(z) -4, (t |Z(t))

A (1) ’ (4.B.1)

$o (29 7O, T 2 1) =

where we define:
Ay (t]20) =Ko [A(t] 2y,...,2)| 20 =21]
Ay () :=Eo[A(t]Zy,...,Z)].

Here, ¢ is a standard normal distribution with mean 0 and variance 1. For the extreme
Gold Rush scenario of this paper, and the sampling distribution of a three-study series
illustrated in Figure 2, A, (3) can be calculated as follows:

20(3) = EO[A(3 | Zl’ZZ:Z3):|
=AB | z,,2,,25) - Polz), 2,25 ]+ A | 2,,2,,2.) - Po[ 2, 2, 2. ]
=1-Py[z,,7,,2;]+1-Py[7,,7,,7.]
=l-a-a-(1—a)+1-a-a-a
!
~ 1600

(4.B.2)

(for a = 2.5%)

The only three-study series that have nonzero A(t) are A(3 | z,,7,,2;) and A(3 | 7, 7., 7,),
such that only these have to be enumerated in expectation A(3). A, (3 | z(f)) can be ob-
tained by considering all the possible combinations of Z;, Z,, Z5 that could be summarized
into a specific z(Y) and taking into account their probabilities under the null hypothesis.

The value 1/1600 explains the statement in the beginning of the code in Figure 1 that
1600 first studies are needed for each sample of a three-study series.

A(t) behaves like a survival probability

Table 4.C.2 is an extension of the table in the blog post and shows that even though A, (t)
indicates the null hypothesis probability of accumulating ¢ studies and meta-analyzing
them, it cannot in itself tell us how often the research effort is terminated at exactly those
t studies. This is caused by the fact that A(t) is partly a survival probability and can be
illustrated by adding a column of A,(t) values to our table that does not add up to one.
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Table 4.C.2. Possible study series under extreme Gold Rush accumulation bias.

T N“(1)  Ay(T) P, N*(1)- P, TP,

1 Z7 0 1 1—a 0 1—a

2 225 1 a a(l—a) a(l—a) 2a(1—a)

3 , 7, %3 2 a?  ad?*(1—a) 20%(1—a) 3a?(l1—a)
T=3 3 ,Zh, 3 a® a? 3a® 3a®
>, 1 at+a*+a® 1+a+a?

4.C The martingale underlying the table

Table 4.C.2 is slightly modified in comparison to the blog post to introduce more formal
notation for the Gold Rush stopping rule. Here we show the specific martingale underlying
this table and how Doob’s Optional Stopping Theorem explains the relation between the
values in the bottom row of the table.

We assume that each individual study Z-score is independently sampled from a standard
normal distribution with mean zero, such that the probability of obtaining a significant
and positive result (z" if z > 2,) is a. Using 1,.(z;) for the indicator function that indi-
cates whether gz; is significant and positive, the martingale {M;, My, M5,...} underlying
Table 4.C.2 is defined as follows:

t
M, = Z 1, (z)—ta.
i=1

{M;,M,, M, ...} is a martingale since

¢ t—1
Eo[M, —M, ] =K, {; L, (z)—ta— (; 1 ()= (= 1)0‘)] 4.D.1)

=Ey[1,(z,))—a]=a—a=0.

We denote the number of significant positive studies in a series of size t by N*(t) in
Table 4.C.2 and express this number in terms of M,:

N ()= 1, (3) =M, +ta.
i=1

The Gold Rush stopping rule implies that we only stop accumulating studies at series size
t = 7 if we find the first nonsignificant study (z_, where 7 = min, {1, (z,) = 0}) or if we
arrive at the maximum series size t = T. This stopping rule forces us to stop accumulating
studies at either series size T or at size T, whichever comes first. So we stop at T A T. We
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express the expected number of studies that is significant and positive in terms of the
expectation of the martingale under this stopping rule:

Eo[N*(t AT)] =Eo[M a7 ] —Eo[T A T]a,

and since 7 A T is always finite, by Doob’s Optional Stopping theorem we have:

1
Eo[M;nr] =Eo[M;]=E, [Z 1, (z)— 1a:| =Eo[1, (z)]—a=a—a=0
i=1

such that

EoIN*(TAT)]=E4[tAT]a
and

Eo[N*(v A T)]

E[tAT]

(4.D.2)

This is shown for the Gold Rush stopping rule and T = 3 by Table 4.C.2, but holds for any
stopping rule and finite T.



