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3| Accumulation Bias

Abstract
Studies accumulate over time and meta-analyses are mainly retrospective. These two
characteristics introduce dependencies between the analysis time, at which a series of
studies is up for meta-analysis, and results within the series. Dependencies introduce bias
– Accumulation Bias – and invalidate the sampling distribution assumed for p-value tests,
thus inflating type-I errors. But dependencies are also inevitable, since for science to accu-
mulate efficiently, new research needs to be informed by past results. Here, we investigate
various ways in which time influences error control in meta-analysis testing. We introduce
an Accumulation Bias Framework that allows us to model a wide variety of practically oc-
curring dependencies, including study series accumulation, meta-analysis timing, and ap-
proaches to multiple testing in living systematic reviews. The strength of this framework
is that it shows how all dependencies affect p-value-based tests in a similar manner. This
leads to two main conclusions. First, Accumulation Bias is inevitable, and even if it can
be approximated and accounted for, no valid p-value tests can be constructed. Second,
tests based on likelihood ratios withstand Accumulation Bias: they provide bounds on
error probabilities that remain valid despite the bias. We leave the reader with a choice
between two proposals to consider time in error control: either treat individual (primary)
studies and meta-analyses as two separate worlds – each with their own timing – or inte-
grate individual studies in the meta-analysis world. Taking up likelihood ratios in either
approach allows for valid tests that relate well to the accumulating nature of scientific
knowledge. Likelihood ratios can be interpreted as betting profits, earned in previous
studies and invested in new ones, while the meta-analyst is allowed to cash out at any
time and advise against future studies.
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Introduction
Meta-analysis refers to the statistical synthesis of results from a series of stud-
ies. [...] the synthesis will be meaningful only if the studies have been col-
lected systematically. [...] The formulas used in meta-analysis are extensions
of formulas used in primary studies, and are used to address similar kinds of
questions to those addressed in primary studies.

–Borenstein, Hedges, Higgins & Rothstein (2009, pp. xxi-xxiii)

To consult the statistician after an experiment is finished is often merely to
ask him to conduct a post mortem examination. He can perhaps say what the
experiment died of.

–Fisher (1938, p. 18)

These two quotes conflict. Most meta-analyses are retrospective and consider the number
of studies available – after the literature has been searched systematically – as a given
for the statistical analysis. P-value based statistical tests, however, are intended to be
prospective and require the sample size – or the stopping rule that produces the sample
– to be set specifically for the planned statistical analysis. The second quote, by the p-
value’s popularizer Ronald Fisher, is about primary studies. But this prospective rationale
influences meta-analysis as well because it also involves the size of the study series: p-
value tests assume that the number of studies – so the timing of the meta-analysis – is
predetermined or at least unrelated to the study results. So by using p-value methods, con-
ventional meta-analysis implicitly assumes that promising initial results are just as likely
to develop into (large) series of studies as their disappointing counterparts. Conclusive
studies should just as likely trigger meta-analyses as inconclusive ones. And so the use of
p-value tests suggests that results of earlier studies should be unknown when planning
new studies as well as when planning meta-analyses. Such assumptions are unrealistic
and actively argued against by the Evidence-Based Research Network (Lund et al., 2016)
part of the movement to reduce research waste (Chalmers and Glasziou, 2009; Chalmers
et al., 2014). But ignoring these assumptions invalidates conventional p-value tests and
inflates type-I errors.

P-values are based on tail areas of a test statistic’s sampling distribution under the null
hypothesis, and thus require this distribution to be fully specified. In this chapter we show
that the standard normal Z-distribution generally assumed (e.g. Borenstein et al. (2009))
is not an appropriate sampling distribution. Moreover, we believe that no sampling distri-
bution can be specified that fully represents the variety of processes in accumulating sci-
entific knowledge and all decisions made along the way. We need a more flexible approach
to testing that controls errors regardless of the process that spurs the meta-analysis.

When dependencies arise between study series size or meta-analysis timing and results
within the series, bias is introduced in the estimates. This bias is inherent to accumulating
data, which is why we gave it the name Accumulation Bias. Various forms of Accumula-
tion Bias have been characterized before, in very general terms as “bias introduced by
the order in which studies are conducted” (Whitehead, 2002, p. 197) and more specif-
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ically, such as bias caused by the dependence of follow-up studies on previous studies’
significance and the dependence of meta-analysis timing on previous study results (Ellis
and Stewart, 2009). Also, more elaborate relations were studied between the existence
of follow-up studies, study design and meta-analysis estimates (Kulinskaya et al., 2016).
Yet no approach to confront these biases has been proposed.

In this chapter we define Accumulation Bias to encompass processes that not only affect
parameter estimates but also the shape of the sampling distribution, which is why only ap-
proximation and correction for bias does not achieve valid p-value tests. We illustrate this
by an example in Section 3.2, right after we give a general introduction to Accumulation
Bias in Section 3.1 with its relation to publication bias (Section 3.1.1) and an informal
characterization of the direction of the bias (Section 3.1.2). By presenting its diversity, we
argue throughout the chapter that any efficient scientific process will introduce some form
of Accumulation Bias and that the exact process can never be fully known. We collect the
various forms of Accumulation Bias into one framework (Section 3.3) and show that all
are related to the time aspect in meta-analysis. The framework incorporates dependencies
mentioned by Whitehead (2002), Ellis and Stewart (2009) and Kulinskaya et al. (2016)
as well the effect of multiple testing over time in living systematic reviews Simmonds
et al. (2017). We conclude that some version of these biases will also be introduced by
Evidence-Based Research.

Our framework specifies analysis time probabilities – with behavior familiar from survival
analysis – and distinguishes two approaches to error control: conditional on time (Sec-
tion 3.4.1) and surviving over time (Section 3.4.2). We show that general meta-analyses
take the former approach, while existing methods for living systematic reviews take the
latter. However, neither of the two is able to analyze study series affected by partially un-
known processes of Accumulation Bias (Section 3.4.3). After an intermezzo on evidence
that indeed such processes are already at play in Section 3.5, we introduce a general
form of a test statistic that is able to withstand any Accumulation Bias process: the like-
lihood ratio. We specify bounds on error probabilities that are valid despite the existing
bias, for error control conditional on time (Section 3.6.1) as well as surviving over time
(Section 3.6.2). The reader is left to choose between the two; the consequences of either
preference are specified in Section 3.7. We try to give intuition on why both are still pos-
sible in Section 3.6.1 and Section 3.6.2 respectively, but also give some extra intuition on
the magic of likelihood ratios in Section 3.8: Likelihood ratios have an interpretation as
betting profit that can be reinvested in future studies. At the same time, the meta-analyst
is allowed to cash out at any time and advise against future studies. Hence, the likelihood
ratio relates the statistics of Accumulation Bias to the accumulating nature of scientific
knowledge, which is critical in reducing research waste.

3.1 Accumulation Bias
Any meta-analyst carries out a meta-analysis under the assumption that synthesizing pre-
vious studies will add to what is already known from existing studies. So meta-analyses
are mainly performed when the series of studies has reached a meaningful size. What
is considered meaningful varies considerably: 16 and 15 studies per meta-analysis were
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reported to be the median numbers in Medline meta-analyses from 2004 and 2014 (Mo-
her et al., 2007a; Page et al., 2016), while 3 studies per meta-analysis were reported in
Cochrane meta-analyses from 2008 (Cochrane Database of Systematic Reviews Davey et al.
(2011)). Since meta-analyses are performed on research hypotheses that have spurred a
certain study series size, they always report estimates that are conditioned on the avail-
ability of such a series. The crucial point is that not all pilot studies or small study series
will reach a meaningful size. Which ones do might depend on results in the series. Apart
from the dependent size of the study series, the exact timing of a meta-analysis can also de-
pend on the available results. The completion of a highly powered or otherwise conclusive
study, for example, might be considered to finalize the series and trigger a meta-analysis.
So meta-analyses also report estimates conditioned on the consideration that a systematic
synthesis will be informative. Both dependencies – series size and meta-analysis timing –
introduce bias: Accumulation Bias.

3.1.1 Accumulation Bias vs. publication bias
Publication bias refers to the practice that studies with nonsignificant, or more general,
unsatisfactory results have smaller probability to be published than studies with signifi-
cant, satisfactory results. So unsatisfactory studies are performed, but do not reach the
meta-analyst because they are stashed away in a file drawer (Rosenthal, 1979). Accumula-
tion Bias, on the other hand, refers to some studies or meta-analyses not being performed
at all, as a result of previous findings in a series of studies. In a file drawer-free world,
Accumulation Bias would still exist. But Accumulation Bias is a manageable problem be-
cause it does not operate at the individual study level. Conditional on the fact that a
second study is performed, the second study is an unbiased sample. Conditional on the
fact that a third study is performed, for whatever reason, the third study is an unbiased
sample. So bias is introduced at the level of the series, not at the study level. This is dif-
ferent for publication bias, where, conditional on being published, the studies available
are not an unbiased sample. We exploit the difference in this chapter by considering time
in error control.

Of course, Accumulation Bias and publication bias are not alone in their effects on meta-
analysis reporting. All sorts of significance chasing biases – selective-outcome bias, selective
analysis reporting bias and fabrication bias – might be present in the study series up for
meta-analysis, and can lead to “wrong and misleading answers” (Ioannidis, 2010, p. 169).
But for a world in which these biases are overcome, we also need tests that reflect how
scientific knowledge accumulates.

3.1.2 Accumulation Bias’ direction
Accumulation Bias in estimates is mainly bias in the satisfactory direction, which means
that the effect under study is overestimated. This is the case for bias caused by the size of
the studies series when (overly) optimistic initial estimates (either in individual studies
or in intermediate meta-analyses) give rise to more studies, while disappointing results
terminate a series of studies. This is also the case when the timing of the meta-analysis is
based on an (overly) optimistic last study estimate or an (overly) optimistic meta-analysis
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synthesis is considered the final one. We focus on this satisfactory direction of Accumula-
tion Bias and will only briefly discuss other possibilities in Section 3.4.3 and Section 3.5.1.
We introduce the wide variety of possible dependencies in an Accumulation Bias Frame-
work in Section 3.3, which has a generality that also includes Accumulation Bias without
a clear direction. But we first present Accumulation Bias’ effects on error control by an
example.

3.2 A Gold Rush example: new studies after finding significant results
We study the effect of Accumulation Bias by a simple example. Its simplicity allows us
to calculate the exact amount of bias in the test statistic and investigate the additional
effect on the sampling distribution. The example given in this section is an extension of
the toy example introduced by Ellis and Stewart (2009). We call this example by Gold
Rush because it describes how new studies go looking for more results after finding initial
statistical significance. In the current culture of scientific practice, statistical significance
can be seen as the currency of scientific success. After all, significant results achieve the
future possibility to pay off in publications, grants and tenure positions. When a gold rush
for statistical significance presents itself in a series of studies, dependencies arise between
the size of the series and the results within: Accumulation Bias. We specify this mechanism
in detail in Section 3.2.2 and Section 3.2.3, after we simplified our meta-analysis setting
to common/fixed-effects meta-analysis in Section 3.2.1. We present the resulting bias in
the test estimates in Section 3.2.4 and its additional effects on the sampling distribution
and testing in Section 3.2.5 and Section 3.2.6. In Section 3.2.7 we conclude by pointing
out the very mild condition needed for some form of Gold Rush Accumulation Bias to
occur

3.2.1 Common/fixed-effect meta-analysis
This chapter discusses meta-analysis in its simplest form, which is common-effect meta-
analysis, also known as fixed-effect meta-analysis. This restriction does not mean that
more complex forms of meta-analysis, such as random-effects meta-analysis and meta-
regression, do not suffer from the problems mentioned in this chapter. The reason for
simplification is to reduce the complexity in quantifying the problem, part of showing
that quantification is not enough. For an example of Accumulation Bias in random-effects
estimates we refer to Kulinskaya et al. (2016).

Common-effect meta-analysis derives a combined Z-score from the summary statistics of
the available studies. This combined Z-score is used as a test statistic in two-sided meta-
analysis testing by comparing it to the tails of a standard normal distribution. This is
equivalent to assessing whether its absolute value is more than z α

2
standard deviations

away from zero (larger than 1.960 for α = 0.05). We simplify the setting by assuming
studies with equal standard deviations to obtain an easy to handle expression for the
combined Z-score of t available studies. We denote this meta-analysis Z-score by Z (t) and
derive it as the weighted average over the study Z-scores Z1, . . . , Zt , shown in its general
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form in (3.1a) and in (3.1b) under the assumption of equal study sizes:

Z (t) =

∑t
i=1
p

ni Zip
N (t)

with N (t) =
t
∑

i=1

ni (3.1a)

=
1
p

t

t
∑

i=1

Zi (n1 = n2 = · · ·= nt = n). (3.1b)

See Appendix Section 3.A for a derivation from the mean difference notation in Borenstein
et al. (2009).

3.2.2 Gold Rush new study probabilities
In our Gold Rush example, we assume the following dependency within a series of studies:
each study in a series has a larger probability to be replicated – and therefore expanding
the series of studies – if the study shows a significant positive effect. So the existence of a
new study is dependent on the significance and sign of the results of its predecessor.

T is the random variable that denotes the maximum size of a study series – the time at
which the search stops. We enumerate time by the order of appearance in a study series,
with t = 1 for the pilot study, t = 2 for the second study (so now we have a two-study
series) etc. So we use t to denote the number of studies available for meta-analysis at any
time point: our notion of time is not related to actual dates at which studies are performed.
The maximum time T is usually unknown since more studies might be performed in the
future. T ≥ 2 means that the series has not halted after the first initial study, but that it is
unknown how many replications will eventually be performed. In our extended Gold Rush
example, we present the Accumulation Bias process by the probability that the maximum
size is at least one study larger than the current size (T ≥ t + 1), and do so using six
parameters. We denote these parameters by the new study probabilities, since they indicate
the probability that a follow-up study is performed when the result of the current study
is available:

ω(1)
S

:=P
�

T ≥ 2
�

�

� T ≥ 1, Z1 ≥ z α
2

�

= 1

ω(1)
X

:=P
�

T ≥ 2
�

�

� T ≥ 1, Z1 ≤ −z α
2

�

= 0

ω(1)
NS

:=P
�

T ≥ 2
�

�

� T ≥ 1, |Z1|< z α
2

�

= 0.1,

for all t ≥ 2 : (3.2)

ω(t)
S
= ωS := P

�

T ≥ t + 1
�

�

� T ≥ t, Zt ≥ z α
2

�

= 1

ω(t)
X
= ωX := P

�

T ≥ t + 1
�

�

� T ≥ t, Zt ≤ −z α
2

�

= 0

ω(t)
NS
=ωNS := P

�

T ≥ t + 1
�

�

� T ≥ t, |Zt |< z α
2

�

= 0.02.
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We distinguish between the influence of the first (pilot) study (ω(1)S , ω(1)X and ω(1)NS ) and
the others (ωS, ωX and ωNS) since pilot studies are carried out with future studies in
mind, and therefore replications have higher probability after the first than after other
studies in the series, also in case the pilot study is not significant. We assume that no
new study is performed when a significant negative result is obtained (ω(1)X = ωX = 0)
and new studies are always performed after positive significant findings, the satisfactory
result (ω(1)S =ωS = 1). Nonsignificant results have a small, but not negligible probability
to spur new studies (ω(1)NS = 0.1, ωNS = 0.02).

3.2.3 Gold Rush new study probabilities’ independence from data-generating
hypothesis

In the following we use P1 to express probabilities under the alternative hypothesis and
P0 to express probabilities under the null hypothesis. Our new study probabilities in (3.2)
were given without reference to any of these hypotheses, to make explicit that they depend
solely on the data (or summary statistic Zt) and the behavior of the researchers; not on
the hypothesis that generated the data. So P in these definitions can be read as P1 as well
as P0.

In the next sections we focus on Gold Rush Accumulation Bias under the null hypothesis
and its effect on type-I error control. The values in rightmost column of (3.2) are intro-
duced to obtain estimates for the Accumulation Bias in the test estimates. These values
are not supposed to be realistic, but are chosen to demonstrate the effect of Accumulation
Bias as clearly as possible. The extreme values 1 for ω(1)S and ωS given in (3.2) support
the simulation of large study series under the null hypothesis. The small values for ω(1)NS

and ωNS are chosen such that the effect of significant findings on the sampling distribu-
tion is clearly visible (see Section 3.2.5 and Figure 3.1). For α = 0.05, ω(1)S = 1 implies
that, in expectation under the null distribution, all of the 2.5% (α2 ) positively significant
pilot studies under the null hypothesis become a two-study series, while ω(1)NS = 0.1 in-
dicates that, since an expected 95% (1 − α) of pilot studies is not significant under the
null hypothesis, 9.5% (0.1 ·95%) become a two-study series. For study series beyond the
pilot study and its replication, this setup entails that in all studies, except for the last and
the first, the fraction of significant findings is more than half, since ωS = 0.02 implies
that only 0.02 · 95% = 1.9% nonsignificant studies grow into a larger study series: the
expected fraction of significant studies in growing series under the null hypothesis con-
verges to 2.5/(2.5+ 1.9) = 0.6: the conditional probability of getting a positive finding
conditional on another study being done after the first pilot (pilot) study.

3.2.4 Gold Rush Accumulation Bias’ estimates under the null hypothesis
The new study probability parameters in (3.2) are much larger when results are positively
significant than when they are not. As a result, it occurs more often that study series have
many significant studies than that they have only a few. While the expectation of a Z-
score is 0 under the null hypothesis for each individual study (for all t: E0 [Zt] = 0), the
expectation of a study that is part of a series of studies is larger. This shift in expectation
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introduces the Accumulation Bias in the estimates.

The main ingredient of the bias in the meta-analysis Z (t)-score is the bias in the individ-
ual study Zt -scores, conditional on being part of a series. This is already apparent for
the pilot study, which we use as an example by expressing its expected value under the
null hypothesis, given that it has a successor study: E0 [Z1 | T ≥ 2]. This conditional ex-
pectation is a weighted average of two other expectations that are conditioned further

based on the events that lead to a new study according to (3.2): E0

�

Z1

�

�

� Z1 ≥ z α
2

�

, Z1

from the right tail of the null distribution, and the nonsignificant results with expectation

E0

�

Z1

�

�

� |Z1|< z α
2

�

. We discard negative significant results, since those were given 0 prob-

ability to produce replication studies in (3.2). The positive significant and nonsignificant
results are weighted by the new study probabilities in (3.2) and the probabilities under
the null distribution of sampling from either the tail (α) or the middle part (1−α) of the
standard normal distribution. A more detailed specification of these components can be
found in Appendix Section 3.B. If we assume a significance threshold of 5% we obtain:

for α= 0.05 : E0 [Z1 | T ≥ 2] =

∫∞
z α

2

z ·φ(z)dz ·ω(1)S ·
α
2 + 0 ·ω(1)NS · (1−α)

ω
(1)
S ·

α
2 +ω

(1)
NS · (1−α)

≈ 0.487.

(3.3)

Here we use the fact that, for α= 0.05, E0

�

Z1

�

�

� Z1 ≥ z α
2

�

=
∫∞

1.960 z ·φ(z)dz ≈ 2.338, with

φ() the standard normal density function and that E0

�

Z1

�

�

� |Z1|< z α
2

�

is the expectation

of a symmetrically truncated standard normal distribution, which is 0. The value 0.487
is obtained by using the parameter values given in (3.2). For studies in the series later
than the pilot study, the expression follows analogously by taking for all t ≥ 2 : ω(t)S =
ωS and ω(t)NS =ωNS: E0 [Zt | T ≥ t + 1]≈ 1.328.

To determine the effect on the meta-analysis Z (t)-score, we define the expectation under
the null hypothesis E0

�

Z (t)
�

� T ≥ t
�

, conditioned on the availability of a series of size t.
To specify this expectation, we use that the last study so-far (for a series of size t, the t th

study) is always unbiased since we do not know whether it will spur more studies. After
all, in the Gold Rush scenario, we assume that the timing of the meta-analysis does not
relate to the t th study result, only that the results of the first t−1 studies spurred a series
of size t and these results are included in the meta-analysis of t studies. As shown in more
detail in Appendix Section 3.C, the expression follows from (3.1a) by separately treating
the unbiased expectation of 0 and the pilot study. If we assume a significance threshold
of 5%, we obtain the general expression in (3.4a) and the expression in (3.4b) under the
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Table 3.1. Expected Z-scores under the null hypothesis in the Gold Rush scenario, under
the equal study size assumption, calculated using (3.4b) with α= 0.05 and values for ω(1)S ,
ω
(1)
NS , ωS and ωNS from (3.2). Z (t) is as defined in (3.1b). See Appendix Section 3.G for the

code that was used to calculate these values.

Number of
studies (t) E0 [Zt] E0 [Zt | T ≥ t + 1] E0

�

Z (t)
�

� T ≥ t
�

1 0.000 0.487 0.000
2 0.000 1.328 0.344
3 0.000 1.328 1.048
4 0.000 1.328 1.572
5 0.000 1.328 2.000
6 0.000 1.328 2.368
7 0.000 1.328 2.695
8 0.000 1.328 2.990
9 0.000 1.328 3.262

10 0.000 1.328 3.515

assumption of equal study sizes (n1 = n2 = · · ·= nt = n):

for α= 0.05, for all t ≥ 2 :

E0

�

Z (t)
�

� T ≥ t
�

≈
p

n1 · 0.487+
∑t−1

i=2
p

ni · 1.328+pnt · 0p
N (t)

(3.4a)

=
0.487+ 1.328(t − 2)

p
t

. (3.4b)

Table 3.1 shows the Accumulation Bias in the estimates of E0

�

Z (t)
�

� T ≥ t
�

as studies
accumulate under the Gold Rush scenario, with equal study sizes and values for the new
study probabilities given by (3.2).

3.2.5 Gold Rush Accumulation Bias’ sampling distribution under the null hy-
pothesis

Figure 3.1 shows simulated Gold Rush sampling distributions for study series of size two
and three in comparison to an individual study Z-distribution. Because the new study
probabilities in (3.2) give Zt−1-values below −z α

2
zero probability to warrant a successor

study, values for the z(t)-statistic below −z α
2

will be scarce and the larger t is the larger this
scarcity will be since only the last study is able to provide such small Z-score estimates.
The opposite is the case for values above z α

2
, which have probability 1 to warrant a new

study. As a result, the distribution of the meta-analysis Z-score has negative skew (more
mass on the right, more tail to the left). See the comparison to the normal distribution
also plotted in Figure 3.1 for a three-study series. Skewness is not the only characteristic
that distinguishes the resulting distribution from a standard normal. The variance also
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Figure 3.1. Sampling distributions of meta-analysis Z (t)-scores under the null hypothesis
in the Gold Rush scenario, under the equal study size assumption, with α= 0.05 and values
for ω(1)S , ω(1)NS , ωS and ωNS from (3.2). Z (t) is as defined in (3.1b). φ(z|E0

(3)) the stan-
dard normal density function shifted by E0

(3), with E0
(3) shorthand for E0

�

Z (3)
�

� T ≥ 3
�

. See
Appendix Section 3.G for the code that produces the simulation and creation of this figure.

deviates since the meta-analysis distribution is a mixture distribution. For a two-study
meta-analysis Z (2) we obtain a mixture of two conditional distributions, one conditioned
on the first study being a significant – sampled from the right tail of the distribution (with
probability α

2 · ω
(1)
S ) – and one with the first study nonsignificant – sampled from the

symmetrically truncated normal distribution (with probability (1−α) ·ω(1)NS ). Because the
combined distribution on Z (2) is a mixture of the two scenarios, its variance is larger than
the variance of either of the two components of the mixture, as we show in Appendix
Section 3.D. In Figure 3.1 we see that, with the parameter values from (3.2) the variance

of Z (2) and Z (3) are even larger than that of Z1, even though both Var
¦

Z (2)
�

�

� Z1 < z α
2

©

and

Var
¦

Z (2)
�

�

� |Z1| ≥ z α
2

©

are smaller. Hence the sampling distribution under the null hypoth-

esis of a meta-analysis Z-score deviates from a standard normal under Accumulation Bias
due to a non-zero location (the bias), skewness and inflated variance. All three inflate the
probability of a type-I error in a standard normal test, as we will study in the next section.

3.2.6 Gold Rush Accumulation Bias’ influence on p-value tests
Let us now establish the effect of our Gold Rush Accumulation Bias on meta-analysis test-
ing when using common/fixed-effects Z-tests. Let E (t)TYPE-I indicate the event of a type-I
error (significant result under the null hypothesis) in a meta-analysis of t studies and let

P0

�

E (t)TYPE-I

�

�

� T ≥ t
�

= P0

�

|Z (t)| ≥ z α
2

�

�

� T ≥ t
�

denote the expected rate of type-I errors in a

two-sided common/fixed-effect Z-test for studies i up to t conditional on the fact that at
least t studies were performed.

We obtain the type-I error rate for this test by simulating the Gold Rush scenario, for which
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Table 3.2. Inflated type-I error rates for tests affected by bias only (fP0[E
(t)
TYPE-I | T ≥ t])

and tests affected by bias as well as impaired sampling distribution (P0[E
(t)
TYPE-I | T ≥ t]).

Simulated values are under the null hypothesis in the Gold Rush scenario, under the equal
study size assumption, with α= 0.05 and values for ω(1)S , ω(1)NS , ωS and ωNS from (3.2). See
Appendix Section 3.G for the code that produces the simulation and creation of this table.

Number of studies (t) fP0[E
(t)
TYPE-I | T ≥ t] P0[E

(t)
TYPE-I | T ≥ t]

2 0.06 0.10
3 0.18 0.23
4 0.35 0.40
5 0.52 0.53

the results are shown in the right hand column of Table 3.2, assuming α = 0.05. If only
bias would be at play, the sampling distribution under the null hypothesis would be a
shifted normal distribution. (3.5) expresses the expected type-I error rate for this bias
only scenario, with Φ() the cumulative normal distribution. The actual inflation in the
type-I error rate is larger than shown by this scenario, as illustrated the Table 3.2. The
difference between these two type-I error rates for a series of three studies is depicted
in Figure 3.1 by the area under the red histogram for Z (3) and the red φ(z | E0

(3)) curve
below −z α

2
and above z α

2
. We conclude that the effect of Accumulation Bias on testing

cannot be corrected by only an approximation of the bias.

fP0

�

E (t)TYPE-I

�

�

� T ≥ t
�

:= 1−Φ
�

z α
2
− E0

�

Z (t)
�

� T ≥ t
�

�

+ Φ
�

−z α
2
− E0

�

Z (t)
�

� T ≥ t
�

�

. (3.5)

3.2.7 Gold Rush Accumulation Bias: When does it occur?

We indicated in Section 3.2.3 that we chose extreme values for parameters ω(1)S , ω(1)X ,
ω
(1)
NS , ωS, ωX and ωNS such that Figure 3.1 would clearly show the bias and distributional

change that occurs. However, for any combination of values for which there is a t where
ω
(t)
S 6=ω

(t)
X 6=ω

(t)
NS Accumulation Bias occurs for series larger than size t and p-value tests

that assume a standard normal distribution are invalid.

3.3 The Accumulation Bias Framework
In general, Accumulation Bias in meta-analysis makes the sampling distribution of the
meta-analysis Z-score difficult to characterize due to the data dependent size and tim-
ing of a study series up for meta-analysis. In this section, we specify both processes in a
framework of analysis time probabilities. We use the term analysis time because time in
meta-analysis is partly based on a survival time. A survival time indicates that a subject
lives longer than time t (and might still become much older), just as an analysis time
indicates that a series up for meta-analysis has at least size t (but might still grow much
larger). As such, analysis time probabilities, just as the probabilities in a survival function,
do not add up to 1.
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Our Accumulation Bias Framework uses the following notation for its three key compo-
nents: S(t−1),A (t) and A(t). Firstly, S(t−1) can be understood as the survival function
in the variable time t that indicates the size of the expanding study series. S(t − 1) de-
notes the probability that the available number of studies is at least t (P[T ≥ t]), so the
study series has survived past the previous study at t − 1. Secondly, A (t) indicates the
event that a meta-analysis is performed on a study series of size exactly t. Lastly, A(t)
combines the probability that a study series of certain size is available (S(t−1)) with the
decisionA (t) to perform the analysis on exactly t studies. So the analysis time probability
A(t) represents the general probability that a meta-analysis of size t – so at time t – is
performed and is the key to describing the influence of various forms of Accumulation
Bias on testing.

3.3.1 Analysis time probabilities

Let P
�

A (t)
�

� T ≥ t, z1, . . . , zt

�

denote the probability that a meta-analysis is performed on
the first t studies. Just as the Gold Rush’ new study probabilities from (3.2), this probability
can depend on the results in the study series z1, . . . , zt . The event A (t) only occurs if a
series of size t is available, so we need to condition on the survival past t − 1, which can
also depend on previous results. When combined, we obtain the following definition1 of
analysis time probabilities A(t):

A(t | z1, . . . , zt) := P
�

A (t)
�

� T ≥ t, z1, . . . , zt

�

· S (t − 1 | z1, . . . , zt−1) ,

where we define

S (t − 1 | z1, . . . , zt−1) := P [T ≥ t | z1, . . . , zt−1] .

(3.6)

(3.6) formalizes the idea of analysis time probabilities “depending on previous results”
in terms of the individual study Z-scores z1, . . . , zt . This is compatible with the Z-test ap-
proach in meta-analysis and the dependencies and the Gold Rush’ new study probabilities
that are explicitly expressed in terms of Z-scores. More generally however, in Section 3.3.3
and Section 3.3.4 we extend the definition and allow analysis time probabilities to also
depend on the data in the original scale and external parameters.

3.3.2 Analysis time probabilities’ independence from the data-generating hy-
pothesis

Just as for the Gold Rush’ new study probabilities discussed in Section 3.2.2 and Sec-
tion 3.2.3, the analysis time probabilities A(t) only depend on the data, and are indepen-
dent from the hypothesis that generated the data. So again, P in these definitions can

1Note that A(t | z1, . . . , zt ) is defined as a product of two (conditional) probabilities. Calling this product itself
a “probability”, as we do, can be justified as follows: we currently think of the decision whether to continue
studies at time t, i.e. whether T ≥ t, to be made before the t-th study is performed. But we may also think
of the t-study result zt as being generated irrespective of whether T ≥ t, but remaining unobserved for ever
if T < t. If the decision whether T ≥ t is made independently of the value zt , i.e. we add the constraint
P [T ≥ t | z1, . . . , zt−1] = P [T ≥ t | z1, . . . , zt ], then the resulting model is mathematically equivalent to ours (in
the sense that we obtain exactly the same expressions for S(t), A(t | z1, . . . , zt ), all error probabilities etc.), but
it does allow us to write, by (3.6), that A(t | z1, . . . , zt ) = P

�

A (t), T ≥ t
�

� z1, . . . , zt
�

– so now A(t | z1, . . . , zt ) is
indeed a probability.
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be read as P1 as well as P0. Our definition of A(t) relates to the definition of a Stopping
Rule by Berger and Berry (1988, pp. 33-34), where they use x (m) to denote a vector of m
observations:

Definition. A stopping rule is a sequence τ= (τ0,τ1, . . . ) in which τ0 ∈ [0, 1]
is a constant and τm is a measurable function of x (m) for m≥ 1, taking values
in [0,1].

τ0 is the probability of stopping the experiment with no observations (e.g., if it
is determined that the experiment is too expensive); τ1(x (1)) is the probability
of stopping after observing the datum x (1) = x1, conditional on having taken
the first observation; τ2(x (2)) is the probability of stopping after observing
x (2) = (x1, x2), conditional on having taken the first and second observations;
etc.

To take the analogy with survival analysis further, we consider the sequence τ defined
above by Berger and Berry (1988) to be a sequence of hazards. Instead of using their
notation τ we denote the Stopping Rule by λ= (λ(0),λ(1), . . . ) to emphasize its behavior
as a sequence of hazard functions and to distinguish time t from the probability λ(t) of
stopping at that time given that you were able to reach it. The hazard of stopping at time
t can depend on previous results and is defined as follows:

λ (t | z1, . . . , zt) := P [T = t | T ≥ t, z1, . . . , zt] . (3.7)

In this chapter we are only interested in cases in which a first study is available, so λ(0) =
0 (also stated as P[T ≥ 1] = 1 in Appendix Section 3.B). The survival S(t − 1), the
probability of obtaining a series of size at least t (so larger than t − 1), follows from the
hazards by considering that surviving past time t−1 means that the series has not stopped
at studies i up to and including t − 1. So for t ≥ 1:

S (t − 1 | z1, . . . , zt−1) =
t−1
∏

i=0

(1−λ (i | z1, . . . , zi)). (3.8)

In many examples, the hazard of stopping at time t, λ(t), will depend on the result zt
just obtained. In that case λ (i | z1, . . . , zi) = λ (i | zi) in (3.8) above. But in general λ(t)
might also depend on some synthesis of all zi so far. We show some of the variety of forms
that λ(t), S(t) and A(t) can take in our Accumulation Bias Framework in the following
sections.

3.3.3 Accumulation Bias caused by dependent study series size
Our Gold Rush example describes an instance of Accumulation Bias that is caused by how
the study series size comes about. This is expressed by the S(t) component of the analysis
times probability A(t). We represent our Gold Rush scenario in terms of our Accumulation
Bias framework in next section, followed by variations from the literature that we were
able to express in a similar manner.
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Gold Rush: dependence on significant study results
The Gold Rush scenario operates in a general meta-analysis setting and assumes that there
is a single random or prespecified time t at which a study series is up for meta-analysis.
This is the approach taken by meta-analyses not explicitly part of a living systematic re-
view. In the Gold Rush example the dependency arises in the study series because a t-study
series has a larger probability to come into existence when individual study results are
significant, and you need a t-study series to perform a t-study meta-analysis. This de-
pendency was characterized by the new study probabilities ω(1)S , ω(1)NS , ωS and ωNS from
(3.2). The value of S(t), and therefore A(t), can be expressed in terms of these new study
probabilities by considering whether z1, . . . , zt−1 are larger than z α

2
(which is 1.960 for α

= 0.05). Since a meta-analysis is performed only once at a randomly chosen time t, we
have P[A (t)] = 1 for that time t and P[A (t)] = 0 otherwise. So for the one meta-analysis
we obtain:

for t such that P[A (t)] = 1 :

A(t | z1, . . . , zt−1;α) =S (t − 1 | z1, . . . , zt−1;α) =
t−1
∏

i=0

(1−λ (i | zi;α)) ,

with λ (0) = 0 and for all i ≥ 1, λ(i) is defined as follows:

λ (i | zi ,α) =1−
�

ω(i)
S
· 1zi≥z α

2
+ω(i)

NS
· 1|zi |<z α

2

�

λ0 (i |α) := E0 [λ(i | Zi;α)] = 1−
�

ω(i)
S
·
α

2
+ω(i)

NS
· (1−α)

�

.

(3.9)

Therefore, (leaving out the λ(0) and summing from i = 1 to t−1), we obtain the following
expressions for the Gold Rush analysis time probabilities and its expectations under the
null distribution:

A(t | z1, . . . , zt−1;α) =
t−1
∏

i=1

�

ω(i)
S
· 1zi≥z α

2
+ω(i)

NS
· 1|zi |<z α

2

�

A0 (t |α) :=E0 [A(t | Z1, . . . , Zt−1;α)] =
t−1
∏

i=1

�

ω(i)
S
·
α

2
+ω(i)

NS
· (1−α)

�

.

(3.10)

Kulinskaya et al. (2016): dependence on meta-analysis estimates
Kulinskaya et al. (2016) report biases that result from dependencies between a current
meta-analysis estimate and the decision to perform a new study. Since their focus is on
bias, they do not discuss issues of multiple testing over time, which would arise if their cu-
mulative meta-analyses estimates were tested. In this section we assume that the timing
of the meta-analysis test is independent from the estimates that determined the accu-
mulation of the series to its current size, as if a test were done by a second unknowing
meta-analyst. This scenario is hinted at by Kulinskaya et al. (2016, p. 296) in the statement
“When a practitioner or a meta-analyst finds several trials in the literature, a particular
decision-making scenario may have already taken place.” We postpone the discussion of
multiple testing to Equation 3.3.3. In this estimation setting, the decision to perform new
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studies is determined not by the meta-analysis Z-scores Z (t−1), but by the meta-analysis
estimates on the original scale M (t−1) (notation adopted from Borenstein et al. (2009),
see Appendix Section 3.A), in relation to a minimally clinically relevant effect∆H1. A min-
imally clinically relevant effect is the effect that should be used to power a trial (in the
alternative distribution H1), and therefore, the effect that the researchers of the study do
not want to miss. Kulinskaya et al. (2016) consider three models for the study series accu-
mulation process: the power-law model and the extreme-value model and the probit model.
The models relate the probability of a new study to the cumulative meta-analysis esti-
mate of the study series so far and are inspired by models for publication bias. Although
all three models can be recast in our framework, we demonstrate this only for the power
law model that uses one extra parameter τ to relate the previous meta-analysis estimate
M(t−1) to S(t). Just as in the Gold Rush scenario, we must assume that a meta-analysis test
is performed only once at a randomly chosen time t. So only at that time t P[A (t)] = 1
and P[A (t)] = 0 otherwise. We obtain the following expression for the Kulinskaya et al.
(2016) power-law model:

for t such that P[A (t)] =1 :

A
�

t
�

�M (t−1);∆H1,τ
�

=S
�

t − 1
�

�M (t−1);∆H1,τ
�

=
t−1
∏

i=0

�

1−λ
�

i
�

�M (t−1);∆H1,τ
��

,

(3.11)

with λ(0) = λ(1) = 0, and for all i ≥ 2, λ(i) is defined as follows:

λ
�

i
�

�M (i−1);∆H1,τ
�

= 1−
�

M (i−1)

∆H1

�τ

, (3.12)

for 0< M (i−1) <∆H1 and 1 (so 1−λ= 0) otherwise.

According to this model, no further studies are performed as soon as an estimate as large
as ∆H1 is found. For estimates smaller than ∆H1, the closer the estimate is to ∆H1, the
larger the probability of a subsequent study. Just as in the Gold Rush example, this model
will introduce bias as well as skew the sampling distribution of the data under the null
hypothesis since initial studies with large estimates have larger probability to end up in
study series of considerable size than small initial estimates do. When the initial study
gives a large overestimation of the effect, this overestimation stays present in the subse-
quent meta-analysis estimates and keeps influencing the probability of subsequent studies.
Therefore, this model shows the effect of early studies in the series even more clearly than
the Gold Rush example. However, the accumulation bias does have a cap, since estimates
larger than ∆H1 do not introduce new replication studies.

Whitehead (2002): dependence on early study results
Bias may also be introduced by the order in which studies are conducted. For
example, large-scale clinical trials for a new treatment are often undertaken
following promising results from small trials. [...] given that a meta-analysis
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is being undertaken, larger estimates of treatment difference are more likely
from the small early studies than from the later larger studies.

–Whitehead (2002, p. 197)

Whitehead (2002) mentions a dependence between the results of the small early studies in
a series and the size of the series. This influence could either be based on the significance
of early findings, such as in the Gold Rush example (Section 3.3.3), or on the estimates in
the initial studies, such as in the power law model from Kulinskaya et al. (2016) (Equa-
tion 3.3.3). Whitehead (2002) does not give sufficient details to specify this dependency
explicitly, but we are confident that it will fit in our Accumulation Bias framework.

Two ways to approach this Accumulation Bias are given in Whitehead (2002). The first
is to exclude early studies from the meta-analyses, either in the main analysis or in a
sensitivity analysis. The second way is to ignore the problem, since the small studies will
have little effect on the overall estimate. In Section 3.6 we show that any small initial
study dependency that can be expressed in terms of A(t) can be dealt with by tests using
likelihood ratios.

Living Systematic Reviews: dependence on significant meta-analyses + multiple
testing

A living systematic review (LSR) should keep the review current as new re-
search evidence emerges. Any meta-analyses included in the review will also
need updating as new material is identified. If the aim of the review is solely
to present the best current evidence standard meta-analysis may be sufficient,
provided reviewers are aware that results may change at later updates. If the
review is used in a decision-making context, more caution may be needed.
When using standard meta-analysis methods, the chance of incorrectly con-
cluding that any updated meta-analysis is statistically significant when there
is no effect (the type I error) increases rapidly as more updates are performed.

–Simmonds, Salanti, McKenzie & Elliott (2017, p. 39)

In living systematic reviews, the aim is to have a meta-analysis available to present the
current evidence, thus synthesizing the t studies available at a certain time. The current
meta-analysis estimate might be used to decide whether further studies should be per-
formed. In that case S(t − 1), the probability that a study series of size t is available – so
that a study series has expanded beyond series size t − 1 – depends on the meta-analysis
estimate Z (t−1) at the previous study’s meta-analysis. Because the review is continuously
updated, P[A ] is always 1, and living systematic reviews can be described by the follow-
ing analysis time probability A(t):

A
�

t
�

�

� z(1), . . . , z(t); z α
2

�

= P
�

A (t)
�

� T ≥ t
�

· S
�
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�

�
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2

�

).
(3.13)
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The quote above warns against decisions based on the continuously updated meta-analysis
using a fixed threshold z α

2
. Living systematic reviews experience multiple testing problems

of a kind that are familiar from statistical monitoring of individual clinical trials (Proschan
et al., 2006). If the study series is stopped as soon as a significance threshold is reached,
and the obtained meta-analysis is considered the final one, then this final meta-analysis
test has an increased chance of a type-I error. So the warning is not to use the following
simple stopping rule:

λ
�

i
�

�

� z(i); z α
2

�

= 1|Z (i)|≥z α
2
. (3.14)

Various corrections to significance thresholds are proposed that relate intermediate looks
to a maximum sample size or information size. These corrected thresholds depend on
α and the fraction of sample size or information size available at time t. Examples of
such methods are Trial sequential analysis (Brok et al., 2008; Wetterslev et al., 2008) and
Sequential meta-analysis (Whitehead, 2002, Ch. 12) (Whitehead, 1997; Higgins et al.,
2011). For an overview see Simmonds et al. (2017). In general, (3.13) and (3.14) show
that any dependency between “the best current evidence” and the accumulation of future
studies is part of our Accumulation Bias Framework. We discuss the approach to error
control taken by the corrected thresholds in Section 3.4.2.

3.3.4 Accumulation Bias caused by dependent meta-analysis timing
We described various forms of Accumulation Bias that are caused by how the study series
size comes about, but dependencies are also introduced by how the meta-analysis itself
arises. This is expressed by the P

�

A (t)
�

component of the analysis times probabilities
A(t). We only found one such process mentioned in the literature and will discuss it in
the next section.

Ellis and Stewart (2009): dependence on the right amount of positive findings
Meta-analysis times are subtle. A train of negative findings would generally
not stimulate a meta-analysis. Nor would a string of very positive findings.
[...] All this makes the analysis of explicitly defined meta-analysis times very
difficult. We conclude that study of bias in meta-analysis based on parametric
modeling of meta-analysis times is problematical.

–Ellis & Stewart (2009, pp. 2454-2455)

Ellis and Stewart (2009) do not give an explicit model that we can interpret in terms of
A(t), but indicate that it should depend on the study findings Zi , or in the original scale,
Di (notation adapted from Borenstein et al. (2009), see Appendix Section 3.A). Given the
quote above, the amount of very positive findings should not be too large, and not too
small. Though exact parametric modeling indeed stays problematical, we can assume that
a positive finding is a study estimate larger than the minimally clinically relevant effect
∆H1, define the right amount of positive findings to be in the region [a, b], and show that
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this fits in our Accumulation Bias Framework by expressing a possible model for A(t):

for t such that S(t − 1) = 1 :

A
�

t
�

�D1, . . . , Dt ; a, b
�

= P
�

A (t)
�

� T ≥ t, D1, . . . , Dt ; a, b
�

· S
�

t − 1
�

�D1, . . . , Dt−1; a, b
�

= P
�

A (t)
�

� T ≥ t, D1, . . . , Dt ; a, b
�

= 1C∈[a,b]

with C =
t
∑

i=1

1Di>∆H1 .

(3.15)

3.3.5 Accumulation Bias caused by Evidence-Based Research
New research should not be done unless, at the time it is initiated, the ques-
tions it proposes to address cannot be answered satisfactorily with existing
evidence.

–Chalmers & Glasziou (2009)

In 2009, the term Research Waste was coined and this key recommendation was made.
The recommendation further specifies that existing evidence should be obtained by a
systematic review and summarized with a meta-analysis. But how exactly to answer the
question whether new research is necessary or wasteful remained unclear. Nevertheless,
the recommendation was important enough to be repeated, as was first done in an entire
series on Research Waste with a specific recommendation on setting research priorities
Chalmers et al. (2014) and later in a paper that gave the recommendation its official
name: Evidence-Based Research Lund et al. (2016). Support for these recommendations
was provided by various retrospective cumulative meta-analyses that show how many
studies were still performed while satisfactory evidence was already available. These cu-
mulative meta-analyses judge “satisfactory evidence” based on a significance threshold,
usually uncorrected for multiple testing (e.g. Fergusson et al. (2005)), which reminds us
of the Accumulation Bias that occurs in living systematic reviews (Equation 3.3.3).

The larger consequence, however, is that Accumulation Bias is caused by any dependen-
cies between results and series size and meta-analysis timing, and that Evidence-Based
Research introduces such dependencies. Inspecting previous results to decide whether
new research is necessary or wasteful therefore always introduces Accumulation Bias,
whether it based on uncorrected or corrected thresholds. Also more subtle decision meth-
ods – implicit rather than based on thresholds – introduce Accumulation Bias, as was
shown by Kulinskaya et al. (2016). In fact, they describe the rationale behind their mod-
els – among which the power-law model (Equation 3.3.3) – as an example of bias intro-
duced by guidelines to decide on “the usefulness of a new study” “with direct reference
to existing meta-analysis.” Kulinskaya et al. (2016, p. 297).

So Evidence-Based Research causes bias, and our Accumulation Bias Framework demon-
strates how it might affect the sampling distribution, whether based on explicit thresholds
or implicit decision making. Does this mean that we cannot make Evidence-Based Re-
search decisions to avoid research waste, while also controlling type-I errors? Fortunately,
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Figure 3.2. Possible 2001 state of a database of study series per topic, visualizing what
study series are taken into account in the two approaches to error control: conditional on
time (blue and grey) and surviving over time (orange).

we do not need to be that pessimistic and can still embrace Evidence-Based Research. In
Section 3.6 we show that tests based on likelihood ratios withstand Accumulation Bias
and are very well suited to reduce research waste. But to do so, we first need to specify
exactly what role is played by time in error control.

3.4 Time in error control
Over time new study series are initiated, studies are added to existing study series and
more meta-analyses are performed. To visualize how this process relates to error control,
we need to start with a specific state of this expanding system. In 2001 an estimated min-
imum of 10 000 medical topics were covered in over half a million studies, thus requiring
10 000 meta-analyses if all were synthesized in a database such as the Cochrane Database
of Systematic Reviews Mallett and Clarke (2003). The number of studies in a series varied
between 2 and 136, which we can use to describe the 2001 state of a possible database,
that to be complete, also includes many unreplicated pilot studies. We could visualize this
database in a table, with studies in the rows, topics in the columns and many missing
entries. A sketch is shown in Figure 3.2.

The conventional approach to error control, which we used to show the influence of Gold
Rush Accumulation Bias in meta-analysis testing in Section 3.2.6, is a conditional ap-
proach. Since conventional meta-analysis does not raise any multiple testing issues, there
is a hidden assumption that the timing of a meta-analysis A (t) is independent from the
data and each study series experiences only one meta-analysis. In Section 3.3.3 we took
the t at which the sole meta-analysis is conducted to be either random or prespecified.
This is shown in Figure 3.2 by the black box enclosing the available studies on Topic 1.
Other possible study series up for meta-analysis are shown by the boxes enclosing studies
on Topic 5 and 8. Note that by assuming only one meta-analysis, a study series might
continue growing but not be fully analyzed, as shown for Topic 5.

In the conditional approach to error control, a three-study series (Z1, Z2, Z3) produces a
possible draw from the Z (3) sampling distribution. If we test our draw, the type-I error rate
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is defined as the fraction of t-study series that is considered significant if all t-study series
were to be sampled from the null distribution. The question is: What study series are taken
into account to specify this fraction? This is visualized in Figure 3.2 by the dark blue and
grey shading for t = 2 and the dark blue and lighter blue shading for t = 3. The unshaded
topics and change of color between t = 2 and t = 3 show the flaw of this approach: some
series might not survive up until a specific time t, as for instance shown by the grey studies
that are part of t = 2 but not part of the error control for t = 3. We also do not want
every series to survive up until any arbitrary time t to avoid research waste (Chalmers and
Glasziou, 2009). The crucial point is that the series that do survive are no random sample
from all possible t-study series. This is another illustration of Accumulation Bias such as
the Gold Rush scenario. The series deviates even more from the assumption of a random
t-study draw if the meta-analysis time t is not random or prespecified, but dependent
on the results, as expressed in Section 3.3.4. We discuss the conventional conditional
approach to meta-analysis error control in more detail in Section 3.4.1.

The other possible approach to error control is surviving over analysis times, which means
that it should be valid for any upcoming analysis time t within a series. So the probability
that a type-I error – ever – occurs in the accumulating series is controlled, whether the
series reaches a large size or not. This is visualized in Figure 3.2 by the orange shading,
and has a long run error rate that runs over series of any size, including the one-study
series. This approach to error control is taken by methods for living systematic reviews
such as Trial sequential analysis and Sequential meta-analysis. We discuss this approach of
error control surviving over time in more detail in Section 3.4.2.

3.4.1 Error control conditioned on time
The null distributions of the common/fixed meta-analysis Z-statistic shown in Figure 3.1
are conditioned on the size of the series, which is the time: T ≥ t. We can use our Ac-
cumulation Bias framework to give this distribution a general description, where we use
φ0(z(t)) to denote the assumed standard normal null distribution for the meta-analysis
Z-score and obtain a conditional density using Bayes’ rule:

φ0

�

z(t)
�

�A (t), T ≥ t
�

=
φ0(z(t)) · P0

�

A (t), T ≥ t
�

� z(t)
�

P0 [A (t), T ≥ t]
=
φ0(z(t)) · A0

�

t
�

� z(t)
�

A0 (t)
,

where we define:

A0

�

t
�

� z(t)
�

:= E0

�

A(t | Z1, . . . , Zt)
�

� Z (t) = z(t)
�

A0 (t) := E0 [A(t | Z1, . . . , Zt)] ,
with under the equal study size assumption in (3.1b)

Z (t) =
1
p

t

t
∑

i=1

Zi

(3.16)

(extension to the general cases with unequal sample sizes is straightforward). For the
Gold Rush example, A0 (t) was given by (3.10) and can be calculated if ωs are known.
A0 (t) denotes the general probability of arriving at T ≥ t under the null hypothesis, and
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so does A0

�

t
�

� z(t)
�

, but with the restriction that we only take samples into account that
result in meta-analysis score z(t). The type-I error rates for the Gold Rush example shown
in Table 3.2 are based on a randomly chosen or prespecified t for which P[A (t)] = 1, and
represent the following (with φ0 as above in (3.16), the standard normal density):

P0

�

E (t)TYPE-I

�

�

�A (t), T ≥ t
�

=

∫ −z α
2

−∞
φ0

�

z(t)
�

�A (t), T ≥ t
�

dz(t) +

∫ ∞

z α
2

φ0

�

z(t)
�

�A (t), T ≥ t
�

dz(t),

φ0 (z1, . . . , zt |A ) =
φ0 (z1, . . . , zt) · A0 (t | z1, . . . , zt)

A0 (t)
where we define:

A0 (t | z1, . . . , zt) := E0 [A(t | Z1, . . . , Zt) | Z1 = z1, . . . , Zt = zt]

A0 (t) := E0 [A(t | Z1, . . . , Zt)]
(3.17)

3.4.2 Error control surviving over time

In living systematic reviews, a meta-analysis is performed after each new study (P
�

A (t)
�

=
1 for all t). The properties on error control obtained by for example Trial Sequential Anal-
ysis are therefore surviving over analysis times t and depend on the joint distribution on
the data and the maximum study series size T . For P

�

A (t)
�

always 1, A(t) = S(t−1) and
this joint distribution can be presented as follows:

φ0

�

z(1), . . . , z(t), T = t
�

= φ0

�

z(1), . . . , z(t)
�

· P0

�

T = t
�

� z(1), . . . , z(t)
�

, (3.18)

where we define

P0

�

T = t
�

� z(1), . . . , z(t)
�

:= E0

�

S(t − 1
�

� Z1, . . . , Zt−1)
�

� Z (1) = z(1), . . .
�

− E0

�

S(t
�

� Z1, . . . , Zt)
�

� Z (1) = z(1), . . .
�

,

with under the equal study size assumption in (3.1b),

Z (t) =
1
p

t

t
∑

i=1

Zi , φ0(z
(0)) = 1 and P0

�

T ≥ 1
�

� z(0), z(1)
�

= 1.

The result P[T = t] = S(t−1)−S(t) is known from survival analysis and made explicit in
the Appendix Section 3.E. When S(t) is known for all t, it is possible to obtain error control
that survives over analysis times T = t with thresholds z(t)α

2
that are functions of α, t and

some Tmax based on a maximum sample or information size. Such methods are known as
Trial sequential analysis (Brok et al., 2008; Wetterslev et al., 2008) and Sequential meta-
analysis (Whitehead, 2002, Ch. 12) (Whitehead, 1997; Higgins et al., 2011). If we assume
a one-sided test, the approach to error control taken by these methods can be expressed
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as follows:

ET

h

P0

�

E (T )TYPE-I

�

�

� T
�
i

=
Tmax
∑

t=1

∫ ∞

z(1)α
2

. . .

∫ ∞

z(t)α
2

φ0

�

z(1), . . . , z(t), T = t
�

dz(1) . . . dz(t) = α,

with φ0 as above (3.18) and T = t only in the caseλ(t) = 1Z (t)≥z(t)α
2

= 1.

(3.19)

The change in notation from T ≥ t to T = t already hints at the limitations of this
approach: the series size needs to be completely determined by the thresholds specified
in the hazard function and nothing else. We discuss this limitation in more detail in the
next section.

3.4.3 Unknown and unreliable analysis time probabilities

To obtain thresholds to test z(t) under Accumulation Bias, we need to know the probability
A(t) (or only S(t)) for meta-analysis time t. However, any of the scenarios described in
Section 3.3.3 and Section 3.3.4 can be involved, and some can be influencing z(t) simul-
taneously. Also, ethical imperatives might balance the bias, as illustrated by the following
quote:

A negative result will dampen enthusiasm and turn the attention of investiga-
tors to other possible protocols. A positive result will excite interest but may
provide an ethical veto on further randomization.

–Armitage (1984) as cited by Ellis and Stewart (2009)

We do not believe that the corrected thresholds z(t)α
2

from sequential methods like Trial
Sequential Analysis can account for all Accumulation Bias, since they require very strict
conformation to the stopping rule based on synthesized studies z(t) and some have already
argued that meta-analysts do not have such control over new studies (Chalmers and Lau,
1993). Sequential meta-analysis was proposed for prospective meta-analyses (Whitehead,
1997; Higgins et al., 2011) and never intended for settings with retrospective dependen-
cies. Stopping rules based solely on meta-analysis ignore dependencies that might already
have arisen at the individual study level (such as in the Gold Rush example) and that meta-
analyses might in practice not be performed continuously (so P[A (t)] 6= 1 for some t).
When meta-analyses are not performed continuously, as discussed in Section 3.3.4, the
specification of which series are included in the long run error control is missing (imag-
ine for example that some of the columns 1, 2, 3 and 5 of meta-analyses in Figure 3.2 be
excluded in the long run error control because the individual study results were such that
nobody will ever bother to perform a meta-analysis).

It might be very inefficient to try to avoid Accumulation Bias. As stated in the introduc-
tion, avoiding it would mean that results from earlier studies should be unknown when
planning new studies as well as when planning meta-analyses (that is, the decision to
do a meta-analysis after t studies should not depend on the outcome of these studies).
Achieving this might be impossible, since research is very often somehow inspired by other
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findings. Also, such approach cannot be reconciled with the Evidence-Based Research ini-
tiative to reduce waste (Lund et al., 2016; Chalmers and Glasziou, 2009; Chalmers et al.,
2014).

We conclude that the Accumulation Bias process specifying A(t) can never be fully known
and that avoiding an Accumulation Bias process will introduce more research waste. So
we need a testing method that is valid regardless of the exact Accumulation Bias process.
We will introduce such a method in Section 3.6, but first exhibit some evidence that, even
though the recommendations from Evidence-Based Research still need renewed attention,
Accumulation bias might already be at play.

3.5 Intermezzo: evidence for the existence of Accumulation Bias

3.5.1 Agreement with empirical findings
Accumulation Bias arises due to dependencies in how a study series comes about (Sec-
tion 3.3.3), and in the timing of the meta-analysis (Section 3.3.4). We first discuss some
indications of the former and then illustrate how these can be reinforced by some ap-
proaches to the latter.

If citations of previous results are a real indication of why a replication study is performed,
than many such dependencies have been demonstrated in the literature on reference/ci-
tation bias (Gøtzsche, 1987; Egger and Smith, 1998). Citation or reference bias indicates
that initial satisfactory results are more often cited than unsatisfactory results, thus some
sort of Gold Rush occurs. Studies into citations indicate that early small trials are much
more often cited than later large trials (e.g. Fergusson et al. (2005); Robinson and Good-
man (2011)), which might limit the Gold Rush to the early studies in a series, such as
indicated by Whitehead (2002) (Equation 3.3.3). Many studies have found that early
studies are unreliable predictors of later replications in a study series (Roberts and Ker,
2015; Chalmers and Glasziou, 2016) (and see references 6-34 in Ioannidis (2008) and
references 33-49 in Pereira and Ioannidis (2011)), which is also an indication of early
study Accumulation Bias.

Other empirical findings suggest that Accumulation Bias might occur throughout a series,
but to a lesser extent in later studies. Gehr et al. (2006), for example, report effect sizes
that decrease over time, but in which study size did not play a significant role. What has
been recognized as regression to the truth in heart failure studies, might also be charac-
terized as Accumulation Bias (Krum and Tonkin, 2003). But these effects will be difficult
to limit to only a few early studies, so excluding a certain number from meta-analysis, as
proposed in Whitehead (2002, p. 197) (Equation 3.3.3). It is difficult to find the threshold
for where the early biased studies end and the unbiased ones begin and excluding studies
is a very crude measure.

The Proteus effect (Pfeiffer et al., 2011; Ioannidis and Trikalinos, 2005; Ioannidis, 2005a)
describes how early replications can be biased against initial findings. If early contradict-
ing findings spur a large series of studies into a phenomenon, it introduces a more complex
pattern of Accumulation Bias that does not have a straightforward dominating direction.
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The same holds for the Value of Information approach, to decide on replication studies
(Claxton and Sculpher, 2006; Claxton et al., 2002).

There is quite some literature with suggestions on when a meta-analysis should be up-
dated. One general recommendation is to do so when studies can be added that will have
a large effect on the meta-analysis (Moher and Tsertsvadze, 2006; Moher et al., 2007b,
2008). If such recommendations reflect an overall tendency in timing of meta-analysis,
Accumulation Bias might be re-enforced by the timing of the meta-analysis: initial mis-
leading studies might have spurred a study series, and might also indirectly encourage a
meta-analysis after later studies report deviating results.

3.5.2 Agreement with intuitions about priors
The famous paper “Why Most Published Research Findings are False” (Ioannidis, 2005b)
introduced the concept of field specific prior odds to a large audience. The prior odds
were presented as the “Ratio of True to Not-True Relationships (R)”, which has the same
meaning as the ratio of pilot studies from the alternative and null distribution, which we
denote by P[H1]/P[H0] as the prior odds. Ioannidis (2005b) combines this ratio with
the average power and type-I error of tests in a research field to obtain a field-specific
estimate of the Positive Predictive Value (PPV) of a significant result. For this, the prior
odds of various research fields and publication types are given with two that are of interest
to Accumulation Bias: “Adequately powered RCT with little bias” and “Confirmatory meta-
analysis of good-quality RCTs”. For the first of these an R of 1:1 is provided and for the
second an R of 2:1. So a distinction is made between topics worthy of only one individual
study and those that evoke a series of studies eligible for meta-analysis.

How would the researchers involved in replicating RCTs know that their topic is worthy
of a series of studies in comparison to just one? The difference between prior odds of the
two indicates that this is no random decision. The only available source of information
would be previous study results, hence introducing dependence between study series size
and study results: Accumulation Bias. So the prior odds R specified by Ioannidis (2005b)

is actually P[H1]·A1(t)
P[H0]·A0(t)

, with A1(1) = 1 and A0(1) = 1 for primary studies.

3.6 Likelihood ratios’ independence from meta-analysis time
In Section 3.4.3 we argued that any approach to model the analysis time probabilities
A(t) is unreliable: in realistic and practically relevant scenarios, the ingredients required
to calculate A(t) will be unknown. Therefore, we need to define test statistics that are
independent from how a series size or meta-analysis comes about. A possible form of
such a test statistic is the likelihood ratio, which we discuss from the two approaches to
error control: in the next Section 3.6.1 from the perspective of error control conditioned
on time, and in Section 3.6.2 from the perspective of error control surviving over time.

Our proposed use of the likelihood ratio is based on the following extraordinary property2,

2This property is related to the well-known fact that the Bayesian posterior based on data, when the priors
are determined independently of the sample size, takes on the same value irrespective of the stopping rule that
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already recognized by Berger and Berry (1988) and shown in (3.20): The likelihood ratio
is a test statistic that depends on the specification of some alternative distribution φ1 (a
normal distribution with variance 1 just as φ0) but with arbitrary mean µ other than 0.
Given the data, any data sampled from an alternative distribution will have the same
analysis time probabilities as data sampled from the null distribution, since analysis time
probabilities are independent from the data-generating hypothesis (Section 3.3.2). When
a likelihood ratio statistic is obtained for known data, the analysis time probability is a
constant factor that is the same in the numerator and denominator of the likelhood ratio
and therefore drops out of the equation:

LR(t)
�

z1, . . . , zt ,A (t), T ≥ t
�

:=
φ1 (z1, . . . , zt) · P1(A (t), T ≥ t | z1, . . . , zt)
φ0 (z1, . . . , zt) · P0(A (t), T ≥ t | z1, . . . , zt)

=
φ1 (z1, . . . , zt) · A(t | z1, . . . , zt)
φ0 (z1, . . . , zt) · A(t | z1, . . . , zt)

=
φ1 (z1, . . . , zt)
φ0 (z1, . . . , zt)
=LR (z1, . . . , zt) .

(3.20)

Here we used the standard definition of likelihood ratio for the case that the likelihood
jointly involves continuous-valued data and discrete events, and we critically used the fact
that the probability ofA (t), T ≥ t does not depend on whether the null or the alternative
distribution generated the data.

In the following two sections we discuss two means of using likelihood-ratio based tests
that yield results that are valid irrespective of accumulation bias.3

3.6.1 Likelihood ratio’s error control conditioned on time
A large study series has an extremely low probability of occurring under the null hypothe-
sis in the Gold Rush scenario, and under any other similar Accumulation Bias setting. The
probability of reaching a certain study series size t is much larger under any alternative
hypothesis when the power of the test for that alternative hypothesis (1 − β) is larger
than the type-I error α. Due to this fact, it is possible to control an error rate if we as-
sume that a certain fraction of pilot studies (or topics, see Figure 3.2) P[H1] are sampled
from the alternative distribution and a proportion P[H0] of pilot studies from the null.

This way, we are able to control the fraction of true rejections 1−P1

�

E (t)TYPE-II

�

�

�A (t), T ≥ t
�

(complement of type-II errors) to false rejections P0

�

E (t)TYPE-I

�

�

�A (t), T ≥ t
�

.

gave rise to the observations (Hendriksen et al., 2020)
3To avoid any confusion, let us highlight that our likelihood-ratio based tests are never equivalent to p-value

based tests. While some p-value based tests (such as the Neyman-Pearson most powerful test) can be written as
likelihood ratio tests, these are invariably of the form ‘reject at significance level α if LR(z1, . . . , zt ) ≥ γ where
γ is chosen such that P0(φ1(z1, . . . , zt )/φ0(z1, . . . , zt ) ≥ γ) = α. P0(φ1(z1, . . . , zt )/φ0(z1, . . . , zt ) ≥ γ) = α. In
contrast, we choose γ in a way that does not depend on knowledge of the tail area under P0 (e.g. in Section 3.6.2
we take γ= 1/α, and there the equality above is a (strict) inequality).
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We can achieve such error control conditioned on time – e.g. error control taking into
account only t-study meta-analyses – if we define thresholds based on the Bayes posterior
odds, which, by Bayes’ theorem, are given by Opost (z1, . . . , zt) = LR (z1, . . . , zt) ·

P[H1]
P[H0]

. Re-
markably, these are not affected by the mechanism underlying the decisions to continue
studies or perform meta-analyses:

Opost

�

z1, . . . , zt

�

�A (t), T ≥ t
�

:=
P
�

H1

�

� z1, . . . , zt ,A (t), T ≥ t
�

P [H0 | z1, . . . , zt ,A (t), T ≥ t]

=
φ1

�

z1, . . . , zt ,A (t), T ≥ t
�

· P[H1]

φ0 (z1, . . . , zt ,A (t), T ≥ t) · P[H0]

=LR(t)
�

z1, . . . , zt ,A (t), T ≥ t
�

·
P[H1]
P[H0]

=LR (z1, . . . , zt) ·
P[H1]
P[H0]

= Opost (z1, . . . , zt) .

(3.21)

To introduce these ideas in a simple setting, we assume here that both hypothesis consist
of a single normal distribution with variance 1: H0 = φ0 and H1 = φ1. We can set a
threshold r based on the rate of true to false rejections, so r = 16 would mean that we
try to achieve 16 times more true rejections than false rejections r = 1−β

α , which is the
usual goal of a primary analysis with intended power 1− β = 0.8 and type-I error rate
α = 0.05. To obtain error control, we need to specify this r and use it to threshold the
posterior odds (3.21). We define R to be the region of the sample space and R the event
for which Opost(z1, . . . , zt)≥ r, i.e. the event that we reject, and obtain the following:

1− P1

�

E (t)TYPE-II

�

�

�A (t), T ≥ t
�

P0

�

E (t)TYPE-I

�

�

�A (t), T ≥ t
�
·

P[H1]
P[H0]

=
P1

�

Opost

�

Z1, . . . , Zt

�

�A (t), T ≥ t
�

≥ r
�

P0

�

Opost (Z1, . . . , Zt |A (t), T ≥ t)≥ r
� ·

P[H1]
P[H0]

=
P1

�

Opost(Z1, . . . , Zt)≥ r
�

P0

�

Opost(Z1, . . . , Zt)≥ r
� ·

P[H1]
P[H0]

=
P1[R]
P0[R]

·
P[H1]
P[H0]

≥
r · P[H0]

P[H1]
· P0[R]

P0[R]
·

P[H1]
P[H0]

= r

(3.22)

where the inequality follows since if Opost (z1, . . . , zt)≥ r:

φ1 (z1, . . . , zt)
φ0 (z1, . . . , zt)

·
P[H1]
P[H0]

≥ r then
φ1 (z1, . . . , zt)
φ0 (z1, . . . , zt)

≥ r ·
P[H0]
P[H1]

(3.23)

and P1[R] =
∫

R

φ1(z1, . . . , zt)≥
∫

R

r ·
P[H0]
P[H1]

·φ0(z1, . . . , zt) = r ·
P[H0]
P[H1]

· P0[R].

So by specifying P[H1]
P[H0]

and an intended rate of true to false rejections r, we can calculate
the posterior odds based on the likelihood ratio, compare it to the threshold based on
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r and control fraction r of type-I errors under the null hypothesis. Note that any A (t) is
allowed, also multiple testing in a series or selection for the most promising meta-analysis
timing. Setting a threshold to the Bayes posterior odds as described above, achieves con-
ditional error control under any form of Accumulation Bias.

3.6.2 Likelihood ratio’s error control surviving over time
A likelihood ratio itself can be used as a test statistic to obtain a procedure that controls
P0[ETYPE-I] surviving over analysis times t, as in Section 3.4.2. Suppose we simply reject if
the likelihood ratio in favor of the alternative is larger than 1/α, ignoring any knowledge
we might have about the accumulation bias process and the prior odds. We then find:

P0

�

there exists t ≤ T with E (t)TYPE-I andA (t)
�

= P0

�

∃t ≤ T : E (t)TYPE-I;A
(t)
�

= P0

�

∃t ≤ T : LR(t) (Z1, . . . , Zt)≥
1
α

;A (t)
�

≤ P0

�

∃t > 0 : LR(t) (Z1, . . . , Zt)≥
1
α

�

≤ α.

(3.24)

The final inequality is a classic result, proofs of which can be found in, for example,
Robbins (1970) and (with substantial explanation) Hendriksen et al. (2020); see also
Royall (2000).

Thus, the type-I error control survives over time in the sense that the P0-probability that
we ever reject at a meta-analysis time is bounded by α. To further illustrate and interpret
error control surviving over time, we define

F (t)TYPE-I = E
(t)
TYPE-I ∩E

(t−1)
TYPE-I,∩ . . .∩E

(1)
TYPE-I

as the event that the first type-I error E (t)TYPE-I in a series happens at time t (here E
(t ′)
TYPE-I

means ‘no type-I error at time t ′). As we show in Appendix Section 3.F, the previous
inequality implies that

∑

t

P0

�

F (t)TYPE-I,A
(t), T ≥ t

�

≤ α. (3.25)

The change in notation from E (t)TYPE-I to F (t)TYPE-I is necessary since we want a general re-
sult for all forms of Accumulation Bias and do not want to assume that the series stops
growing after the threshold is crossed (as is assumed in living systematic reviews, see
Equation 3.3.3). But since it is not possible to control the amount of errors if multiple
errors are made in the same series, we count only the first error in (3.25). As such, we
are able to control the number of topics for which an error ever occurs in the series by
comparing the likelihood ratio to the threshold 1

α .

It may seem surprising that it is possible to obtain error control in the sense of (3.25) for
Accumulation Bias scenarios like Gold Rush example. After all, in this example large study
series have only a large probability to occur if they contain many extreme (significant)
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results. So it seems that we would inevitably hit a type-I error once we perform a meta-
analysis. But note that in this example, the expectation of A(t | Z1, . . . , Zt) (A0(t)) is much
larger for small t – due to the S(t) component – so that most meta-analyses will be of small
study series, or even one-study series, with small type-I error rates. In terms of Figure 3.2,
controlling error this way is possible because error control runs over all topics, regardless
of the realized series size. Thus, such error control is only meaningful if the series for each
topic are continuously monitored – including those consisting of only pilot studies.

3.7 The choice between error control conditioned and surviving over time
Many meta-analysts seem reluctant to apply living systematic review techniques to all
meta-analyses. We believe that this reluctance can be defended based on the assumed
approach to error control surviving over time. Surviving over time means that all possible
analysis times are weighted and that – in the long run – a large proportion of meta-
analyses will be one-, two- and three-study meta-analyses and never expand. To the occa-
sional meta-analyst, not involved in continuously updating meta-analyses, two- or three-
study meta-analyses might never occur. Also, it requires a stretch of mind to imagine
one-study meta-analyses part of the long run properties of your specific 15-study meta-
analysis. But it has been argued that “primary research is increasingly viewed as part of a
wider sequential process” (Higgins et al., 2011, p. 918), or at least, that it should be Lund
et al. (2016). Whether this approach to error control is acceptable might also be very field
specific. Among medical meta-analyses in the Cochrane Database of Systematic Reviews,
two- and three-study meta-analyses are common Davey et al. (2011), but in other fields
meta-analyses might only be performed if many more studies are available.

If, on the other hand, we want to stick to the conventional conditional approach to meta-
analysis, we need additional assumptions on the fraction P[H1] of true alternative hy-
potheses among pilot studies to threshold the posterior odds. Assuming a base rate P[H1]
means that we are essentially Bayesian about the null and alternative hypothesis4, but
there is no need to be strictly Bayesian: in practice, we might play around, and try best
case and worst case P[H1], to see how it affects our posterior odds. The important thing
for us to note within the context of this chapter is that, when concentrating on posterior
odds, we can ignore all details of the Accumulation Bias process and still obtain mean-
ingful results, in the form of error control that balances type-I and type-II errors.

Summarizing: If we prefer conditional error control, we can obtain meaningful error con-
trol despite Accumulation Bias if we use tests based on likelihood ratios, but using prior
odds for the base rates (and being partially Bayesian) is then unavoidable. If we prefer
not to rely on any prior odds, we can still obtain meaningful error control despite Accu-
mulation Bias if we use tests based on likelihood ratios, but then we have to resort to
error control surviving over time instead of conditional error control.

4We do not necessarily have to be completely Bayesian: even if the null and/or alternative are composite, we
can define “likelihood ratios” that do not rely on prior guesses about the parameters within the models. But we
do need to be partially Bayesian, in the sense that we need to specify a base rate for the null (Grünwald et al.,
2019). We call this pseudo-Bayes posterior odds and explain this further in the appendices to Chapter 5.
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The former, conditional approach balances type-I and type-II errors and thus takes power
into account. The importance of taking power (the complement of a the type-II error rate)
into account has been argued before by many (Simmonds et al., 2017). In the general ap-
proach to error control in individual studies, the expected type-I error rate is fixed by the
significance level α, and the type-II error rate minimized by the experimental design and
sample size. In retrospective meta-analysis, however, sample size (or study series size t)
is not under the control of the meta-analyst. Also, the study series size t is only a snap-
shot of a possibly growing series (T ≥ t), since more studies might be performed in the
future. Therefore also estimations of meta-analysis power are snapshots at a specific meta-
analysis time. Nevertheless, it is often argued that many meta-analyses are underpowered
(Turner et al., 2013; Davey et al., 2011) and that this should be taken into account in eval-
uating significance in meta-analyses. In Trial Sequential Analysis (Wetterslev et al., 2008)
for example, an alternative hypothesis is formulated to judge the fraction of a required
sample size available at t studies. A later review on trial sequential analysis noted:

statistical confidence intervals and significance tests, relating exclusively to
the null hypothesis, ignore the necessity of a sufficiently large number of ob-
servations to assess realistic or minimally important intervention effects.

–Wetterslev, Jakobsen & Gluud (2017, p. 12)

Testing procedures based on likelihood ratios are very well suited to take an alternative
distribution with minimally important intervention effect into account. Especially when
balancing type-I error and power by thresholding posterior odds. Specifying power in tests
without fixed sample sizes is studied extensively in Grünwald et al. (2019) and will be
the focus of future research into likelihood ratios for meta-analysis.

3.8 Why likelihood ratios work: dependencies as strategy
We calculate p-values to judge the extremeness of our results under the null hypothesis,
and to control type-I errors. But the p-value method is a fairly complicated approach to
that goal when it comes to meta-analysis: To obtain a valid p-value for a series of studies,
the sampling distribution under the null hypothesis needs to specify exactly how the series
and the meta-analysis timing came about. Only for a completely and accurately specified
process can the extremeness of the data be judged and compared to a threshold based on
the tail area of the sampling distribution.

Fortunately, much simpler approaches to the same goal can be found. One intuitive way is
to consider a series of bets s(Z1), s(Z2), . . . , s(Zt) that make a profit when observed study
results are extreme. The more extreme the results, the larger the profit. The bet needs
to be designed in such a way that, under the null hypothesis, no profit is to be expected.
Each null result costs $1 to play the bet, but in expectation also makes a $1 profit:

E0[s(Zt)] = $1. (3.26)

Suppose that you start by investing $1 in the first bet. After each study, you either decide
to do a new study, and reinvest all profit obtained so far, or to stop and cash out. If you
cash out after, for example, three studies, your profit is s(Z1) · s(Z2) · s(Z3).
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As long as (3.26) holds for each bet, you cannot expect to profit under the null hypothesis;
no matter what the process is for deciding, based on past data, to continue to new studies
or to stop. This can be mathematically proven using martingale theory, but intuitively the
reason is clear: The situation is entirely analogous to that in a casino where you cannot
expect to make a salary out of playing – no matter how sophisticated the strategy you use
on the order of the games or when you want to play or want to go home. Thus, irrespective
of the rules used for continuation and stopping, making a large profit casts doubt on the
null hypothesis even without knowledge of the entire sampling distribution.

This idea of testing by betting is described in great detail by Shafer and Vovk (2019), and
Shafer et al. (2011) show that a likelihood ratio is a beautiful way to specify such bets.
Briefly, if we set s(Zt) = φ1(Zt)/φ0(Zt), then (3.26) obviously holds:

E0

�

φ1(Zt)
φ0(Zt)

�

=

∫

z

φ0(z)
φ1(z)
φ0(z)

dz =

∫

z

φ1(z)dz = 1. (3.27)

Under this definition, s(z1) · . . . · s(zt) has two interpretations: First, it is the joint likeli-
hood ratio for the first t studies. Second, it is the amount of profit made by sequentially
reinvesting in a bet that is not expected to make a profit under the null hypothesis.

So we can think of the meta-analyst acting at time t as earning the profit specified by
the likelihood ratio of the data until the t-th study, and using that information to advise
on reinvestment in future studies. This procedure will not lead to bankruptcy if the null
hypothesis is true, and will therefore allow you to keep reinvesting. If the null hypothesis
is not true, the better the focus of the bets – determined by how close the alternative
distribution in the likelihood ratio is to the data-generating distribution – the larger the
expected profit. The crucial point is that every strategy is allowed, so also the ineffective
ones that produce research waste: also not taking into account earlier studies is a strategy.

This interpretation – likelihood ratios as betting strategies – explains how dependencies
in the series relate to the test statistic. Any Accumulation Bias process can be considered
a strategy to reinvest profit made so far, by deciding on new studies (S(t)), or cashing out
the current profit (equivalent to performing a meta-analysis at time t and advising against
further studies: A (t), T = t). This is the intuition behind the proof of results like (3.24)
and (3.25) – bounds on type-I error probability in meta-analysis – that can be derived
without knowledge of the Accumulation Bias process. These bounds simply express, that
under the null, a large profit is unlikely no matter what the Accumulation Bias is.

it is always legitimate to continue betting, and this makes each individual
study a more informative element of a research program or a meta-analysis

–Shafer (2019, p. 2)

In contrast to an all-or-nothing test for one study, inspecting the betting profit of a study
(calculating the likelihood ratio) is a way to test the data without losing the ability to build
on it in future studies. The likelihood ratio has the ability to maximize the rate of growth
of the evidence (the betting profit or likelihood ratio) among all studies in a series, instead
of the power of a single p-value test on a prespecified series size or stopping rule Shafer
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(2021). It allows for promising but inconclusive initial studies and small study series to
be revisited in the light of new studies, but also to keep track of the combined evidence
at any time.

In this sense, the use of likelihood ratios in meta-analysis is a statistical implementation of
the goals of the Evidence Based Research Network (Lund et al., 2016). Choosing your bets
wisely, by informing new studies by previous results is just another betting strategy. You
optimize what studies to perform, and how to design and analyze them. Implementing
this rationale in the statistics allows to maximize the efficiency of future research and
reduce research waste (Chalmers and Glasziou, 2009).

3.8.1 Expanding likelihood ratios to Safe Tests
When the null hypothesis is simple, it can be shown that either using bets that satisfy
(3.26) under the null or using likelihood ratios or using Bayes factors is equivalent, and the
gambling approach can be viewed as a form of Bayesian inference. But for composite null
(as in the t-test scenario, with unknown variance σ2), the situation is trickier: bets that
satisfy (3.26) under all distributions in the null hypotheses can still be constructed, but
their relation to likelihood ratios is more complicated. The paper Safe Testing Grünwald
et al. (2019) investigates this setting in great detail and shows that ‘error control surviving
over time’ (Section 3.6.2) can still be obtained for general composite null.

3.9 Discussion
We need to consider time – study chronology and analysis timing – in meta-analysis. We
need it because estimates are biased by Accumulation Bias when they assume that a t-
study series is a random sample from all possible t-study series, while in fact dependen-
cies arise in accumulating science. We also need time because sampling distributions are
greatly affected by it, and the (p-value) tail area approach to testing is very sensitive to
the shape of the sampling distribution. And we need to consider time because it allows for
new approaches to error control that recognize the accumulating nature of scientific stud-
ies. Doing so also illustrates that available meta-analysis methods – general meta-analysis
and methods for living systematic reviews – target two very different approaches to type-I
error control.

We believe that the exact scientific process that determines meta-analysis time can never
be fully known, and that approaches to error control need to be trustworthy regardless of
it. A likelihood ratio approach to testing solves this problem and has even more appealing
properties. Firstly, it agrees with a form of the stopping rule principle (Berger and Berry,
1988). Secondly, it agrees with the Prequential principle Dawid (1984). Thirdly, it allows
for a betting interpretation Shafer and Vovk (2019); Shafer (2021): reinvesting profits
from one study into the next and cashing out at any time.

But this approach still leaves us with a choice: either assume a prior probability P[H1] and
separate meta-analyses of various sizes from each other and individual studies, or control
the type-I error rate over all analysis times t and include individual studies in the meta-
analysis world. The first approach is more of a reflection of the current reality in meta-
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analysis, while the second can be aligned with the goals from the Evidence-Based Research
Network (Lund et al., 2016) and living systematic reviews (Simmonds et al., 2017).

Accumulation Bias itself might not need to be corrected at all, which is why we want to
close this chapter with the following quote:

the intuitive notion that bias is something bad which must be corrected for,
does not even fit well within the frequentist framework. [...] one could not
state “use estimate X for a fixed sample size experiment, but use X − c(X )
(correcting for bias) for a sequential experiment,” and retain frequentist ad-
missibility in the “real” situation where one encounters a variety of both types
of problems. The requirement of unbiasedness simply seems to have no justi-
fication.

–Berger & Berry (1988, p. 67)

Code
See Appendix Section 3.G for description of simulation and visualization R code and pack-
ages used to generate the code. Code is available from Electronic Archiving System - Data
Archiving and Networked Services (EASY -DANS)

EASY-DANS: Accumulation Bias in Meta-Analysis: The Need to Consider Time in Error
Control. https://doi.org/10.17026/dans-x56-qfme Ter Schure (2019)

Data are available under the terms of the Creative Commons Zero "No rights reserved"
data waiver (CC0 1.0 Public domain dedication).

https://doi.org/10.17026/dans-x56-qfme
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/
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Appendices

3.A Common/fixed-effect meta-analysis
Here we derive (3.1a) and (3.1b), shown in (3.A.4), from the notation in Borenstein et al.
(2009), specifically for the setting where means and standard deviations are reported in
the study series Borenstein et al. (2009, Ch. 4 ). We slightly adjusted the notation by using
X T and X P instead of X 1 and X 2 to indicate the treatment and placebo group estimate —
to avoid confusion with the study numbering — and using Di instead of Di Borenstein
et al. (2009, p. 22) or Yi Borenstein et al. (2009, p. 66) as an analogy to the group study
mean X i and we denote its standard deviation as σDi

. We introduce the superscript (t) to
emphasize a meta-analysis estimate of a series of studies 1 up to t.

Let Di = XTi−XPi be a random variable that denotes the difference between two observa-
tions (random or paired) from the treatment group (XTi) and the placebo group (XPi) in
study i. Let σ̂Di

be the estimate of the population standard deviation of these difference
scores in study i. Following the usual assumptions of common/fixed-effect meta-analysis,
no distinction is made between σ̂Di

and the true σDi
Borenstein et al. (2009, p. 264) and

for simplicity, we assume these standard deviations to be equal across studies:

For all i, j ∈ {1,2, . . . , t} σ̂Di
= σDi

= σ̂Dj
= σDj

= σD (3.A.1)

Let Di = X Ti−X Pi be the estimated treatment effect in study i, i.e. the difference between
the average effect in the treatment group X Ti in study i and the average effect in the
placebo group X Pi in study i. The population treatment effect is denoted by ∆, and is the
difference between the population mean effects in the two groups,∆= µT−µP Borenstein

et al. (2009, p. 21). Let Zi =
Di

SEDi
be the treatment Z-score of study i that is standardized

with regard to the treatment effect standard error. (3.A.2) displays the general definition
of Z (t), the Z-score of the combined effect estimated by a common/fixed-effect meta-
analysis on studies 1 up to and including t (adapted notation from Borenstein et al. (2009,
p. 66)):

Z (t) =
M (t)

SEM (t)

M (t) =

∑t
i=1 Wi Di
∑t

i=1 Wi

Wi =
1

SE2
Di

SEM (t) =

√

√

√

1
∑t

i=1 Wi

(3.A.2)

Let di =
Di
σD

be the Cohen’s d of the treatment score in study i Borenstein et al. (2009,
p. 26) — so standardized with regard to the estimated population standard deviation —
and let ni denote the sample size in the treatment and placebo arm of study i (under
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the assumption that all studies have equal size study arms). Since SE2
di
= 1

ni
, we let wi =

1
SE2

di

= 1
1
ni

= ni denote the weights for di . Based on these weights, M (t) and SEM (t) can be

expressed as follows, using the fact that Di = diσD, SE2
Di
= σ2

D
ni

, and thus Wi = wi
1
σ2

D
(see

also Borenstein et al. (2009, p. 82)):

M (t) =

∑t
i=1 wi

1
σ2

D
diσD

∑t
i=1 wi

1
σ2

D

=

∑t
i=1 widiσD
∑t

i=1 wi

=

∑t
i=1 nidiσD
∑t

i=1 ni

SEM (t) =

√

√

√

1
∑t

i=1 wi
1
σ2

D

=

√

√

√

σ2
D

∑t
i=1 wi

=

√

√

√

σ2
D

∑t
i=1 ni

(3.A.3)

With N (t) =
∑t

i=1 ni and di =
Zip
ni

, the common/fixed-effect Z-score Z (t) of studies i up to
and including t can be derived as an average weighted by the square root of the individual
study sample sizes:

Z (t) =

∑t
i=1 ni diσD

N (t)
r

σ2
D

N (t)

=

∑t
i=1 nidi

q

∑t
i=1 ni

=

∑t
i=1 ni

Zip
nip

N (t)
=

∑t
i=1
p

ni Zip
N (t)

=

∑t
i=1

p
nZip

t
p

n
=

1
p

t

t
∑

i=1

Zi

for n1 = n2 = . . .= nt = n
(3.A.4)

3.B Expectation Gold Rush conditional pilot Z-score
Here, and in the following, we assume that there is always a first study (P [T ≥ 1] = 1).

E0 [Z1 | T ≥ 2] =
E0

�

Z1

�

�

� T ≥ 2, Z1 ≥ z α
2

�

· P0

�

T ≥ 2
�

�

� T ≥ 1, Z1 ≥ z α
2

�

· P0

�

Z1 ≥ z α
2

�

P0 [T ≥ 2]

+
E0

�

Z1

�

�
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�
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�
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�
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�
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�
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�
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�

·ω(1)S ·
α
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�
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�

�
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2

�

·ω(1)NS · (1−α)

ω
(1)
S ·

α
2 +ω

(1)
NS · (1−α)

(3.B.1)
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since

P0 [T ≥ 2] = P0

�

T ≥ 2
�

�

�T ≥ 1, Z1 ≥ z α
2

�

· P0

�

Z1 ≥ z α
2

�

+ P0

�

T ≥ 2
�

�

�T ≥ 1, |Z1|< z α
2

�

· P0

�

|Z1|< z α
2

�

=ω(1)
S
·
α

2
+ω(1)

NS
· (1−α)

This expression only considers significant positive and nonsignificant results in the pilot
study, since we defined in (3.2) that significant negative results have 0 probability to pro-
duce replication studies. We can replace P0 by P in the middle term of the fractions in the
first two rows because new study probabilities are independent from the data generating
distribution, as discussed in Section 3.2.3.

3.C Expectation Gold Rush conditional meta-analysis Z-score

For all t ≥ 2 :

E0

�

Z (t)
�

� T ≥ t
�

=

∑t
i=1
p

ni E0 [Zi | T ≥ t]
p

N (t)

=
p

n1 E0 [Z1 | T ≥ t] +
∑t−1

i=2
p

ni E0 [Zi | T ≥ t] +pnt E0 [Zt | T ≥ t]
p

N (t)

=
p

n1 E0 [Z1 | T ≥ 2] +
∑t−1

i=2
p

ni E0 [Zi | T ≥ i + 1]
p

N (t)
(3.C.1)

Here we use that the last study in a series under the Gold Rush example is unbiased
and has expectation 0 under the null hypothesis. We also use that the expansion of the
series beyond the next study does not influence a study’s expectation in our Gold Rush
example: for t ≥ 2 E0 [Z1 | T ≥ t] is the same as E0 [Z1 | T ≥ 2], and for any i and t ≥ i,
E0 [Zi | T ≥ t] is the same as E0 [Zi | i + 1]).
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3.D Mixture variance
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(3.D.1b)

Because squaring is a convex function, we know from Jensen’s Inequality that the average
squared mean (3.D.1a) is larger than the square of the average mean (3.D.1b). So the
variance of the mixture is larger than the mixture of the variances.

3.E Maximum time probability
The survival function S(t − 1) represents the probability P[T ≥ t]. The survival function
is the complement of a cumulative distribution function on maximum time or stopping
times T, known in survival analysis as the lifetime distribution function F(t − 1):

S(t − 1) = 1− F(t − 1)

with F(t − 1) =
t−1
∑

i=0

P[T = i]
(3.E.1)

S(t − 1) = 1−
t−1
∑

i=0

P[T = i]

S(t) = 1−
t−1
∑

i=0

P[T = i]− P[T = t]

therefore: P[T = t] = S(t − 1)− S(t)

(3.E.2)
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3.F Error control surviving over time in terms of a sum

LetF ′(t)TYPE-I be the even that bothF (t) and T ≥ t holds. Using in the first equality below that
the eventsF ′(1)TYPE-I,F

′(2)
TYPE-I, . . . are all mutually exclusive (so that the union bound becomes

an equality), we get:
∑

t

P0

�

F (t)TYPE-I,A
(t), T ≥ t

�

≤
∑

t

P0

�

F (t)TYPE-I, T ≥ t
�

= P0

�

∃t > 0 : F (t)TYPE-I, T ≥ t
�

≤ P0

�

∃t > 0 : F (t)TYPE-I

�

= P0

�

∃t > 0 : E (t)TYPE-I

�

= P0

�

∃t > 0 : LR(t) (Z1, . . . , Zt)≥
1
α

�

≤ α

where the final inequality is just the final inequality of (3.24) again. (3.25) follows.

3.G Code availability
Table 3.1, Figure 3.1 and Table 3.2 were calculated, simulated and created by R code avail-
able in the EASY-DANS repository: https://doi.org/10.17026/dans-x56-qfme
(see Extended data Ter Schure (2019))

Details on the OS and version at which it were run can be found below:

• Platform: x86 64-redhat-linux-gnu

• Arch: x86 64

• OS: linux-gnu

• System: x86 64, linux-gnu

• R version: 3.5.3 (2019-03-11) Great Truth

• svn rev: 76217

The following packages were used:

• ggplot2 version 3.0.0

• graphics version 3.5.3

• grDevices version 3.5.3

• methods version 3.5.3

• stats version 3.5.3

• utils version 3.5.3

https://doi.org/10.17026/dans-x56-qfme



