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1| ALL-IN meta-analysis

Abstract
Science is justly admired as a cumulative process (“standing on the shoulders of giants”),
yet scientific knowledge is typically built on a patchwork of research contributions with-
out much coordination. This lack of efficiency has specifically been addressed in clinical
research by recommendations for living systematic reviews and against research waste.
We propose to further those recommendations with ALL-IN meta-analysis: Anytime Live
and Leading INterim meta-analysis. ALL-IN provides statistical methodology for a meta-
analysis that can be updated at any time – reanalyzing after each new observation while
retaining type-I error guarantees, live – no need to prespecify the looks, and leading –
in the decisions on whether individual studies should be initiated, stopped or expanded,
the meta-analysis can be the leading source of information. We illustrate the method for
time-to-event data, showing how synthesizing data at interim stages of studies can in-
crease efficiency when studies are slow in themselves to provide the necessary number of
events for completion. The meta-analysis can be performed on interim data, but does not
have to. The analysis design requires no information about the number of patients in trials
or the number of trials eventually included. So it can breathe life into living systematic
reviews, through better and simpler statistics, efficiency, collaboration and communica-
tion.

Introduction
The scientific response to the Covid-19 pandemic constitutes a major gamble. In the US,
for example, the funding program for vaccine development did not put money on a single
vaccine, but on six different ones. They purposely took “multiple shots on goal” accord-
ing to Larry Corey of the NIH Covid-19 Prevention Network in an interview with STAT
(Branswell, 2021). Vaccine development is not a sure thing, and so their strategy needed
to be robust enough to just “let the chips fall”. Also in the search for treatments, the scien-
tific community had to hedge its bets. Clinical trials competed for resources and patients,
and had to continuously change course when new information arrived. In contrast to vac-
cines, however, in most countries a strategy to find treatments was lacking. Many clinical
trials suffered from “poor questions, poor study design, inefficiency of regulation and con-
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duct, and non or poor reporting of results”: research waste (Glasziou et al., 2020). We
believe that more strategic thinking can benefit a future pandemic response as well as
non-pandemic evidence-based medicine, as uncertainty is often a given. Honest scientific
bets can breathe life into the approach called living systematic reviews that aims to keep
the evidence record up-to-date (Elliott et al., 2017) and the medical guidelines current
(Akl et al., 2017). We propose to make those bets by using ALL-IN meta-analysis in clinical
trial design, monitoring and reporting.

ALL-IN meta-analysis stands for Anytime Live and Leading INterim meta-analysis. The Any-
time aspect provides analysis that controls type-I error in testing and coverage in interval
estimation regardless of the decision making along the way, and so regardless of any stop-
ping rules or accumulation bias processes (Chapter 3). The Live aspect prevents research
waste caused by meta-analyses that are out-of-date, which is often the case in retrospec-
tive meta-analysis. The synthesis can be a bottom-up collaboration of trials, as well as a
prospective top-down statistical analysis for decision making. The Leading aspect allows
the systematically collected evidence included so far to drive the necessity and design of
new trials. Finally, the INterim aspect is new in meta-analysis and makes for effortless
combination of trials while they are still ongoing. What is more, ALL-IN meta-analysis is
also literally ALL-IN since any number of new studies can be included; it has an unlim-
ited horizon. We illustrate this in the setting of time-to-event data, where waiting for new
events is an inherent challenge of clinical trials. Combining trials early can prevent delays
if studies are slow in themselves to complete the necessary number of events. ALL-IN has
advantages in four categories: statistics, efficiency, collaboration and communication. We
introduce all four briefly (page 23-25) before we go into more detail, but first illustrate
the language of betting for single trials studying a Covid-19 vaccine.

A single trial: the FDA game
On June 30th, 2020, the US Food and Drug Administration (FDA) published its guidance
document on “Development and Licensure of Vaccines to Prevent Covid-19” (FDA, 2020).
This set the goals for any Phase III clinical trial betting on a protective effect of a vaccine
against Covid-19. The guidance document advised on the definition of events of confirmed
(symptomatic) SARS-CoV-2 infection for the trials to be counting. And in counting those,
the document prescribed the two things to achieve: (1) at least a vaccine efficacy (VE) of
50% and (2) evidence against a null hypothesis of ≤ 30% VE (FDA, 2020, p. 14). Most
Covid-19 vaccine trials randomized large numbers of participants 50:50 vaccine:placebo
such that we can assume that also throughout the trial the participants at risk stayed
approximately balanced. According to the definition of SARS-Cov-2 infections, we start
counting once a participant has a confirmed infection after being fully vaccinated for at
at least a number of days (e.g. 7 days in the Pfizer-BioNTech trial (Polack et al., 2020))).
This is also when a (virtual) bet could start. In the following we reinterpret the design for
the Covid-19 vaccine trials in the language of betting.

Each new event carries evidence that we express by a betting score. We make a (virtual)
investment on one of the two outcomes: either the next event occurs in the vaccine group
or it occurs in the placebo group. If there is no effect of the vaccine whatsoever, the 50:50



Judith ter Schure 21

risk set ensures that the infected participant has 0.5 a chance to be vaccinated and 0.5
a chance to be a placebo. Yet, following the FDA, we do not only want to rule out an
ineffective vaccine, but also reject the hypothesis that the vaccine has an effect that is too
small – set as the null hypothesis of (at most) 30% VE. In that case each newly observed
infection has slightly smaller chance to be a vaccinated participant. That probability to
be in the vaccine group is 0.41, since each placebo group member has a 100% risk of
Covid-19 and a vaccine group member has 100−30= 70% of the risk, which is a fraction
0.41 of the total risk (70/(100+70)). So if the VE is too small to be of interest we expect
(at least) a fraction 0.41 of Covid-19 events to occur in the vaccine group and (at most)
0.59 in placebo.

How do we bet against that and win if the vaccine has a much larger protective effect?
We are betting against the probability 0.41 of the next Covid-19 event to occur in the
vaccine group. If this probability actually is that large (the vaccine is not very protective;
the null hypothesis) we do not want the game to be favorable under any strategy, just
like the casino does not want any gambler to earn a salary playing the roulette wheel.
On the other hand, we are betting in favor of a much smaller probability for the vaccine
group. If this probability is smaller (the vaccine is protective; the alternative hypothesis)
we do want to win money, just like a professional poker player who makes a salary out
of gambling well. We use the betting scores to decide whether the vaccine is a real deal-
breaker (the scores behave like the salary of a professional poker player) or whether it
is not effective enough (the scores behave like anyone playing the roulette wheel). To
ensure that our betting scores can show either case, we first design the game such that it
is fair – under the null hypothesis – and then optimize playing the game with a strategy
that is profitable – under the alternative.

Designing a fair game under the null hypothesis Consider gambling at the roulette
table where the vaccine trial analogy is like betting on red (vaccine) or black (placebo).
Betting correctly doubles your investment, betting incorrectly loses everything you risked.
Assuming no house edge (no 0 or 00 on the roulette wheel, on which you cannot bet)
and an initial =C100 you do not expect to increase your investment, since you have 0.5 a
chance of doubling (2 · =C100) and 0.5 a chance of losing all (0 · =C100). Whether you bet
everything on black or red, in expectation the betting score after one round is (0.5 · 2+
0.5 · 0) · =C100, which is the initial investment =C100. To achieve the same thing betting
against the 0.41:0.59 probabilities instead of 0.5:0.5, your investment needs to multiply
by 2.4 (1/0.41) for vaccine and 1.7 (1/0.59) for placebo. If you bet everything on vaccine
you have 0.41 chance of multiplying by 2.4 (2.4 · =C100) and 0.59 chance of losing all
(0 · =C100) and if you bet everything on placebo you have 0.59 chance of multiplying by
1.7 (1.7 ·=C100) and 0.41 chance of losing all (0 ·=C100). The expected betting score after
one round is again the initial investment for both: (0.41 · 1/0.41 + 0.59 · 0) · =C100 and
(0.59 ·1/0.59+0.41 ·0) ·=C100. Hence, at either the roulette table or in this FDA game, by
design the game is fair and does not favor us. After all, if our observed infections land on
the vaccine and control group with the probabilities 0.41:0.59 – like a spin of the roulette
wheel on black and red with 0.5:0.5 – we do not expect to claim an effective vaccine.
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Optimize playing the game under the alternative hypothesis How do we win as fast
and as much as possible if our observed infections do not behave like a roulette wheel? It
has been known since the work of Kelly (1956) and Breiman (1961) that the best way to
increase your capital in the long run is to not bet all your (virtual) investment =C100 on
one of the two possible outcomes (red/vaccine or black/placebo) but to divide it based on
the odds that make the game favorable to you. So our focus needs to be on the minimal
VE of 50% from the FDA guidance. In the scenario of 50% VE, the probability that the
next Covid-19 case is in the vaccine group is 1/3: if we set the risk of Covid-19 for a
placebo group member to 100%, a vaccine group member has 100 − 50 = 50% of that
risk, which is 1/3 of the total risk (50/(100+50)). Kelly (1956) and Breiman (1961) urge
us to invest one-third (1/3 · =C100) on observing the next infection in the vaccine group
and two-thirds (2/3 · =C100) on placebo.

Likelihood ratios If we bet this way we can rewrite our betting scores in terms of a
likelihood ratio. We first show this for the red-black roulette game where we double what
we had put at risk on either black or red if the spin of the roulette wheel outputs the
color we bet on. Just like in our strategy in the FDA game, we put 1/3 · =C100 on red and
2/3 · =C100 on black, so we win the following if the ball X lands on either red or black:

X = red 2 ·
1
3
· =C100=

L(1/3 | X )
L(1/2 | X )

· =C100

X = black 2 ·
2
3
· =C100=

L(1/3 | X )
L(1/2 | X )

· =C100

The Bernoulli 1/3-likelihood L(1/3 | X ) assigns likelihood 1/3 when is X = red and 2/3
when is X = black. So if our strategy is to invest 1/3-2/3 in roulette, our payout is our
initial investment =C100 multiplied by the likelihood ratio, whether X is red or black.

X = vaccinated 2.4 ·
1
3
· =C100=

L(50% VE | X )
L(30% VE | X )

· =C100

X = placebo 1.7 ·
2
3
· =C100=

L(50% VE | X )
L(30% VE | X )

· =C100

The likelihood for 50% VE (L(50% VE | X )) assigns likelihood 1/3 when is X = vaccine
and 2/3 when is X = placebo. Similarly, the likelihood for 30% VE (L(30% VE | X ))
assigns likelihood 0.41 when is X = vaccine and 0.59 when is X = placebo. Hence if our
strategy is to invest 1/3-2/3 in the FDA game, our payout is also our initial investment
=C100 multiplied by the likelihood ratio, whether X is vaccine or placebo.

A winner We assume now that we start with an initial (virtual) investment of =C1 instead
of =C100. At the first observation we bet =C0.33 on vaccine and =C0.66 on placebo. After we
observe the event in the placebo group we lose our =C0.33 bet on vaccine and multiply our
=C0.66 on placebo by 1.7 to =C1.13. The likelihood ratio between our 30% VE alternative
hypothesis and our 50% VE null hypothesis – so L(50% VE | X )/L(30% VE | X ) – is also
about 1.13, so multiplying our initial investment of =C1 into =C1.13. On the other hand, if



Judith ter Schure 23

we observe the event in the vaccine group we lose our =C0.66 bet on a placebo event and
multiply our =C0.33 on vaccine by 2.4 to =C0.81. The likelihood ratio of a vaccine event
multiplies our investment by 0.81. After each observed event we reinvest what we have
left in the new bet, so multiply that with the next likelihood ratio.

The Pfizer/BioNTech trial observed 8 cases of Covid-19 among participants assigned to
receive the vaccine and 162 cases among those assigned to placebo (Polack et al., 2020),
so they could report a total betting score of 0.818·1.13162· =C1, which is about =C118 million
(note that 1.13 is really 1.13333 . . .)1. If someone wins that at the poker table, we have
good reason to consider her a professional poker player with a favorable strategy, rather
than a lucky beginner (Konnikova, 2020).

Meta-analysis: bottom-up collaboration
The Pfizer/BioNTech trial included more than 43 thousand participants (Polack et al.,
2020), which is quite unique for a clinical trial. Usually trials are much smaller, and sci-
entific consensus is built through systematic reviews and retrospectively combining trials
in a meta-analysis. ALL-IN is a way to do so by collaborating bottom-up in a strategic way
that can be live instead of retrospective. It has advantages in four categories that we will
first briefly introduce and then further elaborate on in this chapter: statistics, efficiency,
collaboration and communication.

Statistics
Not all mRNA vaccines showed such favourable results as the Pfizer/BioNTech vaccine. In
a press release CureVac AG (2021) announced that the final analysis of their clinical trial
observed 83 events in the vaccinated group and 145 in placebo, so only a 43% VE2 (our
calculations assuming a 50:50 balanced risk set (r = 1 in CureVac AG (2020, p. 124))).
Their protocol states the FDA goal in terms of a confidence interval that excludes a VE
of 30%, adjusted for two interim analyses. That adjusted confidence interval at the final
analysis is based on Zα/2-statistic for the nominal level α/2= 0.02281 (CureVac AG, 2020,
Table 8). That interval is [25.3%, 57.1% VE] (our calculations; normal approximation
interval) and, regrettably, does not exclude 30%. When the chips fell, this trial lost.

Statistical analyses like these are essentially all-or-nothing, just as any other p < α anal-
ysis. As soon as all the α is spent – either on a few interims and a final analysis or just
on one fixed sample size – we cannot continue the trial and perform subsequent analy-
ses without violating the type-I error rate. This might be a reasonable price to pay in the
urgency of a pandemic when multiple vaccines are competing, but it is a very inconve-
nient property for clinical trials in general. Usually, we do want to reanalyze a clinical

1We can ask: why did the Pfizer/BioNTech trial not declare efficacy sooner? In a later agreement with the
FDA in October, the vaccine trials committed to collecting at least two months of safety data for half of the
included participants in the trial. So the trial could not stop earlier. This agreement was formalized in the FDA
guidance document for Emergency Use Authorization and is still present in the May 2021 version (FDA, 2021)

2The CureVac AG (2021) press release reports a VE of 48%, so uses a different r (ratio of follow-up time
in the two groups). In such large trials r can often be assumed to stay close to 1, so we set it to 1 to make all
calculations simpler. All our calculations can be found via Appendix Section 1.B.
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trial in combination with other similar trials in a meta-analysis. Yet any p < α procedure
is equivalent to setting a rejection region for the test statistic and checking whether the
value for the statistic falls within that region. This rejection region is based on a sampling
distribution that assumes the number of studies in the meta-analysis, and the number of
patients within each study to be fixed in advance. Given such a fixed sample size (but
also for any sequential stopping rule that sets a maximum sample size in advance, such
as α-spending), there is only one region, and your test statistic is either in it or not. If
it is not, you are not allowed to redo the analyses with an increased sample size. This
problem is recognized in approaches to control type-I error for living systematic reviews
(Simmonds et al., 2017). But also if the meta-analysis is not updated, the α is essentially
already spent on the individual trial, since the meta-analysis is an update of the trial anal-
ysis that is unscheduled and lacks type-I error control at the same level α. If the individual
study analysis would have been conclusive, the meta-analysis might never be performed,
and we can recognize that we are dealing with a situation of “meta-optional-stopping”. A
different way to see this is by the actual sampling distribution of trials in a meta-analysis:
any data-driven decision within the series – whether to accumulate more studies and
when to perform the meta-analysis – changes the sampling distribution and invalidates
the fixed-sample-size distribution assumed for p < α. Hence hardly any meta-analysis has
valid type-I error control, when the accumulation of trials is based on strategic decisions
that introduce accumulation bias (Chapter 3).

ALL-IN meta-analysis is not all-or-nothing but can still combine all available studies. In
fact, it allows any number of new studies or patients to be included without ever spending
all α. In terms of gambling, we can keep betting our virtual investment because we never
lose everything. The CureVac AG (2021) results, for example, would have accumulated
a betting score of 0.8183 · 1.13145· =C1 = =C1.84. This single trial is not very profitable,
but at least it still preserves some evidence to reinvest in the next trial, such that we can
continue to observe evidence and express it by betting on additional observations in a
new trial. An ALL-IN meta-analysis can always continue testing the null hypothesis – with
type-I error control – and estimating the confidence interval – with coverage guarantees.
Importantly, for these tests and intervals the procedures are exactly the same no matter
what decisions – so-called stopping rules, or accumulation bias processes (Chapter 3) –
are at play.

Efficiency
Lack of efficiency has been addressed in clinical research in many ways. Not only in the
proposal of living systematic reviews (Elliott et al., 2017), but also in encouragements
to present new studies in the context of existing evidence (Young and Horton, 2005), in
advice to design new trials based on systematic reviews and meta-analysis (Chalmers and
Lau, 1993; Lau et al., 1995; Sutton et al., 2007; Goudie et al., 2010; Lund et al., 2016) and
in pleading to prevent the “scandal” of wasteful research into clinical questions that are
already answered or not of primary importance (Altman, 1994; Chalmers and Glasziou,
2009; Glasziou and Chalmers, 2018; Glasziou et al., 2020, “research waste”). These calls
have not been completely ignored, since clinical research has seen an increase in effi-
ciency – e.g. in platform trials or adaptive meta-analysis (Tierney et al., 2021) – when-
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ever collaboration is deemed possible prospectively. Nevertheless, most clinical trial data
is synthesized retrospectively, and still deserves all of the above recommendations. ALL-IN
meta-analysis enables these data-driven decisions that can make science more efficient.
New studies can be easily informed by the synthesis of all data so far such that exactly the
right number of patients are randomized to answer a research question, no more and no
less. Moreover, an ALL-IN meta-analysis can give an account of the evidence at anytime
and therefore facilitate prioritizing new studies, if more than one line of research needs
additional data, but not all can be funded.

Collaboration
ALL-IN meta-analysis can be a live meta-analysis, since it does not matter how many stud-
ies will eventually be combined or which study will contribute most data. Whether it is
based on summary statistics (Tierney et al., 2021) or on individual patient data (IPD)
(Polanin and Williams, 2016), involvement in the same meta-analysis facilitates discus-
sion between those running trials in the same line of research; especially if the line of
research can be concluded early. Trial protocols and statistical analysis plans can be ex-
changed and scrutinized, to identify discrepancies between the design and the conduct of
trials. In an ongoing meta-analysis, trials can be selected for inclusion before investigators
are unblinded to the results, which helps to mitigate the problems of publication bias and
p-hacking. If IPD analysis is possible, intense collaboration might also prevent mistakes
and fraudulent data that would otherwise depreciate the meta-analysis.

A meta-analysis benefits from homogeneity. With too much heterogeneity, it can be very
disheartening to update a random-effects meta-analysis, since many trials are needed to
precisely estimate the between trial variation and overcome it (Sutton et al., 2007; Kulin-
skaya and Wood, 2014; Jackson and Turner, 2017). Close collaboration might prevent
unnecessary heterogeneity, if trial investigators are involved in the selection of trials in
the meta-analysis; especially if they can advise on the design and conduct of new trials
and align inclusion criteria and endpoint definitions. A fixed-effects meta-analysis can
conclude the research effort early. Sufficient homogeneity may be possible in close col-
laboration.

Communication
The language of betting The interpretation of evidence in terms of a betting score might
help to communicate the uncertainty in statistical results. As Shafer (2021) puts it: “When
statistical tests and conclusions are framed as bets, everyone understands their limitations.
Great success in betting against probabilities may be the best evidence we can have that
the probabilities are wrong, but everyone understands that such success may be mere
luck.” Thinking in terms of bets also helps to understand when statistical analyses can be
anytime-valid. If they are of the all-or-nothing kind, but reanalyzed in a meta-analysis, they
are gambling while broke. (This intuition can be made mathematically precise; see the
description of Neyman-Pearson testing in terms of betting Shafer (2021) and Grünwald
et al. (2019).) Yet if we add new studies to an ALL-IN meta-analysis, we are reinvesting
the betting score that we saved from earlier studies, to evaluate whether the strategy in
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those earlier studies continues to succeed. Just like when reinvesting your profits in a
casino from one slot machine into another, the notion of winning stays the same. Our
evidence against the hypothesis of a fair casino does not change when we alternate slot
machines. It does not change if we use the score so far to decide on alternating them or
to decide when to cash out. If the slot machines are fair, any strategy of playing them
is not expected to make money, and our notion of type-I error control holds under any
dependency on past results (stopping rules or accumulation bias processes).

Other communication Those uncomfortable with the language of betting can also eas-
ily resort to any of three more familiar notions of statistical communication. Firstly, the
likelihood ratios/betting scores and their generalizations, so-called e-values (Grünwald
et al., 2019; Vovk and Wang, 2021), can be interpreted as conservative p-values by tak-
ing their inverse. If we denote any betting score or e-value by € (e.g. € = =C1.84 for
the CureVac trial data), then p < 1/€ is a conservative p-value (e.g. p = 1/1.84 = 0.54
for the CureVac trial data). If we communicate the p-value p = 1/€ anyone can test by
comparing p < α but with the addition that this conservative p-value is anytime valid3

and so p < α can never spend all α (it is never an all-or-nothing test). Secondly, the likeli-
hood ratios have their own notion of evidence in the likelihood paradigm (Royall, 1997).
Just as well as stating that the Pfizer/BioNTech trial (Polack et al., 2020) multiplied =C1
to almost =C118 million and the CureVac AG (2021) trial multiplied =C1 to =C1.84, we can
state that their data was almost 118 million times and 1.84 times more likely if we as-
sume the FDA’s goal of 50% VE in comparison to assuming only 30% VE. For Pfizer, that
sounds very good, for CureVac, not so much, and so these numbers have an interpretation
of their own without imposing any α level. Thirdly, likelihood ratios can be accepted by
the Bayesian paradigm, as Bayes factors, and possibly combined with prior odds. Grün-
wald et al. (2019) and Grünwald (2021) show that betting scores/e-values and Bayes
factors are closely related, although not all Bayes factors are betting scores/e-values. The
bottom-line for communication purposes is that the reporting by ALL-IN meta-analysis can
be interpreted in many ways – p-values, likelihood ratios, Bayes factors – but regardless
of the interpretation provide fully frequentist type-I error control for tests and coverage
for confidence sequences.

The remainder of this chapter discusses the four categories of advantages in more de-
tail: Statistics in Section 1.1, Efficiency in Section 1.2, Collaboration in Section 1.3 and
Communication in Section 1.4. We use the Covid-19 vaccine trials as running examples,
based on the FDA game described already, but also in terms of the safe/e-value logrank
test (Chapter 2). We also briefly discuss an actual ALL-IN meta-analysis in Section 1.3.1,
that used this safe/e-value logrank test to study whether the BCG vaccine could protect
against Covid-19 (Van Werkhoven et al., 2021, ALL-IN-META-BCG-CORONA). In the con-
cluding section we will provide some broader context, with an overview of all the methods
already developed – e-values, safe tests (Grünwald et al., 2019) and anytime-valid confi-
dence sequences – methods already available in software – notably safestats R package

3Such conservative p-values cannot be pictured as the tails of a sampling distribution since such a picture
needs a sample size. Appendix Section 1.A gives more details.
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(Turner et al., 2022) – and future work. R code for all calculations, simulations and plots
is online available via Appendix Section 1.B.

1.1 Statistics
The language of betting comes with the intuition that winning a large betting score a has
small probability if the null hypothesis is generating our observations (e.g. the roulette
wheel is fair). We will make this intuition precise and show how to control the type-I error
by bounding this probability by Markov’s inequality and Ville’s inequality. Crucial here is
that the betting score underlying our test is an e-value. The language of betting also comes
with the intuition that when playing a game that is favorable to us in principle, we can
use strategies of different quality: even among all strategies under which we expect to get
richer, some of them can be expected to earn us much more than others. We will relate the
more well known notion of power to such a different notion of optimality. In the following
we discuss both e-values and optimality first for a single trial (in the FDA game and more
generally) and then for ALL-IN meta-analysis. We conclude by a generalization of optimal
e-value tests to confidence sequences.

1.1.1 Under the null: e-values in a single trial
To make the FDA game fair we imposed a multiplication by 2.4 (or 170/70) if we observe
the event in the vaccine group and 1.7 (or 170/100) if we observe it in the placebo group.
This multiplication has expectation 1 (or smaller) if we assume the null hypothesis of a
vaccine with negligible VE of 30% (or smaller). In case of 30%, we have probability 0.41
(or 70/170) to observe a vaccine event and probability 0.59 (or 100/170) to observe
placebo, so in expectation we multiply our investment by: 70/170 · 170/70+ 100/170 ·
170/100= 1. No matter how we invest in the two outcomes, (e.g. putting 1/3 on vaccine
and 2/3 on placebo, or something different) in expectation under the null we multiply the
initial investment by 1. This means that our betting score is an e-value, since by definition
an e-value is the outcome of a nonnegative random variable with expectation 1 under the
null hypothesis (Grünwald et al., 2019).

Our betting score could also be rewritten as a likelihood ratio, so the expectation of the
likelihood ratio (L(50% VE | X )/L(30% VE | X )) is 1 as well. We henceforth write the
likelihood ratio after n rounds of betting (or after observing n events) as LR(n), with for
the FDA game

LR(n) =
n
∏

i=1

L(50% VE | X i)
L(30% VE | X i)

. (1.1)

Using its expectation of 1, Markov’s inequality bounds the probability of observing a large
multiplication of our investment € (a large likelihood ratio) by α after n = 170 rounds
as follows:

P30% VE

�

LR(170) ≥ 1/α
�

≤
E30% VE

�

LR(170)
�

1/α
=

1
1/α

= α.

Figure 1.1 shows at the right side the histogram of betting scores in the FDA game after
170 events when we simulate events under the null hypothesis, with probability 0.41 to
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Figure 1.1. 1000 simulated betting scores in the FDA game over betting rounds n assuming a
probability of 0.41 (70/170) for each event to occur in the vaccine group (the null hypothesis
of 30% VE). The dashed line is the threshold 1/α= 40 one-sided. The histogram at the right
shows the betting score/LR(170) after 170 events. Note that the expectation of 1 of the scores
is not the mode of its distribution nor its median and that the y-axis is on a log scale.

occur in the vaccine group, corresponding to 30% VE. A line is shown at 40, and indeed
no more than α = 1/40 = 2.5% of the scores seem to be larger than that threshold. In
fact, in these 1000 runs of simulation only 0.3% of the runs have a betting score larger
than 40; Markov’s inequality is a loose bound. We also have a stronger result because we
obtained our betting score over events by multiplying the score of the rounds (see (1.1),
corresponding to reinvesting our winnings), called Ville’s inequality. We get the following
from Ville (1939):

P30% VE

�

LR(n) ≥ 1/α for some n
�

≤ α.

Ville’s inequality is also illustrated in Figure 1.1: if we take the sequence of rounds into
account, still only a few out of the 1000 simulations ever reach a betting score larger than
40. In fact, in these 1000 runs of simulation only 1.1% of the runs have a betting score
that is larger at any round in the game, such that our type-I error is controlled at α= 2.5%
at any time. Moreover, this type-I error control is not tied to this maximum number of 170
events, but continues to hold with an unlimited horizon. Making a large profit in such a
fair game casts doubt on the null hypothesis and is captured by a likelihood ratio that
grows away from 1: a large betting profit is obtained if the null likelihood is performing
worse than alternative.

When trials can be summarized as bets Before they can be combined in a meta-
analysis, individual trials are often characterized by the summary statistics from trial pub-
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lications. Conventional meta-analysis combines these statistics (e.g. mean differences and
standard deviations) in a Z-statistic (Borenstein et al., 2009). Unlike the vaccine/placebo
outcomes that we have seen so far, such a Z-statistic has a continuous density and can-
not be summarized by separately dealing with all possible outcomes. Fortunately, Shafer
(2021) shows that any likelihood ratio of distributions can be viewed as a betting score in
a game with initial investment =C1. This is possible because likelihood ratios have expec-
tation 1 in general if we assume the null hypothesis in the denominator of the ratio. For
a Z-statistic we have two normal distributions with variance 1, one with mean µ0 under
the null hypothesis, and one with µ1 under the alternative. If the data is generated by the
null model, the expectation of the likelihood ratio is

EZ∼φµ0

�

φµ1
(Z)

φµ0
(Z)

�

=

∫

z

φµ0
(z)
φµ1
(z)

φµ0
(z)

dz =

∫

z

φµ1
(z)dz = 1, (1.2)

since φµ1
(z) is a probability density that integrates to 1. This means that any such likeli-

hood ratio for a Z-statistic is an e-value and can be used to construct tests by betting.

Not all summary statistics can be assumed to form a Z-statistic with a normal distribution.
Fortunately for the logrank statistic this is reasonable (Chapter 2) if studies are large and
the effect size not too extreme (hazard ratios not too far away from 1). We will use the
logrank Z-statistic as a running example for meta-analysis on summary statistics. For an
IPD meta-analysis (on individual patient data), however, we recommend to use the exact
safe/e-value logrank test from Chapter 2 that is valid regardless of the randomization
(e.g. 1:1 balanced or 1:2 unbalanced), the number of participants at risk, the number of
events or the size of the effect – so also for a hazard ratio 0.05 that corresponds to a VE
of 95%.

1.1.2 Under the null: e-values in a (live) meta-analysis
Assume we want to perform a meta-analysis and we collect a Z-statistic Zi from each
trial i, e.g. a logrank statistic. Before observing Zi we construct an honest bet LRi =
φµ1
(Zi)/φµ0

(Zi) for each trial that is an e-value and thus has type-I error control under
the null hypothesisφµ0

– for a default logrank statistic this is always µ0 = 0 corresponding
to hazard ratio of 1. If we think of the betting score from the first study and invest it in
the second study, we are in fact multiplying likelihood ratios. We need to have a notion of
time t, such that at each time we know the number of studies k〈t〉 so far and the number
of observations ni〈t〉 in each study i. If we assume that all studies are completed at time
t with n1, n2, . . . , ni events summarized by logrank Z-statistics z(n1)

1 , z(n2)
2 , . . . , z(nk)

k we can
construct our ALL-IN bet as follows:

LR〈t〉
META
=

k〈t〉
∏

i=1

LR(ni)
i =

k〈t〉
∏

i=1

φµ1
p

ni
(z(ni)

i )

φ0(z
(ni)
i )

. (1.3)

The global null hypothesis Each trial bet is testing the same null hypothesis µ0 = 0
in (1.3), such that the ALL-IN meta-analysis bet tests a global null hypothesis of no effect
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(0% VE) in all trials. Such a global null hypothesis can be rejected with a contribution
from each trial, but also in case only one trial observes a large score betting against the
hypothesis and no other trial observes a very small betting score that loses those winnings
again. After all, the null in each trial is rejected as soon as the null is rejected in one of
the trials.

Meta-analysis on interim data We can generalize this ALL-IN meta-analysis bet of com-
pleted trials to bets on interim data by assuming that we only have an interim logrank
Z-statistic z1〈t〉, z2〈t〉, . . . , zk〈t〉 for the n1〈t〉, n2〈t〉, . . . , nk〈t〉 events observed so far at
time t; k〈t〉 still represents the number of studies so far at time t, but now these studies
are not (all) completed. We construct our ALL-IN bet in a similar way:

LR〈t〉
META
=

k〈t〉
∏

i=1

LR(ni〈t〉)
i =

k〈t〉
∏

i=1

φ
µ1

p
ni〈t〉
(zi〈t〉)

φ0(zi〈t〉)
. (1.4)

From the perspective of Ville’s inequality, the analysis on completed trials and the one on
interim data are indistinguishable. The only thing that matters is that we include all the
data we have so far at time t, such that we have type-I error control

P0

�

LR〈t〉
META
≥ 1/α for some t

�

≤ α, (1.5)

for the global null hypothesis probability P0 with an unlimited horizon over time t.

1.1.3 Under the alternative: optimality in a single trial
A power analysis sets a very specific goal for a trial, usually to detect an effect of minimal
clinical relevance. This is the effect we would not like to miss if it were there, although
we hope that the real effect is larger. We nevertheless use this smallest effect of interest to
decide on the sample size of the trial, otherwise we risk a futile trial. The FDA was clear
on what this minimal effect should be for the Covid-19 vaccine trials: a VE of 50% (FDA,
2020). This is the effect we used to bet in the FDA game.

Our strategy in the FDA game, however, was not trying to achieve optimal power. If we
compare the all-or-nothing confidence interval for CureVac AG (2021) from the introduc-
tion – the final analysis on 83+145 events – we notice that this confidence interval [25.3%,
57.1% VE] is smaller than the final anytime valid interval we show in Figure 1.3 in Sec-
tion 1.1.5, which is [20.2%, 60.3% VE]. Note that we are comparing a Zα/2-confidence
interval for α/2 = 0.02281 with α/2 = 0.05, so the wider interval cannot be attributed
to the level of α. The difference is that the former one is optimized to have spent all α at
the final analysis, while the latter one is optimized to continue data collection. Power is
the probability of finding the desired result using the specified analysis at a sample size or
stopping rule. So for an analysis that is intended to have unlimited horizon, power is not
a well-defined concept. Instead Grünwald et al. (2019) introduced the concept of growth-
rate optimality in the worst case, or GROW. Here, the goal is to optimize the expected rate
at which the evidence grows (or the interval shrinks) for each new data point, not at a
specific sample size. The worst case here is the 50% VE for a one-sided alternative hy-
pothesis H1 = {PVE : 50% ≤ VE ≤ 100%}. We optimized the FDA bet in the introduction
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by putting this 50% VE in the alternative likelihood. This can be rewritten in terms of a
likelihood ratio for the logrank statistic Z as follows:

LR(n) =
n
∏

i=1

L(50% VE | X i)
L(30% VE | X i)

=
L(50% VE | X1, . . . , Xn)
L(30% VE | X1, . . . , Xn)

≈
φµmin

p
n(Z (n))

φµ0
p

n(Z (n))
, (1.6)

with µmin = log(0.5)/4 and µ0 = log(0.7)/4 with 0.5 and 0.7 the hazard ratios corre-
sponding to VE of 50% and 30% respectively (see Chapter 2). So our one-sided alterna-
tive hypothesis for the logrank Z-statistic is a Z-distribution with a mean representing an
effect that is at least µmin:

H1 = {φµ1
: µ1 ≤ µmin}

(since positive VE corresponds to a negative µ1). Our choice of the parameter of the
alternative likelihood µmin follows directly from the minimal effect set by the FDA. Kelly
(1956) already showed that this way of betting optimizes the way our betting score grows
if the true VE is 50% (our worst-case scenario). Breiman (1961) showed that this approach
also minimizes the number of events we need to reach a given betting score set in advance
(e.g. =C1/α), for which some intuition is given in Figure 1.2. Grünwald et al. (2019), Shafer
(2021) and Appendix Section 2.B give various other reasons why this is the best way to
bet, relating it to data compression, information theory, Neyman-Pearson testing, Gibb’s
inequality, and Wald’s identity. The most crucial property for the purposes of ALL-IN meta-
analysis is that the alternative likelihood puts some money on each possible outcome,
such that no matter what outcome we observe, we keep some of the money we risk. This
contrasts the approach with a classic p < α test that essentially puts all money on the
rejection region, such that if the outcome is not in it, we we lose all and cannot continue
betting. A thorough interpretation of Neyman-Pearson testing and p-values in terms of
betting is given by both Grünwald et al. (2019) and Shafer (2021).

1.1.4 Under the alternative: optimality in a meta-analysis
ALL-IN meta-analysis allows for a retrospective meta-analysis that is bottom-up. The bet-
ting score that we accumulate by reinvesting from one trial into the other (which is mul-
tiplying betting scores) has an interpretation without enforcing a common design or stop-
ping rule on all included trials. This is especially important if trials have their own stopping
rules, or if meta-accumulation processes are at play that influence the existence of trials
based on earlier (trial) results in the same meta-analysis. While a meta-analysis can be
bottom-up and each have its own design and effect of minimal interest, it can be advis-
able to agree on a µmin for the meta-analysis. However, the meta-analysis betting score
can also allow each trial i to have its own alternative likelihood with parameter µmin(i).
Then the following multiplication of those betting scores is still a valid meta score with
type-I guarantees:

LR〈t〉
META
=

k〈t〉
∏

i=1

φµmin(i)
p

ni
(z(ni)

i )

φ0(z
(ni)
i )

. (1.7)

As long as φµmin(i)pni
is a probability density that integrates to 1, we have that each like-

lihood ratio integrates to 1 under the global null hypothesis, such that (1.5) holds. This
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Figure 1.2. Nα is the expected number of events needed to reach a betting score of 1/α= 40
forα= 0.025 if we bet according to VE1 indicated by the three different lines, with bets each of
the form

∏N
i=1

L(VE1 |X i)
L(30% VE |X i)

. The number of events we need decreases if the true VE underlying
the data increases (the true difference in risk between vaccine and control is larger). The
smallest number of events for a true VE of 40% is reached by betting VE1 of 40% (blue solid
line), the smallest number of events for a true VE of 50% by betting VE1 of 50% (orange
dotted line) and the smallest number for true VE of 60% by betting VE1 of 60% (grey dashed
line). Note that for the alternative in the FDA game H1 = {PVE : 50%≤ VE≤ 100%} we are
only interested in playing the game well if the true VE is 50% or larger. Since for larger true
VE, taking VE1 = 50% performs quite well, our strategy is to optimize for the worst case of
50% VE itself and use the bet with VE1 = 50% in the FDA game.

means that trials can also learn their parameter µmin(i) from already completed trials.
This is sometimes the case if trials are not powered to detect an effect of minimal inter-
est, but an effect that is plausibly true based on earlier research. Kulinskaya et al. (2016)
shows that such use of existing studies to power new trials can actually bias conventional
meta-analysis since it introduces yet another dependency between sample size and re-
sults that is unaccounted for in any analysis that assumes a fixed sample size. For ALL-IN
meta-analysis this is no problem at all, and trials can learn from each other as long as the
parameter µmin(i) is fixed before seeing new data that is evaluated using that parameter
in (1.7). In Chapter 2 we discuss the advantages of even learning the parameter within
one trial using prequential plugins or Bayesian posteriors. In a game like the FDA game
with a clear goal, this is inferior to the GROW approach, but in other situations it could
be preferred.

1.1.5 Confidence sequences
The CureVac AG (2021) trial reached their final interim analysis but was not able to reject
the null hypothesis of 30% VE. The trial had been too optimistic and powered for 60%
instead of 50% VE (CureVac AG, 2020). If a trial is underpowered but still has a large
number of participants in follow-up, there is good reason to continue the trial, or combine
the trial with results from a new trial in a meta-analysis. However, with a total of 227
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Figure 1.3. 90%-confidence sequence for a random ordering of the 83 events in the vaccine
group and 145 events in placebo from the CureVac AG (2021) trial. Note that the y-axis is
on the log scale.

events this trial was not underpowered to reject the null hypothesis with an effect in the
same ballpark as the Pfizer/BioNTech trial that reported 95% VE. In such a case it is very
interesting to zoom in on the estimate for the effect, instead of its test.

A standard confidence interval can be seen as an inversion of a hypothesis test: if the
null falls outside a two-sided 90%-confidence interval it can be rejected with a one-sided
type-I error level of α/2 = 0.05. In general, the interval excludes all the values for the
parameter that can be rejected. Similarly, in our context, an anytime-valid confidence
interval excludes all values of the parameter that can be rejected by the e-value test that
corresponds to the betting strategy at hand. So the interval is essentially tracking a whole
range of bets, each against a different null hypothesis. Figure 1.3 gives a sequence of
anytime-valid confidence intervals for a random ordering of the CureVac AG (2021) data,
one for each new observed event or betting round. It shows that the more events we
observe, the more parameters (hazard ratios, or their corresponding VEs) we can exclude
from the interval. Because these intervals are valid at any time, once we can exclude a
value, we never have to include it again. So we also show a sequence of intervals that is
the running intersection of all the previous intervals. This of course crucially depends on
the ordering, so the one shown for the CureVac AG (2021) data is just an example, since
the ordering is not real. Since these intervals are anytime valid, it is possible to further
shrink the intervals by continuing follow-up and observing more events. The coverage of
an anytime-valid confidence sequence – like an e-value test – has an unlimited horizon.

An ALL-IN meta-analysis confidence interval that is based on a running intersection is of
course only possible in an IPD meta-analysis, and cannot be based on summary statistics.
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The confidence interval shown in Figure 1.3 is based on the logrank Z-statistic (by re-
peatedly calculating it after each event), which can also be a summary statistic to achieve
a single interval that is anytime-valid. The interval follows from the likelihood ratio of
normal densities from (1.6) and follows a general recipe for constructing confidence se-
quences from Howard et al. (2021) where the hazard ratio is obtained by means of the
Peto estimator (Peto, 1987). The same approach can be used to obtain an ALL-IN meta-
analysis confidence interval. A fixed-effects meta-analysis Z-statistic corresponds to a lo-
grank statistic stratified by trial, and an estimate can be obtained from such a logrank
statistic that Peto (1987) calls a typical hazard ratio. We discuss this approach a bit fur-
ther in the final section.

1.2 Efficiency
Trials often suffer from recruitment difficulties, with estimates of 35% (between 1994 and
2002) and 56% (between 2004 and 2016) not reaching the goal set in advance (McDonald
et al., 2006; Walters et al., 2017). These trials find themselves underpowered according
to their own protocol: when they decide the stop the recruitment and obtain the final
sample size for analysis, they have a high probability for their test statistic to fall outside
the rejection region they set in advance. This is exactly the scenario where meta-analysis
could rescue the line of research by combining multiple underpowered trials. However, the
literature on research waste (Chalmers and Glasziou, 2009) and Evidence-Based Research
(Lund et al., 2016) shows that we are not using the existing evidence base well to design
the new trials needed for conclusion or to interpret new research. ALL-IN meta-analysis
makes this very easy to do. It comes with a simple notion of the evidence already collected
and what is still needed, and a notion of a new trial’s ability to provide that: the implied
target. The combination of the two has the capacity to make study design more honest,
showing what a trial can add to the existing evidence base instead of just evaluating a
misguided goal to single-handedly answer a research question.

1.2.1 The evidence so far and what is still needed
An ALL-IN meta-analysis can set a prospective goal for conclusion, e.g. α = 0.0025 =
0.052 corresponding to the level of α required by authorities like the FDA that ask for two
trials at the α = 0.05 level. Following Ville’s inequality (1.5) we need a betting score of
1/α = =C400 if we start with =C1 to reach a conclusion. Because an ALL-IN meta-analysis
combines trials by reinvesting or multiplying betting scores, a very simple calculation
gives the betting score we still need at any given point. If an initial trial is able to reach a
score of =C8, any new trial can be designed to multiply that by 50. So on its own, starting
with =C1 instead of =C8, it would need a betting score of =C50 to help the meta-analysis
reach =C400. We could evaluate the sample size of the new trial on its ability to reach 50,
which for a fixed sample size gives the conditional power of the meta-analysis once the
new trial is added. However, if this second trial also foresees recruitment issues, it is more
difficult to evaluate its planned contribution since it will probably not be the final trial in
the meta-analysis. For this, Shafer (2021) proposed a new notion for the ability of a test.
Rather than stating the probability of reaching a specific target score, we state a sort of
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expectation for the target score itself. This is called the implied target.

1.2.2 The ability of a new trial: the implied target
The likelihood ratio summarizes the data not in just two categories – statistical significant
or not statistical significant – but captures the evidence so far on its way to a certain
threshold. Similarly we propose to not evaluate experimental design as all-or-nothing,
but summarize its ability to build on what is already there and facilitate future research.
To capture a study’s expected contribution to a series of studies, we formulate the implied
target from Shafer (2021) as the multiplicative amount with which the combined evidence
is expected to grow if the study – designed with a certain µmin and sample size n – is added.
In general, the implied target E∗ is defined as:

E∗ = exp
�

EZ (n)∼φµmin
p

n

�

log
�

LR(n)(Z (n))
��

�

. (1.8)

The logarithm appears in equation (1.8) because the distribution of a likelihood ratio
based on n events is very non-symmetric and heavy tailed, with extremely large likelihood
ratios occurring with only small probability (see Figure 1.4). So the expectation of the
likelihood ratio is drawn very far from its typical values by these large likelihood ratios
and is not a good expression of what to expect. The logarithm makes the distribution more
symmetric (asymptotically (for large n) and for normal likelihood ratios even normally
distributed), such that the expectation is a more meaningful summary of the evidence
promised by the study. By exponentiation (exp()) we bring this expectation back to the
scale of the likelihood ratio, such that it can be interpreted as a betting score or e-value.

In the FDA game the expected growth rate per new event in the CureVac trial, assuming
their effect of minimal interest of 60% VE, is the following:
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= 1.029454

The cumulative contribution of each new event is shown as the linear line on the log scale
in Figure 1.5. The CureVac AG (2020, Table 8) design planned a final analysis at n= 160
events, so their implied target was 1.029454160 ≈ 104. In comparison to the target score
of =C104 at 160 events, the actual betting score =C1.84 after 83+ 145= 228 events in the
press release is quite disappointing. Shafer (2021) gives more examples of how betting
scores and implied target help to interpret study results in the context of study design.

1.2.3 Honest study design
An implied target does require an honest proposal of the effect of minimal clinical interest
µmin, to evaluate the merits of the study. In regular power analysis, this parameter might
be tweaked – e.g. setting an unrealistically large effect – to still argue for the study’s
advancement with only small sample size. Or the smallest effect size of interest analysis
is set after data is observed (Wang et al., 2018). This behavior is incentivized by the



36 ALL-IN meta-analysis

1/4 1 4 16 64 256 1024 4096 16384 65536

€ / LR(160)

after 160 events under the alternative hypothesis of 60% VE

Distribution of simulated final betting scores € / LR(160)

Figure 1.4. (and Figure 1.5) 1000 simulated sequences of betting scores by round in the FDA
game after 160 events assuming a probability of 0.29 (40/140) for each event to occur in
the vaccine group. This is the alternative hypothesis of 60% VE used to power the CureVac
AG (2020) trial at a number of events of 160. The dashed line is the threshold 1/α = 40
one-sided and the solid line is the implied target of =C104. Note that the x-axis is on a log
scale.

Figure 1.5. (See above at Figure 1.4.) The histogram for the final betting scores at the right
shows the larger scores above and the smaller ones at the bottom, which means that if we
turn it, it is the mirror image of the histogram in Figure 1.4. The dashed line is the threshold
1/α = 40 one-sided and the increase in the solid line per additional event/betting round
shows the contribution to the implied target at n = 160 of =C104. In this figure, the design
has an approximate 79% power to observe a betting score/e-value larger than 1/α = 40
before 160 events and 72% power at exactly 160 events (better visible in Figure 1.4). Note
that the y-axis is on a log scale.
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all-or-nothing character of Neyman-Pearson tests that also make the power analysis all-
or-nothing. If your desired sample size does not meet the power hoped-for, you need to
either increase it or abandon the study. This aspect of traditional analyses fully ignores the
ideal of cumulative science in which one study is not expected to single-handedly answer
a research question and small increments in knowledge are valuable, as long as they build
towards a common goal. If they use e-values and the ALL-IN framework, researchers do
not have to view their analysis as the final one, which helps them to evaluate their study
more honestly (Lakens, 2021).

1.3 Collaboration
The Evidence-Based Research Network (Lund et al., 2016) aims to always inform new re-
search by past results and to reduce research waste by separating research ideas that are
necessary from those that are wasteful. This is not easy to do, however. Different com-
munities might have different notions of necessity or even of what is ethical (a state of
so-called clinical equipoise (Shamy et al., 2020)). It might therefore be very beneficial
to have all those running new clinical trials in a field collaborate together in an ALL-IN
meta-analysis.

1.3.1 ALL-IN-META-BCG-CORONA
We ran two ALL-IN meta-analyses during the Covid-19 pandemic with the involvement
of seven trials in one and four in the other. All were designed to study whether the BCG
vaccine, originally developed to protect against tuberculosis, could protect against Covid-
19 (based on a theory of non-specific immune effects and innate immunity (Netea et al.,
2020)). The two meta-analyses study different populations (healthcare workers and el-
derly) and two questions each: the effect of the BCG vaccine on Covid-19 infection (not
necessarily symptomatic) and the effect on severe Covid-19 (indicated by hospitaliza-
tions). In the following description we will focus on the analysis of Covid-19 infections in
the healthcare workers population.

ALL-IN-META-BCG-CORONA followed many of the steps also outlined by Tierney et al.
(2021), that we will briefly discuss here: (1) Meta-analysis design, (2) Systematic search
for trials, (3) Systematic review for trial inclusion (4) Data upload, and (5) Disseminating
results.

(1) Meta-analysis design Early in the project we decided to aim for an IPD meta-
analysis on interim data and wrote our protocols and statistical analysis plans. This times-
tamped two important decisions on the meta-analysis design: the hazard ratio of minimal
interest of 0.8 (20% VE) for events of Covid-19 and the level of α set at 0.0025 so the
threshold for the e-value was at 1/α= 400. For these decisions we set up a meta-analysis
Steering Committee that was still fully blinded to any results at the time. The design
was preregistered (Van Werkhoven et al., 2021) and all documentation and a webinar
explaining the methodology were made available on a project website (Ter Schure et al.,
2020a).
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(2) Systematic search for trials We continuously searched for trials to include in the
meta-analysis. Some were already known to our Steering committee before we started.
They initiated a BCG trial of their own very early in the pandemic and shared their protocol
with many of their contacts in the BCG research community. Other trials were found by
a repeated systematic search of trial registries. The trials that agreed to join the meta-
analysis were each represented by a member in the Advisory Committee. Meetings of the
Advisory committee were scheduled regularly and the trials involved could point us to any
new developments. A major advantage of ALL-IN meta-analysis here is that the number
of trials does not need to be specified in advance.

(3) Systematic review for trial inclusion We received external advice from Cochrane
Netherlands on trial inclusion based on a thorough risk-of-bias assessment. For this assess-
ment, each trial shared their protocols, and subsequently all Cochrane’s evaluations were
shared and discussed with the Steering committee and Advisory committee (where trials
were usually represented by their PI’s who were blinded to any trial results). Trials had
multiple opportunities to answer questions – from Cochrane Netherlands as well as other
trials involved – explain their trial and express other concerns about differences between
the trials included. The Steering Committee made the final decision on including a trial,
before any of that trial’s results were known to anyone part of the discussion. The deci-
sion of the Steering committee explicitly incorporated both trial quality and meta-analysis
homogeneity.

(4) Data upload Parallel to the discussions on trial inclusion, data transfer agreements
were signed and data was shared through a secure upload. Each trial had a data uploader
that was in close contact with the ALL-IN meta-trial statistician (the author of this thesis)
about data quality. The ALL-IN statistician did not attend the discussion meetings and
kept the Steering committee and Advisory committee blinded to any results before each
trial inclusion decision.

(5) Disseminating results Each data-uploader received a dashboard account with per-
missions to inspect the meta-analysis e-value and their own trial contribution. Their ac-
cess of interim meta-analysis results in the dashboard served as a motivator to keep their
own trial data upload up-to-date and to check the sequence of e-values for errors. Fig-
ure 1.6 shows this dashboard based on a demo login with synthetic data (this demo was
available for everyone involved to get an impression). After an initial period where the
data-uploaders could only inspect their own trial results, they granted each other permis-
sion to inspect all the individual trial contributions. When the first trials were completed
and the meta-analysis was approaching its conclusion, the results were also presented to
the Advisory and Steering committees. Any interim decisions were planned based on the
ALL-IN meta-analysis e-values, but results were also presented in the context of power,
implied target per trial and confidence sequences.
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Figure 1.6. Dashboard used to communicate interim results in ALL-IN-META-BCG-CORONA
to all data uploaders with a login. The involved trials were performed in the Netherlands (NL),
Denmark (DK), the United States (US), Hungary (HU), Brazil (BR), France (FR) and Guinea-
Bissau/Mozambique (AF). The dashboard is in demo mode and shows synthetic (“fake”) data
The option to (de)select trials is for plotting purposes of individual trial e-values; all trials
in the dashboard stay included in the meta e-value, following the decision from the Steering
committee on trial inclusion. Note that the y-axis is on the log scale.

1.3.2 Collaborative and bottom-up meta-analysis
In many aspects, our approach agrees with the Framework for Prospective Adaptive Meta-
Analysis (FAME) from Tierney et al. (2021). FAME argues for prospective meta-analyses
in close collaboration with ongoing trials to achieve the same advantages outlined in this
chapter, such as aligning trial characteristics (“minimize heterogeneity”) and reducing
publication bias and “bias [in] both review and meta-analysis methods” introduced by
“prior knowledge of trial results” (e.g. accumulation bias (Chapter 3)). In alignment with
the FAME recommendations, ALL-IN-META-BCG-CORONA was prospectively designed by
preregistering an overall effect size of minimal interest and an α-level. However, ALL-IN
meta-analysis in general also allows for a more bottom-up approach when each trial’s e-
value is based on that trial’s own design (effect size of minimal interest, see Section 1.1.4)
and trial evidence is synthesized more loosely without a strict decision rule. In compar-
ison to FAME, ALL-IN meta-analysis is much more adaptive. FAME proposes to use con-
ventional meta-analysis (with a fixed sample size) and optimize the timing of the meta-
analysis “to anticipate the earliest opportunity for a potentially definitive meta-analysis”.
In that sense, FAME can only adapt to the speed of recruitment, while ALL-IN allows to
adapt to any information so far including the evidence in the trials and the synthesis of
the meta-analysis itself. There is also a statistical inconsistency in the FAME approach that
is concerned with “striking a balance between maximising the absolute and relative in-
formation size and producing a sufficiently timely review” but does explicitly state that
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the last step of the meta-analysis is to “assess the value of updating the systematic review
and meta-analysis”. A fixed sample-size statistical analysis should not be reanalyzed us-
ing the same statistical methodology. Any proposal to use conventional meta-analysis for
efficiency purposes risks accumulation bias (Chapter 3) because the timing of the meta-
analysis might be driven by some of the results part of that same analysis. Hence the
best approach is to combine the recommendations from FAME (Tierney et al., 2021) with
statistical approach from ALL-IN meta-analysis and the spirit of living systematic reviews.

Collaboration using a dashboard A dashboard for ALL-IN meta-analysis allows us to
spot trends in the accumulating evidence, or allow other stakeholders to monitor. A dash-
board like Figure 1.6 can give access to the accumulating e-values to those that need to
prepare for crossing a threshold in the near future, e.g. for independent data monitoring
committees of ongoing trials or for those considering new trials or preparing to update
medical guidelines. On a log-scale, the increase in e-values is linear (in expectation) and
the observed trends can be estimated, e.g. in Figure 1.6 as an increase in evidence per
additional calendar day.

For ALL-IN-META-BCG-CORONA, the time unit t in the definition of LR〈t〉 from (1.4) was
set to calendar days and the e-values were updated at each calendar day with an event.
The dashboard plots in Figure 1.6 horizontal lines at 1 for trials that do not observe any
events yet: they have not started betting and are still at their initial investment of =C1
contributing a neutral amount to the multiplication meta-e-value. ALL-IN meta-analysis
monitors e-values as events come in, also when they do so from multiple trials simultane-
ously. In the language of betting, even the analysis of simultaneous events is considered a
sequential bet. If the bet on the events from one trial pays out =C4, it multiplies our initial
capital by 4, and if the events from another trial pay out =C5, it does so by a factor 5. Yet
if we actually consider those trials to be consecutive bets, we reinvest the =C4 from the
first into the second, and obtain =C1 · 4 · 5 = =C20, as follows from the definition of the
meta-analysis e-value on interim data in (1.4).

Figure 1.6 illustrates what going ALL-IN means: the evidence in all studies can be moni-
tored and compared to the required threshold at any time. The hypothesis test is carried
out by comparing the meta e-value in blue to the threshold 1/α of 400, plotted as a dot-
ted line. Because the meta-analysis is anytime and live a conclusion is reached whenever
the e-value sequence passes that threshold. The synthesis of studies can efficiently lead
the decision to stop recruiting, treat the placebo group or discourage new trials to start,
while encouraging inspection of each individual trial’s contribution to the meta-analysis.
Since each trial’s contribution is a simple multiplication, their components can often be
conveniently spotted in the agreement of the shape of the meta-analysis and individual
trial lines in a dashboard like Figure 1.6 (as long as not too many trials are contributing
simultaneously).

Collaboration in a competitive field or a pandemic ALL-IN meta-analysis also pre-
vents losing type-I error control when many trials compete for answers on the same re-
search question, e.g. in an uncoordinated scientific response to a pandemic. If trials are
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only evaluated in isolation and a response follows the first positive result of a single trial,
serious multiple testing issues arise that inflate the type-I error and result in unreliable
inference and, subsequently, poor decisions. This happens especially if all trials perform
interim analyses on their own, and a type-I error occurs at an interim analyses before any
other trial results are published to refute it. The example dashboard also clearly demon-
strates decreased type-II errors: synthesizing the evidence in a meta-analysis at interim
stages of the trials, and not after trials are completed, improves the ability to find an effect
early. Collaboration is indeed much more efficient.

1.3.3 Fixed-effects and random-effects meta-analysis
Sutton et al. (2007, p. 2491) note that “in a meta-analysis with considerable heterogene-
ity, the impact of a new (large) study will be (much) less in a random compared to fixed
effect model”. This is due the incorporation of a parameter in the model that represents
the between-study variation. Also Kulinskaya and Wood (2014) find that the goal of se-
quentially updating a random-effect meta-analysis might involve planning a large number
of small trials to estimate the between-study variance well. Even if that is considered ad-
visable, a random-effects model result might still be very difficult to interpret (Riley et al.,
2011). Hence there are various reasons to prefer the fixed-effects model to monitor evi-
dence efficiently and to ensure that the trials are sufficiently homogeneous.

Alongside ALL-IN-META-BCG-CORONA we initiated a second ALL-IN meta-analysis. While
the first included trials on healthcare workers, the second included trials in the elderly.
Early in the process, before seeing any data, our Steering committee noticed that the two
groups could be very different. Based on a theory of innate and trained immunity, they
expected a different effect of the BCG vaccine on the younger immune system of health-
care workers than on the older immune system in the elderly. It could even be that the
BCG vaccine effect was beneficial in the ability to fight off Covid-19 in one population but
harmful in the other. In general, the differences between trials can be in three categories:
heterogeneous effects, conflicting effect and multiple testing.

Heterogeneous effects Our Steering committee decided that to declare success, all in-
cluded trials in healthcare workers should observe an effect of 20% VE or larger. If they
indeed do, heterogeneity in their effect sizes (e.g. one 20%, one 50%, one 25%) does not
matter for their joint ability to reject the global null hypothesis of no effect in all trials.
So for testing the global null, trials are allowed to be heterogeneous in where they are in
the space of the alternative hypothesis H1 = {VE : 20%≤ VE≤ 100%}. For estimation,
however, it is not clear what the ALL-IN confidence interval is estimating if we assume
that the effects in the trials are very different. Still, as a first summary, a typical effect size
(Peto, 1987) might be useful if we are unable to estimate a random effects model. The
development of confidence sequences for random-effects meta-analysis is a major goal for
future work. We do not, however, believe that the evidence in a line of research should
be monitored based on whether this interval excludes the null hypothesis, or whether the
e-value corresponding to the random-effects null model does: for testing, the global null
is much more natural. Waiting for a random-effect model to reach a certain threshold
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is counter-intuitive, since it might require many small trials to estimate the between-trial
variability instead of focusing on testing the treatment effect. Moreover, the goal of reject-
ing the null hypothesis corresponding to this model can be quite strange. When testing a
zero-effect null hypothesis, it assumes that there are true effects of harm and true effects
of benefit among the trials and that their mean is exactly zero.

Conflicting effects If one of the trials has an effect smaller than 20% or even a harmful
effect, we should anticipate betting scores or e-values that are smaller than 1. So a meta-
analysis multiplication of those e-values would reduce the evidence available from other
trials. If we can identify groups for which we expect that the trials in each group have
an effect in the same direction and of at least the minimal size, we can perform separate
meta-analyses. This was the rationale behind grouping healthcare workers and the elderly
each in their own ALL-IN-META-BCG-CORONA analysis.

Multiple testing When our analysis is exploratory, and we really have no idea how to
group the various trials, we are faced with a multiple testing problem. Note that in this
situation also no conventional meta-analysis method would be used to test a common
null-hypothesis. We wonder whether any of the trials has the ability to reject the null
hypothesis. In that case, we can divide our initial investment over the trials, and see if
the totality of their bet achieves a high betting score. Research into this use of e-values
has shown that indeed averaging e-values is the optimal way to have type-I error control
in a standard multiple testing setting (Vovk and Wang, 2021). We return to the notion of
hedging bets and averaging e-values in Section 1.4.

Problems with heterogeneity in meta-analysis are not tied to the ALL-IN approach and
familiar to anyone working with meta-analysis methods. ALL-IN-META-BCG-CORONA
had the advantage that many of the trials that started later had drawn inspiration from
the protocol of the first trial. The same sort of alignment of inclusion criteria and outcome
definitions might be achieved in other lines of research as well. Hence close collaboration
can be very important and the promise of an early conclusion of the research effort might
keep a research field motivated to keep the goals aligned.

1.4 Communication
We have illustrated that the language of betting can be useful in interpreting results from
an ALL-IN meta-analysis. Here we argue this further by giving extensions of our method
that are very easily explained in terms of betting.
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1.4.1 The language of betting for two-sided tests
Our examples so far covered one-sided tests, but those can be easily extended to two-sided
tests, e.g. by taking

LR(n)two-sided =
1
2
·
�

LR(n)left+LR(n)right

�

,

with

LR(n)left =
φµmin(left)

p
n
(z(n))

φµ0
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and LR(n)right =
φµmin(right)

p
n
(z(n))

φµ0
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,

to represent a two-sided alternative hypothesis

H1 =
�

φµ1
: µ1 ≤ µmin(left) or µ1 ≥ µmin(right)

	

.

Such a two-sided test is easy to interpret in the language of betting. We essentially split our
initial investment (e.g. =C1) between the two sides of the alternative hypothesis (e.g. by
betting =C0.50 on one side and =C0.50 on the other). Any other weighting of the two sides is
also possible and corresponds to a different division of the initial investment. The crucial
thing is that each side tests the same null hypothesis H0 = {φµ0

} and has expectation 1
under the null hypothesis, such that any weighted average also has expectation 1 and is
an e-value. Note that for a meta-analysis at time t with k〈t〉 studies this becomes:
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. (1.9)

Usually one side of the bet is losing and the other is winning such that we do not want
to reinvest (multiply) across sides but keep them separate for all trials. In our ALL-IN-
META-BCG-CORONA dashboard we also visualized these two sides of the meta-analysis
test separately; in Figure 1.6 we show only the left-sided test (for benefit) of the two.

1.4.2 The language of betting for co-primary endpoints
Another way to hedge our bets is by considering multiple primary outcomes. In ALL-IN-
META-BCG-CORONA, for example, not only the Covid-19 events were counted, but Covid-
19 hospitalizations as well, as an indicator for severe disease. We started with α = 0.05
and put 10% on Covid-19 (α = 0.0025 on each of the two sides of a two-sided test) and
90% on hospitalisations (α = 0.0225 on each of the two sides of a two-sided test). So
the thresholds to achieve with the e-value for Covid-19 was set at 1/α= 400 and the one
for hospitalization at 1/α = 44.44. A different way to formulate this is that each had to
achieve 1/α = 20, but that the sequence of e-values for Covid-19 started with an initial
investment of =C0.05 for each side of the two-sided test (and had to multiply by 400 to
reach =C20) and that the e-value for hospitalization started with an initial investment of
=C0.45 for each side (and had to multiply by 44.44 to reach =C20).

There are two ways to consider such a bet on two co-primary outcomes: separately and
combined. If we evaluate the e-values for each primary outcome separately and reach the
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threshold with either of the two, we are rejecting the null for that outcome. We are doing
two separate tests. If we evaluate the e-values combined, we average them weighted by
their α, just as for the two sides of the two-sided test. In that case we have similar type-I
error control, but reject the null hypothesis that both are a null effects in favor of the
alternative hypothesis that one of them is not. Yet we cannot conclude which one is non-
null with the same type-I error since our α level applies to the combined bet and the
individual components to the averaged bet are essentially lost.

1.5 Concluding remarks
The novelty of this chapter lies in a new method for meta-analysis. We do not claim any
novelty for the underlying mathematics, though. The basic methods we describe can be
viewed as relatively minor variations of the anytime-valid tests that are designed to pre-
serve type-I error under optional stopping, as designed by H. Robbins and his students
(Darling and Robbins, 1968; Robbins, 1970). Unfortunately and surprisingly, these tests
have not caught on in statistics until a few years ago – right now they are thriving in
work on so-called safe tests, anytime-valid confidence sequences and e-values e.g. Shafer
et al. (2011); Johari et al. (2021); Pace and Salvan (2019); Howard and Ramdas (2019);
Howard et al. (2021); Ramdas et al. (2020); Vovk and Wang (2021); Shafer (2021); Grün-
wald et al. (2019); Turner et al. (2021); Henzi and Ziegel (2021). As far as we know, it
has never before been suggested to use such methods in a meta-analysis context. (Group
sequential methods, which have originally also been inspired by the anytime-valid tests,
have in turn spurred developments in meta-analysis, but these are substantially different
from ALL-IN.) Also, the fact that the logrank test can give a likelihood ratio of the type
needed for an anytime-valid test/an ALL-IN meta-analysis is a new finding described in
Chapter 2.

Likelihood ratios, E-variables and e-values
In this chapter we presented betting scores/e-values that are equivalent to likelihood ra-
tios. In general though, betting scores and e-values are really generalizations of likelihood
ratios that preserve the properties of likelihood ratios that give them a prominent role in
statistics. Entire books have been written to advocate for summarizing evidence in ob-
served data by a likelihood ratio (Edwards, 1974; Royall, 1997) and to separate the goal
of measuring evidence from expressing posterior beliefs and making decisions. Likelihood
ratios have the property that they can “favor a true hypothesis over a false one more and
more strongly” and while a likelihood ratio can be misleading, “strong evidence cannot
be misleading very often” (Royall, 1997, p. 14). This latter type-I error control is also
referred to as a universal bound by Royall (1997) and, by recognizing Ville’s inequality,
can be generalized to other betting scores and e-values.

A betting score € is a random outcome of a bet and its random variable is an E-variable
if it is nonnegative and for all P ∈ H0, EP[€] ≤ 1. For a given outcome of the bet, the
value of such a random variable is the betting score or e-value. Ville’s inequality relies on
the multiplication of E-variables – forming a test martingale – which also has expectation
smaller than 1 and thus is itself an E-variable. For the example e-values in this chapter,



Judith ter Schure 45

the requirement on the expectation E0[LR] ≤ 1 holds for a simple null hypothesis, e.g.
H0 = {φ0}.

Apart from likelihood ratios of two simple hypothesis, e-values can also be defined for
more complicated tests – e.g. a t-test with a nuisance parameter for the variance – in
which case the unit expectation needs to hold not for a single mean-0-normal distribution
with known variance, but for all mean-0-distributions with any variance. Grünwald et al.
(2019) shows that it often is possible to construct E-variables for such composite testing
problems, which is why we consider the e-value the right generalization of the likelihood
ratio.

Anytime-valid confidence sequences
In this chapter we briefly presented a confidence sequence (in Figure 1.3) for the hazard
ratio or VE that was based on the Gaussian approximation to the logrank statistic and
the Peto (1987) estimator. This estimator can be derived from summary statistics and is
therefore still quite common in meta-analysis as a so-called two-stage method, although it
is advised against for extreme hazard ratios (Simmonds et al., 2011). Research into other
confidence sequences for the hazard ratio is still ongoing. For other estimation problems,
confidence sequences already have been thoroughly studied, for example for medians and
other quantiles (Howard and Ramdas, 2019), and odds ratios (Turner et al., 2021). These
have not, however, been extended to meta-analysis, and especially for the random-effects
meta-analysis model, research into confidence sequences is a major goal of future work.

Availability in software
The safestats R package (Turner et al., 2022) provides software to do an e-value analysis
for the t-test, Z-test, logrank test and 2x2-tables. Also functions are available to calcu-
late the power and implied target for these study designs. Confidence sequences can be
calculated for the odds ratio in 2x2-tables and the hazard ratio in time-to-event data.
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Appendices

1.A The inverse-conservative p-value
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Figure 1.A.7. Two-sided Z-test against the null hypothesis H0 = {φ0} observing z = 1.96
with a p-value of 0.05.

The standard way to introduce p-values in introductory texts is to use a graph like Fig-
ure 1.A.7 that shades the tail area of a sampling distribution under the null hypothesis
for an observed test statistic. In Figure 1.A.7 the observed test statistic is a Z-statistic of
1.96, such that the two-sided p-value is 0.05. The precise definition of this p-value for the
random variable Z and any observation z (e.g. z = 1.96) is:

p-value(z) = PZ∼φ0
[|Z | ≥ z] (1.A.1)

such that for all 0≤ α≤ 1: P0[p-value≤ α] = α, (1.A.2)

with P0 the probability under the null hypothesis. While explaining-p-by-picture is helpful
at first, it also has strong limitations. For example, if the sample size n is not fixed in
advance but determined by a fixed, a priori known stopping rule (e.g. stop as soon as
the first z comes in that has value > 2.5), then n will itself be random and the threshold
for the test statistic will depend on n; there is no evident visualization.4 For this reason,
it is common in theoretical statistics to define p-values directly as random variables that
have a uniform distribution under the null. From (1.A.1) and (1.A.2) we see that this is
compatible with the introductory approach.

Conservative p-values Defined by property (1.A.2), the standard (strict) p-value can
be generalized to a (conservative) p-value that does not have a uniform distribution, but

4An exception is the case in which there are just two possible sample sizes, n1 and n2, with the rule for
choosing between n1 and n2 based on the first n1 data points z(n1) given (e.g. stop if z(n1) > 2.5, continue
otherwise). We can then specify a bivariate distribution and evaluate the tail area for the combined observations
(e.g. (z(n1), z(n2))). This is sometimes illustrated in introductory texts on group-sequential methods, but cannot
be extended beyond this (3D) bivariate case.
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whose distribution is stochastically dominated by the uniform distribution under the null
hypothesis. This means that the equality in equation (1.A.2) is replaced by an inequality:

P0[p-value≤ α]≤ α. (1.A.3)

For such conservative p-values, it still holds that, for any fixed significance level α, the
test that rejects if p ≤ α has type-I error at most α. The inequality is thus in the right
direction to preserve type-I error guarantees.

Our first observation is very simple: for any fixed n, the likelihood ratio LR(n) is an inverse-
conservative p-value for samples of that size n, i.e. (1.A.3) holds with ‘p-value’ set to
1/LR(n). However, simply viewing LRs as inverse conservative p-values is not nearly doing
them sufficient justice. A better (yet still incomplete) comparison is to ‘anytime-valid p-
values’, a terminology that stems from Johari et al. (2021). Whereas standard p-values
only make sense for an a priori given, fixed sample size n or a priori given, fixed stopping
rule, anytime-valid p-values are really sequences p′1, p′2, . . ., one for each sample size n.
Even if the stopping rule for determining n is unknown in advance, or unclear, or greedy
(‘stop at first n such that pn ≤ α’), the type-I error guarantee is preserved. It turns out that
the inverse of the LRs as defined for ALL-IN meta-analysis can be viewed in this way: the
sequence (1/LR(1), 1/LR(2), . . .) as defined in Section 1.1 is a sequence of anytime-valid
p-values.

1.B R Code for calculations, simulations and plots
R code for the calculations, simulations and plots in this chapter can be found on the
Open Science Framework (Ter Schure, 2021b, https://osf.io/d9jny/), including:

• Settings of the FDA game

• Pfizer/BioNtech results in the FDA game

• CureVac results in terms of confidence interval and the FDA game

• Plotting the FDA game betting scores under the null hypothesis (Figure 1)

• Plotting the expected sample size for various strategies in the FDA game (Figure 2)

• Plotting the anytime-valid confidence sequence for a random ordering of the Cure-
Vac data (Figure 3)

• Plotting the implied target of the CureVac design in the FDA game (Figure 4 & 5)

• Plotting a p-value of 0.05 (Figure 6; Appendix)

https://osf.io/d9jny/



