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Preface

This Ph.D. research had its origin in a bar; a typical bar in Utrecht, in a historic wharf
cellar at the central canal. On Wednesday, April 20 2016, this bar served as the scenery
for the Young Statisticians to host their night of beers and statistical discussion on the
(ab)use of p-values in research: “To p or not to p?” It was there that I heard Professor
Peter Griinwald speak about how p-values are misunderstood and how much better we
could do if we thought of statistics a bit more like gambling. I enjoyed every minute of it
— also thanks to the great atmosphere that evening — and, fortunately, I still do.

Later that year I finished my Master’s Statistical Science for the Life and Behavioural Science
while staying in contact with Peter. I was very lucky that the timing of my graduation
matched with Peter’s procurement of funding for Ph.D. students. As a contender for a
position, I had the advantage to have already made my job interview impression that day
in that bar. Peter remembers it as quite unorthodox in mathematics for a student to simply
walk up to him and state something along the lines of “This is so cool! Can I spend a Ph.D.
studying this?”.

Now, almost four years of Ph.D. research’ later, I am still not bored with p-value discus-
sions. What is more, friends refer to my Ph.D. research as “the nemesis of the p-value”,
and they have a point. What else could be the final blow to “science by p-value” than a
paper (Ter Schure and Griinwald (2019), Chapter 3) that points out that in the cumula-
tive science we idolize — “standing on the shoulders of giants” — the p-value is impossible
to calculate correctly unless we do clinical trials and meta-analyses for random reasons?

IFour full-time equivalent years: between May 1st, 2017 and February 1th, 2022 I spent 44 months working
80% of my working week (~ 35 weeks full-time equivalent) on this Ph.D. research and 13 months working
100%, so 48 full-time months in total.
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