
ALL-IN meta-analysis
Schure, J.A. ter

Citation
Schure, J. A. ter. (2022, April 7). ALL-IN meta-analysis. Retrieved from
https://hdl.handle.net/1887/3281933
 
Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/3281933
 
Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3281933


ALL-IN 
meta-analysis

Judith ter Schure 





ALL-IN meta-analysis

Judith ter Schure



ISBN 978-90-619-6413-1

Cover design
Ilse Modder

Cover photo credits
Marjolein van Sommeren (conceptualization), Kilian Lafleur (digital edit),
Rinske ter Schure (photographer), Thomas de Jong (photographer),
Elsa ter Schure (photographer), Arnold ter Schure (encouragement)



ALL-IN meta-analysis

Proefschrift

ter verkrijging van

de graad van doctor aan de Universiteit Leiden

op gezag van rector magnificus prof.dr.ir. H. Bijl,

volgens besluit van het college voor promoties

te verdedigen op donderdag 7 april 2022

klokke 15:00 uur

door

Julia Anna (Judith) ter Schure

geboren te Meppel, Nederland
in 1992



Promotores:

Prof. dr. Peter D. Grünwald (Universiteit Leiden en
Centrum Wiskunde & Informatica, Amsterdam)

Dr. Daniel Lakens (Technische Universiteit Eindhoven)

Promotiecommissie:

Prof. dr. Frans A.J. de Haas

Prof. dr. Jelle J. Goeman

Dr. ir. Joanna in ’t Hout (Radboud Universiteit)

Prof. dr. Glenn Shafer (Rutgers University)

Prof. dr. Alex J. Sutton (University of Leicester)

This work was funded by the Dutch Research Counsil (NWO) and carried out at
Centrum Wiskunde & Informatica (CWI), Amsterdam.







To Glenn Shafer, Stephen Senn, Peter Grünwald and Daniel Lakens

Subsets of you taught me the importance of fundamentals and history, the beauty of clin-
ical trials, and – especially when a mathematical concept is necessary to make a point –
the power of storytelling.





Origin of the material
The dissertation is based on the following earlier (pre-print) publications:

Chapter 1 is based on a paper that is under review at F1000 and available on ArXiv:

Judith ter Schure and Peter Grünwald. ALL-IN Meta-analysis: Breathing Life into
Living Systematic Reviews. arXiv:2109.12141. 2021.

Chapter 2 is based on a paper that is available on ArXiv:

Judith ter Schure, Muriel F. Pérez-Ortiz, Alexander Ly and Peter Grünwald. The Safe
Logrank Test: Error Control under Continuous Monitoring with Unlimited Horizon.
arXiv:2011.06931. 2020.

Chapter 3 is based on a paper that is published at F1000 Research:

Judith ter Schure and Peter Grünwald. Accumulation Bias in Meta-analysis: The
Need to Consider Time in Error Control [version 1; peer review: 2 approved].
F1000Research, 2019.

Chapter 4 is based on a blogpost at The Replication Network:

Judith ter Schure. Accumulation Bias: How to Handle It ALL-IN. The Replication Net-
work. 2020.

Chapter 5 is based on a blogpost at The Replication Network:

Judith ter Schure and Peter Grünwald. Accumulation Bias: How to Handle It As a
Bayesian. The Replication Network. 2022.

Chapter 6 is based on a paper published in STAtOR, the society magazine of the Nether-
lands Society for Statistics and Operations Research VVSOR:

Judith ter Schure, Peter Grünwald and Alexander Ly. Pandemic Preparedness in Data
Sharing: Lessons Learned from Collaborating in a Live Meta-Analysis. STAtOR, 2021,
22.4: 47-52.





Contents

Preface 1

Introduction 5

1 ALL-IN meta-analysis 19
1.1 Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.2 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.3 Collaboration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
1.4 Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
1.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Appendices
1.A The inverse-conservative p-value . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
1.B R Code for calculations, simulations and plots . . . . . . . . . . . . . . . . . . 47

2 The Safe logrank test 49
2.1 Safe logrank tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.2 Comparing rejection regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.3 Comparing sample size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
2.4 Variations and extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
2.5 Discussion, Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . 77

Appendices
2.A Towards Continuous Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
2.B Expected Stopping Time, GROW and Wald’s Identity . . . . . . . . . . . . . . 81
2.C Logrank test as a score test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
2.D Details of sample size comparison simulations . . . . . . . . . . . . . . . . . . 86

3 Accumulation Bias 89
3.1 Accumulation Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.2 A Gold Rush example: new studies after finding significant results . . . . . . 93
3.3 The Accumulation Bias Framework . . . . . . . . . . . . . . . . . . . . . . . . . 99
3.4 Time in error control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
3.5 Intermezzo: evidence for the existence of Accumulation Bias . . . . . . . . . 111
3.6 Likelihood ratios’ independence from meta-analysis time . . . . . . . . . . . . 112



ALL-IN meta-analysis

3.7 The choice between error control conditioned and surviving over time . . . 116
3.8 Why likelihood ratios work: dependencies as strategy . . . . . . . . . . . . . . 117
3.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Appendices
3.A Common/fixed-effect meta-analysis . . . . . . . . . . . . . . . . . . . . . . . . . 121
3.B Expectation Gold Rush conditional pilot Z-score . . . . . . . . . . . . . . . . . 122
3.C Expectation Gold Rush conditional meta-analysis Z-score . . . . . . . . . . . . 123
3.D Mixture variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
3.E Maximum time probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
3.F Error control surviving over time in terms of a sum . . . . . . . . . . . . . . . 125
3.G Code availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4 Accumulation Bias:
How to handle it ALL-IN 127
4.1 Our example: extreme Gold Rush accumulation bias . . . . . . . . . . . . . . . 128
4.2 The conditional sampling distribution under extreme Gold Rush accumula-

tion bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
4.3 Accumulation bias can be efficient . . . . . . . . . . . . . . . . . . . . . . . . . . 131
4.4 The unconditional sampling distribution under extreme Gold Rush accu-

mulation bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
4.5 ALL-IN meta-analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
4.6 Accumulation bias from ALL-IN meta-analysis vs Gold Rush . . . . . . . . . . 136
4.7 Properties averaged over time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
4.8 Multiple testing over time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
4.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Appendices
4.A Extreme Gold Rush expressed in accumulation bias framework . . . . . . . . 142
4.B Extreme Gold Rush conditional sampling distribution . . . . . . . . . . . . . . 143
4.C The martingale underlying the table . . . . . . . . . . . . . . . . . . . . . . . . 145

5 Accumulation Bias:
How to handle it as a Bayesian 147
5.1 Our example: extreme Gold Rush accumulation bias . . . . . . . . . . . . . . . 148
5.2 Likelihood ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
5.3 Two simple hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
5.4 Bayesian error control under extreme Gold Rush accumulation bias . . . . . 155
5.5 The prior odds are crucial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
5.6 Beyond simple hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
5.7 Pseudo-Bayesian error control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

Appendices
5.A Pseudo-Bayes posterior odds for exponential families and beyond . . . . . . 165



Judith ter Schure

5.B Extension and Proof of Theorem 5.A.1 . . . . . . . . . . . . . . . . . . . . . . . 168

6 Data sharing
in a live meta-analysis 173
6.1 Sharing live results while keeping researchers blinded . . . . . . . . . . . . . 176
6.2 A central analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
6.3 Data transfer agreements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
6.4 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

Discussion and future work 181

Bibliography 199

Samenvatting 203

Dankwoord 205

Curriculum Vitae 207





Preface

This Ph.D. research had its origin in a bar; a typical bar in Utrecht, in a historic wharf
cellar at the central canal. On Wednesday, April 20th 2016, this bar served as the scenery
for the Young Statisticians to host their night of beers and statistical discussion on the
(ab)use of p-values in research: “To p or not to p?” It was there that I heard Professor
Peter Grünwald speak about how p-values are misunderstood and how much better we
could do if we thought of statistics a bit more like gambling. I enjoyed every minute of it
– also thanks to the great atmosphere that evening – and, fortunately, I still do.

Later that year I finished my Master’s Statistical Science for the Life and Behavioural Science
while staying in contact with Peter. I was very lucky that the timing of my graduation
matched with Peter’s procurement of funding for Ph.D. students. As a contender for a
position, I had the advantage to have already made my job interview impression that day
in that bar. Peter remembers it as quite unorthodox in mathematics for a student to simply
walk up to him and state something along the lines of “This is so cool! Can I spend a Ph.D.
studying this?”.

Now, almost four years of Ph.D. research1 later, I am still not bored with p-value discus-
sions. What is more, friends refer to my Ph.D. research as “the nemesis of the p-value”,
and they have a point. What else could be the final blow to “science by p-value” than a
paper (Ter Schure and Grünwald (2019), Chapter 3) that points out that in the cumula-
tive science we idolize – “standing on the shoulders of giants” – the p-value is impossible
to calculate correctly unless we do clinical trials and meta-analyses for random reasons?

1Four full-time equivalent years: between May 1st, 2017 and February 1th, 2022 I spent 44 months working
80% of my working week (≈ 35 weeks full-time equivalent) on this Ph.D. research and 13 months working
100%, so 48 full-time months in total.

1









Introduction

If I have seen further it is by standing on the shoulders of Giants.

–Sir Isaac Newton, 1675

In the cumulative science we justly admire, the standard p-value is impossible to cal-
culate correctly unless we do clinical trials and meta-analyses for random reasons. This
deficiency can be resolved by ALL-IN meta-analysis, for Anytime, Live and Leading INterim
meta-analysis. Instead of forcing clinical trials into a random walk, this new approach
to meta-analysis keeps a Live account of what we already know and lets the results so
far, even INterim results, be the Leading source of information on where to go with new
studies. This is possible because an ALL-IN analysis deals much better with time than
any p-value analysis can. Together with sequential betting – going all-in, but not all-or-
nothing – time is the main theme of my Ph.D. research. I will first discuss what I mean by
that in the first pages of this dissertation (5-11). I then return to the p-values and gam-
bling (pages 11-14), and introduce the contents of the main chapters of this work (pages
14-17).

Time in randomized clinical trials and meta-analysis
Time moves forward; it has a chronology from earlier to later and with more time we
increase how much we can observe. If we are learning, we should be able to know more
now than we did yesterday. We can consider learning in science as such a process, but
with more-or-less discrete units: over time more studies are performed and published.
The scientific ideal is that those studies accumulate knowledge and that science itself
is cumulative. Moreover, in clinical trial research, the ideal of Evidence Based Research
(Lund et al., 2016) is that we can also get the timing right. We should not passively wait
for enough studies to arise to inform medical guidelines in evidence-based medicine, but
let those existing studies actively steer the decisions on new research. Sometimes, the
time is right to do more studies. Sometimes the time is right to just give a final overview,
and declare the line of research completed. Which is which needs to be an evidence-based
decision that is informed by a systematic review of all results so far.

5



6 ALL-IN meta-analysis

Randomized clinical trials Time can also be a much more concrete aspect of a scientific
study if it simply means it takes time to wait for your observations. Throughout this Ph.D.
dissertation, I will consider randomized controlled clinical trials (RCTs) that study two
groups of randomly allocated participants. In RCTs, this waiting can be very pronounced.
If you study whether a vaccine prevents Covid-19 infections, you have to first vaccinate
large groups of participants – half with the vaccine, half with placebo – and then wait
for them to get infected. If you study whether vitamins protect against cancer, you have
to first convince a large group of participants to add supplements to their diet – half
vitamins, half sugar pills – and then wait for cancer. If you study whether a beta-blocker
prevents a second deadly heart attack, you have to first start cardiovascular patients on
treatment – half on the real drug, half on placebo – and then wait for the deaths. That
last one is a classic case in which a systematic review and meta-analysis proved their use,
chronicled by Richard Peto in his 1987 address “Why do we need systematic overviews of
randomized trials?” (Peto, 1987).

Systematic review and meta-analysis When Richard Peto studied beta-blockers in the
early eighties, many trials had sought heart attack patients and followed them for years.
Hardly any one of them, however, observed enough deaths to convincingly declare that
beta-blockers were protective. Fortunately, Peto and colleagues were able to collect all the
trials of sufficient quality and combine their observations in a single analysis: a systematic
review and meta-analysis (Yusuf et al., 1985). What defines a systematic review is that it
aims to construct a complete collection of the results of all publications that try to answer
a similar question. The next step is to evaluate them based on quality such that your
selection gives a good impression of what is known so far. A meta-analysis adds to that by
giving a statistical summary of the results with a notion of uncertainty, usually in terms
of a standard error, confidence interval, or p-value.

P-values over time
This is not the place for a full historic account of every peculiarity and misunderstanding
that was ever pointed out about the p-value. That would also be an impossible task, and I
congratulate Van Dongen and Van Grootel (2021) for writing a comprehensive overview
– 70 pages and much more supporting documentation – of the arguments made between
2011 and 2018 in the psychology and psychological methods literature alone. Here, I
simply add a point to that discussion: the standard p-value deals very poorly with the
aspects of time – chronology and timing – that are so important to cumulative science
and evidence-based research.

Before the beta-blocker trials started, each was designed to wait for deadly heart attacks to
occur in a beta-blocker treatment group and a control group. If any heart attacks were to
be prevented by the drug, this design expects that the proportion of deaths in the placebo
group will be larger than that in the beta-blocker group.
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So the proportion of heart attacks in the placebo group could serve as a summary of
the results2. While such a proportion makes sense no matter how many heart attacks we
observe, this is not the case for the p-value. Long before we have the data to calculate
the proportion, the procedure for the p-value already needs to know the timing of our
analysis: how many heart attacks we are going to observe before we calculate the p-
value. If that sample size is not fixed in advance or otherwise completely unrelated to
(i.e. statistically independent of) the results, the standard p-value makes no sense.

The p-value is a notion of surprise; it tells us something about how unusual our result
– our proportion of heart attacks in the placebo group – would be if our treatment is
nothing better than a placebo. What is the probability to observe a heart attack in the
placebo group in that case? Well, if our treatment is nothing more than a placebo itself,
that heart attack can happen to anyone, and since we divided the participants at random
over the two groups, also the group will be random. So 0.5 a chance it will be the beta-
blocker group, and 0.5 a chance it will be placebo. If we wait for 50, 100, 150, or 200
heart attacks to occur in this scenario, we expect half of the heart attacks to occur in the
placebo group. By random chance, however, this can also be a bit smaller or a bit larger.
Each possible sample proportion has a probability to occur, and together all possibilities
form the sampling distributions shown in Figure 1.

Sampling distributions depend on the sample size n, which in Figure 1 is the number of
heart attacks we observe. To observe a sampling proportion of 0.6 in the placebo group
in Figure 1, for example, the probability is different if we observe 50 heart attacks (so 30
of these on placebo, with probability 0.042) than if we observe 100 heart attacks (so 60
of these on placebo, with probability 0.011).

We need to know that sampling distribution (like Figure 1) to calculate a p-value. So
we can only calculate this p-value if we know the sample size, the total number of heart
attacks. The p-value is the probability of the proportion that we observe, e.g. 0.6, together
with the probability of all the proportions that are equally or more extreme. Figure 2
considers everything as more extreme that is larger or equal than 0.6, but also everything
equal or smaller than 0.4. Figure 2 gives a two-sided p-value and coloring those tails of
the distribution gives the familiar picture. If we observe a proportion 0.6, the p-value is
either 0.203, 0.057, 0.018 or 0.006 for 50, 100, 150 or 200 total heart attacks respectively.

Accumulating more studies after the first one
Let us assume that the earliest trial studying beta-blockers was able to observe 150 heart
attacks over many years before it published its results. If this first trial would be the final
trial, no meta-analysis would ever be performed. What type of results could make this
first trial the final one? If any heart attacks are prevented by the drug, we expect the
proportion of deaths in the placebo group to be larger than half. So if it is smaller than

2To keep this introduction simple, I assume here that the number of participants in the placebo and beta-
blocker group is very large and that these group sizes stay equal throughout the trial. Chapter 2 discusses the
general case in which the number of participants at risk in both groups can change due to left-truncation, right-
censoring and decreasing risk set after events occur in a time-to-event analysis.



8 ALL-IN meta-analysis

0 10 20 30 40 50
number in placebo groupnumber in placebo groupnumber in placebo groupnumber in placebo groupnumber in placebo groupnumber in placebo group

number of total heart attacks (n) =  50

0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.04

0.08

0.12

proportion in placebo group

pr
ob

ab
ili

ty

0 20 40 60 80 100
number in placebo groupnumber in placebo groupnumber in placebo groupnumber in placebo groupnumber in placebo groupnumber in placebo group

number of total heart attacks (n) =  100

0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.04

0.08

0.12

proportion in placebo group

pr
ob

ab
ili

ty

0 30 60 90 120 150
number in placebo groupnumber in placebo groupnumber in placebo groupnumber in placebo groupnumber in placebo groupnumber in placebo group

number of total heart attacks (n) =  150

0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.04

0.08

0.12

proportion in placebo group

pr
ob

ab
ili

ty

0 40 80 120 160 200
number in placebo groupnumber in placebo groupnumber in placebo groupnumber in placebo groupnumber in placebo groupnumber in placebo group

number of total heart attacks (n) =  200

0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.04

0.08

0.12

proportion in placebo group

pr
ob

ab
ili

ty

Figure 1. Sampling distributions of the proportion of heart attacks in the placebo group, for
various total number of heart attacks (n), if we assume that the treatment is ineffective
(the attacks occur at random in the two groups). The number of heart attacks in the placebo
group is discrete, such that all possibilities make for 51 possible proportions in the top-left
panel (0/50, 1/50, . . . , 50/50) – each with its probability bar – and 101 possibilities in the
top-right panel, 151 in the bottom-left panel and 201 in the bottom-right panel. Because the
probability bars add up to a total probability of 1, the larger the number of possibilities, the
smaller the probability per bar: the height of the bars decreases as their width decreases.

half, no heart attacks are prevented by the drug, and the drug seems to even cause more
heart attacks. If we believe that the drug could be harmful, that is a good reason to not
start more clinical trials.

We might want to start more clinical trials if the first study of 150 heart attacks observed
a proportion of 0.6 in the placebo group. In that case, the drug seems to prevent heart
attacks and the corresponding p-value would be 0.018 as shown in Figure 2. This is usually
considered small enough, compared to a level of 0.05 or 5%. So the beta-blocker looks
promising and that might be a good enough reason for other researchers to embark on a
new trial. But what if the proportion would be smaller than 0.6, like 0.55? Maybe for a
proportion smaller than 0.6, nobody would have done a new trial.
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Figure 2. Two-sided p-value against the null hypothesis of half/half, observing a proportion
of heart attacks in the placebo group of 0.6.
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For simplicity, let us assume that these decisions are that clear cut: If the proportion is
smaller than 0.6, the drug looks harmful or disappointing, and no more studies are per-
formed. If the proportion is 0.6 or larger, the drug looks promising, and more studies
follow.

Meta-analysis timing
A meta-analyst notices that more small studies follow this first study. She decides to sys-
tematically collect all these clinical trials, reviews them based on quality, and includes the
first trial with a selection of the others in a meta-analysis. In total, these trials observed
200 heart attacks, and coincidentally, out of that total again a proportion of 0.6 occurred
in the placebo group. So out of 200 heart attacks, 120 occurred in the placebo group. Can
we now calculate our p-value to be 0.006 – like in the right-bottom corner of Figure 2 –
if we analyze all the heart attacks together? The answer is “no”, because Figure 2 gives
the wrong sampling distribution.

There is a process at play that decides whether we even observe the 200 heart attacks
that spurred the meta-analysis. The 150 heart attacks in the first study have made the
beta-blocker look promising. So more studies follow, but only because the proportion in
the placebo group was at least 0.6. The first study would have been the final one if that
proportion was smaller than 0.6, in which case we never make it to a meta-analysis of 200
heart attacks. We call such a process an accumulation process and it can happen not only
if there is a strict yes/no decision after the early results, but also if disappointing initial
results just make it less probable for more studies and meta-analyses to follow, instead of
completely ruling them out. Whatever the process, it introduces a dependency between
the existence and timing of the meta-analysis (e.g. at the total of 200 heart attacks) and
the earlier results that are included in that meta-analysis.

Accumulation Bias Such an accumulation process introduces bias into the sampling
distribution and can change it completely in comparison to our theoretical distribution.
Figure 3 shows what happens in our clear-cut scenario. In this scenario, all the values
for proportions smaller than 0.45 (90/200), in the left corner, cannot occur because we
already know that we only got to our 200-meta-analysis because the first study showed 90
heart attacks in the placebo group. So all proportions smaller than 0.45 have a probability
of 0 and all other possibilities are more probable; the right-hand-side of Figure 3 shows
how that shifts the sampling distribution. For a proportion of 0.6, we observed 120 heart
attacks in the placebo group and 80 in the beta-blocker group, which is only 30 vs 20
additional ones on top of the first trial with 90 vs 60. The sampling distribution for adding
those 50 additional events to the 150 ones we already had is shown in grey. For a meta-
analysis on 200 heart attacks, observing a 0.6 corresponds to a p-value of 0.101 for this
sampling distribution instead of the p-value of 0.006 from Figure 2.

The p-value is impossible to calculate correctly
What if we are not sure how long we can wait with our analysis; how many heart at-
tacks we will observe before we calculate our p-value? Maybe we first want to observe 50



Judith ter Schure 11

0 40 80 120 160 200
number in placebo groupnumber in placebo groupnumber in placebo groupnumber in placebo groupnumber in placebo groupnumber in placebo group

0 40 80 120 160 200
number in placebo groupnumber in placebo groupnumber in placebo groupnumber in placebo groupnumber in placebo groupnumber in placebo group

number of total heart attacks (n) = 200 200 heart attacks with accumulation bias

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.04

0.08

0.12

proportion in the placebo group

pr
ob

ab
ili

ty

observed

proportion
0.6

p−value
without accumulation bias: with accumulation bias:

0.006 0.101

Figure 3. According to the accumulation process we assume, we would not have reached 200
heart attacks in total if we had not already observed 90 in the placebo group in the 150
heart attacks from the first study. So numbers smaller than 90 out of 200 heart attacks in
the placebo group are impossible, which is are the proportions smaller than 90/200 = 0.45.

heart attacks, and then consider if it is worthwhile to extend the experiment and observe
another 50. Moreover, as a meta-analyst, we have no control over other researchers that
might not know about the results so far and still perform an extra trial. How do I calculate
the p-value in that case? Calculating a standard p-value correctly in such scenarios over
time is simply impossible. To stick to the familiar calculations from Figure 2 you either
have to always stop after n= 150 and use that sampling distribution – also if you happen
to observe more heart attacks by simply waiting. Or, regardless of the first 150 observa-
tions, you continue to n = 200 – even if all heart attacks occur in the beta-blocker group
and the treatment appears to cause overwhelming harm.

The tricky thing is that we usually do not know – and even cannot know – the grey
sampling distribution in Figure 3 or the accumulation bias, the shift in comparison to
the theoretical sampling distribution. How much the distribution moves depends on how
a research field makes its decisions. The more selective they are – only embark on new
studies when the treatment looks promising – the worse it is. But as long as nobody
controls how these decisions are made, the standard p-value is impossible to calculate
correctly.

Gambling
In gambling, we know that certain things should have a small probability to happen, oth-
erwise the system breaks. If it would be highly probable to win an income at the roulette
table for months in a row, casinos could not offer roulette table betting to their customers
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while staying in business. That does not mean that it is impossible to win an income at
the roulette table for months in a row. It could happen, with a very small probability. This
is the intuition that this Ph.D. dissertation conveys by expressing statistical evidence in
terms of gambling winnings or betting scores.

Time in a casino
In a casino, the time it takes customers to play and the timing they choose to cash-out
their chips are not that important. A casino knows it is not probable to win an income at
their roulette table, without specifying how anyone is going to try. A gambler can visit the
casino one day a month and another one seven days in a row. Someone else can visit only
on Saturdays if the last Saturday was profitable, or the opposite and stay in the casino
until they make a profit or bankrupt themselves. For none of these customers is it probable
to win an income at the roulette table. If they do, the casino is surprised. The larger their
winnings the more surprised the casino is – if their winnings are large in comparison to
the initial money they put on the table.

Just like for p-values, we can connect a notion of surprise to a probability statement
on how often surprises happen. No matter who is playing at the roulette table, we can
predict what the chances are to reach =C1000, =C100, or =C20 in winnings. If we set the
goal at =C1000, at most 1 in 1000 players will make it if they start with =C1. If we set it at
=C100, at most 1 in 100 makes it when starting with =C1. And if we set the goal to =C20, at
most 1 in 20 will do so. It is that simple (Crane and Shafer, 2020). These statements hold
no matter the timing of the good fortune or the betting schedule.

Controlling probabilities
1 in 20 is 0.05 and this 5% reminds us of what we use p-values for: controlling how often
something happens that is not supposed to be probable. Standard p-values cannot do this
well when time is involved; when we accumulate studies one after the other and make
decisions in between about the timing of new studies and meta-analysis. In our roulette
analogy, however, such decision-making does not matter. We do not need to know how
many rounds we played to get to our results, or – even worse: the counterfactual – whether
we would have observed the additional round if the results would have been worse earlier
on. We can judge gamblers by their winnings and it does not matter how they make their
decisions over time and when they plan to quit. Should this matter in a meta-analysis of
clinical trials?

ALL-IN meta-analysis and e-values ALL-IN meta-analysis resolves the time deficiency
in the standard p-value by replacing it with an e-value, a statistic calculated from the
data that behaves like the winnings in a casino if we should be surprised to win a lot (like
at the roulette table). If we are analyzing beta-blocker trials, we are betting against the
probability that the heart attacks occur in the treatment and placebo groups at random.
Consistently winning at the roulette table shows that there is something off with the
random casino model that makes the ball land on red and black. Likewise in analyzing
beta-blocker trials, consistently increasing our e-values shows that there is something off
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with the random allocation model that makes the heart attacks occur in treatment or
placebo. Just like our winnings in the casino, an e-value is our notion of surprise, and it
is valid at any time.

Statistical communication: p-value by picture
In the introduction to Chapter 1, I disappoint my friends and former self (see Preface on
page 1) by stating we are actually back to proposing p-values. Specifically, our winnings in
betting and e-values – can be interpreted as conservative p-values by taking their inverse.

In Appendix Section 1.A I clarify this by stating that we are not talking about the standard
type of p-value, as it is presented in introductory statistics texts and can be intuitively
pictured as in Figure 2. I believe this is important for the field working on betting scores
and e-values: distinguish between the standard (strict) introductory-textbook p-value-by-
picture and the more general, abstract, mathematical definition to be found in advanced
and mathematical statistics texts3 – especially if the abstract definition allows for p-values
with properties that you should not expect from the introductory-textbook p-value-by-
picture.

A statistics audience might want to know how a new concept relates to existing ones. The
general audience, however, only vaguely remembers what p-values even are. A vague
memory assigns attributes that p-values do not have, like being a posterior probability
for the null hypothesis, or being the probability of a type-I error. It is better to remind
the audience of p-value-by-picture than to generalize it. The picture forces us to think
about the sampling distribution before we can do the tail-coloring. This sampling distri-
bution reminds us that we need a sample size (or stopping rule) in advance. This is a very
important limitation of standard p-values.

Even though based on generalizing the abstract definition even further, it is possible to for-
mulate anytime-valid p-values (Johari et al., 2021), I believe we should focus elsewhere
with so many anti-p-value feelings around. Especially in a meta-analysis, where we judge
a line of research instead of a single publication, p-values are more of an enemy than a
friend. The perils of meta-analysis lie in publication bias and selection bias, and p-values
are the main tool for the underlying questionable research practices of file-drawing and
p-hacking. P-values were never designed to do so, but they are turning science into a sort-
ing machine for single studies. Science needs more spirit of collaboration, more efficiency,
and simpler communication of the evidence so far and what more is necessary. Standard
p-values are not so helpful in this regard. I believe that betting scores and e-values are
and that they can stand on their own.

Is gambling a good idea?
Professor Glenn Shafer’s work on game-theoretic inference served as a major inspiration
for my Ph.D. research. We both think that, in communicating statistics, thinking about
gambling helps with intuitions about uncertainty in a way that is somehow natural, or

3The mathematical definition allows for conservativeness (the probability that p is smaller than α can be
much smaller than α) and does not require a fixed sample size.
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“part of our cultural upbringing” – James Bond, the Oceon’s movies, The Hangover –
even if you do not gamble yourself (there’s even gambling in Toy Story). Just like Glenn
(SIPTA, 2021), I have never been a gambler, and not even entered a casino at any point
in my life. As a statistician, I definitely do not play the lottery, so with intuition for I do
not mean believe in.

There are quite some similarities between running a beta-blocker clinical trial and playing
poker. For one thing, you might feel a need to convince the outside world that what you
are doing is worthwhile. Some people disapprove of deciding a patient’s treatment by a
coin toss, but would not recognize routine treatments can be just as uncertain to benefit
as to harm them (Evans et al., 2011). Some people disapprove of making your salary in
casino-located poker tournaments, but would not recognize that we take risks in about
every major life decision (Konnikova, 2020). Both clinical trials and poker teach us things
about decision making that are is important enough to write books about, with titles as
The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win, Thinking in Bets:
Making Smarter Decisions When You Don’t Have All the Facts and The Signal and the Noise:
Why So Many Predictions Fail – but some don’t. Poker is a form of gambling in which it is
possible to play a strategy that turns the odds in your favor. And you can also play it just
to learn how to make better decisions in the future.

Contents of this Ph.D. dissertation
ALL-IN meta-analysis stands for Anytime, Live and Leading INterim meta-analysis. ALL-IN
provides the statistical methodology for a meta-analysis that can be updated at any time –
reanalyzing after each new observation while retaining type-I error guarantees, live – no
need to prespecify the looks, and leading – in the decisions on whether individual studies
should be initiated, stopped or expanded, the meta-analysis can be the leading source of
information.

Going ALL-IN
The phrase going all-in comes from poker and means that we move – or shove or jam –
all our chips onto the table and risk them in the round of the game we are playing. Going
all-in can be necessary to force other players into folding when they cannot match our
bet (call) or raise it. Professional poker players use this move while knowing they have a
savings account full of backup money – a bankroll. So the all-in move is part of a strategy
that will not bankrupt them in the long run over many tournaments but is aggressive
enough to get an edge if they play it well. This long-run of tournaments is what makes
professional poker different from an all-or-nothing game in which losing would mean that
you can never play again.

In poker, you need to practice and pay attention as the game progresses and the observed
moves accumulate (Konnikova, 2020). As you get better, you get richer, and you can turn
to tournaments with a larger buy-in. So as your knowledge accumulates, your money
accumulates. In fact, how much you win is a good proxy for how well you play. This is
not the case in games of pure chance, like the lottery or roulette. It is this distinction that
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drives ALL-IN meta-analysis.

Chapter 1 ALL-IN meta-analysis
This introductory chapter presents ALL-IN meta-analysis to a broad audience interested
in statistics. It formulates the null and alternative model involved in statistical testing,
defines a precise gambling game, and shows that we can formulate betting scores that be-
have like casino betting under the null hypothesis of no treatment effect in clinical trials.
It generalizes the statistics from discrete observations – such as heart attacks and infec-
tions – to general meta-analysis methodology that is based on Z-score approximations.
Apart from statistical testing, it also introduces anytime-valid analysis for estimation with
confidence intervals.

This first chapter was very much influenced by the Covid-19 pandemic that showed that
science is a major gamble. If we do not accept that and do not play a coordinated strategy,
we end up with enormous research waste. Examples are the hundreds of clinical trials on
hydroxychloroquine in ICU patients (Glasziou et al., 2020) and the long wait – while pass-
ing the mark of 2 million deaths worldwide – for published results on other treatments,
like budesonide (Yu et al., 2021). ALL-IN meta-analysis allows improving a future pan-
demic response as well as non-pandemic evidence-based medicine in terms of statistics,
efficiency, collaboration, and communication.

Chapter 2 The Safe logrank test
This chapter goes deeper into the machinery of betting scores and e-values that make
ALL-IN meta-analysis possible for trials that observe events like heart attacks, tumor recur-
rence, and Covid-19 infections, i.e. time-to-event analysis. It shows that we can construct
an e-value logrank test under the assumption of proportional hazards and that these ideas
can be extended to confidence intervals for the hazard ratio and meta-analysis based on
summary statistics.

This chapter is more technical and contains the necessary derivations to show that the
e-values we propose can construct test martingales and be used for anytime-valid statisti-
cal analysis. However, the chapter also contains many figures that compare the rejection
regions and sample size needed to those of existing approaches to do sequential logrank
testing. Using a Gaussian approximation on the logrank statistic, we illustrate that the
safe logrank test (which itself is always exact) has the same type of rejection region to
O’Brien-Fleming α-spending but with the potential to achieve 100% power by optional
continuation. Although the approach to study design requires a larger sample size, the
expected sample size is competitive by optional stopping.

Chapter 3 Accumulation Bias
This chapter returns to accumulation bias and describes this phenomenon in its generality
in an accumulation bias framework. This allows us to model a wide variety of practically
occurring dependencies, including study series accumulation, meta-analysis timing, and
approaches to multiple testing in living systematic reviews. The strength of this framework
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is that it shows how all dependencies similarly affect p-value-based tests. Accumulation
Bias in meta-analysis is inevitable, and even if it can be approximated and accounted for,
no valid p-value tests can be constructed.

This chapter also shows that the problem of accumulation bias is not new. To some extent,
it has been recognized in the clinical trial literature, but not confronted. The accumulation
bias framework helps to recognize the approaches to handle accumulation bias. While e-
values and ALL-IN meta-analysis provide one way, by considering error control that stays
intact – “survives” – over time as we add more studies, another way is to use priors and
do a Bayesian analysis and condition on results and the timing itself.

Chapter 4 and Chapter 5
These two chapters were written as blog posts and explain the two approaches to handle
accumulation bias with examples, simulation R code, and figures. These chapters intro-
duce an extreme version of accumulation bias that allows for simpler notation and easy
simulation. As such, these chapters can be read as a more accessible presentation of the
ideas in Chapter 3.

These two chapters share the same introduction as they discuss exactly the same exam-
ple accumulation bias process, but with two different ways of counteracting it. Chapter 4
gives more detail about what it means for a scientific field to handle accumulation bias
using ALL-IN meta-analysis, which Chapter 3 presents as error control surviving over time.
Chapter 5 gives more detail about what it means for a scientific field to handle accumu-
lation bias by Bayesian analysis, which Chapter 3 presents as error control conditioned
on time. Both can use ALL-IN e-values. The first as a notion of evidence that has type-I
error control averaged over all sizes of study series. The second as a notion of evidence
that has Bayesian error control conditioned on the size of the study series, by using it as a
pseudo-Bayes factor combined with prior odds. The specification of prior odds does make
this second approach more difficult in a retrospective meta-analysis, and we discuss the
risks when information in the data seeps into the prior odds. The appendix to Chapter 5
contains the proof for using e-values as pseudo-Bayes factors for pseudo-Bayesian error
control, which is a new technical result that we would like to expand in a paper in the
future.

Chapter 6 Data sharing
in a live meta-analysis
This chapter details my experience of performing an ALL-IN meta-analysis on actual clin-
ical trials during the Covid-19 pandemic. It discusses the practical constraints of running
a live meta-analysis in terms of data sharing while ensuring privacy and blinding.

This ALL-IN meta-analysis studied whether the Bacillus Calmette-Guérin (BCG) vaccine,
originally developed to protect against tuberculosis, could also protect against (severe)
Covid-19 infections. It started with a clinical trial in The Netherlands that was soon repli-
cated in many countries around the world. Because these trial investigators around the
world were in close contact, I could propose to run a live analysis in a large collaboration.
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The trial statistician from Utrecht University Medical Center, dr. Henri van Werkhoven,
became the meta-analysis Principle Investigator, with dr. Alexander Ly from CWI and my-
self as the meta-analysis statisticians. We formed a steering committee with prof. dr. Marc
Bonten (Utrecht UMC), prof. dr. Mihai Netea (Radboud UMC, Nijmegen) and prof. dr.
Peter Grünwald and all trials participated in regular Advisory Committee meetings.

The collaboration started in the Spring of 2020 and is still ongoing. Results of the analysis
will be published later this year, so this chapter only details operational considerations, not
the data. This meta-analysis did not produce press-attention-grabbing recommendations
early in the pandemic, but – maybe because of that – can still be considered a scientific
success. It is an example of evidence-based research since all individual trials were in-
volved in evaluating the body of research over time, so automatically placing their results
in the context of the evidence base. This improved the value of the studies and prevented
research waste.

Discussion and future work
The discussion section relates the ideas in this Ph.D. dissertation to statistical standards at
Cochrane, the leading authority on meta-analysis of clinical trials. This chapter considers
reasons why sequential meta-analysis was discussed thoroughly, but never implemented,
and how updating meta-analyses can lead to decisions on “redundancy” of future clini-
cal trials – an example of research waste. The discussion concludes with a reflection on
possible future research.
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Abstract
Science is justly admired as a cumulative process (“standing on the shoulders of giants”),
yet scientific knowledge is typically built on a patchwork of research contributions with-
out much coordination. This lack of efficiency has specifically been addressed in clinical
research by recommendations for living systematic reviews and against research waste.
We propose to further those recommendations with ALL-IN meta-analysis: Anytime Live
and Leading INterim meta-analysis. ALL-IN provides statistical methodology for a meta-
analysis that can be updated at any time – reanalyzing after each new observation while
retaining type-I error guarantees, live – no need to prespecify the looks, and leading –
in the decisions on whether individual studies should be initiated, stopped or expanded,
the meta-analysis can be the leading source of information. We illustrate the method for
time-to-event data, showing how synthesizing data at interim stages of studies can in-
crease efficiency when studies are slow in themselves to provide the necessary number of
events for completion. The meta-analysis can be performed on interim data, but does not
have to. The analysis design requires no information about the number of patients in trials
or the number of trials eventually included. So it can breathe life into living systematic
reviews, through better and simpler statistics, efficiency, collaboration and communica-
tion.

Introduction
The scientific response to the Covid-19 pandemic constitutes a major gamble. In the US,
for example, the funding program for vaccine development did not put money on a single
vaccine, but on six different ones. They purposely took “multiple shots on goal” accord-
ing to Larry Corey of the NIH Covid-19 Prevention Network in an interview with STAT
(Branswell, 2021). Vaccine development is not a sure thing, and so their strategy needed
to be robust enough to just “let the chips fall”. Also in the search for treatments, the scien-
tific community had to hedge its bets. Clinical trials competed for resources and patients,
and had to continuously change course when new information arrived. In contrast to vac-
cines, however, in most countries a strategy to find treatments was lacking. Many clinical
trials suffered from “poor questions, poor study design, inefficiency of regulation and con-
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duct, and non or poor reporting of results”: research waste (Glasziou et al., 2020). We
believe that more strategic thinking can benefit a future pandemic response as well as
non-pandemic evidence-based medicine, as uncertainty is often a given. Honest scientific
bets can breathe life into the approach called living systematic reviews that aims to keep
the evidence record up-to-date (Elliott et al., 2017) and the medical guidelines current
(Akl et al., 2017). We propose to make those bets by using ALL-IN meta-analysis in clinical
trial design, monitoring and reporting.

ALL-IN meta-analysis stands for Anytime Live and Leading INterim meta-analysis. The Any-
time aspect provides analysis that controls type-I error in testing and coverage in interval
estimation regardless of the decision making along the way, and so regardless of any stop-
ping rules or accumulation bias processes (Chapter 3). The Live aspect prevents research
waste caused by meta-analyses that are out-of-date, which is often the case in retrospec-
tive meta-analysis. The synthesis can be a bottom-up collaboration of trials, as well as a
prospective top-down statistical analysis for decision making. The Leading aspect allows
the systematically collected evidence included so far to drive the necessity and design of
new trials. Finally, the INterim aspect is new in meta-analysis and makes for effortless
combination of trials while they are still ongoing. What is more, ALL-IN meta-analysis is
also literally ALL-IN since any number of new studies can be included; it has an unlim-
ited horizon. We illustrate this in the setting of time-to-event data, where waiting for new
events is an inherent challenge of clinical trials. Combining trials early can prevent delays
if studies are slow in themselves to complete the necessary number of events. ALL-IN has
advantages in four categories: statistics, efficiency, collaboration and communication. We
introduce all four briefly (page 23-25) before we go into more detail, but first illustrate
the language of betting for single trials studying a Covid-19 vaccine.

A single trial: the FDA game
On June 30th, 2020, the US Food and Drug Administration (FDA) published its guidance
document on “Development and Licensure of Vaccines to Prevent Covid-19” (FDA, 2020).
This set the goals for any Phase III clinical trial betting on a protective effect of a vaccine
against Covid-19. The guidance document advised on the definition of events of confirmed
(symptomatic) SARS-CoV-2 infection for the trials to be counting. And in counting those,
the document prescribed the two things to achieve: (1) at least a vaccine efficacy (VE) of
50% and (2) evidence against a null hypothesis of ≤ 30% VE (FDA, 2020, p. 14). Most
Covid-19 vaccine trials randomized large numbers of participants 50:50 vaccine:placebo
such that we can assume that also throughout the trial the participants at risk stayed
approximately balanced. According to the definition of SARS-Cov-2 infections, we start
counting once a participant has a confirmed infection after being fully vaccinated for at
at least a number of days (e.g. 7 days in the Pfizer-BioNTech trial (Polack et al., 2020))).
This is also when a (virtual) bet could start. In the following we reinterpret the design for
the Covid-19 vaccine trials in the language of betting.

Each new event carries evidence that we express by a betting score. We make a (virtual)
investment on one of the two outcomes: either the next event occurs in the vaccine group
or it occurs in the placebo group. If there is no effect of the vaccine whatsoever, the 50:50
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risk set ensures that the infected participant has 0.5 a chance to be vaccinated and 0.5
a chance to be a placebo. Yet, following the FDA, we do not only want to rule out an
ineffective vaccine, but also reject the hypothesis that the vaccine has an effect that is too
small – set as the null hypothesis of (at most) 30% VE. In that case each newly observed
infection has slightly smaller chance to be a vaccinated participant. That probability to
be in the vaccine group is 0.41, since each placebo group member has a 100% risk of
Covid-19 and a vaccine group member has 100−30= 70% of the risk, which is a fraction
0.41 of the total risk (70/(100+70)). So if the VE is too small to be of interest we expect
(at least) a fraction 0.41 of Covid-19 events to occur in the vaccine group and (at most)
0.59 in placebo.

How do we bet against that and win if the vaccine has a much larger protective effect?
We are betting against the probability 0.41 of the next Covid-19 event to occur in the
vaccine group. If this probability actually is that large (the vaccine is not very protective;
the null hypothesis) we do not want the game to be favorable under any strategy, just
like the casino does not want any gambler to earn a salary playing the roulette wheel.
On the other hand, we are betting in favor of a much smaller probability for the vaccine
group. If this probability is smaller (the vaccine is protective; the alternative hypothesis)
we do want to win money, just like a professional poker player who makes a salary out
of gambling well. We use the betting scores to decide whether the vaccine is a real deal-
breaker (the scores behave like the salary of a professional poker player) or whether it
is not effective enough (the scores behave like anyone playing the roulette wheel). To
ensure that our betting scores can show either case, we first design the game such that it
is fair – under the null hypothesis – and then optimize playing the game with a strategy
that is profitable – under the alternative.

Designing a fair game under the null hypothesis Consider gambling at the roulette
table where the vaccine trial analogy is like betting on red (vaccine) or black (placebo).
Betting correctly doubles your investment, betting incorrectly loses everything you risked.
Assuming no house edge (no 0 or 00 on the roulette wheel, on which you cannot bet)
and an initial =C100 you do not expect to increase your investment, since you have 0.5 a
chance of doubling (2 · =C100) and 0.5 a chance of losing all (0 · =C100). Whether you bet
everything on black or red, in expectation the betting score after one round is (0.5 · 2+
0.5 · 0) · =C100, which is the initial investment =C100. To achieve the same thing betting
against the 0.41:0.59 probabilities instead of 0.5:0.5, your investment needs to multiply
by 2.4 (1/0.41) for vaccine and 1.7 (1/0.59) for placebo. If you bet everything on vaccine
you have 0.41 chance of multiplying by 2.4 (2.4 · =C100) and 0.59 chance of losing all
(0 · =C100) and if you bet everything on placebo you have 0.59 chance of multiplying by
1.7 (1.7 ·=C100) and 0.41 chance of losing all (0 ·=C100). The expected betting score after
one round is again the initial investment for both: (0.41 · 1/0.41 + 0.59 · 0) · =C100 and
(0.59 ·1/0.59+0.41 ·0) ·=C100. Hence, at either the roulette table or in this FDA game, by
design the game is fair and does not favor us. After all, if our observed infections land on
the vaccine and control group with the probabilities 0.41:0.59 – like a spin of the roulette
wheel on black and red with 0.5:0.5 – we do not expect to claim an effective vaccine.
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Optimize playing the game under the alternative hypothesis How do we win as fast
and as much as possible if our observed infections do not behave like a roulette wheel? It
has been known since the work of Kelly (1956) and Breiman (1961) that the best way to
increase your capital in the long run is to not bet all your (virtual) investment =C100 on
one of the two possible outcomes (red/vaccine or black/placebo) but to divide it based on
the odds that make the game favorable to you. So our focus needs to be on the minimal
VE of 50% from the FDA guidance. In the scenario of 50% VE, the probability that the
next Covid-19 case is in the vaccine group is 1/3: if we set the risk of Covid-19 for a
placebo group member to 100%, a vaccine group member has 100 − 50 = 50% of that
risk, which is 1/3 of the total risk (50/(100+50)). Kelly (1956) and Breiman (1961) urge
us to invest one-third (1/3 · =C100) on observing the next infection in the vaccine group
and two-thirds (2/3 · =C100) on placebo.

Likelihood ratios If we bet this way we can rewrite our betting scores in terms of a
likelihood ratio. We first show this for the red-black roulette game where we double what
we had put at risk on either black or red if the spin of the roulette wheel outputs the
color we bet on. Just like in our strategy in the FDA game, we put 1/3 · =C100 on red and
2/3 · =C100 on black, so we win the following if the ball X lands on either red or black:

X = red 2 ·
1
3
· =C100=

L(1/3 | X )
L(1/2 | X )

· =C100

X = black 2 ·
2
3
· =C100=

L(1/3 | X )
L(1/2 | X )

· =C100

The Bernoulli 1/3-likelihood L(1/3 | X ) assigns likelihood 1/3 when is X = red and 2/3
when is X = black. So if our strategy is to invest 1/3-2/3 in roulette, our payout is our
initial investment =C100 multiplied by the likelihood ratio, whether X is red or black.

X = vaccinated 2.4 ·
1
3
· =C100=

L(50% VE | X )
L(30% VE | X )

· =C100

X = placebo 1.7 ·
2
3
· =C100=

L(50% VE | X )
L(30% VE | X )

· =C100

The likelihood for 50% VE (L(50% VE | X )) assigns likelihood 1/3 when is X = vaccine
and 2/3 when is X = placebo. Similarly, the likelihood for 30% VE (L(30% VE | X ))
assigns likelihood 0.41 when is X = vaccine and 0.59 when is X = placebo. Hence if our
strategy is to invest 1/3-2/3 in the FDA game, our payout is also our initial investment
=C100 multiplied by the likelihood ratio, whether X is vaccine or placebo.

A winner We assume now that we start with an initial (virtual) investment of =C1 instead
of =C100. At the first observation we bet =C0.33 on vaccine and =C0.66 on placebo. After we
observe the event in the placebo group we lose our =C0.33 bet on vaccine and multiply our
=C0.66 on placebo by 1.7 to =C1.13. The likelihood ratio between our 30% VE alternative
hypothesis and our 50% VE null hypothesis – so L(50% VE | X )/L(30% VE | X ) – is also
about 1.13, so multiplying our initial investment of =C1 into =C1.13. On the other hand, if
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we observe the event in the vaccine group we lose our =C0.66 bet on a placebo event and
multiply our =C0.33 on vaccine by 2.4 to =C0.81. The likelihood ratio of a vaccine event
multiplies our investment by 0.81. After each observed event we reinvest what we have
left in the new bet, so multiply that with the next likelihood ratio.

The Pfizer/BioNTech trial observed 8 cases of Covid-19 among participants assigned to
receive the vaccine and 162 cases among those assigned to placebo (Polack et al., 2020),
so they could report a total betting score of 0.818·1.13162· =C1, which is about =C118 million
(note that 1.13 is really 1.13333 . . .)1. If someone wins that at the poker table, we have
good reason to consider her a professional poker player with a favorable strategy, rather
than a lucky beginner (Konnikova, 2020).

Meta-analysis: bottom-up collaboration
The Pfizer/BioNTech trial included more than 43 thousand participants (Polack et al.,
2020), which is quite unique for a clinical trial. Usually trials are much smaller, and sci-
entific consensus is built through systematic reviews and retrospectively combining trials
in a meta-analysis. ALL-IN is a way to do so by collaborating bottom-up in a strategic way
that can be live instead of retrospective. It has advantages in four categories that we will
first briefly introduce and then further elaborate on in this chapter: statistics, efficiency,
collaboration and communication.

Statistics
Not all mRNA vaccines showed such favourable results as the Pfizer/BioNTech vaccine. In
a press release CureVac AG (2021) announced that the final analysis of their clinical trial
observed 83 events in the vaccinated group and 145 in placebo, so only a 43% VE2 (our
calculations assuming a 50:50 balanced risk set (r = 1 in CureVac AG (2020, p. 124))).
Their protocol states the FDA goal in terms of a confidence interval that excludes a VE
of 30%, adjusted for two interim analyses. That adjusted confidence interval at the final
analysis is based on Zα/2-statistic for the nominal level α/2= 0.02281 (CureVac AG, 2020,
Table 8). That interval is [25.3%, 57.1% VE] (our calculations; normal approximation
interval) and, regrettably, does not exclude 30%. When the chips fell, this trial lost.

Statistical analyses like these are essentially all-or-nothing, just as any other p < α anal-
ysis. As soon as all the α is spent – either on a few interims and a final analysis or just
on one fixed sample size – we cannot continue the trial and perform subsequent analy-
ses without violating the type-I error rate. This might be a reasonable price to pay in the
urgency of a pandemic when multiple vaccines are competing, but it is a very inconve-
nient property for clinical trials in general. Usually, we do want to reanalyze a clinical

1We can ask: why did the Pfizer/BioNTech trial not declare efficacy sooner? In a later agreement with the
FDA in October, the vaccine trials committed to collecting at least two months of safety data for half of the
included participants in the trial. So the trial could not stop earlier. This agreement was formalized in the FDA
guidance document for Emergency Use Authorization and is still present in the May 2021 version (FDA, 2021)

2The CureVac AG (2021) press release reports a VE of 48%, so uses a different r (ratio of follow-up time
in the two groups). In such large trials r can often be assumed to stay close to 1, so we set it to 1 to make all
calculations simpler. All our calculations can be found via Appendix Section 1.B.
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trial in combination with other similar trials in a meta-analysis. Yet any p < α procedure
is equivalent to setting a rejection region for the test statistic and checking whether the
value for the statistic falls within that region. This rejection region is based on a sampling
distribution that assumes the number of studies in the meta-analysis, and the number of
patients within each study to be fixed in advance. Given such a fixed sample size (but
also for any sequential stopping rule that sets a maximum sample size in advance, such
as α-spending), there is only one region, and your test statistic is either in it or not. If
it is not, you are not allowed to redo the analyses with an increased sample size. This
problem is recognized in approaches to control type-I error for living systematic reviews
(Simmonds et al., 2017). But also if the meta-analysis is not updated, the α is essentially
already spent on the individual trial, since the meta-analysis is an update of the trial anal-
ysis that is unscheduled and lacks type-I error control at the same level α. If the individual
study analysis would have been conclusive, the meta-analysis might never be performed,
and we can recognize that we are dealing with a situation of “meta-optional-stopping”. A
different way to see this is by the actual sampling distribution of trials in a meta-analysis:
any data-driven decision within the series – whether to accumulate more studies and
when to perform the meta-analysis – changes the sampling distribution and invalidates
the fixed-sample-size distribution assumed for p < α. Hence hardly any meta-analysis has
valid type-I error control, when the accumulation of trials is based on strategic decisions
that introduce accumulation bias (Chapter 3).

ALL-IN meta-analysis is not all-or-nothing but can still combine all available studies. In
fact, it allows any number of new studies or patients to be included without ever spending
all α. In terms of gambling, we can keep betting our virtual investment because we never
lose everything. The CureVac AG (2021) results, for example, would have accumulated
a betting score of 0.8183 · 1.13145· =C1 = =C1.84. This single trial is not very profitable,
but at least it still preserves some evidence to reinvest in the next trial, such that we can
continue to observe evidence and express it by betting on additional observations in a
new trial. An ALL-IN meta-analysis can always continue testing the null hypothesis – with
type-I error control – and estimating the confidence interval – with coverage guarantees.
Importantly, for these tests and intervals the procedures are exactly the same no matter
what decisions – so-called stopping rules, or accumulation bias processes (Chapter 3) –
are at play.

Efficiency
Lack of efficiency has been addressed in clinical research in many ways. Not only in the
proposal of living systematic reviews (Elliott et al., 2017), but also in encouragements
to present new studies in the context of existing evidence (Young and Horton, 2005), in
advice to design new trials based on systematic reviews and meta-analysis (Chalmers and
Lau, 1993; Lau et al., 1995; Sutton et al., 2007; Goudie et al., 2010; Lund et al., 2016) and
in pleading to prevent the “scandal” of wasteful research into clinical questions that are
already answered or not of primary importance (Altman, 1994; Chalmers and Glasziou,
2009; Glasziou and Chalmers, 2018; Glasziou et al., 2020, “research waste”). These calls
have not been completely ignored, since clinical research has seen an increase in effi-
ciency – e.g. in platform trials or adaptive meta-analysis (Tierney et al., 2021) – when-
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ever collaboration is deemed possible prospectively. Nevertheless, most clinical trial data
is synthesized retrospectively, and still deserves all of the above recommendations. ALL-IN
meta-analysis enables these data-driven decisions that can make science more efficient.
New studies can be easily informed by the synthesis of all data so far such that exactly the
right number of patients are randomized to answer a research question, no more and no
less. Moreover, an ALL-IN meta-analysis can give an account of the evidence at anytime
and therefore facilitate prioritizing new studies, if more than one line of research needs
additional data, but not all can be funded.

Collaboration
ALL-IN meta-analysis can be a live meta-analysis, since it does not matter how many stud-
ies will eventually be combined or which study will contribute most data. Whether it is
based on summary statistics (Tierney et al., 2021) or on individual patient data (IPD)
(Polanin and Williams, 2016), involvement in the same meta-analysis facilitates discus-
sion between those running trials in the same line of research; especially if the line of
research can be concluded early. Trial protocols and statistical analysis plans can be ex-
changed and scrutinized, to identify discrepancies between the design and the conduct of
trials. In an ongoing meta-analysis, trials can be selected for inclusion before investigators
are unblinded to the results, which helps to mitigate the problems of publication bias and
p-hacking. If IPD analysis is possible, intense collaboration might also prevent mistakes
and fraudulent data that would otherwise depreciate the meta-analysis.

A meta-analysis benefits from homogeneity. With too much heterogeneity, it can be very
disheartening to update a random-effects meta-analysis, since many trials are needed to
precisely estimate the between trial variation and overcome it (Sutton et al., 2007; Kulin-
skaya and Wood, 2014; Jackson and Turner, 2017). Close collaboration might prevent
unnecessary heterogeneity, if trial investigators are involved in the selection of trials in
the meta-analysis; especially if they can advise on the design and conduct of new trials
and align inclusion criteria and endpoint definitions. A fixed-effects meta-analysis can
conclude the research effort early. Sufficient homogeneity may be possible in close col-
laboration.

Communication
The language of betting The interpretation of evidence in terms of a betting score might
help to communicate the uncertainty in statistical results. As Shafer (2021) puts it: “When
statistical tests and conclusions are framed as bets, everyone understands their limitations.
Great success in betting against probabilities may be the best evidence we can have that
the probabilities are wrong, but everyone understands that such success may be mere
luck.” Thinking in terms of bets also helps to understand when statistical analyses can be
anytime-valid. If they are of the all-or-nothing kind, but reanalyzed in a meta-analysis, they
are gambling while broke. (This intuition can be made mathematically precise; see the
description of Neyman-Pearson testing in terms of betting Shafer (2021) and Grünwald
et al. (2019).) Yet if we add new studies to an ALL-IN meta-analysis, we are reinvesting
the betting score that we saved from earlier studies, to evaluate whether the strategy in
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those earlier studies continues to succeed. Just like when reinvesting your profits in a
casino from one slot machine into another, the notion of winning stays the same. Our
evidence against the hypothesis of a fair casino does not change when we alternate slot
machines. It does not change if we use the score so far to decide on alternating them or
to decide when to cash out. If the slot machines are fair, any strategy of playing them
is not expected to make money, and our notion of type-I error control holds under any
dependency on past results (stopping rules or accumulation bias processes).

Other communication Those uncomfortable with the language of betting can also eas-
ily resort to any of three more familiar notions of statistical communication. Firstly, the
likelihood ratios/betting scores and their generalizations, so-called e-values (Grünwald
et al., 2019; Vovk and Wang, 2021), can be interpreted as conservative p-values by tak-
ing their inverse. If we denote any betting score or e-value by € (e.g. € = =C1.84 for
the CureVac trial data), then p < 1/€ is a conservative p-value (e.g. p = 1/1.84 = 0.54
for the CureVac trial data). If we communicate the p-value p = 1/€ anyone can test by
comparing p < α but with the addition that this conservative p-value is anytime valid3

and so p < α can never spend all α (it is never an all-or-nothing test). Secondly, the likeli-
hood ratios have their own notion of evidence in the likelihood paradigm (Royall, 1997).
Just as well as stating that the Pfizer/BioNTech trial (Polack et al., 2020) multiplied =C1
to almost =C118 million and the CureVac AG (2021) trial multiplied =C1 to =C1.84, we can
state that their data was almost 118 million times and 1.84 times more likely if we as-
sume the FDA’s goal of 50% VE in comparison to assuming only 30% VE. For Pfizer, that
sounds very good, for CureVac, not so much, and so these numbers have an interpretation
of their own without imposing any α level. Thirdly, likelihood ratios can be accepted by
the Bayesian paradigm, as Bayes factors, and possibly combined with prior odds. Grün-
wald et al. (2019) and Grünwald (2021) show that betting scores/e-values and Bayes
factors are closely related, although not all Bayes factors are betting scores/e-values. The
bottom-line for communication purposes is that the reporting by ALL-IN meta-analysis can
be interpreted in many ways – p-values, likelihood ratios, Bayes factors – but regardless
of the interpretation provide fully frequentist type-I error control for tests and coverage
for confidence sequences.

The remainder of this chapter discusses the four categories of advantages in more de-
tail: Statistics in Section 1.1, Efficiency in Section 1.2, Collaboration in Section 1.3 and
Communication in Section 1.4. We use the Covid-19 vaccine trials as running examples,
based on the FDA game described already, but also in terms of the safe/e-value logrank
test (Chapter 2). We also briefly discuss an actual ALL-IN meta-analysis in Section 1.3.1,
that used this safe/e-value logrank test to study whether the BCG vaccine could protect
against Covid-19 (Van Werkhoven et al., 2021, ALL-IN-META-BCG-CORONA). In the con-
cluding section we will provide some broader context, with an overview of all the methods
already developed – e-values, safe tests (Grünwald et al., 2019) and anytime-valid confi-
dence sequences – methods already available in software – notably safestats R package

3Such conservative p-values cannot be pictured as the tails of a sampling distribution since such a picture
needs a sample size. Appendix Section 1.A gives more details.
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(Turner et al., 2022) – and future work. R code for all calculations, simulations and plots
is online available via Appendix Section 1.B.

1.1 Statistics
The language of betting comes with the intuition that winning a large betting score a has
small probability if the null hypothesis is generating our observations (e.g. the roulette
wheel is fair). We will make this intuition precise and show how to control the type-I error
by bounding this probability by Markov’s inequality and Ville’s inequality. Crucial here is
that the betting score underlying our test is an e-value. The language of betting also comes
with the intuition that when playing a game that is favorable to us in principle, we can
use strategies of different quality: even among all strategies under which we expect to get
richer, some of them can be expected to earn us much more than others. We will relate the
more well known notion of power to such a different notion of optimality. In the following
we discuss both e-values and optimality first for a single trial (in the FDA game and more
generally) and then for ALL-IN meta-analysis. We conclude by a generalization of optimal
e-value tests to confidence sequences.

1.1.1 Under the null: e-values in a single trial
To make the FDA game fair we imposed a multiplication by 2.4 (or 170/70) if we observe
the event in the vaccine group and 1.7 (or 170/100) if we observe it in the placebo group.
This multiplication has expectation 1 (or smaller) if we assume the null hypothesis of a
vaccine with negligible VE of 30% (or smaller). In case of 30%, we have probability 0.41
(or 70/170) to observe a vaccine event and probability 0.59 (or 100/170) to observe
placebo, so in expectation we multiply our investment by: 70/170 · 170/70+ 100/170 ·
170/100= 1. No matter how we invest in the two outcomes, (e.g. putting 1/3 on vaccine
and 2/3 on placebo, or something different) in expectation under the null we multiply the
initial investment by 1. This means that our betting score is an e-value, since by definition
an e-value is the outcome of a nonnegative random variable with expectation 1 under the
null hypothesis (Grünwald et al., 2019).

Our betting score could also be rewritten as a likelihood ratio, so the expectation of the
likelihood ratio (L(50% VE | X )/L(30% VE | X )) is 1 as well. We henceforth write the
likelihood ratio after n rounds of betting (or after observing n events) as LR(n), with for
the FDA game

LR(n) =
n
∏

i=1

L(50% VE | X i)
L(30% VE | X i)

. (1.1)

Using its expectation of 1, Markov’s inequality bounds the probability of observing a large
multiplication of our investment € (a large likelihood ratio) by α after n = 170 rounds
as follows:

P30% VE

�

LR(170) ≥ 1/α
�

≤
E30% VE

�

LR(170)
�

1/α
=

1
1/α

= α.

Figure 1.1 shows at the right side the histogram of betting scores in the FDA game after
170 events when we simulate events under the null hypothesis, with probability 0.41 to
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Figure 1.1. 1000 simulated betting scores in the FDA game over betting rounds n assuming a
probability of 0.41 (70/170) for each event to occur in the vaccine group (the null hypothesis
of 30% VE). The dashed line is the threshold 1/α= 40 one-sided. The histogram at the right
shows the betting score/LR(170) after 170 events. Note that the expectation of 1 of the scores
is not the mode of its distribution nor its median and that the y-axis is on a log scale.

occur in the vaccine group, corresponding to 30% VE. A line is shown at 40, and indeed
no more than α = 1/40 = 2.5% of the scores seem to be larger than that threshold. In
fact, in these 1000 runs of simulation only 0.3% of the runs have a betting score larger
than 40; Markov’s inequality is a loose bound. We also have a stronger result because we
obtained our betting score over events by multiplying the score of the rounds (see (1.1),
corresponding to reinvesting our winnings), called Ville’s inequality. We get the following
from Ville (1939):

P30% VE

�

LR(n) ≥ 1/α for some n
�

≤ α.

Ville’s inequality is also illustrated in Figure 1.1: if we take the sequence of rounds into
account, still only a few out of the 1000 simulations ever reach a betting score larger than
40. In fact, in these 1000 runs of simulation only 1.1% of the runs have a betting score
that is larger at any round in the game, such that our type-I error is controlled at α= 2.5%
at any time. Moreover, this type-I error control is not tied to this maximum number of 170
events, but continues to hold with an unlimited horizon. Making a large profit in such a
fair game casts doubt on the null hypothesis and is captured by a likelihood ratio that
grows away from 1: a large betting profit is obtained if the null likelihood is performing
worse than alternative.

When trials can be summarized as bets Before they can be combined in a meta-
analysis, individual trials are often characterized by the summary statistics from trial pub-
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lications. Conventional meta-analysis combines these statistics (e.g. mean differences and
standard deviations) in a Z-statistic (Borenstein et al., 2009). Unlike the vaccine/placebo
outcomes that we have seen so far, such a Z-statistic has a continuous density and can-
not be summarized by separately dealing with all possible outcomes. Fortunately, Shafer
(2021) shows that any likelihood ratio of distributions can be viewed as a betting score in
a game with initial investment =C1. This is possible because likelihood ratios have expec-
tation 1 in general if we assume the null hypothesis in the denominator of the ratio. For
a Z-statistic we have two normal distributions with variance 1, one with mean µ0 under
the null hypothesis, and one with µ1 under the alternative. If the data is generated by the
null model, the expectation of the likelihood ratio is

EZ∼φµ0

�

φµ1
(Z)

φµ0
(Z)

�

=

∫

z

φµ0
(z)
φµ1
(z)

φµ0
(z)

dz =

∫

z

φµ1
(z)dz = 1, (1.2)

since φµ1
(z) is a probability density that integrates to 1. This means that any such likeli-

hood ratio for a Z-statistic is an e-value and can be used to construct tests by betting.

Not all summary statistics can be assumed to form a Z-statistic with a normal distribution.
Fortunately for the logrank statistic this is reasonable (Chapter 2) if studies are large and
the effect size not too extreme (hazard ratios not too far away from 1). We will use the
logrank Z-statistic as a running example for meta-analysis on summary statistics. For an
IPD meta-analysis (on individual patient data), however, we recommend to use the exact
safe/e-value logrank test from Chapter 2 that is valid regardless of the randomization
(e.g. 1:1 balanced or 1:2 unbalanced), the number of participants at risk, the number of
events or the size of the effect – so also for a hazard ratio 0.05 that corresponds to a VE
of 95%.

1.1.2 Under the null: e-values in a (live) meta-analysis
Assume we want to perform a meta-analysis and we collect a Z-statistic Zi from each
trial i, e.g. a logrank statistic. Before observing Zi we construct an honest bet LRi =
φµ1
(Zi)/φµ0

(Zi) for each trial that is an e-value and thus has type-I error control under
the null hypothesisφµ0

– for a default logrank statistic this is always µ0 = 0 corresponding
to hazard ratio of 1. If we think of the betting score from the first study and invest it in
the second study, we are in fact multiplying likelihood ratios. We need to have a notion of
time t, such that at each time we know the number of studies k〈t〉 so far and the number
of observations ni〈t〉 in each study i. If we assume that all studies are completed at time
t with n1, n2, . . . , ni events summarized by logrank Z-statistics z(n1)

1 , z(n2)
2 , . . . , z(nk)

k we can
construct our ALL-IN bet as follows:

LR〈t〉
META
=

k〈t〉
∏

i=1

LR(ni)
i =

k〈t〉
∏

i=1

φµ1
p

ni
(z(ni)

i )

φ0(z
(ni)
i )

. (1.3)

The global null hypothesis Each trial bet is testing the same null hypothesis µ0 = 0
in (1.3), such that the ALL-IN meta-analysis bet tests a global null hypothesis of no effect
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(0% VE) in all trials. Such a global null hypothesis can be rejected with a contribution
from each trial, but also in case only one trial observes a large score betting against the
hypothesis and no other trial observes a very small betting score that loses those winnings
again. After all, the null in each trial is rejected as soon as the null is rejected in one of
the trials.

Meta-analysis on interim data We can generalize this ALL-IN meta-analysis bet of com-
pleted trials to bets on interim data by assuming that we only have an interim logrank
Z-statistic z1〈t〉, z2〈t〉, . . . , zk〈t〉 for the n1〈t〉, n2〈t〉, . . . , nk〈t〉 events observed so far at
time t; k〈t〉 still represents the number of studies so far at time t, but now these studies
are not (all) completed. We construct our ALL-IN bet in a similar way:

LR〈t〉
META
=

k〈t〉
∏

i=1

LR(ni〈t〉)
i =

k〈t〉
∏

i=1

φ
µ1

p
ni〈t〉
(zi〈t〉)

φ0(zi〈t〉)
. (1.4)

From the perspective of Ville’s inequality, the analysis on completed trials and the one on
interim data are indistinguishable. The only thing that matters is that we include all the
data we have so far at time t, such that we have type-I error control

P0

�

LR〈t〉
META
≥ 1/α for some t

�

≤ α, (1.5)

for the global null hypothesis probability P0 with an unlimited horizon over time t.

1.1.3 Under the alternative: optimality in a single trial
A power analysis sets a very specific goal for a trial, usually to detect an effect of minimal
clinical relevance. This is the effect we would not like to miss if it were there, although
we hope that the real effect is larger. We nevertheless use this smallest effect of interest to
decide on the sample size of the trial, otherwise we risk a futile trial. The FDA was clear
on what this minimal effect should be for the Covid-19 vaccine trials: a VE of 50% (FDA,
2020). This is the effect we used to bet in the FDA game.

Our strategy in the FDA game, however, was not trying to achieve optimal power. If we
compare the all-or-nothing confidence interval for CureVac AG (2021) from the introduc-
tion – the final analysis on 83+145 events – we notice that this confidence interval [25.3%,
57.1% VE] is smaller than the final anytime valid interval we show in Figure 1.3 in Sec-
tion 1.1.5, which is [20.2%, 60.3% VE]. Note that we are comparing a Zα/2-confidence
interval for α/2 = 0.02281 with α/2 = 0.05, so the wider interval cannot be attributed
to the level of α. The difference is that the former one is optimized to have spent all α at
the final analysis, while the latter one is optimized to continue data collection. Power is
the probability of finding the desired result using the specified analysis at a sample size or
stopping rule. So for an analysis that is intended to have unlimited horizon, power is not
a well-defined concept. Instead Grünwald et al. (2019) introduced the concept of growth-
rate optimality in the worst case, or GROW. Here, the goal is to optimize the expected rate
at which the evidence grows (or the interval shrinks) for each new data point, not at a
specific sample size. The worst case here is the 50% VE for a one-sided alternative hy-
pothesis H1 = {PVE : 50% ≤ VE ≤ 100%}. We optimized the FDA bet in the introduction
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by putting this 50% VE in the alternative likelihood. This can be rewritten in terms of a
likelihood ratio for the logrank statistic Z as follows:

LR(n) =
n
∏

i=1

L(50% VE | X i)
L(30% VE | X i)

=
L(50% VE | X1, . . . , Xn)
L(30% VE | X1, . . . , Xn)

≈
φµmin

p
n(Z (n))

φµ0
p

n(Z (n))
, (1.6)

with µmin = log(0.5)/4 and µ0 = log(0.7)/4 with 0.5 and 0.7 the hazard ratios corre-
sponding to VE of 50% and 30% respectively (see Chapter 2). So our one-sided alterna-
tive hypothesis for the logrank Z-statistic is a Z-distribution with a mean representing an
effect that is at least µmin:

H1 = {φµ1
: µ1 ≤ µmin}

(since positive VE corresponds to a negative µ1). Our choice of the parameter of the
alternative likelihood µmin follows directly from the minimal effect set by the FDA. Kelly
(1956) already showed that this way of betting optimizes the way our betting score grows
if the true VE is 50% (our worst-case scenario). Breiman (1961) showed that this approach
also minimizes the number of events we need to reach a given betting score set in advance
(e.g. =C1/α), for which some intuition is given in Figure 1.2. Grünwald et al. (2019), Shafer
(2021) and Appendix Section 2.B give various other reasons why this is the best way to
bet, relating it to data compression, information theory, Neyman-Pearson testing, Gibb’s
inequality, and Wald’s identity. The most crucial property for the purposes of ALL-IN meta-
analysis is that the alternative likelihood puts some money on each possible outcome,
such that no matter what outcome we observe, we keep some of the money we risk. This
contrasts the approach with a classic p < α test that essentially puts all money on the
rejection region, such that if the outcome is not in it, we we lose all and cannot continue
betting. A thorough interpretation of Neyman-Pearson testing and p-values in terms of
betting is given by both Grünwald et al. (2019) and Shafer (2021).

1.1.4 Under the alternative: optimality in a meta-analysis
ALL-IN meta-analysis allows for a retrospective meta-analysis that is bottom-up. The bet-
ting score that we accumulate by reinvesting from one trial into the other (which is mul-
tiplying betting scores) has an interpretation without enforcing a common design or stop-
ping rule on all included trials. This is especially important if trials have their own stopping
rules, or if meta-accumulation processes are at play that influence the existence of trials
based on earlier (trial) results in the same meta-analysis. While a meta-analysis can be
bottom-up and each have its own design and effect of minimal interest, it can be advis-
able to agree on a µmin for the meta-analysis. However, the meta-analysis betting score
can also allow each trial i to have its own alternative likelihood with parameter µmin(i).
Then the following multiplication of those betting scores is still a valid meta score with
type-I guarantees:

LR〈t〉
META
=

k〈t〉
∏

i=1

φµmin(i)
p

ni
(z(ni)

i )

φ0(z
(ni)
i )

. (1.7)

As long as φµmin(i)pni
is a probability density that integrates to 1, we have that each like-

lihood ratio integrates to 1 under the global null hypothesis, such that (1.5) holds. This
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Figure 1.2. Nα is the expected number of events needed to reach a betting score of 1/α= 40
forα= 0.025 if we bet according to VE1 indicated by the three different lines, with bets each of
the form

∏N
i=1

L(VE1 |X i)
L(30% VE |X i)

. The number of events we need decreases if the true VE underlying
the data increases (the true difference in risk between vaccine and control is larger). The
smallest number of events for a true VE of 40% is reached by betting VE1 of 40% (blue solid
line), the smallest number of events for a true VE of 50% by betting VE1 of 50% (orange
dotted line) and the smallest number for true VE of 60% by betting VE1 of 60% (grey dashed
line). Note that for the alternative in the FDA game H1 = {PVE : 50%≤ VE≤ 100%} we are
only interested in playing the game well if the true VE is 50% or larger. Since for larger true
VE, taking VE1 = 50% performs quite well, our strategy is to optimize for the worst case of
50% VE itself and use the bet with VE1 = 50% in the FDA game.

means that trials can also learn their parameter µmin(i) from already completed trials.
This is sometimes the case if trials are not powered to detect an effect of minimal inter-
est, but an effect that is plausibly true based on earlier research. Kulinskaya et al. (2016)
shows that such use of existing studies to power new trials can actually bias conventional
meta-analysis since it introduces yet another dependency between sample size and re-
sults that is unaccounted for in any analysis that assumes a fixed sample size. For ALL-IN
meta-analysis this is no problem at all, and trials can learn from each other as long as the
parameter µmin(i) is fixed before seeing new data that is evaluated using that parameter
in (1.7). In Chapter 2 we discuss the advantages of even learning the parameter within
one trial using prequential plugins or Bayesian posteriors. In a game like the FDA game
with a clear goal, this is inferior to the GROW approach, but in other situations it could
be preferred.

1.1.5 Confidence sequences
The CureVac AG (2021) trial reached their final interim analysis but was not able to reject
the null hypothesis of 30% VE. The trial had been too optimistic and powered for 60%
instead of 50% VE (CureVac AG, 2020). If a trial is underpowered but still has a large
number of participants in follow-up, there is good reason to continue the trial, or combine
the trial with results from a new trial in a meta-analysis. However, with a total of 227
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Figure 1.3. 90%-confidence sequence for a random ordering of the 83 events in the vaccine
group and 145 events in placebo from the CureVac AG (2021) trial. Note that the y-axis is
on the log scale.

events this trial was not underpowered to reject the null hypothesis with an effect in the
same ballpark as the Pfizer/BioNTech trial that reported 95% VE. In such a case it is very
interesting to zoom in on the estimate for the effect, instead of its test.

A standard confidence interval can be seen as an inversion of a hypothesis test: if the
null falls outside a two-sided 90%-confidence interval it can be rejected with a one-sided
type-I error level of α/2 = 0.05. In general, the interval excludes all the values for the
parameter that can be rejected. Similarly, in our context, an anytime-valid confidence
interval excludes all values of the parameter that can be rejected by the e-value test that
corresponds to the betting strategy at hand. So the interval is essentially tracking a whole
range of bets, each against a different null hypothesis. Figure 1.3 gives a sequence of
anytime-valid confidence intervals for a random ordering of the CureVac AG (2021) data,
one for each new observed event or betting round. It shows that the more events we
observe, the more parameters (hazard ratios, or their corresponding VEs) we can exclude
from the interval. Because these intervals are valid at any time, once we can exclude a
value, we never have to include it again. So we also show a sequence of intervals that is
the running intersection of all the previous intervals. This of course crucially depends on
the ordering, so the one shown for the CureVac AG (2021) data is just an example, since
the ordering is not real. Since these intervals are anytime valid, it is possible to further
shrink the intervals by continuing follow-up and observing more events. The coverage of
an anytime-valid confidence sequence – like an e-value test – has an unlimited horizon.

An ALL-IN meta-analysis confidence interval that is based on a running intersection is of
course only possible in an IPD meta-analysis, and cannot be based on summary statistics.
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The confidence interval shown in Figure 1.3 is based on the logrank Z-statistic (by re-
peatedly calculating it after each event), which can also be a summary statistic to achieve
a single interval that is anytime-valid. The interval follows from the likelihood ratio of
normal densities from (1.6) and follows a general recipe for constructing confidence se-
quences from Howard et al. (2021) where the hazard ratio is obtained by means of the
Peto estimator (Peto, 1987). The same approach can be used to obtain an ALL-IN meta-
analysis confidence interval. A fixed-effects meta-analysis Z-statistic corresponds to a lo-
grank statistic stratified by trial, and an estimate can be obtained from such a logrank
statistic that Peto (1987) calls a typical hazard ratio. We discuss this approach a bit fur-
ther in the final section.

1.2 Efficiency
Trials often suffer from recruitment difficulties, with estimates of 35% (between 1994 and
2002) and 56% (between 2004 and 2016) not reaching the goal set in advance (McDonald
et al., 2006; Walters et al., 2017). These trials find themselves underpowered according
to their own protocol: when they decide the stop the recruitment and obtain the final
sample size for analysis, they have a high probability for their test statistic to fall outside
the rejection region they set in advance. This is exactly the scenario where meta-analysis
could rescue the line of research by combining multiple underpowered trials. However, the
literature on research waste (Chalmers and Glasziou, 2009) and Evidence-Based Research
(Lund et al., 2016) shows that we are not using the existing evidence base well to design
the new trials needed for conclusion or to interpret new research. ALL-IN meta-analysis
makes this very easy to do. It comes with a simple notion of the evidence already collected
and what is still needed, and a notion of a new trial’s ability to provide that: the implied
target. The combination of the two has the capacity to make study design more honest,
showing what a trial can add to the existing evidence base instead of just evaluating a
misguided goal to single-handedly answer a research question.

1.2.1 The evidence so far and what is still needed
An ALL-IN meta-analysis can set a prospective goal for conclusion, e.g. α = 0.0025 =
0.052 corresponding to the level of α required by authorities like the FDA that ask for two
trials at the α = 0.05 level. Following Ville’s inequality (1.5) we need a betting score of
1/α = =C400 if we start with =C1 to reach a conclusion. Because an ALL-IN meta-analysis
combines trials by reinvesting or multiplying betting scores, a very simple calculation
gives the betting score we still need at any given point. If an initial trial is able to reach a
score of =C8, any new trial can be designed to multiply that by 50. So on its own, starting
with =C1 instead of =C8, it would need a betting score of =C50 to help the meta-analysis
reach =C400. We could evaluate the sample size of the new trial on its ability to reach 50,
which for a fixed sample size gives the conditional power of the meta-analysis once the
new trial is added. However, if this second trial also foresees recruitment issues, it is more
difficult to evaluate its planned contribution since it will probably not be the final trial in
the meta-analysis. For this, Shafer (2021) proposed a new notion for the ability of a test.
Rather than stating the probability of reaching a specific target score, we state a sort of
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expectation for the target score itself. This is called the implied target.

1.2.2 The ability of a new trial: the implied target
The likelihood ratio summarizes the data not in just two categories – statistical significant
or not statistical significant – but captures the evidence so far on its way to a certain
threshold. Similarly we propose to not evaluate experimental design as all-or-nothing,
but summarize its ability to build on what is already there and facilitate future research.
To capture a study’s expected contribution to a series of studies, we formulate the implied
target from Shafer (2021) as the multiplicative amount with which the combined evidence
is expected to grow if the study – designed with a certain µmin and sample size n – is added.
In general, the implied target E∗ is defined as:

E∗ = exp
�

EZ (n)∼φµmin
p

n

�

log
�

LR(n)(Z (n))
��

�

. (1.8)

The logarithm appears in equation (1.8) because the distribution of a likelihood ratio
based on n events is very non-symmetric and heavy tailed, with extremely large likelihood
ratios occurring with only small probability (see Figure 1.4). So the expectation of the
likelihood ratio is drawn very far from its typical values by these large likelihood ratios
and is not a good expression of what to expect. The logarithm makes the distribution more
symmetric (asymptotically (for large n) and for normal likelihood ratios even normally
distributed), such that the expectation is a more meaningful summary of the evidence
promised by the study. By exponentiation (exp()) we bring this expectation back to the
scale of the likelihood ratio, such that it can be interpreted as a betting score or e-value.

In the FDA game the expected growth rate per new event in the CureVac trial, assuming
their effect of minimal interest of 60% VE, is the following:
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The cumulative contribution of each new event is shown as the linear line on the log scale
in Figure 1.5. The CureVac AG (2020, Table 8) design planned a final analysis at n= 160
events, so their implied target was 1.029454160 ≈ 104. In comparison to the target score
of =C104 at 160 events, the actual betting score =C1.84 after 83+ 145= 228 events in the
press release is quite disappointing. Shafer (2021) gives more examples of how betting
scores and implied target help to interpret study results in the context of study design.

1.2.3 Honest study design
An implied target does require an honest proposal of the effect of minimal clinical interest
µmin, to evaluate the merits of the study. In regular power analysis, this parameter might
be tweaked – e.g. setting an unrealistically large effect – to still argue for the study’s
advancement with only small sample size. Or the smallest effect size of interest analysis
is set after data is observed (Wang et al., 2018). This behavior is incentivized by the
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after 160 events under the alternative hypothesis of 60% VE

Distribution of simulated final betting scores € / LR(160)

Figure 1.4. (and Figure 1.5) 1000 simulated sequences of betting scores by round in the FDA
game after 160 events assuming a probability of 0.29 (40/140) for each event to occur in
the vaccine group. This is the alternative hypothesis of 60% VE used to power the CureVac
AG (2020) trial at a number of events of 160. The dashed line is the threshold 1/α = 40
one-sided and the solid line is the implied target of =C104. Note that the x-axis is on a log
scale.

Figure 1.5. (See above at Figure 1.4.) The histogram for the final betting scores at the right
shows the larger scores above and the smaller ones at the bottom, which means that if we
turn it, it is the mirror image of the histogram in Figure 1.4. The dashed line is the threshold
1/α = 40 one-sided and the increase in the solid line per additional event/betting round
shows the contribution to the implied target at n = 160 of =C104. In this figure, the design
has an approximate 79% power to observe a betting score/e-value larger than 1/α = 40
before 160 events and 72% power at exactly 160 events (better visible in Figure 1.4). Note
that the y-axis is on a log scale.
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all-or-nothing character of Neyman-Pearson tests that also make the power analysis all-
or-nothing. If your desired sample size does not meet the power hoped-for, you need to
either increase it or abandon the study. This aspect of traditional analyses fully ignores the
ideal of cumulative science in which one study is not expected to single-handedly answer
a research question and small increments in knowledge are valuable, as long as they build
towards a common goal. If they use e-values and the ALL-IN framework, researchers do
not have to view their analysis as the final one, which helps them to evaluate their study
more honestly (Lakens, 2021).

1.3 Collaboration
The Evidence-Based Research Network (Lund et al., 2016) aims to always inform new re-
search by past results and to reduce research waste by separating research ideas that are
necessary from those that are wasteful. This is not easy to do, however. Different com-
munities might have different notions of necessity or even of what is ethical (a state of
so-called clinical equipoise (Shamy et al., 2020)). It might therefore be very beneficial
to have all those running new clinical trials in a field collaborate together in an ALL-IN
meta-analysis.

1.3.1 ALL-IN-META-BCG-CORONA
We ran two ALL-IN meta-analyses during the Covid-19 pandemic with the involvement
of seven trials in one and four in the other. All were designed to study whether the BCG
vaccine, originally developed to protect against tuberculosis, could protect against Covid-
19 (based on a theory of non-specific immune effects and innate immunity (Netea et al.,
2020)). The two meta-analyses study different populations (healthcare workers and el-
derly) and two questions each: the effect of the BCG vaccine on Covid-19 infection (not
necessarily symptomatic) and the effect on severe Covid-19 (indicated by hospitaliza-
tions). In the following description we will focus on the analysis of Covid-19 infections in
the healthcare workers population.

ALL-IN-META-BCG-CORONA followed many of the steps also outlined by Tierney et al.
(2021), that we will briefly discuss here: (1) Meta-analysis design, (2) Systematic search
for trials, (3) Systematic review for trial inclusion (4) Data upload, and (5) Disseminating
results.

(1) Meta-analysis design Early in the project we decided to aim for an IPD meta-
analysis on interim data and wrote our protocols and statistical analysis plans. This times-
tamped two important decisions on the meta-analysis design: the hazard ratio of minimal
interest of 0.8 (20% VE) for events of Covid-19 and the level of α set at 0.0025 so the
threshold for the e-value was at 1/α= 400. For these decisions we set up a meta-analysis
Steering Committee that was still fully blinded to any results at the time. The design
was preregistered (Van Werkhoven et al., 2021) and all documentation and a webinar
explaining the methodology were made available on a project website (Ter Schure et al.,
2020a).
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(2) Systematic search for trials We continuously searched for trials to include in the
meta-analysis. Some were already known to our Steering committee before we started.
They initiated a BCG trial of their own very early in the pandemic and shared their protocol
with many of their contacts in the BCG research community. Other trials were found by
a repeated systematic search of trial registries. The trials that agreed to join the meta-
analysis were each represented by a member in the Advisory Committee. Meetings of the
Advisory committee were scheduled regularly and the trials involved could point us to any
new developments. A major advantage of ALL-IN meta-analysis here is that the number
of trials does not need to be specified in advance.

(3) Systematic review for trial inclusion We received external advice from Cochrane
Netherlands on trial inclusion based on a thorough risk-of-bias assessment. For this assess-
ment, each trial shared their protocols, and subsequently all Cochrane’s evaluations were
shared and discussed with the Steering committee and Advisory committee (where trials
were usually represented by their PI’s who were blinded to any trial results). Trials had
multiple opportunities to answer questions – from Cochrane Netherlands as well as other
trials involved – explain their trial and express other concerns about differences between
the trials included. The Steering Committee made the final decision on including a trial,
before any of that trial’s results were known to anyone part of the discussion. The deci-
sion of the Steering committee explicitly incorporated both trial quality and meta-analysis
homogeneity.

(4) Data upload Parallel to the discussions on trial inclusion, data transfer agreements
were signed and data was shared through a secure upload. Each trial had a data uploader
that was in close contact with the ALL-IN meta-trial statistician (the author of this thesis)
about data quality. The ALL-IN statistician did not attend the discussion meetings and
kept the Steering committee and Advisory committee blinded to any results before each
trial inclusion decision.

(5) Disseminating results Each data-uploader received a dashboard account with per-
missions to inspect the meta-analysis e-value and their own trial contribution. Their ac-
cess of interim meta-analysis results in the dashboard served as a motivator to keep their
own trial data upload up-to-date and to check the sequence of e-values for errors. Fig-
ure 1.6 shows this dashboard based on a demo login with synthetic data (this demo was
available for everyone involved to get an impression). After an initial period where the
data-uploaders could only inspect their own trial results, they granted each other permis-
sion to inspect all the individual trial contributions. When the first trials were completed
and the meta-analysis was approaching its conclusion, the results were also presented to
the Advisory and Steering committees. Any interim decisions were planned based on the
ALL-IN meta-analysis e-values, but results were also presented in the context of power,
implied target per trial and confidence sequences.
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Figure 1.6. Dashboard used to communicate interim results in ALL-IN-META-BCG-CORONA
to all data uploaders with a login. The involved trials were performed in the Netherlands (NL),
Denmark (DK), the United States (US), Hungary (HU), Brazil (BR), France (FR) and Guinea-
Bissau/Mozambique (AF). The dashboard is in demo mode and shows synthetic (“fake”) data
The option to (de)select trials is for plotting purposes of individual trial e-values; all trials
in the dashboard stay included in the meta e-value, following the decision from the Steering
committee on trial inclusion. Note that the y-axis is on the log scale.

1.3.2 Collaborative and bottom-up meta-analysis
In many aspects, our approach agrees with the Framework for Prospective Adaptive Meta-
Analysis (FAME) from Tierney et al. (2021). FAME argues for prospective meta-analyses
in close collaboration with ongoing trials to achieve the same advantages outlined in this
chapter, such as aligning trial characteristics (“minimize heterogeneity”) and reducing
publication bias and “bias [in] both review and meta-analysis methods” introduced by
“prior knowledge of trial results” (e.g. accumulation bias (Chapter 3)). In alignment with
the FAME recommendations, ALL-IN-META-BCG-CORONA was prospectively designed by
preregistering an overall effect size of minimal interest and an α-level. However, ALL-IN
meta-analysis in general also allows for a more bottom-up approach when each trial’s e-
value is based on that trial’s own design (effect size of minimal interest, see Section 1.1.4)
and trial evidence is synthesized more loosely without a strict decision rule. In compar-
ison to FAME, ALL-IN meta-analysis is much more adaptive. FAME proposes to use con-
ventional meta-analysis (with a fixed sample size) and optimize the timing of the meta-
analysis “to anticipate the earliest opportunity for a potentially definitive meta-analysis”.
In that sense, FAME can only adapt to the speed of recruitment, while ALL-IN allows to
adapt to any information so far including the evidence in the trials and the synthesis of
the meta-analysis itself. There is also a statistical inconsistency in the FAME approach that
is concerned with “striking a balance between maximising the absolute and relative in-
formation size and producing a sufficiently timely review” but does explicitly state that
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the last step of the meta-analysis is to “assess the value of updating the systematic review
and meta-analysis”. A fixed sample-size statistical analysis should not be reanalyzed us-
ing the same statistical methodology. Any proposal to use conventional meta-analysis for
efficiency purposes risks accumulation bias (Chapter 3) because the timing of the meta-
analysis might be driven by some of the results part of that same analysis. Hence the
best approach is to combine the recommendations from FAME (Tierney et al., 2021) with
statistical approach from ALL-IN meta-analysis and the spirit of living systematic reviews.

Collaboration using a dashboard A dashboard for ALL-IN meta-analysis allows us to
spot trends in the accumulating evidence, or allow other stakeholders to monitor. A dash-
board like Figure 1.6 can give access to the accumulating e-values to those that need to
prepare for crossing a threshold in the near future, e.g. for independent data monitoring
committees of ongoing trials or for those considering new trials or preparing to update
medical guidelines. On a log-scale, the increase in e-values is linear (in expectation) and
the observed trends can be estimated, e.g. in Figure 1.6 as an increase in evidence per
additional calendar day.

For ALL-IN-META-BCG-CORONA, the time unit t in the definition of LR〈t〉 from (1.4) was
set to calendar days and the e-values were updated at each calendar day with an event.
The dashboard plots in Figure 1.6 horizontal lines at 1 for trials that do not observe any
events yet: they have not started betting and are still at their initial investment of =C1
contributing a neutral amount to the multiplication meta-e-value. ALL-IN meta-analysis
monitors e-values as events come in, also when they do so from multiple trials simultane-
ously. In the language of betting, even the analysis of simultaneous events is considered a
sequential bet. If the bet on the events from one trial pays out =C4, it multiplies our initial
capital by 4, and if the events from another trial pay out =C5, it does so by a factor 5. Yet
if we actually consider those trials to be consecutive bets, we reinvest the =C4 from the
first into the second, and obtain =C1 · 4 · 5 = =C20, as follows from the definition of the
meta-analysis e-value on interim data in (1.4).

Figure 1.6 illustrates what going ALL-IN means: the evidence in all studies can be moni-
tored and compared to the required threshold at any time. The hypothesis test is carried
out by comparing the meta e-value in blue to the threshold 1/α of 400, plotted as a dot-
ted line. Because the meta-analysis is anytime and live a conclusion is reached whenever
the e-value sequence passes that threshold. The synthesis of studies can efficiently lead
the decision to stop recruiting, treat the placebo group or discourage new trials to start,
while encouraging inspection of each individual trial’s contribution to the meta-analysis.
Since each trial’s contribution is a simple multiplication, their components can often be
conveniently spotted in the agreement of the shape of the meta-analysis and individual
trial lines in a dashboard like Figure 1.6 (as long as not too many trials are contributing
simultaneously).

Collaboration in a competitive field or a pandemic ALL-IN meta-analysis also pre-
vents losing type-I error control when many trials compete for answers on the same re-
search question, e.g. in an uncoordinated scientific response to a pandemic. If trials are
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only evaluated in isolation and a response follows the first positive result of a single trial,
serious multiple testing issues arise that inflate the type-I error and result in unreliable
inference and, subsequently, poor decisions. This happens especially if all trials perform
interim analyses on their own, and a type-I error occurs at an interim analyses before any
other trial results are published to refute it. The example dashboard also clearly demon-
strates decreased type-II errors: synthesizing the evidence in a meta-analysis at interim
stages of the trials, and not after trials are completed, improves the ability to find an effect
early. Collaboration is indeed much more efficient.

1.3.3 Fixed-effects and random-effects meta-analysis
Sutton et al. (2007, p. 2491) note that “in a meta-analysis with considerable heterogene-
ity, the impact of a new (large) study will be (much) less in a random compared to fixed
effect model”. This is due the incorporation of a parameter in the model that represents
the between-study variation. Also Kulinskaya and Wood (2014) find that the goal of se-
quentially updating a random-effect meta-analysis might involve planning a large number
of small trials to estimate the between-study variance well. Even if that is considered ad-
visable, a random-effects model result might still be very difficult to interpret (Riley et al.,
2011). Hence there are various reasons to prefer the fixed-effects model to monitor evi-
dence efficiently and to ensure that the trials are sufficiently homogeneous.

Alongside ALL-IN-META-BCG-CORONA we initiated a second ALL-IN meta-analysis. While
the first included trials on healthcare workers, the second included trials in the elderly.
Early in the process, before seeing any data, our Steering committee noticed that the two
groups could be very different. Based on a theory of innate and trained immunity, they
expected a different effect of the BCG vaccine on the younger immune system of health-
care workers than on the older immune system in the elderly. It could even be that the
BCG vaccine effect was beneficial in the ability to fight off Covid-19 in one population but
harmful in the other. In general, the differences between trials can be in three categories:
heterogeneous effects, conflicting effect and multiple testing.

Heterogeneous effects Our Steering committee decided that to declare success, all in-
cluded trials in healthcare workers should observe an effect of 20% VE or larger. If they
indeed do, heterogeneity in their effect sizes (e.g. one 20%, one 50%, one 25%) does not
matter for their joint ability to reject the global null hypothesis of no effect in all trials.
So for testing the global null, trials are allowed to be heterogeneous in where they are in
the space of the alternative hypothesis H1 = {VE : 20%≤ VE≤ 100%}. For estimation,
however, it is not clear what the ALL-IN confidence interval is estimating if we assume
that the effects in the trials are very different. Still, as a first summary, a typical effect size
(Peto, 1987) might be useful if we are unable to estimate a random effects model. The
development of confidence sequences for random-effects meta-analysis is a major goal for
future work. We do not, however, believe that the evidence in a line of research should
be monitored based on whether this interval excludes the null hypothesis, or whether the
e-value corresponding to the random-effects null model does: for testing, the global null
is much more natural. Waiting for a random-effect model to reach a certain threshold
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is counter-intuitive, since it might require many small trials to estimate the between-trial
variability instead of focusing on testing the treatment effect. Moreover, the goal of reject-
ing the null hypothesis corresponding to this model can be quite strange. When testing a
zero-effect null hypothesis, it assumes that there are true effects of harm and true effects
of benefit among the trials and that their mean is exactly zero.

Conflicting effects If one of the trials has an effect smaller than 20% or even a harmful
effect, we should anticipate betting scores or e-values that are smaller than 1. So a meta-
analysis multiplication of those e-values would reduce the evidence available from other
trials. If we can identify groups for which we expect that the trials in each group have
an effect in the same direction and of at least the minimal size, we can perform separate
meta-analyses. This was the rationale behind grouping healthcare workers and the elderly
each in their own ALL-IN-META-BCG-CORONA analysis.

Multiple testing When our analysis is exploratory, and we really have no idea how to
group the various trials, we are faced with a multiple testing problem. Note that in this
situation also no conventional meta-analysis method would be used to test a common
null-hypothesis. We wonder whether any of the trials has the ability to reject the null
hypothesis. In that case, we can divide our initial investment over the trials, and see if
the totality of their bet achieves a high betting score. Research into this use of e-values
has shown that indeed averaging e-values is the optimal way to have type-I error control
in a standard multiple testing setting (Vovk and Wang, 2021). We return to the notion of
hedging bets and averaging e-values in Section 1.4.

Problems with heterogeneity in meta-analysis are not tied to the ALL-IN approach and
familiar to anyone working with meta-analysis methods. ALL-IN-META-BCG-CORONA
had the advantage that many of the trials that started later had drawn inspiration from
the protocol of the first trial. The same sort of alignment of inclusion criteria and outcome
definitions might be achieved in other lines of research as well. Hence close collaboration
can be very important and the promise of an early conclusion of the research effort might
keep a research field motivated to keep the goals aligned.

1.4 Communication
We have illustrated that the language of betting can be useful in interpreting results from
an ALL-IN meta-analysis. Here we argue this further by giving extensions of our method
that are very easily explained in terms of betting.
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1.4.1 The language of betting for two-sided tests
Our examples so far covered one-sided tests, but those can be easily extended to two-sided
tests, e.g. by taking
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1
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Such a two-sided test is easy to interpret in the language of betting. We essentially split our
initial investment (e.g. =C1) between the two sides of the alternative hypothesis (e.g. by
betting =C0.50 on one side and =C0.50 on the other). Any other weighting of the two sides is
also possible and corresponds to a different division of the initial investment. The crucial
thing is that each side tests the same null hypothesis H0 = {φµ0

} and has expectation 1
under the null hypothesis, such that any weighted average also has expectation 1 and is
an e-value. Note that for a meta-analysis at time t with k〈t〉 studies this becomes:
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Usually one side of the bet is losing and the other is winning such that we do not want
to reinvest (multiply) across sides but keep them separate for all trials. In our ALL-IN-
META-BCG-CORONA dashboard we also visualized these two sides of the meta-analysis
test separately; in Figure 1.6 we show only the left-sided test (for benefit) of the two.

1.4.2 The language of betting for co-primary endpoints
Another way to hedge our bets is by considering multiple primary outcomes. In ALL-IN-
META-BCG-CORONA, for example, not only the Covid-19 events were counted, but Covid-
19 hospitalizations as well, as an indicator for severe disease. We started with α = 0.05
and put 10% on Covid-19 (α = 0.0025 on each of the two sides of a two-sided test) and
90% on hospitalisations (α = 0.0225 on each of the two sides of a two-sided test). So
the thresholds to achieve with the e-value for Covid-19 was set at 1/α= 400 and the one
for hospitalization at 1/α = 44.44. A different way to formulate this is that each had to
achieve 1/α = 20, but that the sequence of e-values for Covid-19 started with an initial
investment of =C0.05 for each side of the two-sided test (and had to multiply by 400 to
reach =C20) and that the e-value for hospitalization started with an initial investment of
=C0.45 for each side (and had to multiply by 44.44 to reach =C20).

There are two ways to consider such a bet on two co-primary outcomes: separately and
combined. If we evaluate the e-values for each primary outcome separately and reach the
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threshold with either of the two, we are rejecting the null for that outcome. We are doing
two separate tests. If we evaluate the e-values combined, we average them weighted by
their α, just as for the two sides of the two-sided test. In that case we have similar type-I
error control, but reject the null hypothesis that both are a null effects in favor of the
alternative hypothesis that one of them is not. Yet we cannot conclude which one is non-
null with the same type-I error since our α level applies to the combined bet and the
individual components to the averaged bet are essentially lost.

1.5 Concluding remarks
The novelty of this chapter lies in a new method for meta-analysis. We do not claim any
novelty for the underlying mathematics, though. The basic methods we describe can be
viewed as relatively minor variations of the anytime-valid tests that are designed to pre-
serve type-I error under optional stopping, as designed by H. Robbins and his students
(Darling and Robbins, 1968; Robbins, 1970). Unfortunately and surprisingly, these tests
have not caught on in statistics until a few years ago – right now they are thriving in
work on so-called safe tests, anytime-valid confidence sequences and e-values e.g. Shafer
et al. (2011); Johari et al. (2021); Pace and Salvan (2019); Howard and Ramdas (2019);
Howard et al. (2021); Ramdas et al. (2020); Vovk and Wang (2021); Shafer (2021); Grün-
wald et al. (2019); Turner et al. (2021); Henzi and Ziegel (2021). As far as we know, it
has never before been suggested to use such methods in a meta-analysis context. (Group
sequential methods, which have originally also been inspired by the anytime-valid tests,
have in turn spurred developments in meta-analysis, but these are substantially different
from ALL-IN.) Also, the fact that the logrank test can give a likelihood ratio of the type
needed for an anytime-valid test/an ALL-IN meta-analysis is a new finding described in
Chapter 2.

Likelihood ratios, E-variables and e-values
In this chapter we presented betting scores/e-values that are equivalent to likelihood ra-
tios. In general though, betting scores and e-values are really generalizations of likelihood
ratios that preserve the properties of likelihood ratios that give them a prominent role in
statistics. Entire books have been written to advocate for summarizing evidence in ob-
served data by a likelihood ratio (Edwards, 1974; Royall, 1997) and to separate the goal
of measuring evidence from expressing posterior beliefs and making decisions. Likelihood
ratios have the property that they can “favor a true hypothesis over a false one more and
more strongly” and while a likelihood ratio can be misleading, “strong evidence cannot
be misleading very often” (Royall, 1997, p. 14). This latter type-I error control is also
referred to as a universal bound by Royall (1997) and, by recognizing Ville’s inequality,
can be generalized to other betting scores and e-values.

A betting score € is a random outcome of a bet and its random variable is an E-variable
if it is nonnegative and for all P ∈ H0, EP[€] ≤ 1. For a given outcome of the bet, the
value of such a random variable is the betting score or e-value. Ville’s inequality relies on
the multiplication of E-variables – forming a test martingale – which also has expectation
smaller than 1 and thus is itself an E-variable. For the example e-values in this chapter,
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the requirement on the expectation E0[LR] ≤ 1 holds for a simple null hypothesis, e.g.
H0 = {φ0}.

Apart from likelihood ratios of two simple hypothesis, e-values can also be defined for
more complicated tests – e.g. a t-test with a nuisance parameter for the variance – in
which case the unit expectation needs to hold not for a single mean-0-normal distribution
with known variance, but for all mean-0-distributions with any variance. Grünwald et al.
(2019) shows that it often is possible to construct E-variables for such composite testing
problems, which is why we consider the e-value the right generalization of the likelihood
ratio.

Anytime-valid confidence sequences
In this chapter we briefly presented a confidence sequence (in Figure 1.3) for the hazard
ratio or VE that was based on the Gaussian approximation to the logrank statistic and
the Peto (1987) estimator. This estimator can be derived from summary statistics and is
therefore still quite common in meta-analysis as a so-called two-stage method, although it
is advised against for extreme hazard ratios (Simmonds et al., 2011). Research into other
confidence sequences for the hazard ratio is still ongoing. For other estimation problems,
confidence sequences already have been thoroughly studied, for example for medians and
other quantiles (Howard and Ramdas, 2019), and odds ratios (Turner et al., 2021). These
have not, however, been extended to meta-analysis, and especially for the random-effects
meta-analysis model, research into confidence sequences is a major goal of future work.

Availability in software
The safestats R package (Turner et al., 2022) provides software to do an e-value analysis
for the t-test, Z-test, logrank test and 2x2-tables. Also functions are available to calcu-
late the power and implied target for these study designs. Confidence sequences can be
calculated for the odds ratio in 2x2-tables and the hazard ratio in time-to-event data.
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Appendices

1.A The inverse-conservative p-value
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Figure 1.A.7. Two-sided Z-test against the null hypothesis H0 = {φ0} observing z = 1.96
with a p-value of 0.05.

The standard way to introduce p-values in introductory texts is to use a graph like Fig-
ure 1.A.7 that shades the tail area of a sampling distribution under the null hypothesis
for an observed test statistic. In Figure 1.A.7 the observed test statistic is a Z-statistic of
1.96, such that the two-sided p-value is 0.05. The precise definition of this p-value for the
random variable Z and any observation z (e.g. z = 1.96) is:

p-value(z) = PZ∼φ0
[|Z | ≥ z] (1.A.1)

such that for all 0≤ α≤ 1: P0[p-value≤ α] = α, (1.A.2)

with P0 the probability under the null hypothesis. While explaining-p-by-picture is helpful
at first, it also has strong limitations. For example, if the sample size n is not fixed in
advance but determined by a fixed, a priori known stopping rule (e.g. stop as soon as
the first z comes in that has value > 2.5), then n will itself be random and the threshold
for the test statistic will depend on n; there is no evident visualization.4 For this reason,
it is common in theoretical statistics to define p-values directly as random variables that
have a uniform distribution under the null. From (1.A.1) and (1.A.2) we see that this is
compatible with the introductory approach.

Conservative p-values Defined by property (1.A.2), the standard (strict) p-value can
be generalized to a (conservative) p-value that does not have a uniform distribution, but

4An exception is the case in which there are just two possible sample sizes, n1 and n2, with the rule for
choosing between n1 and n2 based on the first n1 data points z(n1) given (e.g. stop if z(n1) > 2.5, continue
otherwise). We can then specify a bivariate distribution and evaluate the tail area for the combined observations
(e.g. (z(n1), z(n2))). This is sometimes illustrated in introductory texts on group-sequential methods, but cannot
be extended beyond this (3D) bivariate case.
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whose distribution is stochastically dominated by the uniform distribution under the null
hypothesis. This means that the equality in equation (1.A.2) is replaced by an inequality:

P0[p-value≤ α]≤ α. (1.A.3)

For such conservative p-values, it still holds that, for any fixed significance level α, the
test that rejects if p ≤ α has type-I error at most α. The inequality is thus in the right
direction to preserve type-I error guarantees.

Our first observation is very simple: for any fixed n, the likelihood ratio LR(n) is an inverse-
conservative p-value for samples of that size n, i.e. (1.A.3) holds with ‘p-value’ set to
1/LR(n). However, simply viewing LRs as inverse conservative p-values is not nearly doing
them sufficient justice. A better (yet still incomplete) comparison is to ‘anytime-valid p-
values’, a terminology that stems from Johari et al. (2021). Whereas standard p-values
only make sense for an a priori given, fixed sample size n or a priori given, fixed stopping
rule, anytime-valid p-values are really sequences p′1, p′2, . . ., one for each sample size n.
Even if the stopping rule for determining n is unknown in advance, or unclear, or greedy
(‘stop at first n such that pn ≤ α’), the type-I error guarantee is preserved. It turns out that
the inverse of the LRs as defined for ALL-IN meta-analysis can be viewed in this way: the
sequence (1/LR(1), 1/LR(2), . . .) as defined in Section 1.1 is a sequence of anytime-valid
p-values.

1.B R Code for calculations, simulations and plots
R code for the calculations, simulations and plots in this chapter can be found on the
Open Science Framework (Ter Schure, 2021b, https://osf.io/d9jny/), including:

• Settings of the FDA game

• Pfizer/BioNtech results in the FDA game

• CureVac results in terms of confidence interval and the FDA game

• Plotting the FDA game betting scores under the null hypothesis (Figure 1)

• Plotting the expected sample size for various strategies in the FDA game (Figure 2)

• Plotting the anytime-valid confidence sequence for a random ordering of the Cure-
Vac data (Figure 3)

• Plotting the implied target of the CureVac design in the FDA game (Figure 4 & 5)

• Plotting a p-value of 0.05 (Figure 6; Appendix)

https://osf.io/d9jny/




2| The Safe logrank test

Abstract
We introduce the safe logrank test, a version of the logrank test that provides type-I er-
ror guarantees under optional stopping and optional continuation. The test is sequen-
tial without the need to specify a maximum sample size or stopping rule and allows for
cumulative meta-analysis with type-I error control. The method can be extended to de-
fine anytime-valid confidence intervals. All these properties are a virtue of the recently
developed martingale tests based on E-variables, of which the safe logrank test is an in-
stance. We demonstrate the validity of the underlying nonnegative martingale in a semi-
parametric setting of proportional hazards and show how to extend it to ties, Cox’ regres-
sion and confidence sequences. Using a Gaussian approximation on the logrank statistic,
we show that the safe logrank test (which itself is always exact) has a similar rejection
region to O’Brien-Fleming α-spending but with the potential to achieve 100% power by
optional continuation. Although our approach to study design requires a larger sample
size, the expected sample size is competitive by optional stopping.

Introduction
Traditional hypothesis tests and confidence intervals lose their type-I error and coverage
guarantees, thus, validity and interpretability, under optional stopping and continuation.
Roughly, optional stopping refers to stopping earlier than originally planned, for example,
when results look good enough; optional continuation refers to adding additional data at
the end of a trial, or even starting a new trial and combining results, for example, when
results of the trial are promising but not fully conclusive.

Recently, a new theory of testing and estimation has emerged for which optional stop-
ping and continuation pose no problem at all (Shafer et al., 2011; Howard et al., 2021;
Ramdas et al., 2020; Vovk and Wang, 2021; Shafer, 2021; Grünwald et al., 2019; Turner
et al., 2021). The main ingredients are (1) the E-variable that has as outcome an e-value,
a direct alternative to the classical p-value, and (2) the test martingale, a product of con-
ditional E-variables. Both are used to create so-called safe tests that provide type-I error
control under optional stopping and optional continuation, and anytime-valid confidence
intervals that remain valid irrespective of the stopping time employed. Pace and Salvan
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(2019) argue that even without optional stopping, anytime-valid confidence intervals may
be preferable over standard ones. Here we provide a concrete instance of this theory: we
develop E-variables and martingales for a safe version of the classical logrank test of sur-
vival analysis (Mantel, 1966; Peto and Peto, 1972): safe under both optional stopping and
continuation. The E-variables, martingales and the corresponding tests are implemented
in the SafeStats R package (Turner et al., 2022).

The logrank test is often used in randomized clinical trials to test a difference between two
groups in survival time or other time to an event. Its test statistic appears as the score test
corresponding to the Cox (1972) proportional hazards model – when the only covariate
is the treatment/control indicator – and is also a key tool in statistical monitoring of trials
by means of group sequential/α-spending approaches. These sequential methods allow
several interim looks at the data to stop for efficacy or futility. Like ours, they are connected
to early work by H. Robbins and his students (Darling and Robbins, 1967; Lai, 1976), but
the details are very different and in some cases, our approach is more straightforward. In
case of unbalanced allocation, for example, α-spending approaches do not provide strong
type-I error guarantees (Wu and Xiong, 2017) due to the approximations involved. The
basic version of the safe logrank test, however, is exact, without any approximations, so
that unbalanced allocation is no problem at all. This ties to the important advantage of
using E-variables instead of α-spending: it is more flexible, and as a consequence, easier
to use.

Group sequential approaches require prespecified interim looks, in terms of the informa-
tion fraction of the trial; α-spending is less rigid but still needs a maximum sample size to
be set in advance. These requirements limit the utility of a promising but non-significant
trial once the maximum sample size is reached, because extending such a trial makes it im-
possible to control the type-I error. Moreover, also new trials cannot be added in a typical
retrospective meta-analysis (not prespecified before any trial), when the number of tri-
als or timing of the meta-analysis are dependent on the trial results. Such dependencies
introduce accumulation bias and invalidate the assumptions of conventional statistical
procedures in meta-analysis (Chapter 3). In contrast, an analysis based on E-variables
can extend existing trials as well as inform whether to do new trials and meta-analyses,
while still controlling type-I error rate. Type-I error control is retained even (i) if the e-
value is monitored continuously and the trial is stopped early whenever the evidence is
convincing, (ii) if the evidence of a promising trial is increased by extending the experi-
ment and (iii) if a trial result spurs a new trial with the intention to combine them in a
meta-analysis. Even with dependence between the trials, the test based on the multipli-
cation of these e-values retains the type-I error control, as long as all trials test the same
(i.e., global) null hypothesis. This becomes especially interesting if we want to combine
the results of several trials in a bottom-up retrospective meta-analysis, where no top-down
stopping rule can be enforced. We can even combine interim results of trials by multiplica-
tion while these trials are still ongoing – going beyond the realm of traditional sequential
approaches.
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Contributions and content We show that Cox’ partial likelihood underlying his propor-
tional hazards model can be used to define E-variables and test martingales. We first do
this for (a) the case with only a group indicator (no other covariates) and without simul-
taneous events (ties) in Section 2.1.1, leading to a logrank test that is safe for optional
stopping. We extend this to (b) the case with ties in Section 2.1.2 and to (c) a Gaussian
approximation on the logrank statistic in Section 2.1.3 that is useful if only summmary
statistics are available. We provide extensive computer simulations in Section 2.2 and Sec-
tion 2.3, comparing our ‘safe’ logrank test to the traditional logrank test and α-spending
approaches. In Section 2.2 we show that the exact safe logrank test has a similar rejec-
tion region to O’Brien-Fleming α-spending for those designs and hazard ratios where it
is well-approximated by a Gaussian safe logrank test (case (c)). While always needing
a bit more data in the design phase (the price for indefinite optional continuation), the
expected sample size needed for rejection remains very competitive. We might want to
design for a maximum sample size to achieve a certain power, but need a smaller sample
size on average since we can safely engage in optional stopping. In Section 2.4 we extend
the approach in various directions: first, in its basic version, the safe logrank test requires
specification of a minimum clinically relevant effect size. If instead one wants to learn
the actual effect size of the data and/or infuse prior knowledge about the effect size into
the method via a Bayesian prior, this can be done without any difficulties. The resulting
version of the safe test keeps providing non-asymptotic frequentist type-I error control
even if these priors are wildly misspecified (i.e., they predict very different data from the
data we actually observe); this is discussed in Section 2.4.1. We then show how our lo-
grank test can be inverted to allow for anytime-valid confidence sequences (Section 2.4.2),
and we provide the extension to covariates (Section 2.4.3). This extension, based on the
Cox model, requires solving a complicated optimization problem and implementation is
therefore deferred to future work.

To keep the exposition simple, when introducing our methods we represent data by a
simplified discrete-time stochastic process, in which our test statistics take the form of
likelihood ratios. In Appendix Section 2.A we show how our test statistics remain valid
E-variables and test martingales under a proportional hazard assumption in continuous
time; our likelihood ratios then become partial likelihood ratios. Once the definitions
are in place, these results are mostly straightforward consequences from earlier work, in
particular (Cox, 1972; Slud, 1992; Andersen et al., 1993). The novelty of our work is thus
mainly in defining the new tests in the first place and showing by computer simulation
that, while being substantially more flexible, they show competitive behavior with existing
approaches, i.e. the classical logrank test in the fixed design setting and in combination
with α-spending.

We delegate to the Appendix insights that, while important, are not needed to follow
the main development. Most importantly, the particular E-variable we design satisfies the
GROW criterion. Grünwald et al. (2019) provide several motivations for this criterion.
We provide an additional one in Appendix Section 2.B by an argument (originally due
to Breiman (1961), but not widely known) showing that it leads to tests with minimal
expected stopping time. In the remainder of this introduction, we provide a short intro-
duction to E-variables, test martingales and safe tests.
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E-Variables, Test Martingales, Safety and Optimality
In this subsection we briefly introduce general concepts necessary to develop E-variables
for the logrank test. The concepts are borrowed from Grünwald et al. (2019) (GHK from
now on), which provides an extensive introduction to E-variables and its relation to like-
lihood ratios and Bayes factors. As seen in Example 1 below, when both the null H0 and
alternative hypotheses H1 are simple, the most familiar E-variable is the likelihood ratio
itself, where the product of likelihood ratios is also an E-variable. In fact, it is the best
E-variable in the GROW sense defined further below. Similarly, when H0 and or H1 are
composite, E-variables are often, but certainly not always, Bayes factors; and Bayes factors
are certainly often, but not always E-variables. E-variables also have a crisp interpretation
in terms of betting scores (GHK, Shafer (2021)). Briefly, a test martingale, which is the
running product of a sequence of E-variables, describes the total profit you have made so
far in a sequential gambling game in which you would not expect to win any money if
the null were true. As a consequence, as expressed by (2.3) below, when the null holds
true, there is little chance for the martingale to ever take on a large value. The general
story that emerges from papers such as Shafer’s as well as GHK and Ramdas et al. (2020)
is that E-variables and test martingales are the ‘right’ generalization of likelihood ratios
to the case that either or both H0 and H1 are composite. Existing tests based on general-
izations of likelihood ratios to composite testing problems that are not E-variables often
show problematic behavior in terms of nonasymptotic error control, whereas those gen-
eralizations that are E-variables can be combined freely over experiments while retaining
type-I error control, thereby providing an intuitive notion of evidence.

Definition 2.0.1. Let S be a nonnegative random variable defined on a sample space Ω,
and let H0, the null hypothesis, be a set of distributions for Ω. We call S an E-variable if
for all P ∈ H0, EP[S] ≤ 1. For arbitrary random variable Z on Ω, S is called an E-variable
conditional on Z if for all P ∈ H0, EP[S | Z]≤ 1. A (conditional) E-variable is called sharp
if for all P ∈ H0, the inequality holds as an equality.

We now consider not a fixed sample space, but a sequence of samples.

Definition 2.0.2. Let Y〈1〉, Y〈2〉, . . . represent a discrete-time random process and let H0,
the null hypothesis, be a collection of distributions for this process. Fix i > 0 and let S〈i〉 be
a nonnegative random variable that is determined by (i.e. can be written as a function of)
(Y〈1〉, . . . , Y〈i〉). As an instance of Definition 2.0.1, for1 i ≥ 0, we say that S〈i + 1〉 is an
E-variable conditionally on (Y〈1〉, . . . , Y〈i〉) if for all P ∈ H0,

EP [S〈i + 1〉 | Y〈1〉, . . . , Y〈i〉]≤ 1. (2.1)

Definition 2.0.3. If, for each i, S〈i〉 is an E-variable conditional on Y〈0〉, . . . , Y〈i−1〉, then
we say that the product process S〈1〉, S〈2〉, . . . with S〈n〉 :=

∏n
i=1 S〈i〉 is a test supermartingale

relative to the given H0. If all constituent E-variables are sharp, we call the process a test
martingale.

1For the case i = 0, (2.1) should be read as EP [S〈1〉]≤ 1 .
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We note that, for a supermartingale S〈1〉, S〈2〉, . . ., each S〈i〉 is itself an (unconditional)
E-variable.2

Example 1. [(Partial) Likelihood Ratios as E-Values and Test Martingales] Let H0 =
{P0} and H1 = {P1} both be simple, each containing a single distribution for the process
Y〈1〉, Y〈2〉, . . . with each Y〈i〉 taking values in a finite setY . Let, for each i ∈ N, p0(Y〈i+1〉 |
Y〈1〉, . . . , Y〈i〉) and p1(Y〈i + 1〉 | Y〈1〉, . . . , Y〈i〉) be the conditional probability mass func-
tions corresponding to P0 and P1. Then S〈i+1〉 := p1(Y〈i+1〉 | Y〈1〉, . . . , Y〈i〉)/p0(Y〈i+1〉 |
Y〈1〉, . . . , Y〈i〉) is a sharp E-variable, as is seen from calculating (2.1) (an explicit calcula-
tion is given for the logrank test in (2.9)). Further, S〈n〉 =

∏n
i=1 p1(Y〈i〉 | Y〈1〉, . . . , Y〈i −

1〉)/p0(Y〈1〉, . . . , Y〈i〉 | Y〈i − 1〉) = p1(Y〈1〉, . . . , Y〈n〉)/p0(Y〈1〉, . . . , Y〈n〉) is the likelihood
ratio for the first n outcomes, and the test supermartingale S〈1〉, S〈2〉, . . . is a likelihood
ratio process.

More generally, let Y〈1〉, Y〈2〉, . . . be a discrete stochastic process defined on an arbitrary
underlying measurable space (which may e.g. represent time as a continuous-valued
random variable) and let H0 be any set of probability distributions on this space such
that all elements in H0 agree on the conditional probability mass functions p0(Y〈i + 1〉 |
Y〈1〉, . . . , Y〈i〉)) for i = 1, 2 . . .. Let q(Y〈i+ 1〉 | Y〈1〉, . . . , Y〈i〉)), i = 1, 2, . . . and r(Y〈i+ 1〉 |
Y〈1〉, . . . , Y〈i〉)), i = 1,2, . . . denote any other sequence of conditional probability mass
functions for this discrete process. Then we have, by the same explicit calculation, that

S〈i + 1〉 :=
r(Y〈i + 1〉 | Y〈1〉, . . . , Y〈i〉)
q(Y〈i + 1〉 | Y〈1〉, . . . , Y〈i〉)

is a sharp conditional E-variable

if p0(Y〈i + 1〉 | Y〈1〉, . . . , Y〈i〉)) = q(Y〈i + 1〉 | Y〈1〉, . . . , Y〈i〉)). (2.2)

If this is indeed the case for each i, then S〈1〉, S〈2〉, . . . with S〈n〉 =
∏n

i=1 r(Y〈i〉 | Y〈1〉, . . . , Y〈i−
1〉)/p0(Y〈i〉 | Y〈1〉, . . . , Y〈i − 1〉) =
r(Y〈1〉, . . . , Y〈n〉)/p0(Y〈1〉, . . . , Y〈n〉) is a test martingale and S〈n〉 is now in general not a
full, but so-called partial likelihood — but the difference will not matter for our purposes.

For the special case of likelihood ratios, the following safety result is referred to as a
universal bound by Royall (1997).

Safety The interest in E-variables and test martingales derives from the fact that we have
type-I error control irrespective of the stopping rule used: for any test (super-) martingale
{S〈i〉}i∈N relative to {Y〈i〉}i∈N and H0, Ville’s inequality (Ville, 1939; Shafer et al., 2011)
tells us that for all 0< α≤ 1, P ∈ H0,

P(there exists i such that S〈i〉 ≥ 1/α)≤ α. (2.3)

In other words, under the null there is little chance (e.g., less than or equal to 5%) that a
supermartingale S〈i〉 will ever realize a large value (e.g., larger than 20). Ville’s inequality

2Readers familiar with measure-theoretic terminology may recognize a test (super-) martingale as a non-
negative (super-) martingale relative to the filtration σ(Y〈1〉),σ(Y〈1〉, Y〈2〉), . . .. The requirement that ‘S〈i〉 is
determined by (Y〈1〉, . . . , Y〈i〉)’ then means that the process {S〈i〉}i∈N is adapted to this filtration.
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implies that type-I error control is guaranteed regardless of the stopping rule, which may
be deterministic, e.g., stop after 100 samples, or data-driven, e.g., stop as soon as S〈i〉 ≥
20, or may be exogenuously determined, e.g. stop when your boss tells you to.

Thus, if we measure evidence against the null hypothesis after observing i data units by
S〈i〉, and we reject the null hypothesis if S〈i〉 ≥ 1/α, then our type-I error will be bounded
by α, no matter what stopping rule was used for determining i. We thus have type-I
error control if we run out of data, or money to gather new data, and even if we use the
most aggressive stopping rule compatible with this scenario: stop at the first i at which
S〈i〉 ≥ 1/α. We also have type-I error control if the actual stopping rule is unknown to us,
or determined by external factors independent of the data Y〈i〉 – as long as the decision
whether to stop depends only on past data, and not on the future. This is impossible to
achieve with standard Neyman-Pearson tests.

We will call any procedure that takes as input stopping time τ, significance level α and
the sequence of random variables S〈1〉, S〈2〉, . . ., that stops at (random) time τ and that
outputs REJECT if S〈τ〉 ≥ 1/α and accept otherwise, a level α-test that is safe under optional
stopping, or simply a safe test.

Importantly, we can also deal with optional continuation: we can combine E-variables
from different trials that share a common null (but may be defined relative to a different
alternative) by multiplication, and still retain type-I error control – see Example 3. If
we used p-values rather than E-variables we would have to resort to e.g. Fisher’s method,
which, in contrast to multiplication of e-values, is invalid if there is a dependency between
the (decision to perform) tests. Finally, E-variables and test martingales can also be used
to define ‘anytime-valid confidence intervals’ that remain valid under optional stopping
(Section 2.4.2).

Optimality Just like p-values, E-variables only require the specification of a null model
H0. Provided with such a null model, we can typically specify a large class of E-variables,
denoted here by S , all which remain small with high probability under the null. If, on
the other hand, the data are governed by a distribution belonging to a given alternative
model H1, then we would like to choose that E-variable from S that accumulates evi-
dence against the null as fast as possible. The speed of evidence accumulation under the
alternative is defined (conservatively) as the smallest expectation of the logarithm of the
E-variable under the alternative, see GHK and Shafer (2021) for various reasons for this
choice. More specifically, provided with an alternative H1, the growth rate of a conditional
E-variable S〈i〉 under distribution P1 ∈ H1 is defined as EP1

[log S〈i + 1〉 | Y〈1〉, . . . , Y〈i〉].
The optimal E-variable amongst all E-variables conditional on Y〈1〉, . . . , Y〈i〉 is that S that
solves the criterion

max
S

min
P∈H1

EP[log S〈i + 1〉 | Y〈1〉, . . . , Y〈i〉]. (2.4)

We call the optimal E-variable GROW, i.e., growth-rate optimal in worst-case. Appendix
Section 2.B provides another motivation for using the logarithm to measure the speed
of evidence accumulation, originally provided by Breiman (1961). Specifically, we show
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that, under the alternative, the GROW E-variable minimizes the expected number of data
points needed to reject the null if no maximum sample size is specified. Note that this
is analogous to finding a test that maximizes power. In Section 2.3 we provide some
simulations to relate power to GROW. Note that we cannot directly use power in designing
tests, since the notion of power requires a fixed sampling plan, which by design we do
not have.

2.1 Safe logrank tests
The classical logrank test compares the risk of an event in two groups (e.g. a treatment
and a control group) in a nonparametric test, meaning that it requires no underlying
(parameterized) distribution on the event times. No matter when the events occur, the
null hypothesis assumes that their probability is equal for all participants, regardless of
their group. We can flip this null hypothesis on its head for each event time: given that
an event has occurred, it has equal probability to have been in either the treatment or
the control group, when an equal number of participants are at risk in both groups; more
generally, the probability ratio between an event in both groups is equal to the ratio of
participants in these groups. That risk set (of participants at risk) changes with each event
so the test crucially relies on the order (the ranks) of the events.

Logrank hypotheses tested We observe a sequence of event times t〈1〉< t〈2〉< t〈3〉<
. . . such that for all i, at time t〈i〉, one event happens, and inbetween t〈i〉 and t〈i + 1〉,
no events happen. The time until the ith event occurs – t〈i〉 itself – does not play a role
in the logrank statistic; only the ordering of events matters. The hypothesis tested by the
logrank test can be expressed in terms of the instantaneous risk to experience an event
– the hazard λ1 in the treatment group and λ0 in the control group – at each event time
t〈i〉 (Klein and Moeschberger, 2006, p. 206):

H0 : λ1(t〈i〉) = λ0(t〈i〉), for all event times i,

H1 : λ1(t〈i〉) and λ0(t〈i〉) are different, for some event times i.

Logrank statistic for single events Let Y1〈i〉 denote that number of participants in
the risk set that are in the treatment group at the time of the ith event and Y0〈i〉 for
the number of participants at risk in the control group. We use the standard notational
convention that Y1〈i〉+Y0〈i〉 includes the participant experiencing the ith event. Let O1〈i〉
and O0〈i〉 count the number of observed events in the treatment group and control group
at the ith event time. These always describe a single event in this section: O1〈i〉 = 1 and
O0〈i〉 = 0 if the event occurred in the treatment group, and O1〈i〉 = 0 and O0〈i〉 = 1 if
a single event occurred in the control group. We extend this Bernoulli case to multiple
simultaneous events (ties) – in which case O1〈i〉 can be larger than 1 – in Section 2.1.2.
The logrank statistic for a sample size of n single events with nonempty risk sets (i.e.
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Y1〈i〉> 0, Y0〈i〉> 0) is the following (for the treatment group 1):

Z =

∑n
i=1

�

O1〈i〉 − E1〈i〉
	

q

∑n
i=1 V1〈i〉

with E1〈i〉=
Y1〈i〉

Y0〈i〉+ Y1〈i〉
; V1〈i〉= E1〈i〉 ·

�

1− E1〈i〉
�

.

(2.5)
For sufficiently large sample size (number of events n), the logrank Z-statistic has an
approximate standard normal (Gaussian) distribution under the null hypothesis.

2.1.1 The safe logrank test for single events
Logrank partial likelihood for single events If we assume that our hazards follow the
Cox (1972) proportional hazards model, we obtain a more explicit alternative hypothesis
for the logrank test in terms of a constant hazard ratio θ :

H0 : λ1(t〈i〉) = θ ·λ0(t〈i〉), for all event times t〈i〉, with θ = 1,

H1 : λ1(t〈i〉) = θ ·λ0(t〈i〉), for all event times t〈i〉, with θ 6= 1.

This turns the nonparametric logrank test into a semi-parametric test for which we can
formulate a partial likelihood. For now, we model the data by a simplified process in which
this partial likelihood is simply a standard likelihood, returning to the ‘partial’ interpreta-
tion further below.

We define a risk set process ~Y〈1〉, ~Y〈2〉, ~Y〈3〉, . . . with ~Y〈i〉 =
�

Y0〈i〉, Y1〈i〉
�

that describes
how many participants are at risk at each event time in the treatment and control group.
For simplicity, we assume no censoring, but the likelihood we develop remains valid if the
risk set changes because of left-truncation or noninformative right-censoring. At the time
of the first event, everyone is at risk, captured by Y1〈1〉= m1, the number of participants
allocated to the treatment group, and Y0〈1〉 = m0, the number allocated to the control
group. At each event time i, if O1〈i〉 = 1 (event in treatment group) then Y1〈i + 1〉 :=
Y1〈i〉 − 1 and Y0〈i + 1〉 = Y0〈i〉, and analogously for the control group. To complete the
specification of the process, we now specify the probability that the single event occurs
in the treatment group, given that we have reached a new event time i. This probability
only depends on the risk set at the ith event time, so we set:

Pθ (O1〈i〉= o1 | ~Y〈1〉, ~Y〈2〉, . . . , ~Y〈i − 1〉, ~Y〈i〉) := Pθ (O1〈i〉= o1 | ~Y〈i〉);

Pθ (O1〈i〉= o1 | ~Y〈i〉= (y0, y1)) := qθ (o1 | (y0, y1)),

where o1 ∈ {0,1} and qθ is the conditional probability mass function of a treatment group
event, given that the ith event occurred. That is,

qθ
�

o1 | (y1, y0)
�

=
�

y1 · θ
y0 + y1 · θ

�o1
�

y0

y0 + y1 · θ

�1−o1

(2.6)

is the probability mass function of a Bernoulli y1θ/(y0 + y1θ )-distribution. This really
expresses that, given that there is an event, the probability of being the participant with
this event is θ/(y0 + y1θ ) for each participant in the treatment group, and 1/(y0 + y1θ )
for each participant in the control group. Summing the probabilities gives (2.6).
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Our process is fully specified by the product of conditional probability mass functions
(2.6). In particular, at the sample size of n observed events, the joint likelihood (proba-
bility mass of these n events as a function of the parameter θ conditional on the data) is
given by

L
�

θ | ~Y〈1〉, ~Y〈2〉, . . . , ~Y〈n〉
�

=
n
∏

i=1

qθ
�

O1〈i〉 | (Y0〈i〉, Y1〈i〉)
�

. (2.7)

We can think of (2.7) as a standard likelihood in the sample space implicitly defined
above, giving an extremely simplified handling of time. As we shall see in Section 2.4.3,
we can also think of it as a special case of Cox’ partial likelihood, obtained if there are no
covariates except for the treatment/control indicator. Further below we shall motivate it
further in terms of continuous time. Below, we illustrate the connection to the classical
logrank test.

Logrank score test for single events If we define β = logθ (following Cox (1972)),
take the score function U(β) of the likelihood in (2.7) and evaluate at β = 0, we get the
familiar ingredients of logrank statistic in terms of observed and expected events:

U(β) =
d logL(β | ~Y〈1〉, ~Y〈2〉, . . . , ~Y〈n〉)

dβ
=

n
∑

i=1

§

O1〈i〉 −
Y1〈i〉 · exp(β)

Y0〈i〉+ Y1〈i〉 · exp(β)

ª

,

−U ′(β) = −
d2 logL(β | ~Y〈1〉, . . . , ~Y〈n〉)

dβ2
=

n
∑

i=1

§

Y1〈i〉exp(β)
Y0〈i〉+ Y1〈i〉exp(β)

Y0〈i〉
Y0〈i〉+ Y1〈i〉exp(β)

ª

,

U(0) =
n
∑

i=1

§

O1〈i〉 −
Y1〈i〉

Y0〈i〉+ Y1〈i〉

ª

=
n
∑

i=1

�

O1〈i〉 − E1〈i〉
	

, −U ′(0) =
n
∑

i=1

E1〈i〉
�

1− E1〈i〉
�

.

Under the null hypothesis, standardizing U(0) with the variance −U ′(0) (dividing by the
observed Fisher information) gives the logrank Z-statistic in (2.5). This shows that the lo-
grank test is the score test corresponding to the likelihood (2.7), a fact already expressed
by Cox (1972) when introducing the proportional hazards model. A more detailed deriva-
tion is provided in Appendix Section 2.C.

Logrank E-variable For given θ0,θ1 > 0, define the following one-outcome likelihood
ratio

Mθ1,θ0
〈i〉 :=

L
�

θ1 | ~Y〈i〉
�

L
�

θ0 | ~Y〈i〉
� =

qθ1
(O1〈i〉 | Y1〈i〉, Y0〈i〉)

qθ0
(O1〈i〉 | Y1〈i〉, Y0〈i〉)

. (2.8)

Since the likelihood ratio of the ith event time depends only on the risk set at the ith event
time ~Y〈i〉, we can write out the expectation as follows

EPθ0

�

Mθ1,θ0
〈i〉 | ~Y〈1〉, . . . , ~Y〈i〉

�

= EPθ0

�

Mθ1,θ0
〈i〉 | ~Y〈i〉= (y1, y0)

�

=
∑

o1∈{0,1}

qθ0
(o1 | y1, y0) ·

qθ1
(o1 | y1, y0)

qθ0
(o1 | y1, y0)

=
∑

o1∈{0,1}

qθ1
(o1 | y1, y0) = 1. (2.9)
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This standard argument (as in Example 1) immediately shows that, under Pθ0
, for all i and

all θ1 > 0, Mθ1,θ0
〈i〉 is an E-variable conditional on ~Y〈1〉, . . . , ~Y〈i〉, and M 〈1〉

θ1,θ0
, M 〈2〉

θ1,θ0
, . . .

with

M 〈n〉
θ1,θ0

:=
n
∏

i=1

Mθ1,θ0
〈i〉 (2.10)

is a test martingale under Pθ0
relative to the risk set process ~Y〈1〉, ~Y〈2〉, ~Y〈3〉, . . .. Here we

note that Mθ1,θ0
〈i〉 corresponds to S〈i + 1〉 in Definition 2.0.2, and similarly M 〈i〉

θ1,θ0
corre-

sponds to S〈i+1〉, reflecting existing different notational conventions in the test martingale
and survival analysis literature.

Thus, by Ville’s inequality, we have the desired:

Pθ0

�

there exists n with M 〈n〉
θ1,θ0
≥ 1/α

�

≤ α. (2.11)

We can generalize Mθ1,θ0
by replacing qθ1

in (2.8) by another conditional probability mass
function ri(· | . . .) on x ∈ {0, 1}, allowed to depend on i and the full past sequence of risk
sets Y〈1〉, . . . , Y〈i〉. For any given sequence of such conditional probability mass functions,
r ≡ {ri}i∈N, we extend definition (2.8) to

Mr,θ0
〈i〉=

ri(O1〈i〉 | ~Y〈1〉, . . . , ~Y〈i〉)
qθ0
(O1〈i〉 | Y1〈i〉, Y0〈i〉)

; M 〈n〉r,θ0
:=

n
∏

i=1

Mr,θ0
〈i〉. (2.12)

For any choice of the ri , the analogue of (2.9) clearly still holds for the resulting Mr,θ0
,

making Mr,θ0
〈i〉 a conditional E-variable and its product process a martingale; and then

Ville’s inequality (2.11) must also still hold.

The Underlying Continuous Time Model The logrank test is usually justified based
on an underlying continuous time model. We now show that tests using M 〈n〉r,θ0

remain
valid under this same underlying model, which we now describe. We identify each of the
m = m0 + m1 participants by an index j ∈ {1, . . . , m}. The vector ~g ∈ {0,1}m encodes
group assignment, ~g j denoting the group assignment of participant j, so that the number
of 0-components of ~g is m0. We assume that the group assignment is fixed in advance.
For simplicity we assume no censoring, but as said, all results remain valid if the risk
set changes because of left-truncation or noninformative right-censoring. We assume that
each participant j ∈ {1, . . . , m} has an event at time T j , where T1, T2, . . . , Tm are indepen-
dent, and T j has distribution that is fully determined by j’s group membership: T j has
distribution P~g j

if patient j is in group g. For each participant j we let S j(t) = P~g j
{T j > t}

be its survival function and let λ~g j
(t) = − d

dt ln Si(t) its hazard function, which we assume
exists and is continuous. It will then depend on the participant only through its group
membership. The relation between the survival function and the hazard function implies
that the conditional probability that the event time T j falls in the interval (t, t + h] given
that T j > t, can be computed as

P~g j
{t < T j ≤ t + h| T j > t}= 1− exp(

∫ t+h

t

λ~g j
(s)ds) (2.13)
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for any t > 0. Under the proportional hazards ratio model, the ratio λ1(t)/λ0(t) remains
constant and takes the value θ . The results of Slud (1992) imply that under these assump-
tions (i.e. independence of T j and proportional hazards), the conditional distribution of
O1〈i〉 given Y1〈i〉, Y0〈i〉 is indeed uniquely defined and given by qθ0

(O1〈i〉 | Y1〈i〉, Y0〈i〉)
(see also Andersen et al. (1993) for closely related results); for convenience we give an
informal derivation (avoiding measure theory and ignoring censoring) of this result in
Appendix Section 2.A.

Combining this result with (2.2) we see that M 〈n〉r,θ0
remains a test martingale within this

standard continuous time model, and Ville’s inequality remains valid.

Example 2. [GROW alternative] The simplest possible scenario is that of a one-sided test
between the ‘no effect’ null hypothesis H0 (θ0 = 1) and a one-sided alternative hypothesis
H1 = {Pθ1

: θ1 ∈ Θ1} represented by a minimal clinically relevant effect size θmin. For
example, if ‘event’ means that the participant gets ill, then we would hope that under the
treatment, θmin would be a value smaller than 1 and we would have Θ1 = {θ1 : 0< θ1 ≤
θmin}. If ‘event’ means ‘cured’ then we would typically set Θ1 = {θ1 : θmin ≤ θ1 <∞}
for some θmin > 1. We will take the left-sided alternative with θmin < 1 as a running
example, but everything we say in the remainder of this chapter also holds for the right-
sided alternative. The GROW (growth-optimal in worst-case) E-variable as in (2.4) is given
by taking Mθmin,θ0

, i.e. it takes the θ1 ∈ Θ1 closest to θ0. That is,

max
θ1>0

min
θ∈Θ1

EPθ [log Mθ1,θ0
〈i〉 | Y1〈i〉, Y0〈i〉] =max

r
min
θ∈Θ1

EPθ [log Mr,θ0
〈i〉 | Y1〈i〉, Y0〈i〉]

is achieved by setting θ1 = θmin, no matter the values taken by Y1〈i〉, Y0〈i〉. Here the
second maximum is over all sequences of conditional distributions ri as used in (2.12).
Thus, among all E-variables of the general form Mr,θ0

〈i〉 there are strong reasons for
setting ri = qθmin

– this is further elaborated in Section 2.4 and Appendix Section 2.B.

Now suppose we want to do a two-sided test, with alternative hypothesis {Pθ1
: θ1 ≤

θmin ∨ θ1 ≥ 1/θmin} with θmin < 1. For this case, one can create a new ‘combined GROW’
E-variable

M 〈i〉two-sided :=
1
2

�

M 〈i〉
θmin,θ0

+M 〈i〉1/θmin,θ0

�

. (2.14)

It is then easy to verify that for each i, Mtwo-sided〈i〉 := M 〈i〉two-sided/M
〈i−1〉
two-sided is a condi-

tional E-variable, i.e. EPθ0

�

Mθ1,θ0
〈i〉 | Y1〈i〉, Y0〈i〉

�

= 1, and Mtwo-sided〈1〉, Mtwo-sided〈2〉, . . .
constitutes a test martingale; see GHK for details.

Example 3. [Meta-analysis] What if we want to combine several trials, conducted in
different hospitals or in different countries? In such a case we often compare a ‘global’
null – H0 is true in all trials – to an alternative that allows for different hazard ratios in
different trials, with different populations. We may thus associate the ith event at the kth

trial with E-variable Mθ1,k ,θ0
〈i, k〉, with θ1,k varying from trial to trial.

M〈i, k〉 :=
qθ1,k
(O1〈i, k〉 | Y1〈i, k〉, Y0〈i, k〉)

qθ0
(O1〈i, k〉 | Y1〈i, k〉, Y0〈i, k〉)
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denotes the E-variable corresponding to the ith event in the kth trial, with Y1〈i, k〉 and
Y0〈i, k〉 denoting the number of people at risk in the treatment and control group of trial
k at the ith event. The evidence against H0 after having observed nk events from trial k,
for k ∈ K , with K the subset of all trials for which some data is already available can
then be summarized as

MMETA :=
∏

k∈K

∏

i=1,...,nk

M〈i, k〉.

As GHK explain, in such cases the anytime-valid type-I error guarantee still holds: un-
der the global null, where θ = θ0 in all trials, the probability that there ever comes a
sequence of events in any combination of trials such that for this sequence, MMETA ≥ 1/α,
is still bounded by α. Thus, we effectively perform an on-line, cumulative and possibly
live meta-analysis here that remains valid irrespective of the order in which the events of
the different trials come in. Importantly, unlike in α-spending approaches, the maximum
number of trials and the maximum sample size (number of events) per trial do not have
to be fixed in advance; we can always decide to start a new trial, or to postpone to end a
trial and wait for additional events. This has many advantages in terms of collaboartion,
efficiency and communication of results (see Chapter 1).

2.1.2 Allowing for ties
In many settings we may observe ties: we cannot identify distinct event times for all
observed events and consider some of those events to have happened simultaneously. To
formalize this we first define Y〈i〉= Y1〈i〉+ Y0〈i〉 and O〈i〉= O1〈i〉+O0〈i〉. In case of a tie
at event time i, O〈i〉 is larger than one and consists of multiple events in the treatment
group (O1〈i〉 ≥ 1) and/or in the control group (O0〈i〉 ≥ 1). We cannot represent this
common situation with our simple process Pθ from Section 2.1.1, since it requires a fully
observable ordering of events. But we can easily extend it to ties by conditioning on the
number of observed events O〈i〉= o at each of the event times i with multiple events. The
probability distribution of the number of events in the treatment group O1〈i〉 is defined by
the Fisher noncentral hypergeometric distribution. Here O1〈i〉= o1 indicates the number
of events that are observed in the treatment group, out of a total of O〈i〉 = o events (so
O1〈i〉 can be 0,1, . . . , o). The distribution qθ defined below replaces qθ from (2.7):

qθ (o1 | (y0, y1) , o) :=

�y1
o1

�

·
� y0

o−o1

�

· θ o1

∑omax
1

u=omin
1

�y1
u

�

·
� y0

o−u

�

· θ u
with

¨

omin
1 =max{0, o− y0}

omax
1 =min{o, y1}.

(2.15)

This is the probability mass function of a Fisher noncentral hypergeometric distribution
with parameters (O〈i〉, Y1〈i〉, Y〈i〉,θ ) = (o, y1, y,θ ). In the Appendix Section 2.C we show
that also for this partial likelihood, the score test equals the logrank test. When deal-
ing with ties we must distinguish between the number of events n in a sample and
the number of event times I ≤ n in the same sample. The corresponding martingale
M 〈I〉
θ1,θ0

=
∏I

i=1 Mθ1,θ0
〈i〉 is now a product of I E-variables, together covering n events.

In Appendix Section 2.A we show that, in the continuous-time model, M 〈I〉
θ1,θ0
〈i〉 is still a

conditional E-variable, and M 〈I〉
θ1,θ0

is a test martingale if the null θ0 = 1, i.e. under the
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assumption that there are no differences between the two groups; for other θ0, it is only
an ‘approximate’ E-variable, becoming more exact the closer the time points at which we
check whether event(s) have happened lie together in continuous time. Thus, we have a
weaker result than for the case without ties, for which Mθ1,θ0

is a test martingale in the
continuous time setting under arbitrary θ0 — but as long as we test with null θ0 = 1,
all our results are still exact. Again, for simplicity we ignore censoring in the appendix.
The present approach for ties can still be adapted to noninformative right censoring un-
der the additional common assumption that the events reported at each observation time
precede any censorings, so that censored patients contribute fully to the risk sets under
consideration.

Compatibility between qθ in (2.15) and (2.6) Reassuringly, if at all event times i =
1,2, . . . , I we observe only a single event, qθ from (2.15) and qθ from (2.7) are the same,
since for a single event in the treatment group (o = 1, o1 = 1) and a given y1, y0 > 1, we
get

qθ (1 | (y0, y1) , 1) =

�y1
1

�

·
�y0

0

�

· θ 1

∑1
v=0

�y1
u

�

·
� y0

1−u

�

· θ u
=

y1 · θ
y0 + y1 · θ

,

and analogously for a single event in the control group (o = 1, o1 = 0).

2.1.3 Gaussian approximation on the logrank statistic
Our GROW safe logrank test is an exact logrank test for a risk set process with a hyper-
geometric probability mass function (2.15) under the null hypothesis (θ = 1) – with the
Bernoulli probability mass function (2.6) as a special case for single events. The exact
test can be used for a survival data set of event and censoring times that captures the full
risk set process. Here we describe an approximation to this safe logrank test based on a
sequential-Gaussian approximation on the logrank statistic. The approximation is of in-
terest for two reasons. First, in practical situations, sometimes only the logrank Z-statistic
and other summary statistics are available, and not the full risk set process. If we also
know the number of events n and initial number of participants in the two groups m1 and
m0, the Gaussian approximation can then still be used. Second, the group sequential and
α-spending approaches that we compare ourselves to in the next section are based on a
Gaussian approximation to the logrank statistic. The behavior of the Gaussian approxima-
tion can (and will) give us insights into how the safe logrank test compares to the group
sequential and α-spending approaches as well.

For a mix of single and tied events, the logrank Z-statistic for n events at I event times is
defined as follows:

Z =

∑I
i=1

�

O1〈i〉 − E1〈i〉
	

Ç

∑I
i=1 V1〈i〉

where (2.16)

E1〈i〉= O〈i〉 · A1〈i〉; A1〈i〉=
Y1〈i〉
Y〈i〉

; V1〈i〉= O〈i〉 · A1〈i〉 ·
�

1− A1〈i〉
�

·
Y〈i〉 −O〈i〉

Y〈i〉 − 1
.
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For single events, O〈i〉 = 1 and E1〈i〉 = A1〈i〉. If all event times have single events, then
n = I . In general, with and without ties, n =

∑I
i=1 O〈i〉. The above formulation is also

found in Cox (1972, equation (26)) and Y〈i〉−O〈i〉
Y〈i〉−1 is described as a “multiplicity” correction

or “correction for ties” (Klein and Moeschberger, 2006, p. 207).

Under the null hypothesis, this logrank statistic has an approximate standard normal
(Gaussian) distribution (Z ∼ N (0, 1)). Under the alternative distribution, Schoenfeld
(1981) gives an asymptotic result for survival data (no ties) following the proportional
hazards model with hazard ratio θ : a Taylor approximation around θ = 1 gives that the
logrank Z-statistic is also normally distributed (Z ∼N (µ, 1)) with:

µ≈

∑n
i=1 log(θ )E1〈i〉

�

1− E1〈i〉
�

q

∑n
i=1 E1〈i〉

�

1− E1〈i〉
�

≈ log(θ )
Ç

nE1〈1〉
�

1− E1〈1〉
�

= log(θ )
√

√ m1 ·m0

(m1 +m0)2
p

n.

(2.17)

Schoenfeld’s assumptions Schoenfeld’s asymptotic result heavily relies on two prop-
erties: (a) the mean of the alternative is close enough to one so that the first-order Taylor
approximation around θ = 1 is adequate and (b) E1〈i〉 stays approximately constant at all
event times i, i.e. close to the initial allocation proportion E1〈1〉 = m1/(m1 +m0). These
two properties indicate that this asymptotic distribution is only reasonably good if the
hazard ratio θ is close to 1 and the initial risk set m0 and m1 are both large in comparison
to the number of events and the amount of censoring, in which case also the multiplicity
correction in the definition of V1〈i〉 for ties is negligible.

Logrank statistic per event time This raises the question whether a Gaussian approx-
imation is sensible for a logrank statistic per event time i: a priori it is not at all clear
whether Schoenfeld’s asymptotic, fixed sample result has a nonasymptotic sequential
counterpart. We define the logrank statistic per event time

Z〈i〉=
O1〈i〉 − E1〈i〉
p

V1〈i〉
. (2.18)

and check whether the exact E-variable (with the q for a mix of ties and single events
from (2.15))

Mθ1,θ0
〈i〉=

qθ1

�

O1〈i〉 | (Y1〈i〉, Y0〈i〉), O〈i〉
�

qθ0

�

O1〈i〉 | (Y1〈i〉, Y0〈i〉), O〈i〉
� behaves similar to M ′µ1,µ0

〈i〉 :=
φ
µ1

p
O〈i〉(Z〈i〉)

φµ0
(Z〈i〉)
(2.19)

for θ0 = 1,µ0 = 0 and µ1 = log(θ1) ·
p

(m1 ·m0)/(m1 +m0)2, where φµ is the Gaussian
density with mean µ and variance 1.

Safety only for balanced allocation We henceforth focus on the case θ0 = 1, such
that that µ0 = 0. Figure 2.1 shows that in case of balanced 1:1 allocation M ′µ1,0〈i〉 is an
E-variable, since its expectation is 1 or smaller. However, in case of unbalanced 2:1 or
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Figure 2.1. For balanced allocation M ′µ1,µ0
〈i〉 is an E-variable, but it is not for unbalanced

allocation. The risk set can also start out balanced but become unbalanced, in which case
M ′µ1,µ0

〈i〉 is also not an E-variable. Here µ0 = 0, and µ1 follows from θ1 as in (2.19); in
the expectation EPθ0

under the null hypothesis θ0 = 1. Note that for i > 1, M ′µ1,µ0
〈i〉 depends

both on the present risk set balance Y1〈i〉 : Y0〈i〉 and on the initial balance m1 : m0. Note
also that the x-axis is logarithmic.

3:1 allocation and designs with hazard ratio θ1 < 1, M ′µ1,0〈i〉 is not an E-variable. Of
course, the risk set can also start out balanced by allocation, but become unbalanced.
Figure 2.1 shows that in case of designs outside the range 0.5 ≤ θ1 ≤ 2 the deviations
from expectation 1 can be problematic. Hence we recommend to not use the Gaussian
approximation on the logrank statistic for unbalanced designs and designs for θ1 < 0.5
or θ1 > 2. For balanced designs with 0.5 ≤ θ1 ≤ 2, we found that in practice they are
safe to use as long as the risk set is large in comparison to the number of events and the
amount of censoring, the reason being that scenarios in which the allocation becomes
highly unbalanced after some time (e.g. Y1〈i〉 = 80, Y0〈i〉 = 20) are extremely unlikely
under the null.

Optimality close to hazard ratio 1 In case of balanced allocation, Figure 2.2 shows
that the approximate e-values for a single event time from the Gaussian M ′µ1,0〈i〉 are very
similar to the exact e-values Mθ1,1〈i〉 in designs for alternative hazard ratios θ1 between
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Figure 2.2. For balanced allocation (m1 = m0 = Y1〈i〉 = Y0〈i〉) M ′µ1,µ0
〈i〉 is very similar to

Mθ1,θ0
〈i〉 in case of designs for 0.5 ≤ θ1 ≤ 2. Here θ0 = 1, µ0 = 0, and µ1 follows from θ1

as in (2.19). Note that both axes are logarithmic.

0.5 and 2. Having observed I event times, leading to a logrank statistic Z as in (2.16), we
can therefore directly approximate M 〈I〉

θ1,1 by

M ′′µ1,0 =
φµ1

p
n(Z)

φ0(Z)
with µ1 = log(θ1) ·

√

√ m1 ·m0

(m1 +m0)2
. (2.20)

This second approximation is valid under Schoenfeld’s assumption (b) of constant large
risk set. For then the initial risk set sizes m0 and m1 are both large in which case also
the multiplicity correction in the definition of V1〈i〉 for ties is negligible. Without the
multiplicity correction, the variance V1〈i〉 in (2.16) is equal to the variance of O〈i〉 single
events. Again, if the initial risk sets are sufficiently large, we can treat this variance to be
constant in i and equal to m1m0/(m1 +m0)2 per event. Taken together straightforward
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calculus thus gives

I
∏

i=1

M ′µ1,0〈i〉= exp

�

−
1
2

I
∑

i=1

�

µ2
1O〈i〉 − 2µ1

Æ

O〈i〉Z〈i〉
�

�

≈ exp



−
1
2

nµ2
1 +µ1

I
∑

i=1

Æ

O〈i〉
O1〈i〉 − E1〈i〉

p

O〈i〉
Ç

m1·m0
(m1+m0)2





= exp



−
1
2

nµ2
1 +µ1

∑I
i=1

�

O1〈i〉 − E1〈i〉
	

Ç

m1·m0
(m1+m0)2





≈ exp
�

−
1
2

nµ2
1 +µ1

p
nZ
�

= M ′′µ1,0.

The first ≈ uses
∑I

i=1 O〈i〉= n and approximates the Z-score per event time from (2.18)
assuming that the correction for ties is negligible and the risk set constant; the second ≈
maps back to the logrank statistic of multiple events Z using that the single event variance
m1 ·m0/(m1 +m0)2 is approximately n times smaller than the variance

∑I
i=1 V1〈i〉 used

to define Z in (2.16).

We will call M ′′µ1,0 the approximately safe logrank test based on the Gaussian approximation
on the logrank statistic or simply the Gaussian safe logrank test. In Figure 2.3 we investigate
the power of this Gaussian safe logrank test and confirm that it often achieves e-value
> 20 at exactly the same sample size as the exact safe logrank test. (In Section 2.3 we
investigate this further.) Thus, a hazard ratio between 0.5 and 1 – and by symmetry also
between 1 and 2 – is apparently sufficiently close to 1 (Schoenfeld’s assumption (a)).
Also, the deviations from the constant large and balanced risk set do not seem to occur
often for this range of hazard ratios (Schoenfeld’s assumption (b)). After all, the risk set
needs to be quite large to observe the number of events to detect hazard ratios in the
range 0.5 ≤ θ1 ≤ 2. Figure 2.2 and Figure 2.3 show that the closer θ1 is to 1, the more
similar the Gaussian safe logrank test and the exact safe logrank test behave, but that the
exact safe logrank test is optimal in general.

2.2 Comparing rejection regions
The first approaches to sequential analysis came with precise stopping rules. Wald’s Se-
quential Probability Ratio Test (SPRT) (Wald, 1947), for example, specifies an upper and
a lower boundary and requires the experiment to stop when either of the two is crossed.
Hence the guarantees for type-I error control in crossing the upper boundary strictly rely
on the lower boundary and vice versa.

Sequential analysis became popular in monitoring of clinical trials (by so-called Data
Safety and Monitoring Boards, DSMBs) with the arrival of group-sequential methods –
especially when timing interim analyses was flexibilized by α-spending functions (Lan
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Figure 2.3. Stopping times I = n (number of events before stopping) simulated as single
events to achieve e-value > 20 (safe test with α = 0.05), when using the exact logrank
martingale M 〈n〉

θ1,1 from (2.10) and the Gaussian approximation on the logrank statistic M ′′µ1,0
from (2.20). θ1 specifies both the hazard ratio used for designing the tests and the true hazard
ratio used to simulate the risk set process. Details of the simulation are given in Appendix
Section 2.D. Note that both axes are logarithmic.

and DeMets, 1983). Proschan et al. (2006, p. 214) note that “data are often not avail-
able in the order in which patients have been accrued”, and therefore patient-by-patient
or event-by-event analyses are not possible while monitoring the data. Moreover, bound-
aries are sometimes more guidelines than strict stopping rules: “One can regard a clinical
trial that compares a new treatment to placebo or to an old treatment as having one clearly
defined upper one-sided boundary – the one whose crossing demonstrates benefit – and
a number of less well defined one-sided lower boundaries, the ones whose crossing wor-
ries the DSMB.” (Proschan et al., 2006, p. 6). So two criteria are critical: (1) the analysis
can separate benefit from harm, upper boundaries from lower boundaries – ignoring the
crossing of one should not invalidate the inference from crossing the other; (2) crossing
a boundary in the past should not impair a DSMB that can only convene for decisions at
irregular intervals with chronologically incomplete data. These two criteria are fulfilled
by α-spending functions, but in fact also by our safe logrank test: Ville’s inequality (2.11)



Judith ter Schure 67

allows for any stopping rule and while the test can be two-sided (2.14), it does not need
to be.

Here we compare the region of logrank statistics for which α-spending approaches and the
safe logrank test reject the null hypothesis of no effect (hazard ratio θ0 = 1). We discuss
the two main α-spending functions that are inspired by two group-sequential approaches
– Pocock (1977) and O’Brien and Fleming (1979) – although our main focus is on the
O’Brien-Fleming approach. The Pocock procedure rejects at equally extreme values for
the Z-statistic for small sample sizes as for larger ones, while DSMB’s usually do not
want to stop a trial very early for efficacy. Pocock himself now believes that his boundary
is unsuitable (Pocock, 2006). Moreover, in contrast to the Pocock approach, the O’Brien
Fleming α-spending approach can be used to monitor the data after each new event-time.
Hence the fair assessment is to compare continuously monitoring the safe logrank test to
continuously monitoring using the O’Brien-Fleming α-spending function.

2.2.1 GROW safe logrank (Gaussian) vs α-spending
In the previous section, Figure 2.2 and Figure 2.3 show that, in case of balanced alloca-
tion, the Gaussian approximation to the logrank statistic behaves very similar to the exact
logrank test for certain designs. This is the case if we design a trial with 10000 partici-
pants to detect an effect of minimum clinical relevance of θ1 = 0.7 using a design that is
growth rate optimal in the worst case (GROW, see Example 2). We will take this trial design
as an example to compare the safe logrank test to α-spending. Since the O’Brien-Fleming
rejection region can be uniquely defined in terms of the logrank Z-statistic, we compare
it to the Gaussian safe logrank test defined on the same logrank statistic.

Gaussian safe logrank Z-rejection region For the Gaussian approximation we can
specify the region of values for the logrank Z-statistic that rejects the null hypothesis
when the e-value is larger than 1/α as follows: rejection takes place for values of Z such
that

M ′′µ1,µ0
=
φµ1

p
n(Z)

φµ0
(Z)

=
exp[− 1

2 (Z −µ1
p

n)2]

exp[− 1
2 Z2]

≥
1
α

with µ0 = 0; µ1 = log(θ1)
√

√ m1 ·m0

(m1 +m0)2

such that for m1 = m0, we reject if:

(

Z ≥ 1
2 log(θ1) ·

1
2 ·
p

n− log(α)
log(θ1)·

1
2 ·
p

n
if θ1 > 1

Z ≤ 1
2 log(θ1) ·

1
2 ·
p

n− log(α)
log(θ1)·

1
2 ·
p

n
if θ1 < 1.

(2.21)

O’Brien-Flemingα-spending Z-rejection region The O’Brien-Flemingα-spending func-
tion gives a boundary that is constant in B(n/nmax) = Z/

p

n/nmax, where nmax is a maxi-
mum number of events that has to be set in advance. Result 5.1 in Proschan et al. (2006)
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gives that if we take B(n/nmax) to be continuous Brownian motion:

Pµ0

�

B(n/nmax)> c for some n≤ nmax

�

= 2Pµ0

�

B(nmax/nmax)> c
�

= 2Pµ0

�

Z > c
�

= α

such that







Z ≥ Φ−1(1−α/2)p
n/nmax

in case of a right-sided test design

Z ≤ Φ−1(α/2)p
n/nmax

in case of a left-sided test design.
(2.22)

Figure 2.4 plots both the Gaussian safe logrank and the O’Brien-Fleming α-spending re-
jection regions. The two regions of Z-statistic values share an important feature: they are
more conservative to reject the null hypothesis at small sample sizes than at larger ones,
requiring more extreme values for the Z-statistic. This sets them apart from the Pocock
spending function that requires equally extreme values for the Z-statistic at small and
large sample size. Figure 2.4 shows the boundary of the Pocock spending function for 10
interims. Note that the definition of the safe logrank test rejection region requires a very
explicit value for the effect size θ1 = θmin of minimum clinical relevance, while that value
is implicit in the definition of the α-spending rejection region. To specify an maximum
sample size nmax to achieve a certain power, you also assume an effect size of minimal
interest. A fixed sample size analysis designed to detect a minimum hazard ratio of 0.7
would need a number of events nmax = n= 195 to achieve 80% power if the true hazard
ratio is 0.7. A sequential analysis using α-spending needs a bit more, a maximum sample
size of nmax = 205 events for an O’Brien-Fleming spending function and nmax = 245 for
a Pocock spending function, when we design for 10 looks. We investigate the number of
events needed by the safe logrank test in the next section (note that the test allows for
unlimited monitoring, so there is no real equivalent to nmax).

The benefit of a sequential approach is that if the data looks better than hazard ratio 0.7
we can detect that with a number of events that is smaller than this maximum sample size.
Figure 2.5 illustrates that we benefit because the true hazard ratio could be more extreme
than we designed for (e.g. 0.5 instead of 0.7; a larger risk reduction in the treatment
group) and the data reflects that. We also benefit from a sequential analysis if the true
hazard ratio is 0.7 but by chance the values of our Z-statistics are more extreme than
expected. The major difference between α-spending approaches and the safe logrank test
is that the safe test does not require to set a maximum sample size. It in fact allows to
indefinitely increase the sample size without ever spending all α. While an α-spending
approach designed to have 80% power will miss out on rejecting the null hypothesis in
20% of cases (the type-II error) – shown to stay green in Figure 2.5 – the safe logrank
test can potentially reject all. In the sequences of 500 events in Figure 2.5, all but one
sequence of Z-statistics could be rejected at a larger sample size by the safe logrank test.
By increasing the sample size, the safe logrank test can have 100% power if the true
hazard ratio is at least as small as the hazard ratio set for minimum clinical relevance
in the design of the test. Still, type-I errors are controlled. Figure 2.5 shows two null
sequences of Z-statistics with a true hazard ratio of 1 that are rejected by the O’Brien-
Fleming α-spending region, but not by the safe logrank test. Here, the safe logrank test is
a bit more conservative, since it is saving α for the future.
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Figure 2.4. Ho rejection regions for continuously monitoring using O’Brien-Fleming α-
spending and the safe logrank test, under balanced allocation (m0 = m1) and for one-sided
α = 0.05. Also shown are the O’Brien-Fleming and Pocock α-spending boundaries for 10
interim analyses. The α-spending boundaries are designed to have 80% power to detect a
hazard ratio 0.7 (left-sided), leading to values of nmax given in the text. The safe logrank test
is growth rate optimal for the worst case hazard ratio θ1 = θmin = 0.7 (left-sided), which
we assume is of minimum clinical relevance.
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(designed to detect a hazard ratio of 0.7). The data is simulated under balanced allocation
(m1 = m0 = 5000) and as time-to-event data such that ties can occur: the logrank Z-statistic
does not have a value for all n; it sometimes jumps with several additional events at a time.
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2.2.2 Unbalanced allocation
α-spending methods are known to behave poorly in case of unbalanced allocation (Wu
and Xiong, 2017). In Section 2.1.3 we showed that our Gaussian approximation to the
logrank test is also not an E-variable in case of unbalanced allocation. Our exact safe
logrank test, however, is an E-variable under any allocation since it is defined directly
on the risk set process (2.7), that takes into account the allocation. This suggests that in
case of unbalanced allocation, the exact logrank test should be preferred over α-spending
methods.

2.3 Comparing sample size
Figure 2.6 shows simulation results establishing three types of sample sizes. The leftmost
panels (‘Maximum’) give the sample size required to design a trial. It expresses the max-
imum number of events nmax that needs to be observed under the alternative to achieve
80% power. In case of the classical logrank test and α-spending designs any further num-
ber of events beyond nmax cannot be analyzed. The rightmost panels (‘Mean’) show the
sample size that captures the expected duration of the trial. It expresses the mean num-
ber of events, under the alternative, that will be observed before the trial can be stopped
(here, for the safe logrank tests, we use the aggressive stopping rule that stops as soon as
M 〈n〉 ≥ 1/α= 20 or n= nmax). In case of α-spending approaches and the safe logrank test
this number of events is always smaller than the maximum needed in the design stage.
Finally, the middle panel (‘Conditional Mean’) shows an even smaller number for those
tests that have a flexible sample size: the expected stopping time given that the trial is
stopped before the maximum nmax was reached – which will only happen if the null is
rejected. For comparison purposes, all sample sizes are shown relative to (i.e. divided
by) the fixed sample size needed by the classical logrank test to obtain 80% power. Note
that for small sample size (for small hazard ratios), both the classical logrank test and
O’Brien-Fleming α-spending are not recommended due to lack of type-I error control.

GROW safe logrank vs classical logrank and O’Brien-Fleming α-spending Figure 2.6
shows that the classical logrank test and O’Brien-Fleming α-spending require a smaller
maximum number of events to obtain 80% power. This is the benefit of specifying a strict
nmax in the design and spending all α such that you cannot analyze any further events.
The additional number of events required for the maximum of the safe logrank test is
the price to pay for the unlimited horizon, or for combining with the data from future
trials, after some tial maximum has been reached (optional continuation). The Gaussian
and exact safe tests are shown to be similar for θ1 ≥ 0.5, but the Gaussian performs
poorly for smaller hazard ratios. In terms of the mean number of events before the trial
can be stopped, both the safe logrank test and O’Brien-Fleming outperform the classical
standard logrank test at almost all hazard ratios for which the classical logrank test is rec-
ommended. The exact safe logrank test always needs more events than O’Brien-Fleming
α-spending, but is the only approach that has exact type-I error control with small sam-
ple size at the smallest hazard ratios. The conditional mean number of events for the
exact logrank test outperforms O’Brien-Fleming for designs with hazard ratio θ1 = 0.1
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Figure 2.6. Sample sizes (number of events) needed to reject the null hypothesis with α =
0.05 using the GROW safe logrank test (exact or Gaussian, θ0 = 1, µ0 = 0), the classical
logrank test (fixed sample size) and O’Brien-Fleming α-spending with continuous monitoring
(see Section 2.2.1). All tests are designed to detect the hazard ratio θ1 = θmin on the x-axis
and data is generated based on that same hazard ratio (see Example 2). The classical logrank
test needs the following sample sizes (number of events) n(θ1) for an 80% power design
to detect hazard ratio θ1: n(0.1) = 5, n(0.2) = 10, n(0.3) = 18, n(0.4) = 30, n(0.5) =
52, n(0.6) = 95, n(0.7) = 195, n(0.8) = 497 and n(0.9) = 2228 – these sample sizes
represent the 100% line in all plots. They are based on Schoenfeld’s Gaussian approximation,
which underestimates the number of events required for hazard ratios far away from 1 (e.g.
simulations show that for θ1 = 0.1, n = 6 or 7 events will be necessary) – for small sample
sizes the classical logrank test is not recommended due to lack of type-I error control. The
difference between Maximum, Conditional Mean and Mean plots is explained in the main
text, with further details in Appendix Section 2.D. The upshot is that at all hazard ratios at
which the Gaussian approximation to the classical logrank test ‘works’ (say for θ1 ≥ 0.3),
the mean number of events needed by the safe logrank tests is about the same or noticeably
smaller.
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and small risk set m1/m0 and behaves very similar under all other scenarios. While the
mean of the stopping times (conditional mean) are similar, the rejection regions in Fig-
ure 2.4 illustrate, however, that the stopping times themselves are not the same. The safe
logrank test will sometimes reject the null hypothesis at an earlier number of events than
O’Brien-Fleming α-spending can, but also stop later than the nmax that was used to design
the O’Brien-Fleming α-spending boundary.

2.4 Variations and extensions

2.4.1 Prequential Plug-In and Bayes predictive distributions for the alternative
Now suppose we do not have a very clear idea of which parameter θ1 ∈ Θ1 to pick.
One way to handle this case is to use (2.12) rather than (2.8) and (2.10), replacing the
fixed conditional probabilities qθ1

(O1〈i〉 | Y1〈i〉, Y0〈i〉) by a conditional probability mass
function ri(O1〈i〉 | ~Y〈1〉, . . . , ~Y〈i〉) that depends on the past and enables implicitly learning
θ1 from the data. For example, we may take

ri(O1〈i〉 | ~Y〈1〉, . . . , ~Y〈i〉) := qθ̂i
(O1〈i〉 | Y1〈i〉, Y0〈i〉) (2.23)

with q as in (2.6) and θ̂i := θ̂ (~Y〈1〉, . . . , ~Y〈i〉) the maximum likelihood estimate based
on all past data, smoothed by adding two ‘virtual’ data points to the data, one for both
groups:

θ̂ (~Y〈1〉, . . . , ~Y〈i〉) :=

arg max
θ∈(0,∞)

�

i
∏

k=1

qθ (O1〈k〉 | Y1〈k〉, Y0〈k〉)

�

·qθ (1 | Y1〈1〉+1, Y0〈1〉)·qθ (0 | Y1〈1〉, Y0〈1〉+1).

Suppose the data are actually sampled from the process defined by qθ , for some arbitrary
but fixed θ . For sufficiently large initial risk sets (m0, m1 are not too small), by the law of
large numbers, θ̂i will converge with high probability to θ , and qθ̂i

will behave more and
more like the real qθ from which data are sampled. Thus, the process (2.12) instantiated
with (2.23) will behave more and more similarly to the ‘correct’ likelihood ratio (2.10).
The process r1, r2, . . . is a typical instance of Dawid’s (1984) prequential plug-in likelihood,
that is often based on suitable smoothed likelihood-based estimators (Grünwald and Roos,
2020). Instead of ri based on a plug-in estimate of θ based on ~Y〈1〉, . . . , ~Y〈i〉, one may just
as well use a Bayes predictive distribution based on the same data and some prior W1 on
θ . That is, we set

ri(O1〈i〉 | ~Y〈1〉, . . . , ~Y〈i〉) := qWi
(O1〈i〉 | Y1〈i〉, Y0〈i〉) (2.24)

where Wi := W | ~Y〈1〉, . . . , ~Y〈i〉 is the Bayes posterior on θ based on prior W and data
~Y〈1〉, . . . , ~Y〈i〉, and qW (O1〈i〉 | Y1〈i〉, Y0〈i〉) :=

∫

qθ (O1〈i〉 | Y1〈i〉, Y0〈i〉)dW (θ ) is the Bayes
predictive. By multiplying out the conditional probability mass functions ri , we then get
that M 〈n〉r,θ0

=
∏n

i=1 Mr,θ0
〈i〉 is a Bayes factor between the Bayes marginal based on W and

θ0 (GHK explain how such a correspondence between Bayes factors and test martingales
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holds more generally for simple null hypotheses). We do not know of a prior for which this
Bayes factor or the constituent products have an analytic expression, but it can certainly
be implemented using e.g. Gibbs sampling.

As explained underneath (2.12), the use of the ri instead of qθ1
does not compromise on

safety: type-I errors and confidence sequences based on Mr,θ0
remain valid, whether the ri

are plug-in estimators or Bayes predictive distributions, no matter what prior W was cho-
sen. Thus, our set-up is actually more intimately related to the concept of luckiness in the
machine learning theory literature (Grünwald and Mehta, 2019) than to ‘pure’ Bayesian
statistics. The type-I error guarantee always holds, also when the prior is ‘misspecified’,
putting most of its mass in a region of the parameter space far from the actual θ from
which the data were sampled. Given a minimal clinically relevant effect size θmin, the
worst case logarithmic growth rate of Mr,θ0

will in general be less than that of the GROW
Mθmin,θ0

. Nevertheless, Mr,θ0
can come quite close to the optimal for a whole range of po-

tentially data-generating θ and may thus sometimes be preferable over choosing Mθmin,θ0
.

More precisely, the use of a prior allows us to exploit favourable situations in which θ
is even smaller (more extreme) than θmin. In such situations, the GROW Mθmin,θ0

is effec-
tively misspecified. By using ri that learn from the data, we may actually get an E-variable
that grows faster than the GROW Mθmin,θ0

which is fully committed to detecting the worst
case θmin.

In Figure 2.7 we illustrate such a situation where we start with 1000 participants in both
groups. We generated data using different hazard ratios, and used a ‘misspecified’ Mθ1,1
that always used θ1 = 0.8. Note that while this is still the GROW (minimax optimal)
martingale test under H1 = {Pθ : θ1 ≤ 0.8}, if we knew the true θ , we could use the
faster-growing test martingale Mθ ,1. We will call the test based on this latter martingale
the oracle exact safe logrank test, since it is based on inaccessible (oracle) knowledge.
We estimated the number of events that allows for 80% power for the tests based on
M0.8,1 and the oracle Mθ ,1 and the prequential plug-in Mr,1 with r as in (2.23). In all
cases we used the aggressive stopping rule that stops as soon as M·,1 > 1/α = 20. We
see that, as the true θ gets smaller than 0.8, we need less events using the GROW test
M0.8,1 (the data are favorable to us), but using the oracle exact safe logrank test we get
a considerable additional reduction. The prequential plug-in Mr,1 ‘tracks’ the oracle Mθ ,1
by learning the true θ from the data: for θ near 0.8, it behaves worse (more data are
needed) than M0.8,1 (which knows the right θ from the start), but for θ < 0.6 it starts
to behave better. For comparison we also added the methods of Figure 2.6. Notably, the
O’Brien-Fleming procedure, even though unsuitable for optional continuation, needs even
more events than the misspecified safe logrank test M0.8,1 as soon as θ goes below 0.8
(the simulations were performed using exactly the same algorithms as for Figure 2.6 so
the y-axis at θ = 0.8 coincides with that of Figure 2.6, but now with absolute rather than
relative numbers); details are described in Appendix Section 2.D).

2.4.2 Anytime-valid confidence sequences
Standard tests give rise to confidence intervals by varying the null and ‘inverting’ the
corresponding tests. In analogous fashion, test martingales can be used to derive anytime-
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Figure 2.7. We show the number of events at which one can stop retaining 80% power at
α = 0.05 using the process Mθ1,θ0

with θ0 = 1 and θ1 = 0.80 when the true hazard ratio
θ generating the data is different from θ1. ‘Oracle’ means that the method is specified with
knowledge of the true θ , which in reality is unknown. Note that the y-axis is logarithmic.

valid (AV) confidence sequences (Darling and Robbins, 1967; Lai, 1976; Howard et al.,
2018, 2021). In our setting, a (1−α)-AV confidence sequence is a sequence of confidence
intervals {CIi}i∈N, one for each consecutive event, such that

Pθ (there is an i ∈ N with θ 6∈ CIi)≤ α. (2.25)

A standard way to design (1 − α)- AV confidence sequences, translated to our logrank
setting, is to use a prequential plug-in or Bayesian-based r as described in the previous
subsection. After observing n events, one reports CIn,α = [θn,L ,θn,U] where θi,L is the

largest θ0 such that for all θ ′ ≤ θ0, M 〈n〉r,θ ′ ≥ 1/α; similarly θn,U is the smallest θ0 such that

for all θ ′ ≥ θ0, M 〈n〉r,θ ′ ≥ 1/α. That is, we check (2.12) where we vary θ0 and we report the
smallest interval such that Mr,θ0

> 1/α outside this interval. Ville’s inequality immediately
shows that this gives an AV confidence sequence for arbitrary instantiations of r.

2.4.3 Covariates: the full Cox Proportional Hazards E-Variable
We extend the process of Section 2.1 (for now without ties) to explicitly represent par-
ticipants, as done above Example 2 (and with the same notation as used there). Addi-
tionally, we now also fix a set of d covariates and let Z〈i〉 = (~z1 . . . ~zm)〈i〉 be the ma-
trix consisting of the covariate vectors for each participant at the time of the ith event:
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~z j〈i〉= (z j,1〈i〉, . . . , z j,d〈i〉). We let random variable J〈i〉 denote the index of the patient to
which the ith event happens, and consider the extended process J〈1〉, J〈2〉, . . . where the
information that is available at time i is ~g, J〈1〉, . . . , J〈i〉, Z〈1〉, . . . ,Z〈i〉. In this section we
re-define ~Y〈i〉= (Y1〈i〉, . . . , Ym〈i〉) ∈ {0, 1}m to be a vector of m components, the j compo-
nent indicating whether the jth participant is still without an event just before the ith event.
Accordingly we set ~Y〈1〉= (1, . . . , 1) and we set ~Yj〈i+1〉= ~Yj〈i〉 for j 6= J〈i〉, ~Yj〈i+1〉= 0
for j = J〈i〉. The conditional distribution underlying the process is now denoted Pβ ,θ with
θ > 0 and β ∈ Rd , defined as follows: Pβ ,θ is given by, for j ∈ {1, . . . , m} and ~y ∈ {0,1}m
with ~y j = 1:

Pβ ,θ (J〈i〉= j | ~Y〈1〉,Z〈1〉, . . . , ~Y〈i〉,Z〈i〉) := Pβ ,θ (J〈i〉= j | ~Y〈i〉,Z〈i〉)

Pβ ,θ (J〈i〉= j | ~Y〈i〉= ~y ,Z〈i〉= z) := qβ ,θ ( j | ~y ,z) :=
exp(β T ~z j + θ ′g j)

∑

j′:~y j′=1 exp(β T ~z j′ + θ ′g j′)
,

(2.26)

with θ ′ = logθ and z = (~z1, . . . , ~zm). This is consistent with Cox’ (1972) proportional
hazards regression model: the probability that the jth participant has an event, assuming
he/she is still at risk, is proportional to the exponentiated weighted covariates, with group
membership being one of the covariates. In case β = 0, this is easily seen to coincide with
the definition of Pθ via (2.6).

E-Variables and Martingales Let W be a prior distribution on β ∈ Rd for some d > 0.
(W may be degenerate, i.e. put mass one in a specific parameter vector β1). We let

qW,θ ( j | ~y ,z) =

∫

qβ ,θ ( j | ~y ,z)dW (β).

Consider a measure ρ on Rd (e.g. Lebesgue or some counting measure) and we letW be
the set of all distributions on Rd which have a density relative to ρ, and W ◦ ⊂W be any
convex subset ofW (we may takeW ◦ =W , for example). We define q̃←W,θ0

(· | ~y ,z) to be
the reverse information projection (Li, 1999) (RIPr) of qW,θ ( j | ~y ,z) on {qW,θ0

: W ∈ W ◦}
such that

D(qW,θ1
(· | ~y ,z)‖q̃←W,θ0

(· | ~y ,z)) = inf
W ′∈W ◦

D(qW,θ1
(· | ~y ,z)‖qW ′,θ0

(· | ~y ,z)).

We know from Li (1999) and GHK that q̃←W,0(· | ~y) exists. As explained by GHK in the
context of E-variables for 2×2 contingency tables, the fact that the random variables Y〈i〉
constituting our random process have finite range implies that, for each W , the infimum
is in fact achieved by some distribution W ′ with finite support on Rd . For given θ0,θ1 > 0,
let

MW,θ1,θ0
〈i〉=

qW,θ1
(J〈i〉 | ~Y〈i〉,Z〈i〉)

q←W,θ0
(J〈i〉 | ~Y〈i〉,Z〈i〉)

(2.27)

be our analogue of Mθ1,θ0
〈i〉 as in (2.8).
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Theorem 2.4.1. [Corollary of Theorem 1 from GHK19] For every prior W on Rd , for all
β̃ ∈ Rd ,

EPβ̃ ,θ0
[MW,θ1,θ0

〈i〉 | ~Y〈1〉,Z〈1〉, . . . , ~Y〈i〉,Z〈i〉] =
∑

j∈[m]

qβ ,θ0
( j | ~Y〈i〉,Z〈i〉) ·

qW,θ1
( j | ~Y〈i〉,Z〈i〉)

q←W,θ0
( j | ~Y〈i〉,Z〈i〉)

≤ 1
(2.28)

so that MW,θ1,θ0
〈i〉 is an E-variable conditional on ~Y〈1〉,Z〈1〉, . . . , ~Y〈i〉,Z〈i〉.

Note that the result does not require the prior W to be well-specified in any-way: under
any (β̃ ,θ0) in the null distribution, even if β̃ is completely disconnected to W , MW,θ1,θ0

〈i〉
is an E-variable conditional on past data.

In particular, since the result holds for arbitrary priors, it holds, at the nth event time, for
the Bayesian posterior Wn+1 =W1 | ~Y〈1〉,Z〈1〉, . . . , ~Y〈n〉,Z〈n〉, based on arbitrary prior W1
with density w1, i.e. the density of Wn+1 is given by

wn+1(β)∝
n
∏

i=1

qβ ,θ (J〈i〉 | ~Y〈i〉,Z〈i〉)w1(β).

Using Definition Theorem 2.0.3, we can therefore, for each prior W1, construct a test
martingale M 〈n〉 :=

∏n
i=1 MWi ,θ1,θ0

that ‘learns’ β from the data, analogously to (2.24),
and computes a new RIPr at each event time i.

How to find the RIPr While in general, it is not clear how to calculate the RIPr q←W,θ0
,

Li (1999); Li and Barron (2000) have designed an efficient algorithm for approximating
it, which is feasible as long as we restrict W ◦ to be the set of all priors W for which, for
all j ∈ [n], QW,θ0

(J〈i〉 = j | ~Yj〈i − 1〉 = 1) ≥ δ, for ` = 1, . . . , k, for some δ > 0. The
algorithm achieves an approximation error of O((log(1/δ))/M) if run for M steps, where
each step takes time linear in d. Since the factor is logarithmic in 1/δ, we can take a very
small value of δ and then the requirement does not seem overly restrictive. Exploring
whether the Li-Barron algorithm really allows us to compute the RIPr for the Cox model,
and hence MW,θ1,θ0

in practice, is a major goal for future work.

Ties While in the case without covariates, our E-variables allowing for ties (Section 2.1.2)
correspond to a likelihood ratio of noncentral hypergeometrics, the situation is not so
simple if there are covariates—although deriving the appropriate extension of the non-
central hypergeometric partial likelihood is possible, one ends up with a hard-to-calculate
formula (Peto, 1972). Various approximations have been proposed in the literature (Cox,
1972; Efron, 1974). In case these preserve the E-variable and martingale properties, they
would retain type-I error probabilities under optional stopping and we could use them
without problems. We do not know whether this is the case however; for the time being,
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we recommend handling ties by putting the events in a worst-case order, leading to the
smallest values of the E-variable of interest, as this is bound to preserve the type-I error
guarantees.

2.5 Discussion, Conclusion and Future Work
We introduced the safe logrank test, a version of the logrank test that can retain type-I er-
ror guarantees under optional stopping and continuation. Extensive simulations revealed
that, if we do engage in optional stopping, it is competitive with the classical logrank
test (which neither allows in-trial optional stopping nor optional continuation) and α-
spending (which allows forms of optional stopping but not optional continuation). We
provided an approximate test for applications in which only summary statistics are avail-
able and also showed how the safe logrank test can be used in combination with (informa-
tive) prior and prequential learning approaches, when no effect size of minimal clinical
relevance can be specified. Two of our extensions invite further research: We introduced
anytime-valid confidence sequences for the hazard ratio, and will study these more in
future work into their performance in comparison to other approaches. We also intro-
duced an extension to Cox’ proportional hazards regression, which promises type-I error
guarantees even if the alternative model is equipped with arbitrary priors. In future work,
we plan to implement this extension – which requires the use of sophisticated methods
for estimating mixture models. The GROW safe logrank tests (exact and Gaussian) are
already available in our SafeStats R package (Turner et al., 2022). We end with two final
points of discussion: staggered entries and doomed trials.

Staggered entry Earlier approaches to sequential time-to-event analysis were also stud-
ied under scenarios of staggered entry, where each patient has its own event time (e.g.
time to death since surgery), but patients do not enter the follow-up simultaneously (such
that the risk set of e.g. a two-day-after-surgery event changes when new participants en-
ter and survive two days). Sellke and Siegmund (1983) and Slud (1984) show that, in
general, martingale properties cannot be preserved under such staggered entry, but that
asymptotic results are hopeful (Sellke and Siegmund, 1983) as long as certain scenar-
ios are excluded (Slud, 1984). When all participants’ risk is on the same (calendar) time
scale (e.g. infection risk in a pandemic; staggered entry now amounts to left-truncation,
which we can deal with), or new patients enter in large groups (allowing us to stratify),
staggered entry poses no problem for our methods. But research is still ongoing into those
scenarios in which our inference is fully safe for patient time under staggered entry, and
those that need extra care.

Your trial is not doomed In their summary of conditional power approaches in sequen-
tial analysis Proschan et al. (2006) write that low conditional power makes a trial futile.
Continuing a trial in such case could only be worth the effort to rule out an effect of clini-
cal relevance, when the effect can be estimated with enough precision. However, if “both
conditional and revised unconditional power are low, the trial is doomed because a null
result is both likely and uninformative” (Proschan et al., 2006, p. 63). While this is the
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case for all existing sequential approaches that set a maximum sample size, this is not the
case for safe tests. Any trial can be extended and possibly achieve 100% power or in an
anytime-valid confidence sequence show that the effect is too small to be of interest. This
is especially useful for time-to-event data when sample size can increase by extending the
follow-up of the trial, without recruiting more participants. Moreover, new participants
can always be enrolled either within the same trial or by spurring new trials that can be
combined indefinitely in a cumulative meta-analysis.

Code availability
This chapter’s R code is available on https://osf.io/3n8g2/ (Ter Schure and Pérez-
Ortiz, 2022).

https://osf.io/3n8g2/
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Appendices

Appendix Section 2.A connects the simple risk set processes in this chapter to a continuous
time survival process. Section 2.B gives an additional argument for the GROW criterion,
Section 2.C gives a more detailed derivation of the logrank test as a score test for single
events and ties and Section 2.D gives a step-by-step account of the sample size comparison
simulations.

2.A Towards Continuous Time
In Section 2.1.1 and Section 2.4.3, the expression (2.26) and its simplified form (2.7)
defining the safe logrank test appeared as a factor in a standard likelihood, defined rel-
ative to a basic stochastic process in which the time between events was not formalized.
Cox (1975) simply claimed it to be also a partial likelihood for the underlying continuous-
time process with proportional hazards determined by (β ,θ ′). Slud (1992) proved that
it can indeed be seen as such, in the same general setting with time-varying continuous
covariates that we consider here (see also Andersen et al. (1993) for closely related re-
sults). This already shows that the test martingales of Section 2.1.1 (no covariates, no
ties) and Section 2.4.3 (covariates, no ties) also remain test martingales in the continu-
ous time setting. The only part that is not covered by such existing results is the case of
ties, Section 2.1.2: if we plug the conditional distributions (2.15) that allow for ties into
the test martingale (2.8), do we still get a test martingale in continuous time if θ = 1?
Since we have not been able to find a complete proof in the literature of this result or
a result that would directly imply it, we derive a simple version of such a result below,
implicitly also proving the result without ties, though in a less general setting (without
covariates, and assuming continuous hazards) than Slud. For simplicity we only treat the
case without censoring again.

As in Section 2.4.3 and above Example 2, we identify each of the m = m0 +m1 partici-
pants by an index j ∈ [m] := {1, . . . , m}, with ~g ∈ {0, 1}m, and ~g j ∈ {0, 1} denoting the
group assignment of participant j. However, for simplicity we shall not make use of any
covariates. For t ∈ R+0 (continuous time), we let T j = t denote that the jth participant
had an event at time j; T〈i〉 denotes the time at which the i-th event takes place. For
g ∈ {0,1}, we let Yg(t) =

∑

j:~g j=g Yj(t) be the number of participants at risk in the group
g at time t.

Fix some time t∗ > 0. If patient with index j is in group g, then by assumption (2.13) we
have, for fixed 0< ε < t∗,

p∗g(ε) := Pg(t
∗ − ε < T j ≤ t∗] | T j > t∗ − ε) = 1− exp

�

∫ t∗

t∗−ε
λg(s)ds

�

.

Let O∗g be the number of patients of group g ∈ {0,1} that witnessed the event of interest
in the time interval (t∗−ε, t∗], and let O∗ = O∗0+O∗1 be the total number of such patients.
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Let E be the event denoting everything that is known just before time t∗−ε, i.e. if k events
happened before t∗ − ε, then E is the event that

T〈1〉= t1, . . . , T〈k〉= tk, Y0〈1〉= y0〈1〉, Y1〈1〉= y1〈1〉, . . . , Y0〈k〉= y0〈k〉, Y1〈k〉= y1〈k〉

for specific t1, . . . , tk, y0〈1〉, y1〈1〉, . . . , y0〈k〉, y1〈k〉. Let yg := Yg〈k + 1〉 and note that yg
can be calculated at all times after T〈k〉. By independence of the T j , the distribution of
O∗g given E is binomial, given by, for ε, t∗ such that t∗ − ε > tk and og ≤ yg ,

P(O∗0 = o0, O∗1 = o1 | E ) =
�

y0

o0

�

· p∗0(ε)
o0(1− p∗0(ε))

y0−o0 ·
�

y1

o1

�

· p∗1(ε)
o1(1− p∗1(ε))

y1−o1 .

Now let ω∗g(ε) = p∗g(ε)/(1 − p∗g(ε)). As is well known, the probability of (O∗0 , O∗1) given
E being binomial as above, the conditional probability of observing a particular O∗1 given
O∗ = O∗0 + O∗1 and E must be given by Fisher’s non-central hypergeometric distribution
with parameter ω∗(ε) =ω∗1(ε)/ω

∗
0(ε), whose probability mass function is given by, with

ω abbreviating ω∗(ε),

P(O∗1 = o1 | E , O∗ = o) = qω(o1|y0, y1, o) =

�y1
o1

�� y0
o−o1

�

ωo1

∑

max{0,o−y1}≤u≤min{y1,o}

�y1
u

�� y0
o−u

�

ωu
.

We now note that if θ = 1, thenω∗(ε) = 1 irrespective of ε and this reduces to the hyper-
geometric distribution with parameter θ = 1 as in (2.15). This proves the claim made in
Section 2.1.2: qθ as in (2.15) with θ = 1 is the correct conditional distribution under the
continuous time model introduced above Example 2 with hazard ratio 1. It follows, using
the reasoning in Example 1, that M 〈I〉

θ1,1 as underneath (2.15) is a test martingale, and our
test with θ0 = 1 is once again exact. Under hazard ratios θ 6= 1, ω∗(ε) 6= θ , so we do not
have an exact supermartingale (and hence not an exact test) anymore. Still, as noted by
Mehrotra and Roth (2001),

lim
ε↓0
ω∗(ε) = θ , (2.A.1)

so, if we make observations at subsequent time points that are close enough to each other,
all of our results still hold in an approximate sense.

From (2.A.1) we also see that

P(O1〈k+ 1〉= 1 | E , T〈k+ 1〉= t∗) = lim
ε↓0

P(O∗1 = 1 | E , O∗ = 1) = qθ (o1 | y0, y1),

with qθ given as in (2.6). This shows that our original conditional distributions are correct
as well in continuous time, now under each hazard ratio θ > 0, not just θ = 1, and Mr,θ
gives an exact test martingale and hence an exact test for each θ , as long as there are no
ties.
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2.B Expected Stopping Time, GROW and Wald’s Identity
Let Pθ0

represent our null model, and let, as before, the alternative model be given as
H1 = {Pθ1

: θ1 ∈ Θ1} with Θ1 = {θ1 : 0 < θ1 ≤ θmin} for some θmin < 1. Suppose we
perform a level α test based on a test martingale Mθ1,θ0

using the aggressive stopping
rule: stop as soon as Mθ1,θ0

≥ 1/α. The GROW criterion (Chapter 2, Example 2) tells us
to use θ1 = θmin. Here we motivate this GROW criterion by showing that it minimizes, in
a worst-case sense, the expected number of events needed before there is sufficient evi-
dence to stop. The calculation below ignores the practical need to prepare for a bounded
maximum number of events. For such more complicated considerations, we need to resort
to simulations as in the main text.

We will further make the simplifying assumption that the initial risk sets (i.e. m0 and m1)
are large enough so that for all sample sizes we will ever encounter, Y0〈i〉/Y1〈i〉 ≈ m0/m1.
This allow us to act as if the random variables O1〈i〉 are i.i.d. Bernoulli: the ith event is
sampled from qθ1

�

O1〈i〉 | (Y0〈i〉, Y1〈i〉) for some θ1 ∈ Θ1, with qθ1
as given by (2.6), which

becomes independent of i if y0/y1 is replaced by m0/m1. Assuming i.i.d. data enables a
standard argument based on Wald’s (1947) identity, originally due to Breiman (1961).
As said, we stop as soon as M := Mθ1,θ0

≥ 1/α or when we run out of data, leading to a
stopping time τθ1

(which we will denote by τwhen θ1 is clear from the context). Suppose
first that we happen to know that the data comes from a specific θ ∈ Θ1. Wald’s identity
now gives:

EP ′
θ
[τ] =

EP ′
θ
[log M 〈τ〉

θ1,θ0
]

EP ′
θ
[log Mθ1,θ0

〈1〉]
.

For simplicity we will further assume that the number of people at risk is large enough
so that the probability that we run out of data before we can reject is negligible. The
right-hand side can then be further rewritten as

EP ′
θ
[log M 〈τ〉

θ1,θ0
]

EP ′
θ

h

log
p′
θ1
(O1〈1〉)

p′
θ0
(O1〈1〉)

i
=

log 1
α + VERY SMALL

EP ′
θ

h

log
p′
θ1
(O1〈1〉)

p′
θ0
(O1〈1〉)

i
(2.B.1)

with VERY SMALL between 0 and log |θ1/θ0|, and p′
θ1
(O1〈1〉) = qθ1

(O1〈1〉 | Y1〈1〉, Y0〈1〉).
The first equality is just definition, the second follows because we reject as soon as M 〈τ〉

θ1,θ0
≥

1/α, so M 〈τ〉
θ1,θ0

can’t be smaller than 1/α, and it can’t be larger by more than a factor
equal to the maximum likelihood ratio at a single outcome (if we would not ignore the
probability of stopping because we run out of data, there would be an additional small
term in the numerator).

If we try to find the θ1 which minimizes this, and – as is customary in sequential analysis –
we approximate the minimum by ignoring the VERY SMALL part, we see that the expression

is minimized by maximizing EP ′
θ
[log

pθ1
(Y〈1〉)

pθ0
(Y〈1〉) ] over θ1. The maximum is clearly achieved

by θ1 = θ ; the expression in the denominator then becomes the KL divergence between
two Bernoulli distributions. It follows that under θ , the expected number of outcomes
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until rejection is minimized if we set θ1 = θ . Thus, we use the GROW E-variable relative
to {θ} as our actual E-variable. We still need to consider the case that, since the real H1
is ‘composite’, as statisticians, we do not know the actual θ ; we only know 0< θ ≤ θmin.
So we might want to take a worst-case approach and use the θ1 achieving

max
θ1

min
θ :0<θ≤θmin

EP ′
θ

�

log
p′
θ1
(O1〈1〉)

p′
θ0
(O1〈1〉)

�

,

since, repeating the reasoning leading to (2.B.1), this θ1 should be close to achieving

min
θ1

max
θ :0<θ≤θmin

EP ′
θ
[τθ1
]

But this just tells us to use the GROW E-variable relative to H1, which is what we were
arguing for.

2.C Logrank test as a score test

2.C.1 Logrank test statistic for single events and ties
Let Y1〈i〉 denote that number of participants in the risk set that are in the treatment group
at the time of the ith event, and analogously Y0〈i〉 for the number of participants at risk
in the control group. Let O1〈i〉 and O0〈i〉 count the number of observed events in the
treatment group and control group at the ith event time. For single events O1〈i〉 = 1 if
the event occurred in the treatment group, and O1〈i〉= 0 if a single event occurred in the
control group. We can extend this Bernoulli case to multiple simultaneous events (ties) in
which case O1〈i〉 can be larger than 1. Here we discuss both cases (single event and ties)
together, but we will discuss them separately later on. We define Y〈i〉= Y1〈i〉+ Y0〈i〉 and
O〈i〉= O1〈i〉+O0〈i〉.

Under the null hypothesis, at each event time i, the number of observed events in the
treatment group O1〈i〉 follows a hypergeometric distribution with an expected number of
events E1〈i〉 and a variance V1〈i〉 that depends on the risk set as follows:

A1〈i〉=
Y1〈i〉
Y〈i〉

, E1〈i〉= O〈i〉 · A1〈i〉, V1〈i〉= O〈i〉 · A1〈i〉 ·
�

1− A1〈i〉
�

·
Y〈i〉 −O〈i〉

Y〈i〉 − 1
.

This is the formulation found in Cox (1972, equation (26)) with Y〈i〉−O〈i〉
Y〈i〉−1 a “multiplicity”

correction or “correction for ties” (Klein and Moeschberger, 2006, p. 207). In case of
single events with O〈i〉= 1 the variance reduces to the Bernoulli variance:

V1〈i〉= A1〈i〉 ·
�

1− A1〈i〉
�

= E1〈i〉 ·
�

1− E1〈i〉
�

.

As a test statistic, a logrank Z-statistic is constructed that is calculated either for the treat-
ment or for the control group and has an approximate standard normal (Gaussian) dis-
tribution under the null hypothesis. This Z-statistic for the treatment group 1 is:

Z =

∑

i

�

O1〈i〉 − E1〈i〉
	

Æ
∑

i V1〈i〉
.
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This test statistic is used to reject the null hypothesis at level α in favor of a one-sided
alternative (e.g. H0 : λ1(t〈i〉) < λ0(t〈i〉) for some i) in case the value of the Z-statistic
is smaller than zα. You expect a negative value for the Z-statistic for a lower risk in the
treatment group, so you need the αth lower percentage point of the standard normal
(Gaussian) distribution. A two-sided test can be constructed by comparing |Z | ≥ zα/2.

2.C.2 Score test for the Bernoulli partial likelihood (single events)
In Section 2.1.1 we constructed a partial likelihood based on the probability mass function
of a Bernoulli y1θ/(y0 + y1θ )-distribution. Given an observed data set of participants at
risk (~Y〈i〉) at all event times i we can define a product of Bernoulli likelihoods. Following
Cox (1972), we define these in terms of the logarithm of the hazard ratio, i.e. β = logθ
with θ = λ1(t〈i〉)/λ1(t〈i〉) for all event times t〈i〉:

L
�

β | ~Y〈1〉, ~Y〈2〉, . . . , ~Y〈n〉
�

=
n
∏

i=1

qβ
�

O1〈i〉 | (Y0〈i〉, Y1〈i〉)
�

,

where

qβ (O1〈i〉 | (Y0〈i〉, Y1〈i〉)) =
�

Y1〈i〉 · exp(β)
Y0〈i〉+ Y1〈i〉 · exp(β)

�O1〈i〉 � Y0〈i〉
Y0〈i〉+ Y1〈i〉 · exp(β)

�1−O1〈i〉

.

This is the likelihood formulated for single events by Cox (1972) for his proportional haz-
ards model in the two-sample case (a single categorical covariate indicating two groups).

Following the likelihood above, our loglikelihood is:

L(β | ~Y〈1〉, ~Y〈2〉, . . . , ~Y〈n〉) =
n
∑

i=1

¦

O1〈i〉 ·
�

log[Y1〈i〉] + β − log
�

Y0〈i〉+ Y1〈i〉 · exp(β)
�

�

+
�

1−O1〈i〉
�

·
�

log[Y0〈i〉]− log[Y0〈i〉+ Y1〈i〉 · exp(β)]
�©

=
n
∑

i=1

¦

O1〈i〉β +O1〈i〉 ·
�

log[Y1〈i〉]− log[Y0〈i〉]
�

+ log[Y0〈i〉]

− log
�

Y0〈i〉+ Y1〈i〉 · exp(β)
�

©

.

If we omit the parts that do not depend on β , we get the expression in Cox (1972):

L(β | ~Y〈1〉, ~Y〈2〉, . . . , ~Y〈n〉)∝
n
∑

i=1

¦

O1〈i〉β − log
�

Y0〈i〉+ Y1〈i〉 · exp(β)
�

©

.

So if we take the score:

U(β) =
dL(β | ~Y〈1〉, ~Y〈2〉, . . . , ~Y〈n〉)

dβ
=

n
∑

i=1

§

O1〈i〉 −
Y1〈i〉 · exp(β)

Y0〈i〉+ Y1〈i〉 · exp(β)

ª

,
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with variance (by the observed Fisher information)

−U ′(β) =−
d2 L(β | ~Y〈1〉, ~Y〈2〉, . . . , ~Y〈n〉)

dβ2

=
n
∑

i=1

(
�

Y0〈i〉+ Y1〈i〉 · exp(β)
�

· Y1〈i〉 · exp(β)− Y1〈i〉 · exp(β) · Y1〈i〉 · exp(β)
�

Y0〈i〉+ Y1〈i〉 · exp(β)
�2

)

=
n
∑

i=1

�

Y0〈i〉Y1〈i〉exp(β)

(Y0〈i〉+ Y1〈i〉exp(β))2

�

=
n
∑

i=1

§

Y1〈i〉exp(β)
Y0〈i〉+ Y1〈i〉exp(β)

Y0〈i〉
Y0〈i〉+ Y1〈i〉exp(β)

ª

such that, if we evaluate the score function at a hazard ratio θ of 1, so with β = exp(θ ) =
exp(1) = 0, we get:

U(0) =
n
∑

i=1

§

O1〈i〉 −
Y1〈i〉

Y0〈i〉+ Y1〈i〉

ª

=
n
∑

i=1

§

O1〈i〉 −
Y1〈i〉
Y〈i〉

ª

=
n
∑

i=1

{O1〈i〉 − A1〈i〉} ,

−U ′(0) =
n
∑

i=1

Y1〈i〉
Y0〈i〉+ Y1〈i〉

·
Y0〈i〉

Y0〈i〉+ Y1〈i〉
=

n
∑

i=1

A1〈i〉 · (1− A1〈i〉) .

A1〈i〉 = E1〈i〉/O〈i〉 = E1〈i〉 in case of single events. Hence by standardizing the score
function under the null hypothesis, we get the logrank statistic for single events:

Z =

∑n
i=1 {O1〈i〉 − A1〈i〉}

q

∑n
i=1 A1〈i〉 · (1− A1〈i〉)

=

∑n
i=1 {O1〈i〉 − E1〈i〉}
Æ
∑

i V1〈i〉
.

2.C.3 Score test for the Fisher hypergeometric partial likelihood (tied events)
The Peto one-step estimator for odds ratios is build from a general score test for 2x2 tables.
The appendix of Yusuf et al. (1985) gives description that we can use for the logrank score
test in the case of ties.

If at the ith event time O〈i〉 events are observed, the expression in (2.15) describes the
probability that O1〈i〉 of these events happen in the treatment group. The general descrip-
tion of the likelihood for the ith event time that follows from this is:

sβ (O1〈i〉 | (Y0〈i〉, Y1〈i〉) , O〈i〉) :=
p0(O1〈i〉) · exp(O1〈i〉 · β)
∑Omax

1 〈i〉
k=Omin

1 〈i〉
p0(k) · exp(k · β)

with Omin
1 〈i〉=max{0, O〈i〉 − Y0〈i〉}; Omax

1 〈i〉=min{O〈i〉, Y1〈i〉},

with p0(O1〈i〉) the null hypothesis probability of O1〈i〉 observed events in the treatment
group. Our null hypothesis is a hypergeometric distribution:

p0(O1〈i〉) = P0 ((O1〈i〉 | (Y0〈i〉, Y1〈i〉) , O〈i〉) =

�Y1〈i〉
O1〈i〉

�

·
� Y0〈i〉

O〈i〉−O1〈i〉

�

�Y〈i〉
O〈i〉

�
,
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such that sβ = qβ , our Fisher hypergeometric likelihood (2.15) in Section 2.1.2:

sβ (O1〈i〉 | (Y0〈i〉, Y1〈i〉) , O〈i〉) =
p0(O1〈i〉) · exp(O1〈i〉 · β)
∑Omax

1 〈i〉
k=Omin

1 〈i〉
p0(k) · exp(k · β)

=

(Y1〈i〉
O1〈i〉)·(

Y0〈i〉
O〈i〉−O1〈i〉)
(Y〈i〉

O〈i〉)
· exp(O1〈i〉 · β)

∑Omax
1 〈i〉

k=Omin
1 〈i〉

(Y1〈i〉
k )·(

Y0〈i〉
O〈i〉−k)

(Y〈i〉
O〈i〉)

· exp(k · β)

=

�Y1〈i〉
O1〈i〉

�

·
� Y0〈i〉

O〈i〉−O1〈i〉

�

· exp(O1〈i〉 · β)
∑Omax

1 〈i〉
k=Omin

1 〈i〉

�Y1〈i〉
k

�

·
� Y0〈i〉

O〈i〉−k

�

· exp(k · β)

= qβ (O1〈i〉 | (Y0〈i〉, Y1〈i〉) , O〈i〉).

So our likelihood is:

L
�

β | ~Y〈1〉, ~Y〈2〉, . . .
�

=
∏

i

sβ (O1〈i〉 | (Y0〈i〉, Y1〈i〉) , O〈i〉)

And the loglikelihood is:

L(β | ~Y〈1〉, ~Y〈2〉, . . .) =
∑

i







log [p0(O1〈i〉)] +O1〈i〉 · β − log





Omax
1 〈i〉
∑

k=Omin
1 〈i〉

p0(k) · exp(k · β))











.

And its score:

U(β) =
dL(β | ~Y〈1〉, ~Y〈2〉, . . .)

dβ
=
∑

i







O1〈i〉 −

∑Omax
1 〈i〉

k=Omin
1 〈i〉

p0(k) · k · exp(k · β)
∑Omax

1 〈i〉
k=Omin

1 〈i〉
p0(k) · exp(k · β)







,

with variance (by the observed Fisher information)

−U ′(β) = −
d2 L(β | ~Y〈1〉, ~Y〈2〉, . . .)

dβ2

=
∑

i











∑

k p0(k) · exp(k · β) ·
∑

k p0(k) · k2 · exp(k · β)−
�∑

k p0(k) · k · exp(k · β)
�2

�

∑Omax
1 〈i〉

k=Omin
1 〈i〉

p0(k) · exp(k · β)
�2











.

If we evaluate the score function at a hazard ratio θ of 1, so with β = exp(θ ) = exp(1) = 0,
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we get:

U(0) =
∑

i







O1〈i〉 −

∑Omax
1 〈i〉

k=Omin
1 〈i〉

p0(k) · k
∑Omax

1 〈i〉
k=Omin

1 〈i〉
p0(k)







=
∑

i







O1〈i〉 −
Omax

1 〈i〉
∑

k=Omin
1 〈i〉

p0(k) · k







=
∑

i

§

O1〈i〉 −O1〈i〉 ·
Y1〈i〉
Y〈i〉

ª

=
∑

i

{O1〈i〉 − E1〈i〉}

U ′(O) =
∑

i











∑

k p0(k) ·
∑

k p0(k) · k2 −
�∑

k p0(k) · k
�2

�

∑Omax
1 〈i〉

k=Omin
1 〈i〉

p0(k)
�2











=
∑

i

(

∑

k

p0(k) · k2 −

�

∑

k

p0(k) · k

�2)

=
∑

i

V1〈i〉.

2.D Details of sample size comparison simulations
In this section we lay out the procedure that we used to estimate the expected and max-
imum number of events required to achieve a predefined power as shown in Figure 2.6
and Figure 2.7 in Section 2.3 and Section 2.4. First we describe how we sampled the
survival processes under a specific hazard ratio. We then describe how we estimated the
maximum and expected sample size required to achieve a predefined power (80% in our
case) for any of the test martingales that we considered (that of the exact safe logrank, its
Gaussian approximation, and its prequential-plugin variation). Finally, we explain how
the numbers for the classical logrank test and the O’Brien-Fleming procedure were ob-
tained.

In order to simulate the order in which the events in a survival processes happens, we
used the risk set process from Section 2.1.1. Indeed, if we are testing some fixed θ1 with
θ1 ≤ 1 against θ0 = 1, the odds of next event at the ith event time happening in group
1 are θ1Y1〈i〉 : Y0〈i〉 under the alternative hypothesis, which is the hypothesis we sample
from. Thus, simulating in which group the next event happens only takes a (biased) coin
flip. We consider the one-sided testing scenario θ1 (for some θ1 ∈ (0, 1)) vs. θ0 = 1, and
we fix our desired level to α = 0.05. For each test martingale M 〈n〉

θ1,1 of interest we first

consider the stopping rule τ = inf{n : M 〈n〉
θ1,1 ≥ 1/α}, that is, we stop as soon as M 〈n〉

θ1,1
crosses the threshold 1/α.

In order to estimate the maximum number of events needed to achieve a predefined
power with a given test martingale, we turned our attention to a modified stopping rule
τ′. Under τ′ we stop at the first of two moments: either when our test martingale M 〈n〉

θ1,1
crosses the threshold 1/α (i.e. at τ) or once we have witnessed a predefined maximum
number of events nmax. More compactly, this means using the stopping rule τ′ given by
τ′ =min(τ, nmax). In those cases in which the test based on the stopping rule τ achieves
a power higher than 1 − β (for a type-II error rate β), a maximum number of events
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nmax smaller than the initial size of the combined risk groups can be selected to achieve
approximate power 1−β using the rule τ′. A quick computation shows that nmax has the
following property: it is the smallest number of events n such that stopping after n events
has probability smaller than 1− β under the alternative hypothesis, that is,

Pθ1
(τ≥ n)≤ 1− β .

More succinctly, nmax is the (approximate) (1 − β)-quantile of the stopping time τ and
can in consequence be estimated experimentally in a straightforward manner.

In order to estimate nmax for a given risk-set sizes m1, m0 and alternative hypothesis hazard
ratio θ1, we sampled 104 realizations of the survival process (under θ1) using the method
described at the beginning of this section. This allowed us to obtain the same number of
realizations of the stopping time τ. We then computed the (1−β)-quantile of the observed
empirical distribution of τ, and reported it as an estimate of the number of events nmax
in the ‘maximum’ column in Figure 2.6.

We assessed the uncertainty in the estimation nmax using the bootstrap. We performed
1000 bootstrap rounds on the sampled empirical distribution of τ, and found that the
number of realizations that we sampled (104) was high enough so that plotting the un-
certainty estimates was not meaningful relative to the scale of our plots. For this reason
we omitted the error bars in Figure 2.6 and Figure 2.7.

In the ‘mean’ column of Figure 2.6 and Figure 2.7 we plotted an estimate of the expected
number of events τ′ =min(τ, nmax). For this, we used the empirical mean of the stopping
times that were smaller than nmax on the sample that we obtained by simulation, with
20% of the stopping times being nmax itself. In the ‘conditional mean’ column, we plotted
an estimate of τ′ | τ′ < nmax, i.e. the stopping time given that we stop early (and hence
reject the null).

For comparison, we also show the number of events that one would need under the Gaus-
sian non-sequential approximation of Schoenfeld (1981), and under the continuous mon-
itoring version of the O’Brien-Fleming procedure. In order to judge Schoenfeld’s approxi-
mation, we report the number of events required to achieve 80% power. This is equivalent
to treating the logrank statistic as if it were normally distributed, and rejecting the null
hypothesis using a z-test for a fixed number of events. The power analysis of this proce-
dure is classical, and the number of events required is nS

max = 4(zα + zβ )2/ log2 θ1, where
zα, and zβ are the α, and β-quantiles of the standard normal distribution. In the case
of the continuous monitoring version of O’Brien-Fleming’s procedure, we estimated the
number of events nOF

max needed to achieve 80% as follows. For each experimental setting
(m0, m1,θ ), we generated 104 realizations of the survival process under the alternative
hypothesis under consideration and computed the corresponding trajectories of the lo-
grank statistic. For each possible value n of nOF

max, we computed the fraction of trajectories
for which O’Brien-Fleming’s procedure correctly stopped when used with the maximum
number of events set to n. We report as an estimate of the true nOF

max the first value of n
for which this fraction is higher than 80%, our predefined power.





3| Accumulation Bias

Abstract
Studies accumulate over time and meta-analyses are mainly retrospective. These two
characteristics introduce dependencies between the analysis time, at which a series of
studies is up for meta-analysis, and results within the series. Dependencies introduce bias
– Accumulation Bias – and invalidate the sampling distribution assumed for p-value tests,
thus inflating type-I errors. But dependencies are also inevitable, since for science to accu-
mulate efficiently, new research needs to be informed by past results. Here, we investigate
various ways in which time influences error control in meta-analysis testing. We introduce
an Accumulation Bias Framework that allows us to model a wide variety of practically oc-
curring dependencies, including study series accumulation, meta-analysis timing, and ap-
proaches to multiple testing in living systematic reviews. The strength of this framework
is that it shows how all dependencies affect p-value-based tests in a similar manner. This
leads to two main conclusions. First, Accumulation Bias is inevitable, and even if it can
be approximated and accounted for, no valid p-value tests can be constructed. Second,
tests based on likelihood ratios withstand Accumulation Bias: they provide bounds on
error probabilities that remain valid despite the bias. We leave the reader with a choice
between two proposals to consider time in error control: either treat individual (primary)
studies and meta-analyses as two separate worlds – each with their own timing – or inte-
grate individual studies in the meta-analysis world. Taking up likelihood ratios in either
approach allows for valid tests that relate well to the accumulating nature of scientific
knowledge. Likelihood ratios can be interpreted as betting profits, earned in previous
studies and invested in new ones, while the meta-analyst is allowed to cash out at any
time and advise against future studies.
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Introduction
Meta-analysis refers to the statistical synthesis of results from a series of stud-
ies. [...] the synthesis will be meaningful only if the studies have been col-
lected systematically. [...] The formulas used in meta-analysis are extensions
of formulas used in primary studies, and are used to address similar kinds of
questions to those addressed in primary studies.

–Borenstein, Hedges, Higgins & Rothstein (2009, pp. xxi-xxiii)

To consult the statistician after an experiment is finished is often merely to
ask him to conduct a post mortem examination. He can perhaps say what the
experiment died of.

–Fisher (1938, p. 18)

These two quotes conflict. Most meta-analyses are retrospective and consider the number
of studies available – after the literature has been searched systematically – as a given
for the statistical analysis. P-value based statistical tests, however, are intended to be
prospective and require the sample size – or the stopping rule that produces the sample
– to be set specifically for the planned statistical analysis. The second quote, by the p-
value’s popularizer Ronald Fisher, is about primary studies. But this prospective rationale
influences meta-analysis as well because it also involves the size of the study series: p-
value tests assume that the number of studies – so the timing of the meta-analysis – is
predetermined or at least unrelated to the study results. So by using p-value methods, con-
ventional meta-analysis implicitly assumes that promising initial results are just as likely
to develop into (large) series of studies as their disappointing counterparts. Conclusive
studies should just as likely trigger meta-analyses as inconclusive ones. And so the use of
p-value tests suggests that results of earlier studies should be unknown when planning
new studies as well as when planning meta-analyses. Such assumptions are unrealistic
and actively argued against by the Evidence-Based Research Network (Lund et al., 2016)
part of the movement to reduce research waste (Chalmers and Glasziou, 2009; Chalmers
et al., 2014). But ignoring these assumptions invalidates conventional p-value tests and
inflates type-I errors.

P-values are based on tail areas of a test statistic’s sampling distribution under the null
hypothesis, and thus require this distribution to be fully specified. In this chapter we show
that the standard normal Z-distribution generally assumed (e.g. Borenstein et al. (2009))
is not an appropriate sampling distribution. Moreover, we believe that no sampling distri-
bution can be specified that fully represents the variety of processes in accumulating sci-
entific knowledge and all decisions made along the way. We need a more flexible approach
to testing that controls errors regardless of the process that spurs the meta-analysis.

When dependencies arise between study series size or meta-analysis timing and results
within the series, bias is introduced in the estimates. This bias is inherent to accumulating
data, which is why we gave it the name Accumulation Bias. Various forms of Accumula-
tion Bias have been characterized before, in very general terms as “bias introduced by
the order in which studies are conducted” (Whitehead, 2002, p. 197) and more specif-



Judith ter Schure 91

ically, such as bias caused by the dependence of follow-up studies on previous studies’
significance and the dependence of meta-analysis timing on previous study results (Ellis
and Stewart, 2009). Also, more elaborate relations were studied between the existence
of follow-up studies, study design and meta-analysis estimates (Kulinskaya et al., 2016).
Yet no approach to confront these biases has been proposed.

In this chapter we define Accumulation Bias to encompass processes that not only affect
parameter estimates but also the shape of the sampling distribution, which is why only ap-
proximation and correction for bias does not achieve valid p-value tests. We illustrate this
by an example in Section 3.2, right after we give a general introduction to Accumulation
Bias in Section 3.1 with its relation to publication bias (Section 3.1.1) and an informal
characterization of the direction of the bias (Section 3.1.2). By presenting its diversity, we
argue throughout the chapter that any efficient scientific process will introduce some form
of Accumulation Bias and that the exact process can never be fully known. We collect the
various forms of Accumulation Bias into one framework (Section 3.3) and show that all
are related to the time aspect in meta-analysis. The framework incorporates dependencies
mentioned by Whitehead (2002), Ellis and Stewart (2009) and Kulinskaya et al. (2016)
as well the effect of multiple testing over time in living systematic reviews Simmonds
et al. (2017). We conclude that some version of these biases will also be introduced by
Evidence-Based Research.

Our framework specifies analysis time probabilities – with behavior familiar from survival
analysis – and distinguishes two approaches to error control: conditional on time (Sec-
tion 3.4.1) and surviving over time (Section 3.4.2). We show that general meta-analyses
take the former approach, while existing methods for living systematic reviews take the
latter. However, neither of the two is able to analyze study series affected by partially un-
known processes of Accumulation Bias (Section 3.4.3). After an intermezzo on evidence
that indeed such processes are already at play in Section 3.5, we introduce a general
form of a test statistic that is able to withstand any Accumulation Bias process: the like-
lihood ratio. We specify bounds on error probabilities that are valid despite the existing
bias, for error control conditional on time (Section 3.6.1) as well as surviving over time
(Section 3.6.2). The reader is left to choose between the two; the consequences of either
preference are specified in Section 3.7. We try to give intuition on why both are still pos-
sible in Section 3.6.1 and Section 3.6.2 respectively, but also give some extra intuition on
the magic of likelihood ratios in Section 3.8: Likelihood ratios have an interpretation as
betting profit that can be reinvested in future studies. At the same time, the meta-analyst
is allowed to cash out at any time and advise against future studies. Hence, the likelihood
ratio relates the statistics of Accumulation Bias to the accumulating nature of scientific
knowledge, which is critical in reducing research waste.

3.1 Accumulation Bias
Any meta-analyst carries out a meta-analysis under the assumption that synthesizing pre-
vious studies will add to what is already known from existing studies. So meta-analyses
are mainly performed when the series of studies has reached a meaningful size. What
is considered meaningful varies considerably: 16 and 15 studies per meta-analysis were
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reported to be the median numbers in Medline meta-analyses from 2004 and 2014 (Mo-
her et al., 2007a; Page et al., 2016), while 3 studies per meta-analysis were reported in
Cochrane meta-analyses from 2008 (Cochrane Database of Systematic Reviews Davey et al.
(2011)). Since meta-analyses are performed on research hypotheses that have spurred a
certain study series size, they always report estimates that are conditioned on the avail-
ability of such a series. The crucial point is that not all pilot studies or small study series
will reach a meaningful size. Which ones do might depend on results in the series. Apart
from the dependent size of the study series, the exact timing of a meta-analysis can also de-
pend on the available results. The completion of a highly powered or otherwise conclusive
study, for example, might be considered to finalize the series and trigger a meta-analysis.
So meta-analyses also report estimates conditioned on the consideration that a systematic
synthesis will be informative. Both dependencies – series size and meta-analysis timing –
introduce bias: Accumulation Bias.

3.1.1 Accumulation Bias vs. publication bias
Publication bias refers to the practice that studies with nonsignificant, or more general,
unsatisfactory results have smaller probability to be published than studies with signifi-
cant, satisfactory results. So unsatisfactory studies are performed, but do not reach the
meta-analyst because they are stashed away in a file drawer (Rosenthal, 1979). Accumula-
tion Bias, on the other hand, refers to some studies or meta-analyses not being performed
at all, as a result of previous findings in a series of studies. In a file drawer-free world,
Accumulation Bias would still exist. But Accumulation Bias is a manageable problem be-
cause it does not operate at the individual study level. Conditional on the fact that a
second study is performed, the second study is an unbiased sample. Conditional on the
fact that a third study is performed, for whatever reason, the third study is an unbiased
sample. So bias is introduced at the level of the series, not at the study level. This is dif-
ferent for publication bias, where, conditional on being published, the studies available
are not an unbiased sample. We exploit the difference in this chapter by considering time
in error control.

Of course, Accumulation Bias and publication bias are not alone in their effects on meta-
analysis reporting. All sorts of significance chasing biases – selective-outcome bias, selective
analysis reporting bias and fabrication bias – might be present in the study series up for
meta-analysis, and can lead to “wrong and misleading answers” (Ioannidis, 2010, p. 169).
But for a world in which these biases are overcome, we also need tests that reflect how
scientific knowledge accumulates.

3.1.2 Accumulation Bias’ direction
Accumulation Bias in estimates is mainly bias in the satisfactory direction, which means
that the effect under study is overestimated. This is the case for bias caused by the size of
the studies series when (overly) optimistic initial estimates (either in individual studies
or in intermediate meta-analyses) give rise to more studies, while disappointing results
terminate a series of studies. This is also the case when the timing of the meta-analysis is
based on an (overly) optimistic last study estimate or an (overly) optimistic meta-analysis
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synthesis is considered the final one. We focus on this satisfactory direction of Accumula-
tion Bias and will only briefly discuss other possibilities in Section 3.4.3 and Section 3.5.1.
We introduce the wide variety of possible dependencies in an Accumulation Bias Frame-
work in Section 3.3, which has a generality that also includes Accumulation Bias without
a clear direction. But we first present Accumulation Bias’ effects on error control by an
example.

3.2 A Gold Rush example: new studies after finding significant results
We study the effect of Accumulation Bias by a simple example. Its simplicity allows us
to calculate the exact amount of bias in the test statistic and investigate the additional
effect on the sampling distribution. The example given in this section is an extension of
the toy example introduced by Ellis and Stewart (2009). We call this example by Gold
Rush because it describes how new studies go looking for more results after finding initial
statistical significance. In the current culture of scientific practice, statistical significance
can be seen as the currency of scientific success. After all, significant results achieve the
future possibility to pay off in publications, grants and tenure positions. When a gold rush
for statistical significance presents itself in a series of studies, dependencies arise between
the size of the series and the results within: Accumulation Bias. We specify this mechanism
in detail in Section 3.2.2 and Section 3.2.3, after we simplified our meta-analysis setting
to common/fixed-effects meta-analysis in Section 3.2.1. We present the resulting bias in
the test estimates in Section 3.2.4 and its additional effects on the sampling distribution
and testing in Section 3.2.5 and Section 3.2.6. In Section 3.2.7 we conclude by pointing
out the very mild condition needed for some form of Gold Rush Accumulation Bias to
occur

3.2.1 Common/fixed-effect meta-analysis
This chapter discusses meta-analysis in its simplest form, which is common-effect meta-
analysis, also known as fixed-effect meta-analysis. This restriction does not mean that
more complex forms of meta-analysis, such as random-effects meta-analysis and meta-
regression, do not suffer from the problems mentioned in this chapter. The reason for
simplification is to reduce the complexity in quantifying the problem, part of showing
that quantification is not enough. For an example of Accumulation Bias in random-effects
estimates we refer to Kulinskaya et al. (2016).

Common-effect meta-analysis derives a combined Z-score from the summary statistics of
the available studies. This combined Z-score is used as a test statistic in two-sided meta-
analysis testing by comparing it to the tails of a standard normal distribution. This is
equivalent to assessing whether its absolute value is more than z α

2
standard deviations

away from zero (larger than 1.960 for α = 0.05). We simplify the setting by assuming
studies with equal standard deviations to obtain an easy to handle expression for the
combined Z-score of t available studies. We denote this meta-analysis Z-score by Z (t) and
derive it as the weighted average over the study Z-scores Z1, . . . , Zt , shown in its general
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form in (3.1a) and in (3.1b) under the assumption of equal study sizes:

Z (t) =

∑t
i=1
p

ni Zip
N (t)

with N (t) =
t
∑

i=1

ni (3.1a)

=
1
p

t

t
∑

i=1

Zi (n1 = n2 = · · ·= nt = n). (3.1b)

See Appendix Section 3.A for a derivation from the mean difference notation in Borenstein
et al. (2009).

3.2.2 Gold Rush new study probabilities
In our Gold Rush example, we assume the following dependency within a series of studies:
each study in a series has a larger probability to be replicated – and therefore expanding
the series of studies – if the study shows a significant positive effect. So the existence of a
new study is dependent on the significance and sign of the results of its predecessor.

T is the random variable that denotes the maximum size of a study series – the time at
which the search stops. We enumerate time by the order of appearance in a study series,
with t = 1 for the pilot study, t = 2 for the second study (so now we have a two-study
series) etc. So we use t to denote the number of studies available for meta-analysis at any
time point: our notion of time is not related to actual dates at which studies are performed.
The maximum time T is usually unknown since more studies might be performed in the
future. T ≥ 2 means that the series has not halted after the first initial study, but that it is
unknown how many replications will eventually be performed. In our extended Gold Rush
example, we present the Accumulation Bias process by the probability that the maximum
size is at least one study larger than the current size (T ≥ t + 1), and do so using six
parameters. We denote these parameters by the new study probabilities, since they indicate
the probability that a follow-up study is performed when the result of the current study
is available:

ω(1)
S

:=P
�

T ≥ 2
�

�

� T ≥ 1, Z1 ≥ z α
2

�

= 1

ω(1)
X

:=P
�

T ≥ 2
�

�

� T ≥ 1, Z1 ≤ −z α
2

�

= 0

ω(1)
NS

:=P
�

T ≥ 2
�

�

� T ≥ 1, |Z1|< z α
2

�

= 0.1,

for all t ≥ 2 : (3.2)

ω(t)
S
= ωS := P

�

T ≥ t + 1
�

�

� T ≥ t, Zt ≥ z α
2

�

= 1

ω(t)
X
= ωX := P

�

T ≥ t + 1
�

�

� T ≥ t, Zt ≤ −z α
2

�

= 0

ω(t)
NS
=ωNS := P

�

T ≥ t + 1
�

�

� T ≥ t, |Zt |< z α
2

�

= 0.02.
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We distinguish between the influence of the first (pilot) study (ω(1)S , ω(1)X and ω(1)NS ) and
the others (ωS, ωX and ωNS) since pilot studies are carried out with future studies in
mind, and therefore replications have higher probability after the first than after other
studies in the series, also in case the pilot study is not significant. We assume that no
new study is performed when a significant negative result is obtained (ω(1)X = ωX = 0)
and new studies are always performed after positive significant findings, the satisfactory
result (ω(1)S =ωS = 1). Nonsignificant results have a small, but not negligible probability
to spur new studies (ω(1)NS = 0.1, ωNS = 0.02).

3.2.3 Gold Rush new study probabilities’ independence from data-generating
hypothesis

In the following we use P1 to express probabilities under the alternative hypothesis and
P0 to express probabilities under the null hypothesis. Our new study probabilities in (3.2)
were given without reference to any of these hypotheses, to make explicit that they depend
solely on the data (or summary statistic Zt) and the behavior of the researchers; not on
the hypothesis that generated the data. So P in these definitions can be read as P1 as well
as P0.

In the next sections we focus on Gold Rush Accumulation Bias under the null hypothesis
and its effect on type-I error control. The values in rightmost column of (3.2) are intro-
duced to obtain estimates for the Accumulation Bias in the test estimates. These values
are not supposed to be realistic, but are chosen to demonstrate the effect of Accumulation
Bias as clearly as possible. The extreme values 1 for ω(1)S and ωS given in (3.2) support
the simulation of large study series under the null hypothesis. The small values for ω(1)NS

and ωNS are chosen such that the effect of significant findings on the sampling distribu-
tion is clearly visible (see Section 3.2.5 and Figure 3.1). For α = 0.05, ω(1)S = 1 implies
that, in expectation under the null distribution, all of the 2.5% (α2 ) positively significant
pilot studies under the null hypothesis become a two-study series, while ω(1)NS = 0.1 in-
dicates that, since an expected 95% (1 − α) of pilot studies is not significant under the
null hypothesis, 9.5% (0.1 ·95%) become a two-study series. For study series beyond the
pilot study and its replication, this setup entails that in all studies, except for the last and
the first, the fraction of significant findings is more than half, since ωS = 0.02 implies
that only 0.02 · 95% = 1.9% nonsignificant studies grow into a larger study series: the
expected fraction of significant studies in growing series under the null hypothesis con-
verges to 2.5/(2.5+ 1.9) = 0.6: the conditional probability of getting a positive finding
conditional on another study being done after the first pilot (pilot) study.

3.2.4 Gold Rush Accumulation Bias’ estimates under the null hypothesis
The new study probability parameters in (3.2) are much larger when results are positively
significant than when they are not. As a result, it occurs more often that study series have
many significant studies than that they have only a few. While the expectation of a Z-
score is 0 under the null hypothesis for each individual study (for all t: E0 [Zt] = 0), the
expectation of a study that is part of a series of studies is larger. This shift in expectation
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introduces the Accumulation Bias in the estimates.

The main ingredient of the bias in the meta-analysis Z (t)-score is the bias in the individ-
ual study Zt -scores, conditional on being part of a series. This is already apparent for
the pilot study, which we use as an example by expressing its expected value under the
null hypothesis, given that it has a successor study: E0 [Z1 | T ≥ 2]. This conditional ex-
pectation is a weighted average of two other expectations that are conditioned further

based on the events that lead to a new study according to (3.2): E0

�

Z1

�

�

� Z1 ≥ z α
2

�

, Z1

from the right tail of the null distribution, and the nonsignificant results with expectation

E0

�

Z1

�

�

� |Z1|< z α
2

�

. We discard negative significant results, since those were given 0 prob-

ability to produce replication studies in (3.2). The positive significant and nonsignificant
results are weighted by the new study probabilities in (3.2) and the probabilities under
the null distribution of sampling from either the tail (α) or the middle part (1−α) of the
standard normal distribution. A more detailed specification of these components can be
found in Appendix Section 3.B. If we assume a significance threshold of 5% we obtain:

for α= 0.05 : E0 [Z1 | T ≥ 2] =

∫∞
z α

2

z ·φ(z)dz ·ω(1)S ·
α
2 + 0 ·ω(1)NS · (1−α)

ω
(1)
S ·

α
2 +ω

(1)
NS · (1−α)

≈ 0.487.

(3.3)

Here we use the fact that, for α= 0.05, E0

�

Z1

�

�

� Z1 ≥ z α
2

�

=
∫∞

1.960 z ·φ(z)dz ≈ 2.338, with

φ() the standard normal density function and that E0

�

Z1

�

�

� |Z1|< z α
2

�

is the expectation

of a symmetrically truncated standard normal distribution, which is 0. The value 0.487
is obtained by using the parameter values given in (3.2). For studies in the series later
than the pilot study, the expression follows analogously by taking for all t ≥ 2 : ω(t)S =
ωS and ω(t)NS =ωNS: E0 [Zt | T ≥ t + 1]≈ 1.328.

To determine the effect on the meta-analysis Z (t)-score, we define the expectation under
the null hypothesis E0

�

Z (t)
�

� T ≥ t
�

, conditioned on the availability of a series of size t.
To specify this expectation, we use that the last study so-far (for a series of size t, the t th

study) is always unbiased since we do not know whether it will spur more studies. After
all, in the Gold Rush scenario, we assume that the timing of the meta-analysis does not
relate to the t th study result, only that the results of the first t−1 studies spurred a series
of size t and these results are included in the meta-analysis of t studies. As shown in more
detail in Appendix Section 3.C, the expression follows from (3.1a) by separately treating
the unbiased expectation of 0 and the pilot study. If we assume a significance threshold
of 5%, we obtain the general expression in (3.4a) and the expression in (3.4b) under the
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Table 3.1. Expected Z-scores under the null hypothesis in the Gold Rush scenario, under
the equal study size assumption, calculated using (3.4b) with α= 0.05 and values for ω(1)S ,
ω
(1)
NS , ωS and ωNS from (3.2). Z (t) is as defined in (3.1b). See Appendix Section 3.G for the

code that was used to calculate these values.

Number of
studies (t) E0 [Zt] E0 [Zt | T ≥ t + 1] E0

�

Z (t)
�

� T ≥ t
�

1 0.000 0.487 0.000
2 0.000 1.328 0.344
3 0.000 1.328 1.048
4 0.000 1.328 1.572
5 0.000 1.328 2.000
6 0.000 1.328 2.368
7 0.000 1.328 2.695
8 0.000 1.328 2.990
9 0.000 1.328 3.262

10 0.000 1.328 3.515

assumption of equal study sizes (n1 = n2 = · · ·= nt = n):

for α= 0.05, for all t ≥ 2 :

E0

�

Z (t)
�

� T ≥ t
�

≈
p

n1 · 0.487+
∑t−1

i=2
p

ni · 1.328+pnt · 0p
N (t)

(3.4a)

=
0.487+ 1.328(t − 2)

p
t

. (3.4b)

Table 3.1 shows the Accumulation Bias in the estimates of E0

�

Z (t)
�

� T ≥ t
�

as studies
accumulate under the Gold Rush scenario, with equal study sizes and values for the new
study probabilities given by (3.2).

3.2.5 Gold Rush Accumulation Bias’ sampling distribution under the null hy-
pothesis

Figure 3.1 shows simulated Gold Rush sampling distributions for study series of size two
and three in comparison to an individual study Z-distribution. Because the new study
probabilities in (3.2) give Zt−1-values below −z α

2
zero probability to warrant a successor

study, values for the z(t)-statistic below −z α
2

will be scarce and the larger t is the larger this
scarcity will be since only the last study is able to provide such small Z-score estimates.
The opposite is the case for values above z α

2
, which have probability 1 to warrant a new

study. As a result, the distribution of the meta-analysis Z-score has negative skew (more
mass on the right, more tail to the left). See the comparison to the normal distribution
also plotted in Figure 3.1 for a three-study series. Skewness is not the only characteristic
that distinguishes the resulting distribution from a standard normal. The variance also
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Figure 3.1. Sampling distributions of meta-analysis Z (t)-scores under the null hypothesis
in the Gold Rush scenario, under the equal study size assumption, with α= 0.05 and values
for ω(1)S , ω(1)NS , ωS and ωNS from (3.2). Z (t) is as defined in (3.1b). φ(z|E0

(3)) the stan-
dard normal density function shifted by E0

(3), with E0
(3) shorthand for E0

�

Z (3)
�

� T ≥ 3
�

. See
Appendix Section 3.G for the code that produces the simulation and creation of this figure.

deviates since the meta-analysis distribution is a mixture distribution. For a two-study
meta-analysis Z (2) we obtain a mixture of two conditional distributions, one conditioned
on the first study being a significant – sampled from the right tail of the distribution (with
probability α

2 · ω
(1)
S ) – and one with the first study nonsignificant – sampled from the

symmetrically truncated normal distribution (with probability (1−α) ·ω(1)NS ). Because the
combined distribution on Z (2) is a mixture of the two scenarios, its variance is larger than
the variance of either of the two components of the mixture, as we show in Appendix
Section 3.D. In Figure 3.1 we see that, with the parameter values from (3.2) the variance

of Z (2) and Z (3) are even larger than that of Z1, even though both Var
¦

Z (2)
�

�

� Z1 < z α
2

©

and

Var
¦

Z (2)
�

�

� |Z1| ≥ z α
2

©

are smaller. Hence the sampling distribution under the null hypoth-

esis of a meta-analysis Z-score deviates from a standard normal under Accumulation Bias
due to a non-zero location (the bias), skewness and inflated variance. All three inflate the
probability of a type-I error in a standard normal test, as we will study in the next section.

3.2.6 Gold Rush Accumulation Bias’ influence on p-value tests
Let us now establish the effect of our Gold Rush Accumulation Bias on meta-analysis test-
ing when using common/fixed-effects Z-tests. Let E (t)TYPE-I indicate the event of a type-I
error (significant result under the null hypothesis) in a meta-analysis of t studies and let

P0

�

E (t)TYPE-I

�

�

� T ≥ t
�

= P0

�

|Z (t)| ≥ z α
2

�

�

� T ≥ t
�

denote the expected rate of type-I errors in a

two-sided common/fixed-effect Z-test for studies i up to t conditional on the fact that at
least t studies were performed.

We obtain the type-I error rate for this test by simulating the Gold Rush scenario, for which
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Table 3.2. Inflated type-I error rates for tests affected by bias only (fP0[E
(t)
TYPE-I | T ≥ t])

and tests affected by bias as well as impaired sampling distribution (P0[E
(t)
TYPE-I | T ≥ t]).

Simulated values are under the null hypothesis in the Gold Rush scenario, under the equal
study size assumption, with α= 0.05 and values for ω(1)S , ω(1)NS , ωS and ωNS from (3.2). See
Appendix Section 3.G for the code that produces the simulation and creation of this table.

Number of studies (t) fP0[E
(t)
TYPE-I | T ≥ t] P0[E

(t)
TYPE-I | T ≥ t]

2 0.06 0.10
3 0.18 0.23
4 0.35 0.40
5 0.52 0.53

the results are shown in the right hand column of Table 3.2, assuming α = 0.05. If only
bias would be at play, the sampling distribution under the null hypothesis would be a
shifted normal distribution. (3.5) expresses the expected type-I error rate for this bias
only scenario, with Φ() the cumulative normal distribution. The actual inflation in the
type-I error rate is larger than shown by this scenario, as illustrated the Table 3.2. The
difference between these two type-I error rates for a series of three studies is depicted
in Figure 3.1 by the area under the red histogram for Z (3) and the red φ(z | E0

(3)) curve
below −z α

2
and above z α

2
. We conclude that the effect of Accumulation Bias on testing

cannot be corrected by only an approximation of the bias.

fP0

�

E (t)TYPE-I

�

�

� T ≥ t
�

:= 1−Φ
�

z α
2
− E0

�

Z (t)
�

� T ≥ t
�

�

+ Φ
�

−z α
2
− E0

�

Z (t)
�

� T ≥ t
�

�

. (3.5)

3.2.7 Gold Rush Accumulation Bias: When does it occur?

We indicated in Section 3.2.3 that we chose extreme values for parameters ω(1)S , ω(1)X ,
ω
(1)
NS , ωS, ωX and ωNS such that Figure 3.1 would clearly show the bias and distributional

change that occurs. However, for any combination of values for which there is a t where
ω
(t)
S 6=ω

(t)
X 6=ω

(t)
NS Accumulation Bias occurs for series larger than size t and p-value tests

that assume a standard normal distribution are invalid.

3.3 The Accumulation Bias Framework
In general, Accumulation Bias in meta-analysis makes the sampling distribution of the
meta-analysis Z-score difficult to characterize due to the data dependent size and tim-
ing of a study series up for meta-analysis. In this section, we specify both processes in a
framework of analysis time probabilities. We use the term analysis time because time in
meta-analysis is partly based on a survival time. A survival time indicates that a subject
lives longer than time t (and might still become much older), just as an analysis time
indicates that a series up for meta-analysis has at least size t (but might still grow much
larger). As such, analysis time probabilities, just as the probabilities in a survival function,
do not add up to 1.
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Our Accumulation Bias Framework uses the following notation for its three key compo-
nents: S(t−1),A (t) and A(t). Firstly, S(t−1) can be understood as the survival function
in the variable time t that indicates the size of the expanding study series. S(t − 1) de-
notes the probability that the available number of studies is at least t (P[T ≥ t]), so the
study series has survived past the previous study at t − 1. Secondly, A (t) indicates the
event that a meta-analysis is performed on a study series of size exactly t. Lastly, A(t)
combines the probability that a study series of certain size is available (S(t−1)) with the
decisionA (t) to perform the analysis on exactly t studies. So the analysis time probability
A(t) represents the general probability that a meta-analysis of size t – so at time t – is
performed and is the key to describing the influence of various forms of Accumulation
Bias on testing.

3.3.1 Analysis time probabilities

Let P
�

A (t)
�

� T ≥ t, z1, . . . , zt

�

denote the probability that a meta-analysis is performed on
the first t studies. Just as the Gold Rush’ new study probabilities from (3.2), this probability
can depend on the results in the study series z1, . . . , zt . The event A (t) only occurs if a
series of size t is available, so we need to condition on the survival past t − 1, which can
also depend on previous results. When combined, we obtain the following definition1 of
analysis time probabilities A(t):

A(t | z1, . . . , zt) := P
�

A (t)
�

� T ≥ t, z1, . . . , zt

�

· S (t − 1 | z1, . . . , zt−1) ,

where we define

S (t − 1 | z1, . . . , zt−1) := P [T ≥ t | z1, . . . , zt−1] .

(3.6)

(3.6) formalizes the idea of analysis time probabilities “depending on previous results”
in terms of the individual study Z-scores z1, . . . , zt . This is compatible with the Z-test ap-
proach in meta-analysis and the dependencies and the Gold Rush’ new study probabilities
that are explicitly expressed in terms of Z-scores. More generally however, in Section 3.3.3
and Section 3.3.4 we extend the definition and allow analysis time probabilities to also
depend on the data in the original scale and external parameters.

3.3.2 Analysis time probabilities’ independence from the data-generating hy-
pothesis

Just as for the Gold Rush’ new study probabilities discussed in Section 3.2.2 and Sec-
tion 3.2.3, the analysis time probabilities A(t) only depend on the data, and are indepen-
dent from the hypothesis that generated the data. So again, P in these definitions can

1Note that A(t | z1, . . . , zt ) is defined as a product of two (conditional) probabilities. Calling this product itself
a “probability”, as we do, can be justified as follows: we currently think of the decision whether to continue
studies at time t, i.e. whether T ≥ t, to be made before the t-th study is performed. But we may also think
of the t-study result zt as being generated irrespective of whether T ≥ t, but remaining unobserved for ever
if T < t. If the decision whether T ≥ t is made independently of the value zt , i.e. we add the constraint
P [T ≥ t | z1, . . . , zt−1] = P [T ≥ t | z1, . . . , zt ], then the resulting model is mathematically equivalent to ours (in
the sense that we obtain exactly the same expressions for S(t), A(t | z1, . . . , zt ), all error probabilities etc.), but
it does allow us to write, by (3.6), that A(t | z1, . . . , zt ) = P

�

A (t), T ≥ t
�

� z1, . . . , zt
�

– so now A(t | z1, . . . , zt ) is
indeed a probability.
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be read as P1 as well as P0. Our definition of A(t) relates to the definition of a Stopping
Rule by Berger and Berry (1988, pp. 33-34), where they use x (m) to denote a vector of m
observations:

Definition. A stopping rule is a sequence τ= (τ0,τ1, . . . ) in which τ0 ∈ [0, 1]
is a constant and τm is a measurable function of x (m) for m≥ 1, taking values
in [0,1].

τ0 is the probability of stopping the experiment with no observations (e.g., if it
is determined that the experiment is too expensive); τ1(x (1)) is the probability
of stopping after observing the datum x (1) = x1, conditional on having taken
the first observation; τ2(x (2)) is the probability of stopping after observing
x (2) = (x1, x2), conditional on having taken the first and second observations;
etc.

To take the analogy with survival analysis further, we consider the sequence τ defined
above by Berger and Berry (1988) to be a sequence of hazards. Instead of using their
notation τ we denote the Stopping Rule by λ= (λ(0),λ(1), . . . ) to emphasize its behavior
as a sequence of hazard functions and to distinguish time t from the probability λ(t) of
stopping at that time given that you were able to reach it. The hazard of stopping at time
t can depend on previous results and is defined as follows:

λ (t | z1, . . . , zt) := P [T = t | T ≥ t, z1, . . . , zt] . (3.7)

In this chapter we are only interested in cases in which a first study is available, so λ(0) =
0 (also stated as P[T ≥ 1] = 1 in Appendix Section 3.B). The survival S(t − 1), the
probability of obtaining a series of size at least t (so larger than t − 1), follows from the
hazards by considering that surviving past time t−1 means that the series has not stopped
at studies i up to and including t − 1. So for t ≥ 1:

S (t − 1 | z1, . . . , zt−1) =
t−1
∏

i=0

(1−λ (i | z1, . . . , zi)). (3.8)

In many examples, the hazard of stopping at time t, λ(t), will depend on the result zt
just obtained. In that case λ (i | z1, . . . , zi) = λ (i | zi) in (3.8) above. But in general λ(t)
might also depend on some synthesis of all zi so far. We show some of the variety of forms
that λ(t), S(t) and A(t) can take in our Accumulation Bias Framework in the following
sections.

3.3.3 Accumulation Bias caused by dependent study series size
Our Gold Rush example describes an instance of Accumulation Bias that is caused by how
the study series size comes about. This is expressed by the S(t) component of the analysis
times probability A(t). We represent our Gold Rush scenario in terms of our Accumulation
Bias framework in next section, followed by variations from the literature that we were
able to express in a similar manner.
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Gold Rush: dependence on significant study results
The Gold Rush scenario operates in a general meta-analysis setting and assumes that there
is a single random or prespecified time t at which a study series is up for meta-analysis.
This is the approach taken by meta-analyses not explicitly part of a living systematic re-
view. In the Gold Rush example the dependency arises in the study series because a t-study
series has a larger probability to come into existence when individual study results are
significant, and you need a t-study series to perform a t-study meta-analysis. This de-
pendency was characterized by the new study probabilities ω(1)S , ω(1)NS , ωS and ωNS from
(3.2). The value of S(t), and therefore A(t), can be expressed in terms of these new study
probabilities by considering whether z1, . . . , zt−1 are larger than z α

2
(which is 1.960 for α

= 0.05). Since a meta-analysis is performed only once at a randomly chosen time t, we
have P[A (t)] = 1 for that time t and P[A (t)] = 0 otherwise. So for the one meta-analysis
we obtain:

for t such that P[A (t)] = 1 :

A(t | z1, . . . , zt−1;α) =S (t − 1 | z1, . . . , zt−1;α) =
t−1
∏

i=0

(1−λ (i | zi;α)) ,

with λ (0) = 0 and for all i ≥ 1, λ(i) is defined as follows:

λ (i | zi ,α) =1−
�

ω(i)
S
· 1zi≥z α

2
+ω(i)

NS
· 1|zi |<z α

2

�

λ0 (i |α) := E0 [λ(i | Zi;α)] = 1−
�

ω(i)
S
·
α

2
+ω(i)

NS
· (1−α)

�

.

(3.9)

Therefore, (leaving out the λ(0) and summing from i = 1 to t−1), we obtain the following
expressions for the Gold Rush analysis time probabilities and its expectations under the
null distribution:

A(t | z1, . . . , zt−1;α) =
t−1
∏

i=1

�

ω(i)
S
· 1zi≥z α

2
+ω(i)

NS
· 1|zi |<z α

2

�

A0 (t |α) :=E0 [A(t | Z1, . . . , Zt−1;α)] =
t−1
∏

i=1

�

ω(i)
S
·
α

2
+ω(i)

NS
· (1−α)

�

.

(3.10)

Kulinskaya et al. (2016): dependence on meta-analysis estimates
Kulinskaya et al. (2016) report biases that result from dependencies between a current
meta-analysis estimate and the decision to perform a new study. Since their focus is on
bias, they do not discuss issues of multiple testing over time, which would arise if their cu-
mulative meta-analyses estimates were tested. In this section we assume that the timing
of the meta-analysis test is independent from the estimates that determined the accu-
mulation of the series to its current size, as if a test were done by a second unknowing
meta-analyst. This scenario is hinted at by Kulinskaya et al. (2016, p. 296) in the statement
“When a practitioner or a meta-analyst finds several trials in the literature, a particular
decision-making scenario may have already taken place.” We postpone the discussion of
multiple testing to Equation 3.3.3. In this estimation setting, the decision to perform new
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studies is determined not by the meta-analysis Z-scores Z (t−1), but by the meta-analysis
estimates on the original scale M (t−1) (notation adopted from Borenstein et al. (2009),
see Appendix Section 3.A), in relation to a minimally clinically relevant effect∆H1. A min-
imally clinically relevant effect is the effect that should be used to power a trial (in the
alternative distribution H1), and therefore, the effect that the researchers of the study do
not want to miss. Kulinskaya et al. (2016) consider three models for the study series accu-
mulation process: the power-law model and the extreme-value model and the probit model.
The models relate the probability of a new study to the cumulative meta-analysis esti-
mate of the study series so far and are inspired by models for publication bias. Although
all three models can be recast in our framework, we demonstrate this only for the power
law model that uses one extra parameter τ to relate the previous meta-analysis estimate
M(t−1) to S(t). Just as in the Gold Rush scenario, we must assume that a meta-analysis test
is performed only once at a randomly chosen time t. So only at that time t P[A (t)] = 1
and P[A (t)] = 0 otherwise. We obtain the following expression for the Kulinskaya et al.
(2016) power-law model:

for t such that P[A (t)] =1 :

A
�

t
�

�M (t−1);∆H1,τ
�

=S
�

t − 1
�

�M (t−1);∆H1,τ
�

=
t−1
∏

i=0

�

1−λ
�

i
�

�M (t−1);∆H1,τ
��

,

(3.11)

with λ(0) = λ(1) = 0, and for all i ≥ 2, λ(i) is defined as follows:

λ
�

i
�

�M (i−1);∆H1,τ
�

= 1−
�

M (i−1)

∆H1

�τ

, (3.12)

for 0< M (i−1) <∆H1 and 1 (so 1−λ= 0) otherwise.

According to this model, no further studies are performed as soon as an estimate as large
as ∆H1 is found. For estimates smaller than ∆H1, the closer the estimate is to ∆H1, the
larger the probability of a subsequent study. Just as in the Gold Rush example, this model
will introduce bias as well as skew the sampling distribution of the data under the null
hypothesis since initial studies with large estimates have larger probability to end up in
study series of considerable size than small initial estimates do. When the initial study
gives a large overestimation of the effect, this overestimation stays present in the subse-
quent meta-analysis estimates and keeps influencing the probability of subsequent studies.
Therefore, this model shows the effect of early studies in the series even more clearly than
the Gold Rush example. However, the accumulation bias does have a cap, since estimates
larger than ∆H1 do not introduce new replication studies.

Whitehead (2002): dependence on early study results
Bias may also be introduced by the order in which studies are conducted. For
example, large-scale clinical trials for a new treatment are often undertaken
following promising results from small trials. [...] given that a meta-analysis



104 ALL-IN meta-analysis

is being undertaken, larger estimates of treatment difference are more likely
from the small early studies than from the later larger studies.

–Whitehead (2002, p. 197)

Whitehead (2002) mentions a dependence between the results of the small early studies in
a series and the size of the series. This influence could either be based on the significance
of early findings, such as in the Gold Rush example (Section 3.3.3), or on the estimates in
the initial studies, such as in the power law model from Kulinskaya et al. (2016) (Equa-
tion 3.3.3). Whitehead (2002) does not give sufficient details to specify this dependency
explicitly, but we are confident that it will fit in our Accumulation Bias framework.

Two ways to approach this Accumulation Bias are given in Whitehead (2002). The first
is to exclude early studies from the meta-analyses, either in the main analysis or in a
sensitivity analysis. The second way is to ignore the problem, since the small studies will
have little effect on the overall estimate. In Section 3.6 we show that any small initial
study dependency that can be expressed in terms of A(t) can be dealt with by tests using
likelihood ratios.

Living Systematic Reviews: dependence on significant meta-analyses + multiple
testing

A living systematic review (LSR) should keep the review current as new re-
search evidence emerges. Any meta-analyses included in the review will also
need updating as new material is identified. If the aim of the review is solely
to present the best current evidence standard meta-analysis may be sufficient,
provided reviewers are aware that results may change at later updates. If the
review is used in a decision-making context, more caution may be needed.
When using standard meta-analysis methods, the chance of incorrectly con-
cluding that any updated meta-analysis is statistically significant when there
is no effect (the type I error) increases rapidly as more updates are performed.

–Simmonds, Salanti, McKenzie & Elliott (2017, p. 39)

In living systematic reviews, the aim is to have a meta-analysis available to present the
current evidence, thus synthesizing the t studies available at a certain time. The current
meta-analysis estimate might be used to decide whether further studies should be per-
formed. In that case S(t − 1), the probability that a study series of size t is available – so
that a study series has expanded beyond series size t − 1 – depends on the meta-analysis
estimate Z (t−1) at the previous study’s meta-analysis. Because the review is continuously
updated, P[A ] is always 1, and living systematic reviews can be described by the follow-
ing analysis time probability A(t):

A
�

t
�

�

� z(1), . . . , z(t); z α
2

�

= P
�

A (t)
�

� T ≥ t
�

· S
�

t − 1
�

�

� z(1), . . . , z(t); z α
2

�

= S
�

t − 1
�

�

� z(1), . . . , z(t−1); z α
2

�

=
t−1
∏

i=0

(1−λ
�

i
�

�

� z(i); z α
2

�

).
(3.13)
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The quote above warns against decisions based on the continuously updated meta-analysis
using a fixed threshold z α

2
. Living systematic reviews experience multiple testing problems

of a kind that are familiar from statistical monitoring of individual clinical trials (Proschan
et al., 2006). If the study series is stopped as soon as a significance threshold is reached,
and the obtained meta-analysis is considered the final one, then this final meta-analysis
test has an increased chance of a type-I error. So the warning is not to use the following
simple stopping rule:

λ
�

i
�

�

� z(i); z α
2

�

= 1|Z (i)|≥z α
2
. (3.14)

Various corrections to significance thresholds are proposed that relate intermediate looks
to a maximum sample size or information size. These corrected thresholds depend on
α and the fraction of sample size or information size available at time t. Examples of
such methods are Trial sequential analysis (Brok et al., 2008; Wetterslev et al., 2008) and
Sequential meta-analysis (Whitehead, 2002, Ch. 12) (Whitehead, 1997; Higgins et al.,
2011). For an overview see Simmonds et al. (2017). In general, (3.13) and (3.14) show
that any dependency between “the best current evidence” and the accumulation of future
studies is part of our Accumulation Bias Framework. We discuss the approach to error
control taken by the corrected thresholds in Section 3.4.2.

3.3.4 Accumulation Bias caused by dependent meta-analysis timing
We described various forms of Accumulation Bias that are caused by how the study series
size comes about, but dependencies are also introduced by how the meta-analysis itself
arises. This is expressed by the P

�

A (t)
�

component of the analysis times probabilities
A(t). We only found one such process mentioned in the literature and will discuss it in
the next section.

Ellis and Stewart (2009): dependence on the right amount of positive findings
Meta-analysis times are subtle. A train of negative findings would generally
not stimulate a meta-analysis. Nor would a string of very positive findings.
[...] All this makes the analysis of explicitly defined meta-analysis times very
difficult. We conclude that study of bias in meta-analysis based on parametric
modeling of meta-analysis times is problematical.

–Ellis & Stewart (2009, pp. 2454-2455)

Ellis and Stewart (2009) do not give an explicit model that we can interpret in terms of
A(t), but indicate that it should depend on the study findings Zi , or in the original scale,
Di (notation adapted from Borenstein et al. (2009), see Appendix Section 3.A). Given the
quote above, the amount of very positive findings should not be too large, and not too
small. Though exact parametric modeling indeed stays problematical, we can assume that
a positive finding is a study estimate larger than the minimally clinically relevant effect
∆H1, define the right amount of positive findings to be in the region [a, b], and show that
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this fits in our Accumulation Bias Framework by expressing a possible model for A(t):

for t such that S(t − 1) = 1 :

A
�

t
�

�D1, . . . , Dt ; a, b
�

= P
�

A (t)
�

� T ≥ t, D1, . . . , Dt ; a, b
�

· S
�

t − 1
�

�D1, . . . , Dt−1; a, b
�

= P
�

A (t)
�

� T ≥ t, D1, . . . , Dt ; a, b
�

= 1C∈[a,b]

with C =
t
∑

i=1

1Di>∆H1 .

(3.15)

3.3.5 Accumulation Bias caused by Evidence-Based Research
New research should not be done unless, at the time it is initiated, the ques-
tions it proposes to address cannot be answered satisfactorily with existing
evidence.

–Chalmers & Glasziou (2009)

In 2009, the term Research Waste was coined and this key recommendation was made.
The recommendation further specifies that existing evidence should be obtained by a
systematic review and summarized with a meta-analysis. But how exactly to answer the
question whether new research is necessary or wasteful remained unclear. Nevertheless,
the recommendation was important enough to be repeated, as was first done in an entire
series on Research Waste with a specific recommendation on setting research priorities
Chalmers et al. (2014) and later in a paper that gave the recommendation its official
name: Evidence-Based Research Lund et al. (2016). Support for these recommendations
was provided by various retrospective cumulative meta-analyses that show how many
studies were still performed while satisfactory evidence was already available. These cu-
mulative meta-analyses judge “satisfactory evidence” based on a significance threshold,
usually uncorrected for multiple testing (e.g. Fergusson et al. (2005)), which reminds us
of the Accumulation Bias that occurs in living systematic reviews (Equation 3.3.3).

The larger consequence, however, is that Accumulation Bias is caused by any dependen-
cies between results and series size and meta-analysis timing, and that Evidence-Based
Research introduces such dependencies. Inspecting previous results to decide whether
new research is necessary or wasteful therefore always introduces Accumulation Bias,
whether it based on uncorrected or corrected thresholds. Also more subtle decision meth-
ods – implicit rather than based on thresholds – introduce Accumulation Bias, as was
shown by Kulinskaya et al. (2016). In fact, they describe the rationale behind their mod-
els – among which the power-law model (Equation 3.3.3) – as an example of bias intro-
duced by guidelines to decide on “the usefulness of a new study” “with direct reference
to existing meta-analysis.” Kulinskaya et al. (2016, p. 297).

So Evidence-Based Research causes bias, and our Accumulation Bias Framework demon-
strates how it might affect the sampling distribution, whether based on explicit thresholds
or implicit decision making. Does this mean that we cannot make Evidence-Based Re-
search decisions to avoid research waste, while also controlling type-I errors? Fortunately,
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Figure 3.2. Possible 2001 state of a database of study series per topic, visualizing what
study series are taken into account in the two approaches to error control: conditional on
time (blue and grey) and surviving over time (orange).

we do not need to be that pessimistic and can still embrace Evidence-Based Research. In
Section 3.6 we show that tests based on likelihood ratios withstand Accumulation Bias
and are very well suited to reduce research waste. But to do so, we first need to specify
exactly what role is played by time in error control.

3.4 Time in error control
Over time new study series are initiated, studies are added to existing study series and
more meta-analyses are performed. To visualize how this process relates to error control,
we need to start with a specific state of this expanding system. In 2001 an estimated min-
imum of 10 000 medical topics were covered in over half a million studies, thus requiring
10 000 meta-analyses if all were synthesized in a database such as the Cochrane Database
of Systematic Reviews Mallett and Clarke (2003). The number of studies in a series varied
between 2 and 136, which we can use to describe the 2001 state of a possible database,
that to be complete, also includes many unreplicated pilot studies. We could visualize this
database in a table, with studies in the rows, topics in the columns and many missing
entries. A sketch is shown in Figure 3.2.

The conventional approach to error control, which we used to show the influence of Gold
Rush Accumulation Bias in meta-analysis testing in Section 3.2.6, is a conditional ap-
proach. Since conventional meta-analysis does not raise any multiple testing issues, there
is a hidden assumption that the timing of a meta-analysis A (t) is independent from the
data and each study series experiences only one meta-analysis. In Section 3.3.3 we took
the t at which the sole meta-analysis is conducted to be either random or prespecified.
This is shown in Figure 3.2 by the black box enclosing the available studies on Topic 1.
Other possible study series up for meta-analysis are shown by the boxes enclosing studies
on Topic 5 and 8. Note that by assuming only one meta-analysis, a study series might
continue growing but not be fully analyzed, as shown for Topic 5.

In the conditional approach to error control, a three-study series (Z1, Z2, Z3) produces a
possible draw from the Z (3) sampling distribution. If we test our draw, the type-I error rate
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is defined as the fraction of t-study series that is considered significant if all t-study series
were to be sampled from the null distribution. The question is: What study series are taken
into account to specify this fraction? This is visualized in Figure 3.2 by the dark blue and
grey shading for t = 2 and the dark blue and lighter blue shading for t = 3. The unshaded
topics and change of color between t = 2 and t = 3 show the flaw of this approach: some
series might not survive up until a specific time t, as for instance shown by the grey studies
that are part of t = 2 but not part of the error control for t = 3. We also do not want
every series to survive up until any arbitrary time t to avoid research waste (Chalmers and
Glasziou, 2009). The crucial point is that the series that do survive are no random sample
from all possible t-study series. This is another illustration of Accumulation Bias such as
the Gold Rush scenario. The series deviates even more from the assumption of a random
t-study draw if the meta-analysis time t is not random or prespecified, but dependent
on the results, as expressed in Section 3.3.4. We discuss the conventional conditional
approach to meta-analysis error control in more detail in Section 3.4.1.

The other possible approach to error control is surviving over analysis times, which means
that it should be valid for any upcoming analysis time t within a series. So the probability
that a type-I error – ever – occurs in the accumulating series is controlled, whether the
series reaches a large size or not. This is visualized in Figure 3.2 by the orange shading,
and has a long run error rate that runs over series of any size, including the one-study
series. This approach to error control is taken by methods for living systematic reviews
such as Trial sequential analysis and Sequential meta-analysis. We discuss this approach of
error control surviving over time in more detail in Section 3.4.2.

3.4.1 Error control conditioned on time
The null distributions of the common/fixed meta-analysis Z-statistic shown in Figure 3.1
are conditioned on the size of the series, which is the time: T ≥ t. We can use our Ac-
cumulation Bias framework to give this distribution a general description, where we use
φ0(z(t)) to denote the assumed standard normal null distribution for the meta-analysis
Z-score and obtain a conditional density using Bayes’ rule:

φ0

�

z(t)
�

�A (t), T ≥ t
�

=
φ0(z(t)) · P0

�

A (t), T ≥ t
�

� z(t)
�

P0 [A (t), T ≥ t]
=
φ0(z(t)) · A0

�

t
�

� z(t)
�

A0 (t)
,

where we define:

A0

�

t
�

� z(t)
�

:= E0

�

A(t | Z1, . . . , Zt)
�

� Z (t) = z(t)
�

A0 (t) := E0 [A(t | Z1, . . . , Zt)] ,
with under the equal study size assumption in (3.1b)

Z (t) =
1
p

t

t
∑

i=1

Zi

(3.16)

(extension to the general cases with unequal sample sizes is straightforward). For the
Gold Rush example, A0 (t) was given by (3.10) and can be calculated if ωs are known.
A0 (t) denotes the general probability of arriving at T ≥ t under the null hypothesis, and
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so does A0

�

t
�

� z(t)
�

, but with the restriction that we only take samples into account that
result in meta-analysis score z(t). The type-I error rates for the Gold Rush example shown
in Table 3.2 are based on a randomly chosen or prespecified t for which P[A (t)] = 1, and
represent the following (with φ0 as above in (3.16), the standard normal density):

P0

�

E (t)TYPE-I

�

�

�A (t), T ≥ t
�

=

∫ −z α
2

−∞
φ0

�

z(t)
�

�A (t), T ≥ t
�

dz(t) +

∫ ∞

z α
2

φ0

�

z(t)
�

�A (t), T ≥ t
�

dz(t),

φ0 (z1, . . . , zt |A ) =
φ0 (z1, . . . , zt) · A0 (t | z1, . . . , zt)

A0 (t)
where we define:

A0 (t | z1, . . . , zt) := E0 [A(t | Z1, . . . , Zt) | Z1 = z1, . . . , Zt = zt]

A0 (t) := E0 [A(t | Z1, . . . , Zt)]
(3.17)

3.4.2 Error control surviving over time

In living systematic reviews, a meta-analysis is performed after each new study (P
�

A (t)
�

=
1 for all t). The properties on error control obtained by for example Trial Sequential Anal-
ysis are therefore surviving over analysis times t and depend on the joint distribution on
the data and the maximum study series size T . For P

�

A (t)
�

always 1, A(t) = S(t−1) and
this joint distribution can be presented as follows:

φ0

�

z(1), . . . , z(t), T = t
�

= φ0

�

z(1), . . . , z(t)
�

· P0

�

T = t
�

� z(1), . . . , z(t)
�

, (3.18)

where we define

P0

�

T = t
�

� z(1), . . . , z(t)
�

:= E0

�

S(t − 1
�

� Z1, . . . , Zt−1)
�

� Z (1) = z(1), . . .
�

− E0

�

S(t
�

� Z1, . . . , Zt)
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� Z (1) = z(1), . . .
�

,

with under the equal study size assumption in (3.1b),

Z (t) =
1
p

t

t
∑

i=1

Zi , φ0(z
(0)) = 1 and P0

�

T ≥ 1
�

� z(0), z(1)
�

= 1.

The result P[T = t] = S(t−1)−S(t) is known from survival analysis and made explicit in
the Appendix Section 3.E. When S(t) is known for all t, it is possible to obtain error control
that survives over analysis times T = t with thresholds z(t)α

2
that are functions of α, t and

some Tmax based on a maximum sample or information size. Such methods are known as
Trial sequential analysis (Brok et al., 2008; Wetterslev et al., 2008) and Sequential meta-
analysis (Whitehead, 2002, Ch. 12) (Whitehead, 1997; Higgins et al., 2011). If we assume
a one-sided test, the approach to error control taken by these methods can be expressed
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as follows:

ET

h
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�

E (T )TYPE-I
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� T
�
i
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∑
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z(1), . . . , z(t), T = t
�

dz(1) . . . dz(t) = α,

with φ0 as above (3.18) and T = t only in the caseλ(t) = 1Z (t)≥z(t)α
2

= 1.

(3.19)

The change in notation from T ≥ t to T = t already hints at the limitations of this
approach: the series size needs to be completely determined by the thresholds specified
in the hazard function and nothing else. We discuss this limitation in more detail in the
next section.

3.4.3 Unknown and unreliable analysis time probabilities

To obtain thresholds to test z(t) under Accumulation Bias, we need to know the probability
A(t) (or only S(t)) for meta-analysis time t. However, any of the scenarios described in
Section 3.3.3 and Section 3.3.4 can be involved, and some can be influencing z(t) simul-
taneously. Also, ethical imperatives might balance the bias, as illustrated by the following
quote:

A negative result will dampen enthusiasm and turn the attention of investiga-
tors to other possible protocols. A positive result will excite interest but may
provide an ethical veto on further randomization.

–Armitage (1984) as cited by Ellis and Stewart (2009)

We do not believe that the corrected thresholds z(t)α
2

from sequential methods like Trial
Sequential Analysis can account for all Accumulation Bias, since they require very strict
conformation to the stopping rule based on synthesized studies z(t) and some have already
argued that meta-analysts do not have such control over new studies (Chalmers and Lau,
1993). Sequential meta-analysis was proposed for prospective meta-analyses (Whitehead,
1997; Higgins et al., 2011) and never intended for settings with retrospective dependen-
cies. Stopping rules based solely on meta-analysis ignore dependencies that might already
have arisen at the individual study level (such as in the Gold Rush example) and that meta-
analyses might in practice not be performed continuously (so P[A (t)] 6= 1 for some t).
When meta-analyses are not performed continuously, as discussed in Section 3.3.4, the
specification of which series are included in the long run error control is missing (imag-
ine for example that some of the columns 1, 2, 3 and 5 of meta-analyses in Figure 3.2 be
excluded in the long run error control because the individual study results were such that
nobody will ever bother to perform a meta-analysis).

It might be very inefficient to try to avoid Accumulation Bias. As stated in the introduc-
tion, avoiding it would mean that results from earlier studies should be unknown when
planning new studies as well as when planning meta-analyses (that is, the decision to
do a meta-analysis after t studies should not depend on the outcome of these studies).
Achieving this might be impossible, since research is very often somehow inspired by other
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findings. Also, such approach cannot be reconciled with the Evidence-Based Research ini-
tiative to reduce waste (Lund et al., 2016; Chalmers and Glasziou, 2009; Chalmers et al.,
2014).

We conclude that the Accumulation Bias process specifying A(t) can never be fully known
and that avoiding an Accumulation Bias process will introduce more research waste. So
we need a testing method that is valid regardless of the exact Accumulation Bias process.
We will introduce such a method in Section 3.6, but first exhibit some evidence that, even
though the recommendations from Evidence-Based Research still need renewed attention,
Accumulation bias might already be at play.

3.5 Intermezzo: evidence for the existence of Accumulation Bias

3.5.1 Agreement with empirical findings
Accumulation Bias arises due to dependencies in how a study series comes about (Sec-
tion 3.3.3), and in the timing of the meta-analysis (Section 3.3.4). We first discuss some
indications of the former and then illustrate how these can be reinforced by some ap-
proaches to the latter.

If citations of previous results are a real indication of why a replication study is performed,
than many such dependencies have been demonstrated in the literature on reference/ci-
tation bias (Gøtzsche, 1987; Egger and Smith, 1998). Citation or reference bias indicates
that initial satisfactory results are more often cited than unsatisfactory results, thus some
sort of Gold Rush occurs. Studies into citations indicate that early small trials are much
more often cited than later large trials (e.g. Fergusson et al. (2005); Robinson and Good-
man (2011)), which might limit the Gold Rush to the early studies in a series, such as
indicated by Whitehead (2002) (Equation 3.3.3). Many studies have found that early
studies are unreliable predictors of later replications in a study series (Roberts and Ker,
2015; Chalmers and Glasziou, 2016) (and see references 6-34 in Ioannidis (2008) and
references 33-49 in Pereira and Ioannidis (2011)), which is also an indication of early
study Accumulation Bias.

Other empirical findings suggest that Accumulation Bias might occur throughout a series,
but to a lesser extent in later studies. Gehr et al. (2006), for example, report effect sizes
that decrease over time, but in which study size did not play a significant role. What has
been recognized as regression to the truth in heart failure studies, might also be charac-
terized as Accumulation Bias (Krum and Tonkin, 2003). But these effects will be difficult
to limit to only a few early studies, so excluding a certain number from meta-analysis, as
proposed in Whitehead (2002, p. 197) (Equation 3.3.3). It is difficult to find the threshold
for where the early biased studies end and the unbiased ones begin and excluding studies
is a very crude measure.

The Proteus effect (Pfeiffer et al., 2011; Ioannidis and Trikalinos, 2005; Ioannidis, 2005a)
describes how early replications can be biased against initial findings. If early contradict-
ing findings spur a large series of studies into a phenomenon, it introduces a more complex
pattern of Accumulation Bias that does not have a straightforward dominating direction.
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The same holds for the Value of Information approach, to decide on replication studies
(Claxton and Sculpher, 2006; Claxton et al., 2002).

There is quite some literature with suggestions on when a meta-analysis should be up-
dated. One general recommendation is to do so when studies can be added that will have
a large effect on the meta-analysis (Moher and Tsertsvadze, 2006; Moher et al., 2007b,
2008). If such recommendations reflect an overall tendency in timing of meta-analysis,
Accumulation Bias might be re-enforced by the timing of the meta-analysis: initial mis-
leading studies might have spurred a study series, and might also indirectly encourage a
meta-analysis after later studies report deviating results.

3.5.2 Agreement with intuitions about priors
The famous paper “Why Most Published Research Findings are False” (Ioannidis, 2005b)
introduced the concept of field specific prior odds to a large audience. The prior odds
were presented as the “Ratio of True to Not-True Relationships (R)”, which has the same
meaning as the ratio of pilot studies from the alternative and null distribution, which we
denote by P[H1]/P[H0] as the prior odds. Ioannidis (2005b) combines this ratio with
the average power and type-I error of tests in a research field to obtain a field-specific
estimate of the Positive Predictive Value (PPV) of a significant result. For this, the prior
odds of various research fields and publication types are given with two that are of interest
to Accumulation Bias: “Adequately powered RCT with little bias” and “Confirmatory meta-
analysis of good-quality RCTs”. For the first of these an R of 1:1 is provided and for the
second an R of 2:1. So a distinction is made between topics worthy of only one individual
study and those that evoke a series of studies eligible for meta-analysis.

How would the researchers involved in replicating RCTs know that their topic is worthy
of a series of studies in comparison to just one? The difference between prior odds of the
two indicates that this is no random decision. The only available source of information
would be previous study results, hence introducing dependence between study series size
and study results: Accumulation Bias. So the prior odds R specified by Ioannidis (2005b)

is actually P[H1]·A1(t)
P[H0]·A0(t)

, with A1(1) = 1 and A0(1) = 1 for primary studies.

3.6 Likelihood ratios’ independence from meta-analysis time
In Section 3.4.3 we argued that any approach to model the analysis time probabilities
A(t) is unreliable: in realistic and practically relevant scenarios, the ingredients required
to calculate A(t) will be unknown. Therefore, we need to define test statistics that are
independent from how a series size or meta-analysis comes about. A possible form of
such a test statistic is the likelihood ratio, which we discuss from the two approaches to
error control: in the next Section 3.6.1 from the perspective of error control conditioned
on time, and in Section 3.6.2 from the perspective of error control surviving over time.

Our proposed use of the likelihood ratio is based on the following extraordinary property2,

2This property is related to the well-known fact that the Bayesian posterior based on data, when the priors
are determined independently of the sample size, takes on the same value irrespective of the stopping rule that
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already recognized by Berger and Berry (1988) and shown in (3.20): The likelihood ratio
is a test statistic that depends on the specification of some alternative distribution φ1 (a
normal distribution with variance 1 just as φ0) but with arbitrary mean µ other than 0.
Given the data, any data sampled from an alternative distribution will have the same
analysis time probabilities as data sampled from the null distribution, since analysis time
probabilities are independent from the data-generating hypothesis (Section 3.3.2). When
a likelihood ratio statistic is obtained for known data, the analysis time probability is a
constant factor that is the same in the numerator and denominator of the likelhood ratio
and therefore drops out of the equation:

LR(t)
�

z1, . . . , zt ,A (t), T ≥ t
�

:=
φ1 (z1, . . . , zt) · P1(A (t), T ≥ t | z1, . . . , zt)
φ0 (z1, . . . , zt) · P0(A (t), T ≥ t | z1, . . . , zt)

=
φ1 (z1, . . . , zt) · A(t | z1, . . . , zt)
φ0 (z1, . . . , zt) · A(t | z1, . . . , zt)

=
φ1 (z1, . . . , zt)
φ0 (z1, . . . , zt)
=LR (z1, . . . , zt) .

(3.20)

Here we used the standard definition of likelihood ratio for the case that the likelihood
jointly involves continuous-valued data and discrete events, and we critically used the fact
that the probability ofA (t), T ≥ t does not depend on whether the null or the alternative
distribution generated the data.

In the following two sections we discuss two means of using likelihood-ratio based tests
that yield results that are valid irrespective of accumulation bias.3

3.6.1 Likelihood ratio’s error control conditioned on time
A large study series has an extremely low probability of occurring under the null hypothe-
sis in the Gold Rush scenario, and under any other similar Accumulation Bias setting. The
probability of reaching a certain study series size t is much larger under any alternative
hypothesis when the power of the test for that alternative hypothesis (1 − β) is larger
than the type-I error α. Due to this fact, it is possible to control an error rate if we as-
sume that a certain fraction of pilot studies (or topics, see Figure 3.2) P[H1] are sampled
from the alternative distribution and a proportion P[H0] of pilot studies from the null.

This way, we are able to control the fraction of true rejections 1−P1

�

E (t)TYPE-II

�

�

�A (t), T ≥ t
�

(complement of type-II errors) to false rejections P0

�

E (t)TYPE-I

�

�

�A (t), T ≥ t
�

.

gave rise to the observations (Hendriksen et al., 2020)
3To avoid any confusion, let us highlight that our likelihood-ratio based tests are never equivalent to p-value

based tests. While some p-value based tests (such as the Neyman-Pearson most powerful test) can be written as
likelihood ratio tests, these are invariably of the form ‘reject at significance level α if LR(z1, . . . , zt ) ≥ γ where
γ is chosen such that P0(φ1(z1, . . . , zt )/φ0(z1, . . . , zt ) ≥ γ) = α. P0(φ1(z1, . . . , zt )/φ0(z1, . . . , zt ) ≥ γ) = α. In
contrast, we choose γ in a way that does not depend on knowledge of the tail area under P0 (e.g. in Section 3.6.2
we take γ= 1/α, and there the equality above is a (strict) inequality).
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We can achieve such error control conditioned on time – e.g. error control taking into
account only t-study meta-analyses – if we define thresholds based on the Bayes posterior
odds, which, by Bayes’ theorem, are given by Opost (z1, . . . , zt) = LR (z1, . . . , zt) ·

P[H1]
P[H0]

. Re-
markably, these are not affected by the mechanism underlying the decisions to continue
studies or perform meta-analyses:

Opost

�

z1, . . . , zt

�

�A (t), T ≥ t
�

:=
P
�

H1

�

� z1, . . . , zt ,A (t), T ≥ t
�

P [H0 | z1, . . . , zt ,A (t), T ≥ t]

=
φ1

�

z1, . . . , zt ,A (t), T ≥ t
�

· P[H1]

φ0 (z1, . . . , zt ,A (t), T ≥ t) · P[H0]

=LR(t)
�

z1, . . . , zt ,A (t), T ≥ t
�

·
P[H1]
P[H0]

=LR (z1, . . . , zt) ·
P[H1]
P[H0]

= Opost (z1, . . . , zt) .

(3.21)

To introduce these ideas in a simple setting, we assume here that both hypothesis consist
of a single normal distribution with variance 1: H0 = φ0 and H1 = φ1. We can set a
threshold r based on the rate of true to false rejections, so r = 16 would mean that we
try to achieve 16 times more true rejections than false rejections r = 1−β

α , which is the
usual goal of a primary analysis with intended power 1− β = 0.8 and type-I error rate
α = 0.05. To obtain error control, we need to specify this r and use it to threshold the
posterior odds (3.21). We define R to be the region of the sample space and R the event
for which Opost(z1, . . . , zt)≥ r, i.e. the event that we reject, and obtain the following:

1− P1

�

E (t)TYPE-II

�

�

�A (t), T ≥ t
�

P0

�

E (t)TYPE-I

�

�

�A (t), T ≥ t
�
·

P[H1]
P[H0]

=
P1

�

Opost

�

Z1, . . . , Zt

�

�A (t), T ≥ t
�

≥ r
�

P0

�

Opost (Z1, . . . , Zt |A (t), T ≥ t)≥ r
� ·

P[H1]
P[H0]

=
P1

�

Opost(Z1, . . . , Zt)≥ r
�

P0

�

Opost(Z1, . . . , Zt)≥ r
� ·

P[H1]
P[H0]

=
P1[R]
P0[R]

·
P[H1]
P[H0]

≥
r · P[H0]

P[H1]
· P0[R]

P0[R]
·

P[H1]
P[H0]

= r

(3.22)

where the inequality follows since if Opost (z1, . . . , zt)≥ r:

φ1 (z1, . . . , zt)
φ0 (z1, . . . , zt)

·
P[H1]
P[H0]

≥ r then
φ1 (z1, . . . , zt)
φ0 (z1, . . . , zt)

≥ r ·
P[H0]
P[H1]

(3.23)

and P1[R] =
∫

R

φ1(z1, . . . , zt)≥
∫

R

r ·
P[H0]
P[H1]

·φ0(z1, . . . , zt) = r ·
P[H0]
P[H1]

· P0[R].

So by specifying P[H1]
P[H0]

and an intended rate of true to false rejections r, we can calculate
the posterior odds based on the likelihood ratio, compare it to the threshold based on
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r and control fraction r of type-I errors under the null hypothesis. Note that any A (t) is
allowed, also multiple testing in a series or selection for the most promising meta-analysis
timing. Setting a threshold to the Bayes posterior odds as described above, achieves con-
ditional error control under any form of Accumulation Bias.

3.6.2 Likelihood ratio’s error control surviving over time
A likelihood ratio itself can be used as a test statistic to obtain a procedure that controls
P0[ETYPE-I] surviving over analysis times t, as in Section 3.4.2. Suppose we simply reject if
the likelihood ratio in favor of the alternative is larger than 1/α, ignoring any knowledge
we might have about the accumulation bias process and the prior odds. We then find:

P0

�

there exists t ≤ T with E (t)TYPE-I andA (t)
�

= P0

�

∃t ≤ T : E (t)TYPE-I;A
(t)
�

= P0

�

∃t ≤ T : LR(t) (Z1, . . . , Zt)≥
1
α

;A (t)
�

≤ P0

�

∃t > 0 : LR(t) (Z1, . . . , Zt)≥
1
α

�

≤ α.

(3.24)

The final inequality is a classic result, proofs of which can be found in, for example,
Robbins (1970) and (with substantial explanation) Hendriksen et al. (2020); see also
Royall (2000).

Thus, the type-I error control survives over time in the sense that the P0-probability that
we ever reject at a meta-analysis time is bounded by α. To further illustrate and interpret
error control surviving over time, we define

F (t)TYPE-I = E
(t)
TYPE-I ∩E

(t−1)
TYPE-I,∩ . . .∩E

(1)
TYPE-I

as the event that the first type-I error E (t)TYPE-I in a series happens at time t (here E
(t ′)
TYPE-I

means ‘no type-I error at time t ′). As we show in Appendix Section 3.F, the previous
inequality implies that

∑

t

P0

�

F (t)TYPE-I,A
(t), T ≥ t

�

≤ α. (3.25)

The change in notation from E (t)TYPE-I to F (t)TYPE-I is necessary since we want a general re-
sult for all forms of Accumulation Bias and do not want to assume that the series stops
growing after the threshold is crossed (as is assumed in living systematic reviews, see
Equation 3.3.3). But since it is not possible to control the amount of errors if multiple
errors are made in the same series, we count only the first error in (3.25). As such, we
are able to control the number of topics for which an error ever occurs in the series by
comparing the likelihood ratio to the threshold 1

α .

It may seem surprising that it is possible to obtain error control in the sense of (3.25) for
Accumulation Bias scenarios like Gold Rush example. After all, in this example large study
series have only a large probability to occur if they contain many extreme (significant)
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results. So it seems that we would inevitably hit a type-I error once we perform a meta-
analysis. But note that in this example, the expectation of A(t | Z1, . . . , Zt) (A0(t)) is much
larger for small t – due to the S(t) component – so that most meta-analyses will be of small
study series, or even one-study series, with small type-I error rates. In terms of Figure 3.2,
controlling error this way is possible because error control runs over all topics, regardless
of the realized series size. Thus, such error control is only meaningful if the series for each
topic are continuously monitored – including those consisting of only pilot studies.

3.7 The choice between error control conditioned and surviving over time
Many meta-analysts seem reluctant to apply living systematic review techniques to all
meta-analyses. We believe that this reluctance can be defended based on the assumed
approach to error control surviving over time. Surviving over time means that all possible
analysis times are weighted and that – in the long run – a large proportion of meta-
analyses will be one-, two- and three-study meta-analyses and never expand. To the occa-
sional meta-analyst, not involved in continuously updating meta-analyses, two- or three-
study meta-analyses might never occur. Also, it requires a stretch of mind to imagine
one-study meta-analyses part of the long run properties of your specific 15-study meta-
analysis. But it has been argued that “primary research is increasingly viewed as part of a
wider sequential process” (Higgins et al., 2011, p. 918), or at least, that it should be Lund
et al. (2016). Whether this approach to error control is acceptable might also be very field
specific. Among medical meta-analyses in the Cochrane Database of Systematic Reviews,
two- and three-study meta-analyses are common Davey et al. (2011), but in other fields
meta-analyses might only be performed if many more studies are available.

If, on the other hand, we want to stick to the conventional conditional approach to meta-
analysis, we need additional assumptions on the fraction P[H1] of true alternative hy-
potheses among pilot studies to threshold the posterior odds. Assuming a base rate P[H1]
means that we are essentially Bayesian about the null and alternative hypothesis4, but
there is no need to be strictly Bayesian: in practice, we might play around, and try best
case and worst case P[H1], to see how it affects our posterior odds. The important thing
for us to note within the context of this chapter is that, when concentrating on posterior
odds, we can ignore all details of the Accumulation Bias process and still obtain mean-
ingful results, in the form of error control that balances type-I and type-II errors.

Summarizing: If we prefer conditional error control, we can obtain meaningful error con-
trol despite Accumulation Bias if we use tests based on likelihood ratios, but using prior
odds for the base rates (and being partially Bayesian) is then unavoidable. If we prefer
not to rely on any prior odds, we can still obtain meaningful error control despite Accu-
mulation Bias if we use tests based on likelihood ratios, but then we have to resort to
error control surviving over time instead of conditional error control.

4We do not necessarily have to be completely Bayesian: even if the null and/or alternative are composite, we
can define “likelihood ratios” that do not rely on prior guesses about the parameters within the models. But we
do need to be partially Bayesian, in the sense that we need to specify a base rate for the null (Grünwald et al.,
2019). We call this pseudo-Bayes posterior odds and explain this further in the appendices to Chapter 5.
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The former, conditional approach balances type-I and type-II errors and thus takes power
into account. The importance of taking power (the complement of a the type-II error rate)
into account has been argued before by many (Simmonds et al., 2017). In the general ap-
proach to error control in individual studies, the expected type-I error rate is fixed by the
significance level α, and the type-II error rate minimized by the experimental design and
sample size. In retrospective meta-analysis, however, sample size (or study series size t)
is not under the control of the meta-analyst. Also, the study series size t is only a snap-
shot of a possibly growing series (T ≥ t), since more studies might be performed in the
future. Therefore also estimations of meta-analysis power are snapshots at a specific meta-
analysis time. Nevertheless, it is often argued that many meta-analyses are underpowered
(Turner et al., 2013; Davey et al., 2011) and that this should be taken into account in eval-
uating significance in meta-analyses. In Trial Sequential Analysis (Wetterslev et al., 2008)
for example, an alternative hypothesis is formulated to judge the fraction of a required
sample size available at t studies. A later review on trial sequential analysis noted:

statistical confidence intervals and significance tests, relating exclusively to
the null hypothesis, ignore the necessity of a sufficiently large number of ob-
servations to assess realistic or minimally important intervention effects.

–Wetterslev, Jakobsen & Gluud (2017, p. 12)

Testing procedures based on likelihood ratios are very well suited to take an alternative
distribution with minimally important intervention effect into account. Especially when
balancing type-I error and power by thresholding posterior odds. Specifying power in tests
without fixed sample sizes is studied extensively in Grünwald et al. (2019) and will be
the focus of future research into likelihood ratios for meta-analysis.

3.8 Why likelihood ratios work: dependencies as strategy
We calculate p-values to judge the extremeness of our results under the null hypothesis,
and to control type-I errors. But the p-value method is a fairly complicated approach to
that goal when it comes to meta-analysis: To obtain a valid p-value for a series of studies,
the sampling distribution under the null hypothesis needs to specify exactly how the series
and the meta-analysis timing came about. Only for a completely and accurately specified
process can the extremeness of the data be judged and compared to a threshold based on
the tail area of the sampling distribution.

Fortunately, much simpler approaches to the same goal can be found. One intuitive way is
to consider a series of bets s(Z1), s(Z2), . . . , s(Zt) that make a profit when observed study
results are extreme. The more extreme the results, the larger the profit. The bet needs
to be designed in such a way that, under the null hypothesis, no profit is to be expected.
Each null result costs $1 to play the bet, but in expectation also makes a $1 profit:

E0[s(Zt)] = $1. (3.26)

Suppose that you start by investing $1 in the first bet. After each study, you either decide
to do a new study, and reinvest all profit obtained so far, or to stop and cash out. If you
cash out after, for example, three studies, your profit is s(Z1) · s(Z2) · s(Z3).
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As long as (3.26) holds for each bet, you cannot expect to profit under the null hypothesis;
no matter what the process is for deciding, based on past data, to continue to new studies
or to stop. This can be mathematically proven using martingale theory, but intuitively the
reason is clear: The situation is entirely analogous to that in a casino where you cannot
expect to make a salary out of playing – no matter how sophisticated the strategy you use
on the order of the games or when you want to play or want to go home. Thus, irrespective
of the rules used for continuation and stopping, making a large profit casts doubt on the
null hypothesis even without knowledge of the entire sampling distribution.

This idea of testing by betting is described in great detail by Shafer and Vovk (2019), and
Shafer et al. (2011) show that a likelihood ratio is a beautiful way to specify such bets.
Briefly, if we set s(Zt) = φ1(Zt)/φ0(Zt), then (3.26) obviously holds:

E0

�

φ1(Zt)
φ0(Zt)

�

=

∫

z

φ0(z)
φ1(z)
φ0(z)

dz =

∫

z

φ1(z)dz = 1. (3.27)

Under this definition, s(z1) · . . . · s(zt) has two interpretations: First, it is the joint likeli-
hood ratio for the first t studies. Second, it is the amount of profit made by sequentially
reinvesting in a bet that is not expected to make a profit under the null hypothesis.

So we can think of the meta-analyst acting at time t as earning the profit specified by
the likelihood ratio of the data until the t-th study, and using that information to advise
on reinvestment in future studies. This procedure will not lead to bankruptcy if the null
hypothesis is true, and will therefore allow you to keep reinvesting. If the null hypothesis
is not true, the better the focus of the bets – determined by how close the alternative
distribution in the likelihood ratio is to the data-generating distribution – the larger the
expected profit. The crucial point is that every strategy is allowed, so also the ineffective
ones that produce research waste: also not taking into account earlier studies is a strategy.

This interpretation – likelihood ratios as betting strategies – explains how dependencies
in the series relate to the test statistic. Any Accumulation Bias process can be considered
a strategy to reinvest profit made so far, by deciding on new studies (S(t)), or cashing out
the current profit (equivalent to performing a meta-analysis at time t and advising against
further studies: A (t), T = t). This is the intuition behind the proof of results like (3.24)
and (3.25) – bounds on type-I error probability in meta-analysis – that can be derived
without knowledge of the Accumulation Bias process. These bounds simply express, that
under the null, a large profit is unlikely no matter what the Accumulation Bias is.

it is always legitimate to continue betting, and this makes each individual
study a more informative element of a research program or a meta-analysis

–Shafer (2019, p. 2)

In contrast to an all-or-nothing test for one study, inspecting the betting profit of a study
(calculating the likelihood ratio) is a way to test the data without losing the ability to build
on it in future studies. The likelihood ratio has the ability to maximize the rate of growth
of the evidence (the betting profit or likelihood ratio) among all studies in a series, instead
of the power of a single p-value test on a prespecified series size or stopping rule Shafer
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(2021). It allows for promising but inconclusive initial studies and small study series to
be revisited in the light of new studies, but also to keep track of the combined evidence
at any time.

In this sense, the use of likelihood ratios in meta-analysis is a statistical implementation of
the goals of the Evidence Based Research Network (Lund et al., 2016). Choosing your bets
wisely, by informing new studies by previous results is just another betting strategy. You
optimize what studies to perform, and how to design and analyze them. Implementing
this rationale in the statistics allows to maximize the efficiency of future research and
reduce research waste (Chalmers and Glasziou, 2009).

3.8.1 Expanding likelihood ratios to Safe Tests
When the null hypothesis is simple, it can be shown that either using bets that satisfy
(3.26) under the null or using likelihood ratios or using Bayes factors is equivalent, and the
gambling approach can be viewed as a form of Bayesian inference. But for composite null
(as in the t-test scenario, with unknown variance σ2), the situation is trickier: bets that
satisfy (3.26) under all distributions in the null hypotheses can still be constructed, but
their relation to likelihood ratios is more complicated. The paper Safe Testing Grünwald
et al. (2019) investigates this setting in great detail and shows that ‘error control surviving
over time’ (Section 3.6.2) can still be obtained for general composite null.

3.9 Discussion
We need to consider time – study chronology and analysis timing – in meta-analysis. We
need it because estimates are biased by Accumulation Bias when they assume that a t-
study series is a random sample from all possible t-study series, while in fact dependen-
cies arise in accumulating science. We also need time because sampling distributions are
greatly affected by it, and the (p-value) tail area approach to testing is very sensitive to
the shape of the sampling distribution. And we need to consider time because it allows for
new approaches to error control that recognize the accumulating nature of scientific stud-
ies. Doing so also illustrates that available meta-analysis methods – general meta-analysis
and methods for living systematic reviews – target two very different approaches to type-I
error control.

We believe that the exact scientific process that determines meta-analysis time can never
be fully known, and that approaches to error control need to be trustworthy regardless of
it. A likelihood ratio approach to testing solves this problem and has even more appealing
properties. Firstly, it agrees with a form of the stopping rule principle (Berger and Berry,
1988). Secondly, it agrees with the Prequential principle Dawid (1984). Thirdly, it allows
for a betting interpretation Shafer and Vovk (2019); Shafer (2021): reinvesting profits
from one study into the next and cashing out at any time.

But this approach still leaves us with a choice: either assume a prior probability P[H1] and
separate meta-analyses of various sizes from each other and individual studies, or control
the type-I error rate over all analysis times t and include individual studies in the meta-
analysis world. The first approach is more of a reflection of the current reality in meta-
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analysis, while the second can be aligned with the goals from the Evidence-Based Research
Network (Lund et al., 2016) and living systematic reviews (Simmonds et al., 2017).

Accumulation Bias itself might not need to be corrected at all, which is why we want to
close this chapter with the following quote:

the intuitive notion that bias is something bad which must be corrected for,
does not even fit well within the frequentist framework. [...] one could not
state “use estimate X for a fixed sample size experiment, but use X − c(X )
(correcting for bias) for a sequential experiment,” and retain frequentist ad-
missibility in the “real” situation where one encounters a variety of both types
of problems. The requirement of unbiasedness simply seems to have no justi-
fication.

–Berger & Berry (1988, p. 67)

Code
See Appendix Section 3.G for description of simulation and visualization R code and pack-
ages used to generate the code. Code is available from Electronic Archiving System - Data
Archiving and Networked Services (EASY -DANS)

EASY-DANS: Accumulation Bias in Meta-Analysis: The Need to Consider Time in Error
Control. https://doi.org/10.17026/dans-x56-qfme Ter Schure (2019)

Data are available under the terms of the Creative Commons Zero "No rights reserved"
data waiver (CC0 1.0 Public domain dedication).

https://doi.org/10.17026/dans-x56-qfme
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/
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Appendices

3.A Common/fixed-effect meta-analysis
Here we derive (3.1a) and (3.1b), shown in (3.A.4), from the notation in Borenstein et al.
(2009), specifically for the setting where means and standard deviations are reported in
the study series Borenstein et al. (2009, Ch. 4 ). We slightly adjusted the notation by using
X T and X P instead of X 1 and X 2 to indicate the treatment and placebo group estimate —
to avoid confusion with the study numbering — and using Di instead of Di Borenstein
et al. (2009, p. 22) or Yi Borenstein et al. (2009, p. 66) as an analogy to the group study
mean X i and we denote its standard deviation as σDi

. We introduce the superscript (t) to
emphasize a meta-analysis estimate of a series of studies 1 up to t.

Let Di = XTi−XPi be a random variable that denotes the difference between two observa-
tions (random or paired) from the treatment group (XTi) and the placebo group (XPi) in
study i. Let σ̂Di

be the estimate of the population standard deviation of these difference
scores in study i. Following the usual assumptions of common/fixed-effect meta-analysis,
no distinction is made between σ̂Di

and the true σDi
Borenstein et al. (2009, p. 264) and

for simplicity, we assume these standard deviations to be equal across studies:

For all i, j ∈ {1,2, . . . , t} σ̂Di
= σDi

= σ̂Dj
= σDj

= σD (3.A.1)

Let Di = X Ti−X Pi be the estimated treatment effect in study i, i.e. the difference between
the average effect in the treatment group X Ti in study i and the average effect in the
placebo group X Pi in study i. The population treatment effect is denoted by ∆, and is the
difference between the population mean effects in the two groups,∆= µT−µP Borenstein

et al. (2009, p. 21). Let Zi =
Di

SEDi
be the treatment Z-score of study i that is standardized

with regard to the treatment effect standard error. (3.A.2) displays the general definition
of Z (t), the Z-score of the combined effect estimated by a common/fixed-effect meta-
analysis on studies 1 up to and including t (adapted notation from Borenstein et al. (2009,
p. 66)):

Z (t) =
M (t)

SEM (t)

M (t) =

∑t
i=1 Wi Di
∑t

i=1 Wi

Wi =
1

SE2
Di

SEM (t) =

√

√

√

1
∑t

i=1 Wi

(3.A.2)

Let di =
Di
σD

be the Cohen’s d of the treatment score in study i Borenstein et al. (2009,
p. 26) — so standardized with regard to the estimated population standard deviation —
and let ni denote the sample size in the treatment and placebo arm of study i (under
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the assumption that all studies have equal size study arms). Since SE2
di
= 1

ni
, we let wi =

1
SE2

di

= 1
1
ni

= ni denote the weights for di . Based on these weights, M (t) and SEM (t) can be

expressed as follows, using the fact that Di = diσD, SE2
Di
= σ2

D
ni

, and thus Wi = wi
1
σ2

D
(see

also Borenstein et al. (2009, p. 82)):

M (t) =

∑t
i=1 wi

1
σ2

D
diσD

∑t
i=1 wi

1
σ2

D

=

∑t
i=1 widiσD
∑t

i=1 wi

=

∑t
i=1 nidiσD
∑t

i=1 ni

SEM (t) =

√

√

√

1
∑t

i=1 wi
1
σ2

D

=

√

√

√

σ2
D

∑t
i=1 wi

=

√

√

√

σ2
D

∑t
i=1 ni

(3.A.3)

With N (t) =
∑t

i=1 ni and di =
Zip
ni

, the common/fixed-effect Z-score Z (t) of studies i up to
and including t can be derived as an average weighted by the square root of the individual
study sample sizes:

Z (t) =

∑t
i=1 ni diσD

N (t)
r

σ2
D

N (t)

=

∑t
i=1 nidi

q

∑t
i=1 ni

=

∑t
i=1 ni

Zip
nip

N (t)
=

∑t
i=1
p

ni Zip
N (t)

=

∑t
i=1

p
nZip

t
p

n
=

1
p

t

t
∑

i=1

Zi

for n1 = n2 = . . .= nt = n
(3.A.4)

3.B Expectation Gold Rush conditional pilot Z-score
Here, and in the following, we assume that there is always a first study (P [T ≥ 1] = 1).

E0 [Z1 | T ≥ 2] =
E0

�

Z1

�

�

� T ≥ 2, Z1 ≥ z α
2

�

· P0

�

T ≥ 2
�

�

� T ≥ 1, Z1 ≥ z α
2

�

· P0

�

Z1 ≥ z α
2

�

P0 [T ≥ 2]

+
E0

�

Z1

�

�

� T ≥ 2, |Z1|< z α
2

�

· P0

�

T ≥ 2
�

�

� T ≥ 1, |Z1|< z α
2

�

· P0

�

|Z1|< z α
2

�

P0 [T ≥ 2]

=
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�

Z1

�

�

� T ≥ 2, Z1 ≥ z α
2

�

·ω(1)S ·
α
2 + E0

�

Z1

�

�

�T ≥ 2, |Z1|< z α
2

�

·ω(1)NS · (1−α)

ω
(1)
S ·

α
2 +ω

(1)
NS · (1−α)

(3.B.1)
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since

P0 [T ≥ 2] = P0

�

T ≥ 2
�

�

�T ≥ 1, Z1 ≥ z α
2

�

· P0

�

Z1 ≥ z α
2

�

+ P0

�

T ≥ 2
�

�

�T ≥ 1, |Z1|< z α
2

�

· P0

�

|Z1|< z α
2

�

=ω(1)
S
·
α

2
+ω(1)

NS
· (1−α)

This expression only considers significant positive and nonsignificant results in the pilot
study, since we defined in (3.2) that significant negative results have 0 probability to pro-
duce replication studies. We can replace P0 by P in the middle term of the fractions in the
first two rows because new study probabilities are independent from the data generating
distribution, as discussed in Section 3.2.3.

3.C Expectation Gold Rush conditional meta-analysis Z-score

For all t ≥ 2 :

E0

�

Z (t)
�

� T ≥ t
�

=

∑t
i=1
p

ni E0 [Zi | T ≥ t]
p

N (t)

=
p

n1 E0 [Z1 | T ≥ t] +
∑t−1

i=2
p

ni E0 [Zi | T ≥ t] +pnt E0 [Zt | T ≥ t]
p

N (t)

=
p

n1 E0 [Z1 | T ≥ 2] +
∑t−1

i=2
p

ni E0 [Zi | T ≥ i + 1]
p

N (t)
(3.C.1)

Here we use that the last study in a series under the Gold Rush example is unbiased
and has expectation 0 under the null hypothesis. We also use that the expansion of the
series beyond the next study does not influence a study’s expectation in our Gold Rush
example: for t ≥ 2 E0 [Z1 | T ≥ t] is the same as E0 [Z1 | T ≥ 2], and for any i and t ≥ i,
E0 [Zi | T ≥ t] is the same as E0 [Zi | i + 1]).
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3.D Mixture variance
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(3.D.1b)

Because squaring is a convex function, we know from Jensen’s Inequality that the average
squared mean (3.D.1a) is larger than the square of the average mean (3.D.1b). So the
variance of the mixture is larger than the mixture of the variances.

3.E Maximum time probability
The survival function S(t − 1) represents the probability P[T ≥ t]. The survival function
is the complement of a cumulative distribution function on maximum time or stopping
times T, known in survival analysis as the lifetime distribution function F(t − 1):

S(t − 1) = 1− F(t − 1)

with F(t − 1) =
t−1
∑

i=0

P[T = i]
(3.E.1)

S(t − 1) = 1−
t−1
∑

i=0

P[T = i]

S(t) = 1−
t−1
∑

i=0

P[T = i]− P[T = t]

therefore: P[T = t] = S(t − 1)− S(t)

(3.E.2)
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3.F Error control surviving over time in terms of a sum

LetF ′(t)TYPE-I be the even that bothF (t) and T ≥ t holds. Using in the first equality below that
the eventsF ′(1)TYPE-I,F

′(2)
TYPE-I, . . . are all mutually exclusive (so that the union bound becomes

an equality), we get:
∑

t

P0

�

F (t)TYPE-I,A
(t), T ≥ t

�

≤
∑

t

P0

�

F (t)TYPE-I, T ≥ t
�

= P0

�

∃t > 0 : F (t)TYPE-I, T ≥ t
�

≤ P0

�

∃t > 0 : F (t)TYPE-I

�

= P0

�

∃t > 0 : E (t)TYPE-I

�

= P0

�

∃t > 0 : LR(t) (Z1, . . . , Zt)≥
1
α

�

≤ α

where the final inequality is just the final inequality of (3.24) again. (3.25) follows.

3.G Code availability
Table 3.1, Figure 3.1 and Table 3.2 were calculated, simulated and created by R code avail-
able in the EASY-DANS repository: https://doi.org/10.17026/dans-x56-qfme
(see Extended data Ter Schure (2019))

Details on the OS and version at which it were run can be found below:

• Platform: x86 64-redhat-linux-gnu

• Arch: x86 64

• OS: linux-gnu

• System: x86 64, linux-gnu

• R version: 3.5.3 (2019-03-11) Great Truth

• svn rev: 76217

The following packages were used:

• ggplot2 version 3.0.0

• graphics version 3.5.3

• grDevices version 3.5.3

• methods version 3.5.3

• stats version 3.5.3

• utils version 3.5.3

https://doi.org/10.17026/dans-x56-qfme




4| Accumulation Bias:
How to handle it ALL-IN

Blog post
This chapter appeared as a blog post and gives more context to the claims in
Chapter 3 on accumulation bias. These claims are paradoxical, after all: How
can we possibly encounter enormous bias in our meta-analysis estimates and
still do valid ALL-IN inference? This blog post tries to give some intuition
by introducing a very extreme and simple version of accumulation bias and
showing by simulation code and plots in R what counteracts the bias in an
ALL-IN analysis.1

An estimated 85% of global health research investment is wasted (Chalmers and Glasziou,
2009); a total of one hundred billion US dollars in the year 2009 when it was estimated.
The movement to reduce this research waste recommends that previous study results be
taken into account when prioritising, designing and interpreting new research (Chalmers
et al., 2014; Lund et al., 2016). Yet any recommendation to increase efficiency this way
requires that researchers evaluate whether the studies already available are sufficient
to complete the research effort; whether a new study is necessary or wasteful. These
decisions are essentially stopping rules – or rather noisy accumulation processes, when
no rules are enforced – and unaccounted for in standard meta-analysis. Hence reducing
waste invalidates the assumptions underlying many typical statistical procedures.

Chapter 3 details all the possible ways in which the size of a study series up for meta-
analysis, or the timing of the meta-analysis, might be driven by the results within those
studies. Any such dependency introduces accumulation bias. Unfortunately, it is often im-
possible to fully characterize the processes at play in retrospective meta-analysis; the bias
cannot be accounted for. In this blog post we revisit an example accumulation bias pro-

1The introduction to this blog post is the same as in Chapter 5 as they describe the same example accumu-
lation bias but a different approach to counteracting it.
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cess, that can be one of many influencing a single meta-analysis, and use it to illustrate
the following key points:

• Standard meta-analysis does not take into account that researchers decide on new
studies based on other study results already available. These decisions introduce
accumulation bias because the analysis assumes that the size of the study series is
unrelated to the studies within; it essentially conditions on the number of studies
available.

• Accumulation bias does not result from questionable research practices, such as
publication bias from file-drawering a selection of results. The decision to replicate
only some studies instead of all of them biases the sampling distribution of study
series, but can be a very efficient approach to set priorities in research and reduce
research waste.

• ALL-IN meta-analysis stands for Anytime, Live and Leading INterim meta-analysis.
It can handle accumulation bias because it does not require a set number of stud-
ies, but performs analysis on a growing series – starting from a single study and
accumulating as many studies as needed.

• ALL-IN meta-analysis also allows for continuous monitoring of the evidence as new
studies arrive, even as new interim results arrive. Any decision to start, stop or
expand studies is possible, while keeping valid inference and type-I error control
intact. Such decisions can be strategic: increasing the value of new studies, and
reducing research waste.

4.1 Our example: extreme Gold Rush accumulation bias
We imagine a world in which a series of studies is meta-analyzed as soon as three studies
become available. Many topics deserve a first initial study, but the research field is very
selective with its replications. Nevertheless, for significant results in the right direction, a
replication is warranted. We call this the Gold Rush scenario, because after each finding
of a positive significant result – the gold in science – some research group rushes into
a replication, but as soon as a study disappoints, the research effort is terminated and
no-one bothers to ever try again. This scenario was first proposed by Ellis and Stewart
(2009) and formulated in detail and under this name in Chapter 3. Here we consider
the most extreme version of the Gold Rush where finding a significant positive result not
only makes a replication more probable, but even inevitable: the dependency of occurring
replications on their predecessor’s result is deterministic.

Biased Gold Rush sampling We denote the number of studies available on a certain
topic by t. This number t can also indicate the timing of a meta-analysis, such that a
meta-analysis can possibly occur at number of studies t = 1,2, 3, . . . up to some maximum
number of studies T . This notation follows from Chapter 3; the Technical Details at the
end of this blog post make the notation involved in this blog post more explicit.

We summarize the results of individual studies into a single per-study Z-score (z1 for the
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first study, z2 for the second, etc), such that we have the following information on a series
of size t:

z1, z2, . . . , zt

We distinguish between Z-scores that are significant and in the right direction, and Z-
scores that are not. A first significant positive study is indicated by z∗1 (z1 > zα with zα =
1.96 for α = 2.5%). A first nonsignificant or negative study is indicated by z−1 (z1 ≤ zα).
We use the same notation for the second and third study and limit our world to three
studies (our maximum T = 3). After all, we meta-analyze studies on all topics and only
those topics that have spurred a series of three studies. Our Gold Rush world consists of
the following possible study series:

Gold Rush world

z−1 A(1) = 0 A(2) = 0 A(3) = 0

z∗1, z−2 A(1) = 0 A(2) = 0 A(3) = 0

z∗1,z∗2, z−3 → z(3) A(1) = 0 A(2) = 0 A(3) = 1

z∗1,z∗2,z∗3 → z(3) A(1) = 0 A(2) = 0 A(3) = 1

Here A(t) denotes whether we accumulate and analyze t studies: It can be that A(2) = 0
and A(3) = 0 because we are stuck at one study, but also A(1) = 0 because we don’t “meta-
analyze” that single study. It can only be that A(2) = 1 if we accumulate and meta-analyze
a two-study series and A(3) = 1 if we accumulate and meta-analyze a three-study series.
In our Gold Rush world a very specific subset of studies accumulate into a three-study
series such that they are meta-analyzed (A(3) = 1).

z(3) denotes the Z-score of a fixed effects meta-analysis. This meta-analysis Z-score is
simply a re-normalized average and can, assuming equal (large) sample size and (known)
variances in all studies, be obtained from the individual study Z-scores as follows: z(3) =

1p
3

∑3
i=1 zi . The effects of accumulation bias are not limited to fixed-effects meta-analysis

(see for example Kulinskaya et al. (2016)), but fixed-effects meta-analysis does provide
us with a simple illustration for the purposes of this blog post.

We observe in our Gold Rush world above that the study series that are eventually meta-
analyzed into a Z-score z(3) are a very biased subset of all possible study series. So we
expect these z(3) scores to be biased as well. In the next section, we simulate the sampling
distribution of these z(3) scores to illustrate this bias.

4.2 The conditional sampling distribution under extreme Gold Rush ac-
cumulation bias

Assume that we are in the scenario that only true null effects are studied in our Gold Rush
world, such that any new study builds on a false-positive result. How large would the bias
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be if the three-study series are simply analyzed by standard meta-analysis? We illustrate
this by simulating this Gold Rush world using the R code below.

Figure 4.1. Code to create Figure 4.2

Theoretical sampling process: A fixed-effects meta-analysis assumes that if three stud-
ies z1, z2, z3 are each sampled under the null hypothesis, each has a standard normal with
mean zero and the standard normal sampling distribution also applies to the combined
z(3) score. The R code in Figure 4.1 illustrates this sampling process: First, a large popu-
lation is simulated of possible first (Z1), second (Z2) and third (Z3) studies from a stan-
dard normal distribution. Then in Zmeta3 each index i represents a possible study series,
such that c(Z1[i], Z2[i], Z3[i]) samples an unbiased study series and calcZmeta
calculates its fixed-effects meta-analysis Z-score z(3). So the large number of Z-scores
in Zmeta3 captures the unbiased sampling distribution that is assumed for fixed-effects
meta-analysis z(3)-scores.

Gold Rush sampling process: In contrast, the code resulting in A3 selects only those
study series for which A(3) = 1 under extreme Gold Rush accumulation bias. So the large
number of Z-scores in Zmeta3.A3 capture a biased sampling distribution for the fixed
effects meta-analysis z(3)-scores.

Meta-analysis under Gold Rush accumulation bias: The final lines of code in Fig-
ure 4.1 plot two histograms of z(3) samples, one without and one with the Gold Rush A(t)
accumulation bias process, based on Zmeta3 and Zmeta3.A3 respectively. Figure 4.2
gives the result.
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Figure 4.2. Sampling distributions under the null hypothesis of fixed-effects meta-analysis
Z-scores Z (3) of three studies with and without extreme Gold Rush accumulation bias A(t),
under the assumption of equal study sample size and variance.

We observe in Figure 4.2 that the theoretical sampling process, resulting in the pink his-
togram, gives a distribution for the three-study meta-analysis z(3)-scores that is centered
around zero. Under the Gold Rush sampling process, however, our three-study z(3)-scores
do not behave like this theoretical distribution at all. The blue histogram has a smaller
variance and is shifted to the right – representing the bias.

We conclude that we should not use conventional meta-analysis techniques to analyze our
study series under Gold Rush accumulation bias: Conventional fixed-effects meta-analysis
assumes that any three-study summary statistic Z (3) is sampled from the pink distribution
in Figure 4.2 under the null hypothesis, such that the meta-analysis is significant for Z (3)-
scores larger than zα = 1.96 for a right-sided test with type-I error control α = 2.5%. Yet
the actual blue sampling distribution under this accumulation bias process shows that a
much larger fraction of series that accumulate three studies will have Z (3)-scores larger
than 1.96 than is assumed by the theory of random sampling. This (extremely) inflated
proportion of type-I errors is 88% instead of 2.5% in our extreme Gold Rush, and can be
obtained from our simulation by the code in Figure 4.3.

Figure 4.3. Code to calculate type-I error probability with and without extreme Gold Rush
accumulation bias.

4.3 Accumulation bias can be efficient
The steps in the code from Figure 4.1 that arrive at the biased distribution in Figure 4.2
illustrate that accumulation bias is in fact a selection bias. Nevertheless, accumulation
bias does not result from questionable research practices, such as publication bias from
file-drawering a selection of results. The selection to replicate only some studies instead
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of all of them biases the sampling distribution of study series, but can be a very efficient
approach to set priorities in research and reduce research waste.

By inspecting our Gold Rush world a bit closer, we observe that a fixed-effects meta-
analysis of three studies actually conditions on this number of studies ((A(t) needs to
be A(3) to be 1), and that this conditional nature is what is driving the accumulation
bias; in Appendix Section 4.B we show this explicitly. In the next section we take the
unconditional view.

4.4 The unconditional sampling distribution under extreme Gold Rush
accumulation bias

We need to look at these sampling distributions from a different angle, to still achieve
type-I error control. We will now introduce the unconditional sampling distribution. For
this, we first adapt our Gold Rush accumulation bias world a bit, and not only meta-
analyze three-study series but one-study “series” and two-study series as well. All possible
scenarios for study series in this “all-series-size” Gold Rush world are illustrated below. We
assume that we only meta-analyze series in a terminated state, and therefore first await a
replication for significant studies before performing the meta-analysis. So a single-study
“meta-analysis” can only consist of a negative or nonsignificant initial study (z−1 ); only in
that case we are in a terminated state with A(1) = 1 and the series does not grow to two
(A(2) = 0). In a two-study meta-analysis the series starts with a significant positive initial
study and is replicated by a nonsignificant or negative one; only in that case A(2) = 1,
and the series does not grow to three so A(3) = 0. And only three-study series that start
with two significant positive studies are meta-analyzed in a three-study synthesis; only in
that case A(3) = 1.

Gold Rush world; all-series-size

z−1 → z(1) A(1) = 1 A(2) = 0 A(3) = 0

z∗1, z−2 → z(2) A(1) = 0 A(2) = 1 A(3) = 0

z∗1,z∗2, z−3 → z(3) A(1) = 0 A(2) = 0 A(3) = 1

z∗1,z∗2,z∗3 → z(3) A(1) = 0 A(2) = 0 A(3) = 1

The R code in Figure 4.4 calculates the fixed-effects meta-analysis z(1), z(2) and z(3) scores,
conditional on meta-analyzing a one-study, two-study, or three-study series in this ad-
justed Gold Rush accumulation bias scenario. The histograms of these conditional z(t)

scores are shown in Figure 4.5, including the theoretical unbiased z(3) histogram that was
also shown in Figure 4.2 and largely overlaps with the “A(1) = 1, A(2) = 0, A(3) = 0”-
scenario. The difference between these two sampling distributions is only visible in their
right tail, with the red histogram excluding values larger than zα = 1.96 and redistributing
their mass over other values.

Figure 4.5 clarifies that single studies are hardly biased in this extreme Gold Rush scenario,
that the bias is problematic for two-study series and most extreme for three-study ones.
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Figure 4.4. Code to create Figure 4.5
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z(3)

Figure 4.5. Sampling distributions under the null hypothesis of fixed-effects meta-analysis
Z-scores Z (t) of one, two and three studies with extreme Gold Rush accumulation bias and a
three-study meta-analysis without accumulation bias, under the assumption of equal study
sample size and variance.

However, what this plot does not show us is how often we are in the one-study, two-study
and three-study case.

To illustrate the relative frequencies of one-study, two-study and three-study meta-analyses,
the code in Figure 4.6 samples the series in their respective numbers, instead of in equal
numbers (which happens in the sample statements in Figure 4.4, part of creating the
data frame). Plotting the total number of sampled Z-scores is dangerous for the single
study z(1)-scores, however, since there are so many of them (it can crash your R studio).
So before plotting the histogram, a smaller sample is drawn that keeps the ratios between
z(1)s, z(2)s and z(3)s intact.

The histogram in Figure 4.7 illustrates an unconditional distribution by the raw counts
of the z(t)-scores: many result from a single study, very few from a two-study series and
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Figure 4.6. Code to create Figure 4.7
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Figure 4.7. Unconditional sampling distributions under the null hypothesis of fixed-effects
meta-analysis Z-scores Z (t) of either one, two or three studies under extreme Gold Rush
accumulation bias, under the assumption of equal study sample size and variance.

almost none from a three-study series. In fact, this unconditional sampling distribution is
hardly biased, as we will illustrate with our table further below.

We first introduce an example of an ALL-IN meta-analysis to argue that such an uncondi-
tional approach can in fact be very efficient.

4.5 ALL-IN meta-analysis
Figure 4.8 shows an example of an ALL-IN meta-analysis. Each of the red/orange/yellow
lines represents a study out of the ten separate studies in as many different countries.
The blue line indicates the meta-analysis synthesis of the evidence; a live account of the
evidence so far in the underlying studies. In fact, ALL-IN meta-analysis stands for Any-
time, Live and Leading INterim meta-analysis, in which the Anytime Live property assures
valid inference under continuously monitoring and the Leading property allows the meta-
analysis results to inform whether individual studies should be stopped or expanded.
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It should be noted that such data-driven decisions would invalidate conventional meta-
analysis by introducing accumulation bias.

Figure 4.8. Dashboard of an ALL-IN meta-analysis of between one and ten studies, some of
which have not even started recruiting participants in the current status of this dashboard.
Note that the y-axis is logarithmic.

To interpret Figure 4.8, we observe that initially only the Australian (AU) study contributes
to the meta-analysis and the blue line completely overlaps with the red one. Very quickly,
the Dutch (NL) study also starts contributing and the blue meta-analysis line captures a
synthesis of the evidence in two studies. Later on, also the study in the US, France (FR)
and Uruguay (UY) start contributing and the meta-analysis becomes a three-study, four-
study and five-study meta-analysis. How many studies contribute to the analysis, however,
does not matter for its evidential value. Some studies (like the Australian one) are much
larger than others, such that under a lucky scenario this study could reach the evidential
threshold even before other studies start observing data. This threshold (indicated at 400)
controls type-I errors at a rate of α = 1/400 = 0.0025 (details in the final section). So
in repeated sampling under the null, the combined studies will only have a probability to
cross this threshold that is smaller than 0.25%. In this repeated sampling the size of the
study series is essentially random: we can be lucky and observe very convincing data in
the early studies, making more studies superfluous, or we can be unlucky and in need of
more studies. The threshold can be reached with a single study, with a two-study meta-
analysis, with a three-study,.. etc, and the repeated sampling properties, like type-I error
control, hold on average over all those sampling scenarios (so unconditional on the series
size).

ALL-IN meta-analysis allows for meta-analyses with Type-I error control, while completely
avoiding the effects of accumulation bias and multiple testing. This is possible for two
reasons: (1) we do not just perform meta-analyses on study series that have reached a



136 ALL-IN meta-analysis

certain size, but continuously monitor study series irrespective of the current number of
studies in the series; (2) we use likelihood ratios (and their cousins, e-values (Grünwald
et al., 2019)) instead of raw Z-scores and p-values; we say more on likelihood ratios
further below.

4.6 Accumulation bias from ALL-IN meta-analysis vs Gold Rush
The ALL-IN meta-analysis in Figure 4.8 illustrates an improved efficiency by not setting
the number of studies in advance, but let it rely on the data and be – just like the data
itself – essentially random before the start of the research effort. This introduces depen-
dencies between study results and series size that can be expressed in similar ways as
Gold Rush accumulation bias. Yet this field of studies might make decisions differently
to our Gold Rush: a positive nonsignificant result might not terminate the research ef-
fort, but encourage extra studies. And instead of always encouraging extra studies, a very
convincing series of significant studies might conclude the research effort. If a series of
studies is dependent on any such data-driven decisions, the use of conventional statistical
methods is inappropriate. These dependencies actually do not have to be extreme at all:
Many fields of research might be a bit like the Gold Rush scenario in their response to
finding significant negative results of harm. A widely known study result that indicated
significant harm might make it very unlikely that the series will continue to grow. So large
study series will very rarely have a completely symmetric sampling distribution, since ini-
tial studies that observe results of significant harm do not grow into large series. Hence
this small aspect of accumulation bias will already invalidate conventional meta-analysis,
when it assumes such symmetric distributions under the null hypothesis with equal mass
on significant effects of harm and benefit.

4.7 Properties averaged over time
Accumulation bias can already result from simply excluding results of significant harm
from replication. This exclusion also takes place under extreme Gold Rush accumulation
bias, since results of significant harm as well as all nonsignificant results are not replicated.
Fortunately, any such scenarios can be handled by taking an unconditional approach to
meta-analysis. We will now give an intuition for why this is true in case of our extreme
Gold Rush scenario: initial studies have bias that balances the bias in larger study series
when averaged over series size and analyzed in a certain way.

Table 4.1 is inspired by Senn (2014) (different question, similar answer) and represents
our extreme Gold Rush world of study series. It takes the same approach as Figure 4.7
and indicates the probability to meta-analyze a one-study, two-study or three-study series
of each possible form under the null hypothesis. The three study series are very biased,
with two or even three out of three studies showing a positive significant effect. But the
P0 column shows that the probability of being in this scenario is very small under the
null hypothesis, as was also apparent from Figure 4.7. In fact, most analysis will be of the
one-study kind, that hardly have any bias, and are even slightly to the left of the theoretic
standard null distribution. Exactly this phenomenon balances the biased samples of series
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of larger size.

Table 4.1. Possible study series under extreme Gold Rush accumulation bias, with their
respective probabilities P0 to occur under the null hypothesis. A Z-score is marked by a * and
color orange (e.g. z∗1) in case the individual study result is significant and positive (z1 ≥ zα
(one-sided test)) and by a− (e.g. z−1 ) otherwise. The column t indicates the number of studies
and the column ∗ counts the number of significant studies. The fifth and sixth column multiply
P0 with the ∗ column and t column to arrive at an expected value E0[∗] and E0[t] respectively
in the bottom row.

t ∗ P0 ∗ · P0 t · P0

1 z−1 0 1−α 0 1−α
2 z∗1, z−2 1 α(1−α) α(1−α) 2α(1−α)
3 z∗1,z∗2, z−3 2 α2(1−α) 2α2(1−α) 3α2(1−α)
3 z∗1,z∗2,z∗3 3 α3 3α3 3α3

∑

1 α+α2 +α3 1+α+α2

The bottom row of Table 4.1 gives the expected values for the number of significant studies
per series in the ∗ ·P0 column, and the expected value for the total number of studies per
series in the t ·P0 column. If we use these expressions to obtain the proportion of expected
number of significant to expected total number of studies, we get the following:

E0[∗]
E0[t]

=
α+α2 +α3

1+α+α2
=
α(1+α+α2)

1+α+α2
= α (4.1)

The proportion of expected significant effects to expected series size is still α in Table 4.1
under extreme Gold Rush accumulation bias, as it would also be without accumulation
bias.

This result is driven by the fact that there is a martingale process underlying this table. If
a statistic is a martingale process and it has a certain value after t studies, the conditional
expected value of the statistic after t + 1 studies, given all the past data, is equal to the
statistic after t studies. So if our proportion of significant positive studies is exactly α for
the first study (t = 1), we expect to also observe a proportion α if we grow our series with
an additional study (t = 1+1 = 2). The accumulation bias does not affect such statistics
when averaged over time if martingales are involved (Doob’s optional stopping theorem
for martingales). You can verify this aspect by deleting the last row for z∗1,z∗2,z∗3 from
our table and adding two rows for t = 4 in its place with z∗1,z∗2,z∗3 and either a fourth
significant or a nonsignificant study. If you calculate the expected significant effects to
expected series size, you will again arrive at α.

Martingale properties drive many approaches to sequential analysis, including the Se-
quential Probability Ratio Test (SPRT), group-sequential analysis and alpha spending.
When applied to meta-analysis, any such inferences essentially average over series size,
just like ALL-IN meta-analysis.
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4.8 Multiple testing over time
Just having the expectation of some statistics not affected by stopping rules is not enough
to monitor data continuously, as in ALL-IN meta-analysis. We need to account for the
multiple testing as well. In that respect, the approaches to sequential analysis differ by
either restricting inference to a strict stopping rule (SPRT), or setting a maximum sample
size (group-sequential analysis and alpha spending).

ALL-IN meta-analysis takes an approach that is different from its predecessors and is part
of an upcoming field of sequential analysis for continuous monitoring with an unlim-
ited horizon. These approaches are called Safe for optional stopping and/or continuation
(Grünwald et al., 2019) or any-time valid (Ramdas et al., 2020). Their methods rely
on nonnegative martingales (Ramdas et al., 2020); with its most well-known and use-
ful martingale: the likelihood ratio. For a meta-analysis Z-score, a martingale process of
likelihood ratios could look as follows:

Figure 4.9. Likelihood Ratio martingale

The subscript 10 indicates that the denominator of the likelihood ratio is the likelihood of
the Z-scores under the null hypothesis of mean zero, and in the numerator is some alter-
native mean normal likelihood. The likelihood ratio becomes smaller when the data are
more likely under the null hypothesis, but the likelihood ratio can never become smaller
than 0 (hence the “nonnegative” martingale). This is crucial, because a nonnegative mar-
tingale allows us to use Ville’s inequality (Ville, 1939), also called the universal bound by
Royall (1997). For likelihood ratios, this means that we can set a threshold that guarantees
type-I error control under any accumulation bias process and at any time, as follows:

P0

�

LR10
(t) ≥

1
α

for some t = 1, 2, . . .
�

≤ α. (4.2)

The ALL-IN meta-analysis in Figure 4.8 in fact is based on likelihood ratios like this, and
controls the type-I error by the threshold 400 at level 1/400= 0.25%.

The code below illustrates that likelihood ratios can also control type-I error rates under
continuous monitoring when extreme Gold Rush accumulation bias is at play. Within our



Judith ter Schure 139

previous simulation, we again assume a Gold Rush world with only true null studies and
very biased two-study and three-study series. The code in Figure 4.11 calculates likelihood
ratios for the growing study series under accumulation bias. So, here we assume that a
series is analyzed for each size it reaches (so after each new study), as indicated below.
Figure 4.11 illustrates that still very few likelihood ratios ever grow very large.

Figure 4.10. Code to create Figure 4.11

If we set our type-I error rate α to 5%, and compare our likelihood ratios to 1/α= 20 we
observe that less than 1/20 = 5% of the study series ever achieves a value of LR larger
than 20 (Figure 4.12). The simulated type-I error is even much smaller than 5% since
in our Gold Rush world series stop growing at three studies, yet this procedure controls
type-I error also in the case none of these series stops growing at three studies, but all
continue to grow forever.
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Figure 4.11. Unconditional sampling distributions under the null hypothesis of LR(t) of
colored one, two or three studies under extreme Gold Rush accumulation bias. A threshold
is shown at 20. Note that the y-axis is logarithmic.

Figure 4.12. Code to calculate type-I error probability for LR(t) averaged over series size t
under extreme Gold Rush accumulation bias and continuous monitoring.

Gold Rush world; all-series-size/continuous monitoring

z−1 A(1) = 1 A(2) = 0 A(3) = 0

z∗1, z−2 A(1) = 1 A(2) = 1 A(3) = 0

z∗1,z∗2, z−3 A(1) = 1 A(2) = 1 A(3) = 1

z∗1,z∗2,z∗3 A(1) = 1 A(2) = 1 A(3) = 1

Note that continuous monitoring changes our Gold Rush world as indicated above. We can,
however, also keep type-I error control if we do not continuously monitor, but only analyze
the terminated series, such as in Gold Rush world; all-series-size, as shown in Figure 4.13.

The type-I error control is thus conservative, and we pay a small price in terms of power.
That price is quite manageable, however, and can be tuned by setting the mean value
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Figure 4.13. Code to calculate type-I error probability for LR(t) averaged over series size t
under extreme Gold Rush accumulation bias, with analysis only at the terminated series.

of the alternative likelihood (arbitrarily set to mean = 1 in the code for calcLR of Fig-
ure 4.10). More on that in Grünwald et al. (2019) and in Chapter 1.

It is this small conservatism in controlling type-I error that allows for full flexibility: There
isn’t a single accumulation bias process that could invalidate the inference. Any data-
driven decision is allowed. And data-driven decisions can increase the value of new studies
and reduce research waste.

4.9 Conclusion
In our imaginary world of extreme Gold Rush accumulation bias, the sampling distribu-
tion of the meta-analysis Z-score behaves very different from the sampling distribution
assumed to calculate p-values and confidence intervals. A meta-analysis p-value condi-
tions on the available sample size – on the sample size of the studies and on the number
of studies available – and represents the tail area of this conditional sampling distribution
under the null based on the observed Z-statistic. Analogously, a meta-analysis confidence
interval provides coverage under repeated sampling from this conditional distribution.
So if this sample size is driven by the data, as in any accumulation bias process, there is
a mismatch between the assumed sampling distribution of the meta-analysis Z-statistic,
and the actual sampling distribution.

We believe that some accumulation bias is at play in almost any retrospective meta-
analysis, such that p-values and confidence intervals generally do not have their promised
type-I error control and coverage. ALL-IN meta-analysis based on likelihood ratios can
handle accumulation bias, even if the exact process is unknown. It also allows for contin-
uous monitoring; multiple testing is no problem. Hence taking the ALL-IN perspective on
meta-analysis will reduce research waste by allowing efficient data-driven decisions – not
letting them invalidate the inference – and incorporating single studies and small study
series into meta-analysis inference.

Code availability
This blogpost’s R code is available on https://osf.io/p2rtw/ (Ter Schure, 2021a).

https://osf.io/p2rtw/
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Appendices

This blog post discusses approaches to meta-analysis that control type-I error averaged
over study series size. This is called error control surviving over time in Chapter 3, as will
become more clear in the technical details below.

Time: timing and chronology
Following notation from Chapter 3, we denote the number of studies available on a cer-
tain topic by t. This number t can also indicate the timing of a meta-analysis, such that
a meta-analysis can possibly occur at time t = 1, 2,3, . . . up to some maximum number
of studies T . The number of studies and the timing of a meta-analysis share the notion
of chronology; of past, present and future studies. At t = 3, we have three studies avail-
able that we can possibly meta-analyse. The fact that a third study exists can depend on
the result of the first and second, but can never depend on the result of a future fourth
study. Analogously, our timing of a meta-analysis after three studies can depend on the
results of those three studies, but never on future meta-analyses. Note that dependen-
cies in time are possible, but not necessary, to apply the notation from the accumulation
bias framework (Chapter 3). Simultaneous studies can also be described, in which case
their existence cannot depend on each other. A “no dependency”-relation does require
the simultaneous studies to be assigned an arbitrary chronology, but their order plays
no further role than to express a set of studies as a series. In the example of this blog
post, however, the extreme Gold Rush scenario, we assume a very real chronology and
deterministic dependency between all the studies in a series.

4.A Extreme Gold Rush expressed in accumulation bias framework
A(t) denotes the probability that t studies accumulate and are analysed together in a
meta-analysis. A(t) has two components, the first indicates whether the topic “survives”
the (t − 1)th study, in which case the maximum number of studies T is larger than t − 1
(T ≥ t or T > t − 1 captured by the survival function S(t − 1)), and the second indicates
whether we bother to meta-analyze the series at its size t (the eventA (t)). In our extreme
Gold Rush world we assume that only three-study series are synthesized in a meta-analysis,
such that P[A (t)] is only 1 forA (3) and always 0 forA (2) andA (1) (we do not perform
any 2-study or 1-study meta-analyses). In general, A(t) depends on S(t) and A (t) as
follows:

A(t | z1 . . . zt) = P[A (t) | T ≥ t, z1 . . . zt] · S(t − 1 | z1 . . . zt−1) (4.A.1)

In this simplified version of the Gold Rush scenario S(t) is always either 0 or 1 if the study
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results z1 and z2 are known:

S(1 | z1) =

¨

1, if z1 is of the form z∗1.

0, otherwise.

S(2 | z1, z2) =

¨

1, if z1, z2 are of the form z∗1,z∗2.

0, otherwise.

(4.A.2)

S(t) is a survival probability, because a series can only grow to three studies (it has sur-
vive the second study (S(2))) if it has also grown to two studies (it has survived the first
study (S(1)). In contrast to the deterministic extreme Gold Rush in this paper, Chapter 3
describes a probabilistic version where the probability of a replication study is larger fol-
lowing a significant positive result, but not always zero following a nonsignificant one. In
that case we specify hazards of stopping after observing a certain result, which are prob-
abilities of stopping, given that the series accumulated so far. The survival probability is
defined in terms of these hazards, following standard survival analysis notation.

In our extreme Gold Rush any meta-analysis has zero probability to occur except for the
three-study meta-analysis (P[A (3)] = 1 and for all other t P[A (t)] = 0 independent of
the observed results z1, z2, . . . zt), we find nonzero A(t) only for the last two scenarios
below:

A(2 | z−1 ) = P[A (2) | T ≥ 2] · S(1 | z−1 ) = 0 · 0= 0 (4.A.3)

A(2 | z∗1, z−2 ) = P[A (2) | T ≥ 2] · S(1 | z∗1) = 0 · 1= 0 (4.A.4)

A(2 | z∗1,z∗2) = P[A (2) | T ≥ 2] · S(1 | z∗1) = 0 · 1= 0 (4.A.5)

A(3 | z∗1,z∗2, z−3 | T ≤ 3) = P[A (3) | T ≥ 3] · S(2 | z∗1,z∗2) = 1 · 1= 1 (4.A.6)

A(3 | z∗1,z∗2,z∗3) = P[A (3) | T ≥ 3] · S(2 | z∗1,z∗2) = 1 · 1= 1 (4.A.7)

4.B Extreme Gold Rush conditional sampling distribution

The sampling distribution of Z (t) under accumulation bias is a distribution that conditions
on having t studies available and analyzing them, which happens with probability A(t)
given the data.

Using notation from Chapter 3 we express the accumulation of t studies as T ≥ t, in-
dicating that once we have t studies available, our maximum amount of studies T is at
least t (it is either t or larger).A (t) indicates the event that we perform a meta-analysis
of the t studies available. We denote the conditional sampling distribution of a z(t)-score
by φ0(z(t) | A (t), T ≥ t), and obtain its expression by observing that A(t) is a probabil-
ity of a t-study meta-analysis conditioned on the data, and we need a probability of the
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data conditioned on the occurrence of a t-study meta-analysis; Bayes’ rule transposes the
conditional in the following expression:

φ0

�

z(t)
�

�A (t), T ≥ t
�

=
φ0(z(t)) · P0

�

A (t), T ≥ t
�

� z(t)
�

P0 [A (t), T ≥ t]

=
φ0(z(t)) · A0

�

t
�

� z(t)
�

A0 (t)
,

where we define:

A0

�

t
�

� z(t)
�

:= E0

�

A(t | Z1, . . . , Zt)
�

� Z (t) = z(t)
�

A0 (t) := E0 [A(t | Z1, . . . , Zt)] .

(4.B.1)

Here, φ0 is a standard normal distribution with mean 0 and variance 1. For the extreme
Gold Rush scenario of this paper, and the sampling distribution of a three-study series
illustrated in Figure 2, A0 (3) can be calculated as follows:

A0 (3) = E0[A(3 | Z1, Z2, Z3)]
= A(3 | z∗1,z∗2, z−3 ) · P0[z

∗
1,z∗2, z−3 ] + A(3 | z∗1,z∗2,z∗3) · P0[z

∗
1,z∗2,z∗3]

= 1 · P0[z
∗
1,z∗2, z−3 ] + 1 · P0[z

∗
1,z∗2,z∗3]

= 1 ·α ·α · (1−α) + 1 ·α ·α ·α

=
1

1600
(for α= 2.5%)

(4.B.2)

The only three-study series that have nonzero A(t) are A(3 | z∗1,z∗2, z−3 ) and A(3 | z∗1,z∗2,z∗3),
such that only these have to be enumerated in expectation A(3). A0

�

3
�

� z(t)
�

can be ob-
tained by considering all the possible combinations of Z1, Z2, Z3 that could be summarized
into a specific z(t) and taking into account their probabilities under the null hypothesis.

The value 1/1600 explains the statement in the beginning of the code in Figure 1 that
1600 first studies are needed for each sample of a three-study series.

A(t) behaves like a survival probability

Table 4.C.2 is an extension of the table in the blog post and shows that even though A0(t)
indicates the null hypothesis probability of accumulating t studies and meta-analyzing
them, it cannot in itself tell us how often the research effort is terminated at exactly those
t studies. This is caused by the fact that A(t) is partly a survival probability and can be
illustrated by adding a column of A0(t) values to our table that does not add up to one.
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Table 4.C.2. Possible study series under extreme Gold Rush accumulation bias.

τ N∗(τ) A0(τ) P0 N∗(τ) · P0 τ · P0

1 z−1 0 1 1−α 0 1−α
2 z∗1, z−2 1 α α(1−α) α(1−α) 2α(1−α)
3 z∗1,z∗2, z−3 2 α2 α2(1−α) 2α2(1−α) 3α2(1−α)

T = 3 3 z∗1,z∗2,z∗3 3 α3 α3 3α3 3α3
∑

1 α+α2 +α3 1+α+α2

4.C The martingale underlying the table
Table 4.C.2 is slightly modified in comparison to the blog post to introduce more formal
notation for the Gold Rush stopping rule. Here we show the specific martingale underlying
this table and how Doob’s Optional Stopping Theorem explains the relation between the
values in the bottom row of the table.

We assume that each individual study Z-score is independently sampled from a standard
normal distribution with mean zero, such that the probability of obtaining a significant
and positive result (z∗ if z ≥ zα) is α. Using 1z∗(zi) for the indicator function that indi-
cates whether zi is significant and positive, the martingale {M1, M2, M3, . . .} underlying
Table 4.C.2 is defined as follows:

Mt =
t
∑

i=1

1z∗(zi)− tα.

{M1, M2, M3, . . .} is a martingale since

E0 [Mt −Mt−1] = E0

�

t
∑

i=1

1z∗(zi)− tα−

�

t−1
∑

i=1

1z∗(zi)− (t − 1)α

��

= E0 [1z∗(zt)−α] = α−α= 0.

(4.D.1)

We denote the number of significant positive studies in a series of size t by N ∗(t) in
Table 4.C.2 and express this number in terms of Mt :

N ∗(t) =
t
∑

i=1

1z∗(zi) = Mt + tα.

The Gold Rush stopping rule implies that we only stop accumulating studies at series size
t = τ if we find the first nonsignificant study (z−τ , where τ =mint{1z∗(zt) = 0}) or if we
arrive at the maximum series size t = T . This stopping rule forces us to stop accumulating
studies at either series size τ or at size T , whichever comes first. So we stop at τ∧ T . We
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express the expected number of studies that is significant and positive in terms of the
expectation of the martingale under this stopping rule:

E0[N
∗(τ∧ T )] = E0[Mτ∧T ]− E0[τ∧ T]α,

and since τ∧ T is always finite, by Doob’s Optional Stopping theorem we have:

E0[Mτ∧T ] = E0[M1] = E0

�

1
∑

i=1

1z∗(zi)− 1α

�

= E0[1z∗(zi)]−α= α−α= 0

such that

E0[N
∗(τ∧ T )] = E0[τ∧ T]α

and

E0[N ∗(τ∧ T )]
E0[τ∧ T]

= α.

(4.D.2)

This is shown for the Gold Rush stopping rule and T = 3 by Table 4.C.2, but holds for any
stopping rule and finite T .



5| Accumulation Bias:
How to handle it as a Bayesian

Blog post
This chapter appeared as a blog post and gives more context to the claims in
Chapter 3 on accumulation bias. These claims are paradoxical, after all: how
can we possibly encounter enormous bias in our meta-analysis estimates and
still do valid Bayesian inference? This blog post tries to give some intuition
by introducing a very extreme and simple version of accumulation bias and
showing by simulation code and plots in R what counteracts the bias in a
Bayesian analysis.1

An estimated 85% of global health research investment is wasted (Chalmers and Glasziou,
2009); a total of one hundred billion US dollars in the year 2009 when it was estimated.
The movement to reduce this research waste recommends that previous study results be
taken into account when prioritizing, designing, and interpreting new research (Chalmers
et al., 2014; Lund et al., 2016). Yet any recommendation to increase efficiency this way
requires that researchers evaluate whether the studies already available are sufficient
to complete the research effort; whether a new study is necessary or wasteful. These
decisions are essentially stopping rules – or rather noisy accumulation processes, when
no rules are enforced – and unaccounted for in standard meta-analysis. Hence reducing
waste invalidates the assumptions underlying many typical statistical procedures.

Chapter 3 details all the possible ways in which the size of a study series up for meta-
analysis, or the timing of the meta-analysis, might be driven by the results within those
studies. Any such dependency introduces accumulation bias. Unfortunately, it is often im-
possible to fully characterize the processes at play in retrospective meta-analysis; the bias
cannot be accounted for.

1The introduction to this blog post is the same as in Chapter 4 as they describe the same example accumu-
lation bias but a different approach to counteracting it.

147
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This is the second blog post about this type of bias and how to handle it. The first blog
post (Chapter 4) detailed how it can be that ALL-IN meta-analysis handles accumulation
bias. This second blog post deals with the Bayesian approach. We revisit the same example
accumulation bias process, which can be one of many influencing a single meta-analysis,
and use it to illustrate the following key points:

• Standard meta-analysis does not take into account that researchers decide on new
studies based on other study results already available. These decisions introduce
accumulation bias because the analysis assumes that the size of the study series is
unrelated to the studies within; it essentially conditions on the number of studies
available.

• A Bayesian analysis also conditions on the number of studies available, but can still
handle accumulation bias well because it compares the biased sampling distribution
under the null hypothesis to those under the alternative hypothesis.

• A Bayesian analysis can have error control under accumulation bias, but this cru-
cially depends on the ratio of null and alternative hypotheses: the prior odds. No
Bayesian analysis can handle accumulation bias when the prior odds cannot be
specified.

• Specifying prior odds might be difficult for a meta-analysis in retrospect: if informa-
tion from the study results included in the meta-analysis seeps into the prior odds,
they become invalid.

• The e-values that follow from ALL-IN meta-analysis can also be combined with prior
odds in a Bayesian analysis. They combine into pseudo-Bayes posterior odds that
allow Bayesian error control. By using e-values rather than standard Bayes factors
we can avoid specifying prior densities on the parameters within the null and the
alternative; but prior odds on H0 and H1 are still needed and have to be trusted.

• If trustworthy prior odds can be specified, pseudo-Bayes posterior odds allow for
continuous monitoring of the evidence as new studies arrive, even as new interim
results arrive. Any decision to start, stop or expand studies is possible while keeping
valid inference and Bayesian error control intact. Such decisions can be strategic:
increasing the value of new studies, and reducing research waste.

5.1 Our example: extreme Gold Rush accumulation bias
We imagine a world in which a series of studies is meta-analyzed as soon as three studies
become available. Many topics deserve a first initial study, but the research field is very
selective with its replications. Nevertheless, for significant results in the right direction,
a replication is warranted. We call this the Gold Rush scenario because after each finding
of a positive significant result – the gold in science – some research group rushes into
a replication, but as soon as a study disappoints, the research effort is terminated and
no one bothers to ever try again. This scenario was first proposed by Ellis and Stewart
(2009) and formulated in detail and under this name in Chapter 3. Here we consider
the most extreme version of the Gold Rush where finding a significant positive result not
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only makes replication more probable but even inevitable: the dependency of occurring
replications on their predecessor’s result is deterministic.

The first blog post gave a precise definition of this extreme Gold Rush accumulation bias
and showed by simulation that the sampling distribution under the null hypothesis is
affected by such a process or stopping rule. This is shown in Figure 5.1 for the fixed-effect
meta-analysis z(3)-scores for a three-study series. The theoretical sampling process, in the
pink histogram, is centered around zero and the blue histogram, under accumulation
bias process A(t), does not behave like this theoretical distribution at all. It has a smaller
variance and is shifted to the right – representing the bias. Here A(3) = 1 indicates that we
accumulate and analyze 3 studies under the Gold Rush process. (For a precise definition,
please refer to the blog post Accumulation Bias: How to handle it ALL-IN in Chapter 4.)
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z(3)

z(3)  |  A(3) = 1

Figure 5.1. Sampling distributions under the null hypothesis of fixed-effects meta-analysis
Z-scores Z (3) of three studies with and without extreme Gold Rush accumulation bias A(t),
under the assumption of equal study sample size and variance.

Bayesians claim that they can deal with any such stopping rules. So how can this be when
the sampling distribution in Figure 5.1 is so much affected?

5.2 Likelihood ratios

We first turn our attention from the meta-analysis Z (3) statistic for three studies, to a
likelihood ratio statistic LR(3) for three studies. We summarize the results of individual
studies into a single per-study Z-score (z1 for the first study, z2 for the second, etc), where
we follow the same procedure that generated Figure 5.1, but calculate for each sample
a likelihood ratio LR of two standard normal distributions, one with unit variance and
mean 1 (φ1) and one with unit variance and mean 0 (φ0):

LR(3) =
φ1 (z1, z2, z3)
φ0 (z1, z2, z3)

=
3
∏

i=1

φ1(zi)
φ0(zi)

.

Assume that we are in the scenario that only true null effects are studied in our Gold Rush
world, such that any new study builds on a false-positive result. How large would the
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bias be in our likelihood ratio statistic LR(3) if we analyze at the three-study series? We
illustrate this by simulating this Gold Rush world using the R code below.

Figure 5.2. Code to create Figure 5.3
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Figure 5.3. Sampling distributions under the null hypothesis of likelihood ratios LR(3) =
∏3

i=1φ1(Zi)/φ0(Zi) of three studies with and without extreme Gold Rush accumulation bias
A(t). Note that the x-axis is on a log scale.

Theoretical sampling process: A log-likelihood ratio of standard normal data has a
normal sampling distribution. The R code in Figure 5.2 illustrates this sampling process:
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First, a large population is simulated of possible first (Z1), second (Z2) and third (Z3)
studies from a standard normal distribution. In the line of code for LRmeta3, each in-
dex i represents a possible study series, such that c(Z1[i], Z2[i], Z3[i]) samples
an unbiased study series and calcLRmeta calculates its likelihood ratio LR(3). So the
large number of Z-scores in LRmeta3 captures the unbiased sampling distribution of the
likelihood ratios.

Gold Rush sampling process: In contrast, the code resulting in A3 selects only those
study series for which A(3) = 1 under extreme Gold Rush accumulation bias. So the large
number of LR-scores in LRmeta3.A3 capture a biased sampling distribution for LR(3) |
A(3) = 1.

Likelihood ratios under Gold Rush accumulation bias: The final lines of code in Fig-
ure 5.2 plot two histograms of LR(3) samples, one without and one with the Gold Rush
A(t) accumulation bias process, based on LRmeta3 and LRmeta3.A3 respectively. Each
is given on the log-scale such that their normal sampling distributions become apparent.
Figure 5.3 gives the result.

Here the likelihood ratio is just another statistic, with a sampling distribution that is af-
fected by the Gold Rush decision making. The sampling distributions for LR(3) on a log-
scale (so logLR(3)) in Figure 5.3 look very similar to those for Z (3) in Figure 5.1.

5.3 Two simple hypotheses
A Bayesian does not only care about the sampling distribution under the null hypothesis in
Figure 5.3 but also about the sampling distribution under a competing alternative hypoth-
esis. For simplicity, we first assume that we have two simple hypotheses, one representing
the null (Ho) and one representing the alternative (H1). Two simple hypothesis means
that each can be represented by a single sampling distribution. We again summarize the
results of individual studies into a single per-study Z-score (z1 for the first study, z2 for
the second, etc). Under the null hypothesis, these Z-scores are generated by a normal
distribution φ0 with unit variance and mean 0; under the alternative hypothesis, these
Z-scores are generated by an alternative distribution φ1 with unit variance and mean 1.

The code in Figure 5.4 follows the same steps as the code in Figure 5.2 but it repeats each
step for both both H0 and H1 in the lapply statements. We observe in Figure 5.5 that the
same bias appears for the alternative hypothesis that we observe for the null hypothesis
sampling distribution if we condition on arriving at our meta-analysis under extreme Gold
Rush accumulation bias (A(3) = 1).

As a Bayesian, we simply do not care that our estimates are biased, as long as our poste-
riors are calibrated. We will first explain what calibration means for a Bayesian before we
show that calibration stays intact under accumulation bias.
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Figure 5.4. Code to create Figure 5.5
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Figure 5.5. Sampling distributions under the null (H0) and alternative (H1) hypothesis
of likelihood ratios LR(3) =

∏3
i=1φ0(Zi)/φ0(Zi) of three studies with and without extreme

Gold Rush accumulation bias A(t). Note that the x-axis is on a log scale.
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Bayesian calibration of posterior odds and Bayesian error control
No accumulation bias To introduce the notion of Bayesian calibration of the posterior
odds and Bayesian error control, we first turn to a situation without accumulation bias.
Here we consider the posterior odds, but our discussion is closely related to the literature
on Bayes factor calibration (De Heide and Grünwald, 2021; Hendriksen et al., 2020). We
obtain the posterior odds by multiplying the likelihood ratio LR(3) (LRmeta3) with a prior
odds π(H1)/π(H0) as follows:

π (H1 | z1, z2, z3)
π (H0 | z1, z2, z3)

=
P (z1, z2, z3 |H1) ·π(H1)
P (z1, z2, z3 |H0) ·π(H0)

=
φ1 (z1, z2, z3) ·π(H1)
φ0 (z1, z2, z3) ·π(H0)

= LR(3) ·
π(H1)
π(H0)

.

Figure 5.6. Code to create Figure 5.7
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Figure 5.7. Sampling distributions under the null (H0) and alternative (H1) hypothesis of
π(H1 | z1,z2,z3)
π(H0 | z1,z2,z3)

= LR(3) · (1/10) with accumulation bias. The vertical line indicates the threshold
for the posterior odds at r = 16. Note that the x-axis is on a log scale.
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We take the unbiased sample of likelihood ratios in LRmeta3 from the code Figure 5.4
and obtain the posterior odds (postOdds) in the code in Figure 5.6 for each likelihood
ratio by multiplication with a prior odds odds of (1/10):

π (H1 | z1, z2, z3)
π (H0 | z1, z2, z3)

= LR(3) ·
π(H1)
π(H0)

= LR(3) · (1/10).

The result of this code is given by Figure 5.7 in two histograms for our sampled poste-
rior odds. One using the statement ..density.. and one using ..count... The first
normalizes the histogram bars such that they add up to one. This is the same plot as Fig-
ure 5.5, just with the x-axis scaled by (1/10) because we show posterior odds instead
of the likelihood ratio. The second histogram does something different: it just counts
the samples and so the histogram bars scale with the number of samples we take in the
sample statement in calculating LRmeta3 in Figure 5.4.

Bayesian calibration With calibration of the Bayes posterior odds we mean that if we
sample from both H1 (which is φ1 in our example) and H0 (which is φ0 in our exam-
ple) and look at a posterior odds with value opost, observing this value for the posterior
odds makes (H1) our alternative hypothesis opost times more probable than (H0) our null
hypothesis. In other words: the posterior odds of obtaining posterior odds of opost are
opost.

P
�

H1

�

�

�

π(H1 | Z1,Z2,Z3)
π(H0 | Z1,Z2,Z3)

= opost

�

P
�

H0

�

�

�

π(H1 | Z1,Z2,Z3)
π(H0 | Z1,Z2,Z3)

= opost

�
= opost

because
P
�

π(H1 | Z1,Z2,Z3)
π(H0 | Z1,Z2,Z3)

= opost

�

�

�H1

�

P
�

π(H1 | Z1,Z2,Z3)
π(H0 | Z1,Z2,Z3)

= opost

�

�

�H0

�
·
π(H1)
π(H0)

= opost.

We can observe Bayesian calibration in the count plot in Figure 5.7, for example by looking
at a posterior odds of 1.00 that has exactly the same count in both the histogram generated
by H1 and the one by H0, which means that the ratio of counts is 1.00. This ratio of counts
is calibrated, while the ratio of densities is not. The reason is that the ratio of densities
does not take into account the prior odds: we take ten times as many samples from H0
as from H1 in the code in Figure 5.4. This agrees with the prior odds of (1/10) that we
assume in calculating the posterior odds.

The ratio of densities gives:

P
�

π(H1 | Z1,Z2,Z3)
π(H0 | Z1,Z2,Z3)

= opost

�

�

�H1

�

P
�

π(H1 | Z1,Z2,Z3)
π(H0 | Z1,Z2,Z3)

= opost

�

�

�H0

�
,
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while the ratio of counts gives:

P
�

π(H1 | Z1,Z2,Z3)
π(H0 | Z1,Z2,Z3)

= opost

�

�

�H1

�

P
�

π(H1 | Z1,Z2,Z3)
π(H0 | Z1,Z2,Z3)

= opost

�

�

�H0

�
·
π(H1)
π(H0)

.

Because we look at ratios, as we do if we look at odds, the scale of the counts in the figure
does not matter. For simplicity, we are abusing notation a little bit and referring with
probabilities P to densities, because our histograms of sampling distributions discretize
our statistics in small intervals to give a probability instead of a density.

Bayesian error control From the calibration of the Bayes posterior odds we can obtain
a notion of Bayesian error control as follows:

P
�

π(H1 | Z1,Z2,Z3)
π(H0 | Z1,Z2,Z3)

≥ r
�

�

�H1

�

P
�

π(H1 | Z1,Z2,Z3)
π(H0 | Z1,Z2,Z3)

≥ r
�

�

�H0

�
·
π(H1)
π(H0)

≥ r.

This Bayesian calibration is indeed the case for counts of LR(3) (LRmeta3) in Figure 5.7
with the vertical dashed line r = 16. Figure 5.8 gives the calculation.

Figure 5.8. Code to show Bayesian error control for a threshold of r = 16 for the Bayes
posterior odds.

P
�

π(H1 | Z1,Z2,Z3)
π(H0 | Z1,Z2,Z3)

≥ r
�

�

�H1

�

P
�

π(H1 | Z1,Z2,Z3)
π(H0 | Z1,Z2,Z3)

≥ r
�

�

�H0

�
·
π(H1)
π(H0)

= 31.59 ≥ r = 16.

If we use r as a threshold to decide that we believe H1 is true and H0 is false, the probability
that we make an error is r smaller than the probability that we are right. In other words:
if we use r as a threshold for the posterior odds, the odds for a correct decision are at
least r.

5.4 Bayesian error control under extreme Gold Rush accumulation bias
We can make the same plots under our scenario of extreme Gold Rush accumulation bias
and observe calibration. In the count plot in Figure 5.7, the posterior odds of 1.0, for
example, has exactly the same count in the histogram for H0 as it has for H1, which
means that the ratio of counts is 1.0.
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Figure 5.9. Code to create Figure 5.10
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Figure 5.10. Sampling distributions under the null (H0) and alternative (H1) hypothesis of
π(H1 | z1,z2,z3)
π(H0 | z1,z2,z3)

= LR(3) · (1/10) with accumulation bias. The vertical line indicates the threshold
for the posterior odds at r = 16. Note that the x-axis is on a log scale.
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Now the ratio of densities gives:

P
�

π(H1 | Z1,Z2,Z3,A(3)=1)
π(H0 | Z1,Z2,Z3,A(3)=1) = opost

�

�

�A(3) = 1, H1

�

P
�

π(H1 | Z1,Z2,Z3,A(3)=1)
π(H0 | Z1,Z2,Z3,A(3)=1) = opost

�

�

�A(3) = 1, H0

�
,

while the ratio of counts gives:

P
�

π(H1 | Z1,Z2,Z3,A(3)=1)
π(H0 | Z1,Z2,Z3,A(3)=1) = opost

�

�

�A(3) = 1, H1

�

P
�

π(H1 | Z1,Z2,Z3,A(3)=1)
π(H0 | Z1,Z2,Z3,A(3)=1) = opost

�

�

�A(3) = 1, H0

�
·

P (A(3) = 1 |H1)
P (A(3) = 1 |H0)

·
π(H1)
π(H0)

.

What counteracts the accumulation bias is illustrated in Figure 5.12. The posterior odds
conditions on accumulating and analyzing three studies, A(3) = 1, which means that we
are in a very biased sample. But because this situation occurs much more often under H1
than under H0

P (A(3) = 1 |H1)>> P (A(3) = 1 |H0) ,

our biased sample statistic LR(3) | A(3) = 3 can still achieve calibration if we take into
account our prior odds.

In the ratio of counts, we also still have Bayesian error control under extreme Gold Rush
accumulation bias:

Figure 5.11. Code to show Bayesian error control for a threshold for the Bayes posterior
odds of r = 16.
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�

�

�A(3) = 1, H1

�

P
�

π(H1 | Z1,Z2,Z3,A(3)=1)
π(H0 | Z1,Z2,Z3,A(3)=1) ≥ r

�

�

�A(3) = 1, H0

�
·
P (A(3) = 1 |H1)
P (A(3) = 1 |H0)

·
π(H1)
π(H0)

= 29.88 ≥ r = 16.

We don’t have to know the accumulation bias
How can it be that we never have to include anything about A(3) in our calculations? The
x-axis label of Figure 5.10 states that

π (H1 | z1, z2, z3, A(3) = 1)
π (H0 | z1, z2, z3, A(3) = 1)

=
π (H1 | z1, z2, z3)
π (H0 | z1, z2, z3)

,
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Figure 5.12. Likelihood ratios LR(1),LR(2),LR(3) when studies accumulate from 1 to 3 under
the extreme Gold Rush accumulation bias process. Data simulated under prior odds
H1 : H0 = 1 : 10. Note that the y-axis is logarithmic.

Figure 5.13. Code to create Figure 5.12

which follows because
π (H1 | z1, z2, z3, A(3) = 1)
π (H0 | z1, z2, z3, A(3) = 1)

=
P (z1, z2, z3, A(3) = 1 |H1) ·π(H1)
P (z1, z2, z3, A(3) = 1 |H0) ·π(H0)

=
φ1 (z1, z2, z3) · A(3 | z1, z2, z3) ·π(H1)
φ0 (z1, z2, z3) · A(3 | z1, z2, z3) ·π(H0)

=
φ1 (z1, z2, z3) ·π(H1)
φ0 (z1, z2, z3) ·π(H0)

=
π (H1 | z1, z2, z3)
π (H0 | z1, z2, z3)

= LR(3) ·
π(H1)
π(H0)

.
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This is the reason that given the sample values z1, z2, z3, the only calculations we per-
formed were to get LR(3) in the LRmeta3.A3 statement in Figure 5.2. We obtained our
posterior odds in Figure 5.11 by simply multiplying LR(3) with the prior odds (1/10).

Given that we know the data, the probability of accumulating our studies is the same
under the null and the alternative hypothesis and drops out of the ratio. We do not need
to know what these are to calculate our posterior odds. What matters is how often we
are in the null and the alternative situation: our prior odds. This is known as stopping
rule independence (Hendriksen et al., 2020; Berger and Berry, 1988). If we know our
prior odds, we do not need to know the accumulation bias process under which our study
results z1, z2, z3 were obtained (the probability A(3 | z1, z2, z3), see Chapter 3). We can
just calculate our posterior odds in the usual way and decide on a threshold r on that
posterior odds.

Prior odds
How often we reach A(3) = 1 under H0 in comparison to under H1 needs a statement of
the relative occurrences of H0 and H1: a prior oddsπ(H1)/π(H0). In the code in Figure 5.4
and Figure 5.13 we sample ten times as many null effects as alternative effects, so we
assume that for every clinical trial that studies an effective treatment π(H1), we have
π(H0)/π(H1) = 10 clinical trials that study an ineffective treatment, so π(H1)/π(H0) =
1/10. In Figure 5.12 we show that even if ten times as many studies observe data from
the null hypothesis, still a lot more from the alternative hypothesis make it to a three-
study-series under extreme Gold Rush accumulation bias.

5.5 The prior odds are crucial
The Bayesian calibration is driven by the fact that accumulation bias processes like the
extreme Gold Rush make it much more likely for study series generated by H1 to reach the
meta-analysis than for study series generated by H0. How much more depends on how
many times either of them can try. As a Bayesian meta-analyst, we can think of this as a
property of the research field that we might know and include in the analysis. How many
initial studies are measuring a true effect from H1 for each one that measures a null effect
from H0?

Bayesian calibration does rely crucially on getting the prior odds right. If we set our prior
odds to a default 1 : 1 and there is extreme Gold Rush accumulation bias in our field, we
are actually assuming that hardly any series of clinical trials studying a null effect will
accumulate three studies. Figure 5.14 shows what we are assuming in this case. For these
plots we have set the following in the code in Figure 5.4 and Figure 5.13
numSim.study <- c("H0" = numSim.study, "H1" = numSim.study/1)
and we calculate the posterior odds based on our assumed 1 : 1 prior odds:

π (H1 | z1, z2, z3, A(3) = 1)
π (H0 | z1, z2, z3, A(3) = 1)

=LR(3) ·
π(H1)
π(H0)

= LR(3) ·
1
1
= LR(3) . (5.1)

Figure 5.14 shows that assuming 1:1 prior odds in the calculations based on our data,
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Figure 5.14. Likelihood ratios LR(1),LR(2),LR(3) when studies accumulate from 1 to 3 under
the extreme Gold Rush accumulation bias process. Data simulated under prior odds H1 :
H0 = 1 : 1. Note that the y-axis is logarithmic.
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Figure 5.15. Sampling distributions under the null (H0) and alternative (H1) hypothesis
of LR(3) · (1/1) under extreme Gold Rush accumulation bias. The upper panels are sampled
using H1 : H0 = 1 : 10 and the lower panels using H1 : H0 = 1 : 1. The upper right
panel shows that mistakenly assuming 1 : 1 in the posterior odds LR(3) · (1/1) does not give
calibration under H1 : H0 = 1 : 10, e.g. LR(3) = 10 does not happen ten times as often under
H0 than under H1. Note that the x-axis is on a log scale.
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when the true number of null hypotheses studied is ten times larger – the ratio in our
research field is 1:10 – breaks the calibration of our posterior odds. For example, for an
incorrectly calculated posterior odds LR(3) · (1/1) = 10, we are in a situation that happens
just as often under the null as under the alternative (the top-right panel of Figure 5.15)
which should not give much evidence in favor of the alternative. As a result, also Bayesian
error control breaks.

Setting prior odds is not that easy
We do want to stress that in the setting of retrospective meta-analysis, where the results
of individual trials can be known to the meta-analyst before performing the analysis, it
might be very difficult to establish prior odds that are not influenced by the data. In
such scenarios, relying upon field-specific priors, e.g. established by prediction markets
involving many peers (Potthoff, 2007; Dreber et al., 2015), might achieve more reliable
prior odds.

What is more, these prior odds need to represent the ratio of alternative to null initial
studies and not the ratio in meta-analyses. Reaching enough studies – e.g. t = 3 under
extreme Gold Rush – and doing the meta-analysis is part of the data in the likelihood, not
part of the prior. We encounter trouble with Bayesian calibration when we use different
priors for individual studies than we use for a meta-analysis.

Doing so is appealing, though, since meta-analyses seem to be wrong less often than in-
dividual studies. The famous paper “Why Most Published Research Findings Are False”
(Ioannidis, 2005b), for example, specifies different prior odds for a clinical trial analysis
in comparison to a meta-analysis of clinical trials. This was the paper that introduced the
concept of field-specific prior odds to a large audience as “Ratio of True to Not-True Rela-
tionships (R)”. The different types of prior odds include one for “Adequately powered RCT
with little bias” and one for “Confirmatory meta-analysis of good-quality RCTs”. The first
is set to an R of 1:1 and the second R to 2:1. This means that information seeped into the
prior odds about what type of RCTs end up in meta-analyses; getting to the meta-analysis
stage is assumed to be more likely under the alternative than the null otherwise the two
prior odds would be the same. The meta-analysis prior odds that Ioannidis (2005b) speci-
fies are essentially P(A(t)=1 |H1)

P(A(t)=1 |H0)
·π(H1)
π(H0)

with P (A(1) = 1 |H1) = 1 and P (A(1) = 1 |H0) = 1 for
primary studies. This invalidates the stopping rule principle. Including information about
the accumulation process into the prior biases the Bayes posterior and requires that the
same information is included in the likelihood as well for Bayesian calibration. We need
to know the accumulation bias process A(t) in that case, which is usually impossible.

5.6 Beyond simple hypotheses
The situation with two simple hypotheses that we discussed so far, where each trial is ei-
ther collecting data from φ0 or φ1, is not very realistic. More generally, we like to vary the
parameter µ of our normal distributionφµ and allow for all possible normal distributions.

We assume we are given a minimum relevant effect size µmin as well as a µ0 < µmin, which
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respectively define the alternative hypothesis H1 and the null hypothesis H0:

H0 = {φµ : µ≤ µ0}, H1 = {φµ : µ≥ µmin}.

We can distinguish two types of prior probabilities: π(H1) and π(H0) for the hypotheses
H1, H0, and π1(µ) and π0(µ) for {µ : µ ≥ µmin} and {µ : µ ≤ µ0} respectively. Instead
of a likelihood ratio of two simple hypotheses, we specify a Bayes Factor of two Bayes
marginal distributions, using the priors on µ:

BF(z1, . . . , zt) =
φ̄1(z1, . . . , zt)

φ̄0(z1, . . . , zt)
,

with φ̄1(z) =

∫

φµ(z)π1(µ)dz and φ̄0(z) =

∫

φµ(z)π0(µ)dz;

φ̄1(z1, . . . , zt) =
t
∏

i=1

φ̄1(z) and φ̄0(z1, . . . , zt) =
t
∏

i=1

φ̄0(z).

If π j puts all its mass on a particular element µ∗, then φ̄ j(z) = φµ∗(z).

Combining the Bayes Factor with the prior odds gives us the posterior odds, that just like
the earlier posterior odds for two simple hypotheses, does not depend on the accumulation
bias process for reaching e.g. A(3) = 3.

π(H1 | z1, z2, z3, A(3) = 1)
π(H0 | z1, z2, z3, A(3) = 1)

=
φ̄1(z1, z2, z3) · A(3 | z1, z2, z3)

φ̄0(z1, z2, z3) · A(3 | z1, z2, z3)
·
π(H1)
π(H0)

(5.2)

=
φ̄1(z1, z2, z3)

φ̄0(z1, z2, z3)
·
π(H1)
π(H0)

(5.3)

=BF(z1, z2, z3) ·
π(H1)
π(H0)

. (5.4)

The pseudo-Bayes posterior odds
What if we cannot come up with a good prior on the µs? In that case we may want to
‘represent’ the set of distributions H0 and H1 by their ‘least extreme elements’ respectively,
i.e. φµ0

and φµmin
. This gives the pseudo-Bayes posterior odds,

πps(H1 | z1, z2, z3)
πps(H0 | z1, z2, z3)

=
φµmin

(z1, z2, z3)

φµ0
(z1, z2, z3)

·
π(H1)
π(H0)

= BFps(z1, z2, z3) ·
π(H1)
π(H0)

.

which is just the ‘real’ posterior odds (5.2) that we would get if we had put all our prior
mass on µmin and µ0 respectively.

We can use the ‘pseudo-Bayes posterior odds’ when (with a Bayesian mindset) we have
no good idea about ‘good’ priors on the µs or (with a frequentist mindset) about what
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value of µ may be true if H1 is true, or what value of µ may be true if H0 is true. Note in
particular that in the pseudo-Bayes posterior odds, we use the same priors on H0 and H1
as in the ‘real’ posterior, but different, degenerate priors on the µs.

The GROW e-values that we calculate in ALL-IN meta-analysis (Chapter 1) are pseudo-
Bayes factors BFps. So in ALL-IN meta-analysis, we can very simply extend our conclusions
with Bayesian statements by combining our e-values with prior odds to obtain pseudo-
Bayes posterior odds. Moreover, with these pseudo-Bayes posterior odds, we can also
obtain Bayesian error control.

5.7 Pseudo-Bayesian error control
Throughout this blog post we have shown that if we get the prior odds right, the posterior
odds is calibrated under accumulation bias, i.e.:

P
�

π(H1 | Z1,Z2,Z3,A(3)=1)
π(H0 | Z1,Z2,Z3,A(3)=1) = opost

�

�

�A(3) = 1, H1

�

P
�

π(H1 | Z1,Z2,Z3,A(3)=1)
π(H0 | Z1,Z2,Z3,A(3)=1) = opost

�

�

�A(3) = 1, H0

�
·

P (A(3) = 1 |H1)
P (A(3) = 1 |H0)

·
π(H1)
π(H0)

=
P
�

π(H1 | Z1,Z2,Z3)
π(H0 | Z1,Z2,Z3)

= opost

�

�

�A(3) = 1, H1

�

P
�

π(H1 | Z1,Z2,Z3)
π(H0 | Z1,Z2,Z3)

= opost

�

�

�A(3) = 1, H0

�
·

P (A(3) = 1 |H1)
P (A(3) = 1 |H0)

·
π(H1)
π(H0)

= opost

such that
P
�

H1

�

�

�

π(H1 | Z1,Z2,Z3)
π(H0 | Z1,Z2,Z3)

= opost, A(3) = 1
�

P
�

H0

�

�

�

π(H1 | Z1,Z2,Z3)
π(H0 | Z1,Z2,Z3)

= opost, A(3) = 1
�
= opost.

The outer probabilities combine a prior odds with a likelihood ratio of the observing
the posterior odds of opost, which is a statistic of our data, with the likelihood ratio of
observing a three study series (A(3) = 1), also part of the data. The likelihood ratio of the
data combined with prior odds forms posterior odds for the hypotheses conditioned on
the data.

We can use this fact of calibration to specify the Bayesian error control further for the
pseudo-Bayes posterior odds. We define a threshold on the pseudo-Bayes posterior odds
r and decide to reject the null hypothesis and believe the alternative if

πps(H1 | z1, . . . , zt)
πps(H0 | z1, . . . , zt)

≥ r.

We can set a threshold such that if we cross it, we reject the null hypothesis and denote so
by REJECT [A(t) = 1, r] based on crossing the threshold with our pseudo-Bayes posterior
odds conditioned on accumulating t studies.

For a subset of all accumulation bias processes A(t) which includes the extreme Gold rush
and variations of it, we have the following: for all t = 1,2, . . . r > 1 : the true Bayes
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posterior odds – so not only the pseudo-Bayes posterior odds! – of H0 satisfies:

π (H1 | REJECT [A(t) = 1, r])
π (H0 | REJECT [A(t) = 1, r])

≥ r. (5.5)

This expresses that, as long as the priors on H0 and H1 are chosen correctly, we have
Bayesian error control for the pseudo-Bayes posterior odds: a Bayesian’s real posterior
odds of an incorrect decision can be no larger than the odds to make an error according
to the pseudo-Bayes posterior odds on {H0, H1}, even though that the priors on the µs
are, according to that same Bayesian, incorrect. Note that this is merely a ‘one-sided’
calibration, but the inequalities go the right (i.e. practically useful) way. The result holds
not just for the normal location family but for a general class of models including all 1-
dimensional exponential families and the 1-sample t-test setting. This general result is
stated and proved in Appendix Section 5.A and Section 5.B.

5.8 Conclusion
In our imaginary world of extreme Gold Rush accumulation bias, the sampling distribu-
tion of the meta-analysis Z-score behaves very different from the sampling distribution
assumed to calculate p-values and confidence intervals. A meta-analysis sampling dis-
tribution conditions on the available number of studies, which means that we are in a
situation that is influenced by a selection effect: only some series get there, not others.
Bayesian analysis also conditions on the number of studies and therefore also likelihood
ratios and Bayes factors have biased sampling distributions. For Bayesian error control,
however, we do not need unbiased sampling; we need calibration.

Some accumulation bias is at play in almost any retrospective meta-analysis. Bayesian cal-
ibration holds no matter the accumulation bias process, as long as the prior odds are trust-
worthy. The e-values from ALL-IN meta-analysis can also be used to combine with prior
odds and obtain pseudo-Bayes posterior odds to obtain Bayesian error control through
calibration, although now calibration may only hold for a subset of all accumulation bias
processes – which however include the extreme Gold Rush scenario. This also allows for
continuous monitoring; multiple testing is no problem, as long as the prior odds are cor-
rect. Setting trustworthy prior odds in meta-analysis is not easy, however. As long as the
prior odds can be trusted, a Bayesian perspective on meta-analysis will reduce research
waste by allowing efficient data-driven decisions – not letting them invalidate the infer-
ence – and still analyze the posterior odds for any particular meta-analysis, conditioned
on arriving at the number of studies so far.

Code availability
This blogpost’s R code is available on https://osf.io/p2rtw/ (Ter Schure, 2021a).

https://osf.io/p2rtw/
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Appendices

5.A Pseudo-Bayes posterior odds for exponential families and beyond

5.A.1 Exponential families
LetM = {Pδ : δ ∈ ∆} with ∆ a (possibly unbounded) open interval in R represent a 1-
dimensional exponential family of probability distributions for some random variable Y ,
given in its mean-value parameterization. While this already includes important models
such as the normal location family (z-test), the Bernoulli model, the Poisson model, and so
on, we will later, in Theorem 5.B.1, extend our result to some multi-dimensional families
that are not of exponential form. Each Pδ has a density (for continuous-valued Y ) or mass
function (for discrete-valued Y ) pδ. Pδ and pδ are extended to i.i.d. sequences by taking
product distributions.

We assume we are given two parameter values δ− and δ+ in ∆ with δ− < δ+ which
respectively define the alternative hypothesis H1 and the null hypothesis H0:

H0 = {Pδ : δ ∈∆0}, ∆0 = {δ ∈∆ : δ ≤ δ−}, H1 = {Pδ : δ ∈∆1}, ∆1 = {δ ∈∆ : δ ≥ δ+}.

In the case treated in the main text, M denotes the normal location family, δ+ = µmin
is the minimum clinically relevant effect size, and δ− = µ0. The fact that the treatment
below is entirely symmetric in δ+ and δ− (if we swap δ+ and δ− and take the reciprocal of
all Bayes factors and posterior odds, we get the same result) motivates the switch of nota-
tion. Still, in practice we will often have δ+ interpretable as minimal effect size, ∆ = R+0
and δ− = 0. We need the concept of a stopping time. We define this in a standard way
in terms of a randomized stopping rule. This is any function f from outcome sequences
of arbitrary length to [0,1]. The interpretation is that for any actually generated initial
sequence of data yn = y1, y2, . . . , yn, we toss an independent coin with bias f (yn) after
having observed yn. If the coin lands tails, we stop. If not, we generate yn+1 and repeat
the procedure for n+ 1, etc. The stopping time τ is then the random variable set equal
to the smallest n at which the coin has landed tails. Gold Rush accumulation bias (Chap-
ter 3) defines such a stopping rule. The extreme version of Gold Rush accumulation bias
presented in this blog post is a non-randomized version of this stopping rule.

5.A.2 The Bayes and the pseudo-Bayes posterior
We can distinguish two types of prior probabilities: π(H1) and π(H0) for the hypotheses
H0, H1, and Π1 and Π0 for the parameter spaces ∆1 = {δ : δ ≥ δ+} and ∆0 = {δ : δ ≤
δ−}. Π j can be interpreted as the prior of δ conditioned on it lying in ∆ j; in general, we
will allow priors that do not restrict δ to lie in ∆ j (i.e. we may have Π(δ 6∈ ∆0 ∪∆1) =
π′ > 0 and then π(H1) + π(H0) + π′ = 1). We can calculate conditional and posterior
probabilities and odds in the standard way using Bayes’ theorem: illustrating a particular
case we need later on, for general measurable events E1,

π(H1 | E1)
π(H0 | E1)

=
P̄1(E1)
P̄0(E1)

·
π(H1)
π(H0)

, (5.A.1)
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where P̄j is the Bayes marginal distribution based on the prior Π j . If Π j has density π j ,
then P̄j(E ) =

∫

Pδ(E )π j(δ). IfΠ j puts all its mass on a particular element δ∗, then P̄j(E ) =
Pδ∗(E ).

In our setting, we observe a sequence y1, . . . , yn, where n is itself the value that the stop-
ping time τ (whose general underlying definition in terms of some stopping rule f may
be unknown to us) takes; so we really observe Y n = yn;τ= n. Because of the well-known
fact that the Bayes posterior does not depend on the definition of the stopping time as
long as it is defined in the (standard) way above (Hendriksen et al., 2020), we have for all
n that π(H1 | Y n = yn,τ = n) = π(H1 | Y n = yn). i.e. if a variable stopping time is used
and we happen to stop at τ = n, the posterior is the same as if the sample size had been
fixed in advance to n. This allows to express the Bayes factor BF(Y τ) and the posterior
odds π(H1 | Y τ)/π(H0 | Y τ) compactly as follows:

p̄ j(Y
τ) =

∫

δ∈∆+
pδ(Y

τ)dπ j(δ) , for all n, for j ∈ {0,1} .

BF(Y τ) =
p̄1(Y τ)
p̄0(Y τ)

,
π(H1 | Y τ)
π(H0 | Y τ)

= BF(Y τ) ·
π(H1)
π(H0)

.

where we again assume thatΠ j has densityπ j; again, ifΠ j puts all its mass on a particular
element δ∗, then p̄ j(Y τ) = pδ∗(Y τ).

The pseudo-Bayes posterior odds What if we cannot come up with a good prior on
∆0 and/or∆1? In that case we may want to ‘represent’ the set of distributions H0 and H1
by their ‘least extreme elements’ respectively, i.e. Pδ− and Pδ+ . This gives the pseudo-Bayes
posterior odds (given E1,E2 based on a prior that was already conditioned on E1)

πps(H1 | E1,E2)
πps(H0 | E1,E2)

=
Pδ+(E1 | E2)
P̄δ−(E1 | E2)

·
π(H1 | E2)
π(H0 | E2)

, (5.A.2)

which is just the ‘real’ posterior odds that we would get if we had put all our prior mass
on δ+ and δ− respectively. Similarly we get the pseudo-Bayes factor

BFps(Y τ) =
pδ+(Y τ)
pδ−(Y τ)

.

We can use the ‘pseudo-Bayes factor’ when (with a Bayesian mindset) we have no good
idea about what might be a ‘good’ prior conditioned on δ ∈ ∆+ and/or conditioned on
δ ∈ ∆− or (with a frequentist mindset) about what value of δ in ∆+ may be true if H1
is true, or what value of δ in ∆− may be ‘true’ if H0 is true. Based on the pseudo-Bayes
factor, we can also calculate the pseudo-Bayes posterior odds as if the Bayes factor were
correct:

πps(H1 | Y τ)
πps(H0 | Y τ)

= BFps(Y τ) ·
π(H1)
π(H0)

. (5.A.3)
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In case π(H0) +π(H1) = 1, the pseudo-Bayes posterior probability of H0 is given by:

πps(H0 | Y τ) =
pδ−(Y τ) ·π(H0)

pδ+(Y τ) ·π(H1) + pδ−(Y τ) ·π(H0)
=

1
BFps(Y τ) · (π(H1)/π(H0)) + 1

.

Note in particular that in the pseudo-Bayes posterior, we use the same priors on H0 and
H1 as in the ‘real’ posterior, but different, degenerate priors on ∆0 and ∆1.

5.A.3 The Result
Fix a significance threshold r > 1 and let τ be an arbitrary stopping time. We will reject
H0 if πps(H1 | Y τ)/πps(H1 | Y τ) ≥ r, and accept H0 otherwise. Let REJECTτ,r be the
event that we reject at level r when using stopping time τ (importantly, in practice it
may be unknowable what stopping rule τ is actually being used; to calculate posterior
probabilities we only need to know the observed data Y τ and the sample size of the
observed data, and not the general definition of τ, i.e. we do not need to know if we
would have stopped at the same n if the data had been different).

Theorem 5.A.1. Let {Pδ : δ ∈ ∆} represent a 1-dimensional exponential family as above.
Fix some δ− < δ+ and define H1, H0 and BFps correspondingly; also fix some arbitrary priors
π(H0),Π0 on ∆0, Π1 on ∆1. We have the following: for each n and each r > 1 and each
stopping time τ such that

P̄1(τ= n)
Pδ+(τ= n)

·
Pδ−(τ= n)
P̄0(τ= n)

≥ 1, (5.A.4)

we have: the posterior odds given rejection at time n are well-defined and satisfy

π
�

H1 | REJECTτ,r ,τ= n
�

π
�

H0 | REJECTτ,r ,τ= n
� ≥ r. (5.A.5)

The theorem implies the statement (5.5) in the main text for the Gaussian location family.
The t there corresponds to the n here, and the statement A(t) = 1 to τ = n; the process
A(t) defines the stopping rule τ. The required condition (5.A.4) is easily seen to hold
for the Gold rush scenario in which we evaluate invariably at t(= n) = 3: inspecting the
definition of A(t), we see that the probability of reaching time 3 (i.e. A(3) = 1) under
Pδ increases monotonically with δ if δ represents the mean of a normal distribution. P̄1
being a mixture of Pδ ’s with δ ≥ δ+ and P̄0 being a mixture of Pδ ’s with δ ≤ δ0, (5.A.4)
then follows.

In caseπ(H0)+π(H1) = 1 (we rule out that δ does not lie in∆0∪∆1), we can alternatively
work on the scale of probabilities rather than probability ratios and fix a significance level
0 < α < 1/2 and reject H0 if πps(H0 | Y τ) ≤ α. This is equivalent to the event rejectτ,rα
with rα = (1−α)/α. (5.A.5) then expresses that for each 0< α < 1/2

π
�

H0 | REJECTτ,rα

�

≤ α. (5.A.6)
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The theorem expresses that, as long as the priors on H0 and H1 are chosen correctly, the
error probabilities of decisions on the pseudo-Bayes posterior are calibrated: a Bayesian’s
real posterior odds of the decision ‘reject’ being correct (given by conditioning the true
prior on the observed stopping time and the fact that at that stopping time, we rejected)
can be no smaller than the posterior odds that this decision is correct according to the
pseudo-Bayes posterior distribution on {H0, H1}, even though that distribution is, accord-
ing to that same Bayesian, incorrect. Note that this is merely a ‘one-sided’ calibration, but
the inequalities go the right (i.e. practically useful) way.

In a more frequentist interpretation, we may think of π(H0) as the ‘population frequency’
that the null is true in the particular field of science that we are working in. Whenever
in a study H0 is true, a particular δ0 ∈ ∆0 will be ‘true’ and generate the data , and
whenever in a study H1 is true, a particular δ1 ∈∆1 will be ‘true’ and generate the data.
Theorem 5.A.1 expresses that our conditional error probability for rejecting/accepting H0
is smaller than α, even though we do not know the true δ0 and δ1’s.

From both a Bayesian and a frequentist stance, the result says that as long as our prior
π(H0) on H0 reflects what happens in the real world and we use if for reject/accept decisions
of the kind above, it is o.k. to use the pseudo-Bayes posterior, and we can get away with
not having a ‘correct’ or ‘better’ prior on the parameters in ∆+ and ∆−.

5.B Extension and Proof of Theorem 5.A.1
Our result holds more generally than for i.i.d. exponential families. Namely, we can more
generally let M = {Pδ,γ : δ ∈ ∆,γ ∈ Γ } with ∆ a (possibly unbounded) interval in R
denote a family of distributions for some random process U1, U2, . . .. Again, δ denotes
the 1-dimensional parameter of interest (e.g. an effect size) and now γ denotes potential
nuisance parameters. We assume again a δ+ and a δ− < δ+ are given, defining the null
and alternative hypotheses

H0 = {Pδ,γ : δ ≤ δ−,γ ∈ Γ } H1 = {Pδ,γ : δ ≥ δ+,γ ∈ Γ }.

Our result is valid for general families of this form, if furthermore the following holds:
there exists a sequence of random vectors Y1, Y2, . . . such that Yn is determined (can be
written as a function of) Un = (U1, . . . , Un) and the following two properties hold:

Irrelevance of γ and Full Support The distribution P(n)
δ

of Y n under process Pδ,γ is the

same for all γ (hence we can omit it from the notation in P(n)
δ

). It has a density p(n)
δ

relative to some fixed underlying measure, and this density has the same support for
all δ ∈ ∆. That is, we require for all yn ∈ Rn that if for some δ ∈ ∆, p(n)

δ
(yn) > 0,

then for all δ ∈ ∆, p(n)
δ
(yn) > 0. As a consequence, for any stopping rule τ, for

every n, if for some δ ∈ ∆ we have Pδ(τ = n) > 0 then for all δ ∈ ∆ we have
Pδ(τ= n)> 0. We call the set of n with Pδ(τ= n)> 0 the support of τ.

Monotone likelihood ratio (MLR) Property There exists a function sn on Rn such that

for each δ0 < δ1 with δ0,δ1 ∈∆, the likelihood ratio
p(n)
δ1
(Y n)

p(n)
δ0
(Y n)

is an increasing func-
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tion of random variable Sn := sn(Y n).

Note that both properties automatically hold for 1-dimensional i.i.d. exponential fami-
lies as above – then we can set Γ to be a singleton, then γ plays no role, we can take
Yn = Un and Sn = sn(Y n) to be the sufficient statistic for n outcomes (if Y1 is the sufficient
statistic for one outcome, then Sn =

∑n
i=1 Yi) and then both properties are easily verified

(Lehmann, 1986). But they also hold in the t-test setting, where Pδ,γ states that the un-
derlying data Ui are i.i.d. normally distributed with variance γ and effect size δ (i.e. mean
µ = δγ). We can then take Yi := Ui/|U1| to be the so-called ‘maximal invariant statistic’
(Hendriksen et al., 2020) and Sn to be the t-statistic based on Un, which can be written
as a function of Y n. It is a well-known fact that Sn has a non-central t-distribution and
that this satisfies the MLR property (Lehmann, 1986). We note that the set of allowed
stopping rules/times remains unchanged in this more general set-up. Thus, in the t-test
setting, and more generally in settings with Ui 6= Yi , the stopping rule f (Y n) at time n
must be writeable as a function of the Y n which is a coarsening of (contains less informa-
tion than) the data Un. Since the condition above implies that the likelihood ratio can be
written as a function of Y n, and we usually use stopping rules that depend on the likeli-
hood ratio observed so far and possibly some additional data that is independent of the
observed data, but nothing else, this poses no great restriction in practice.

We now formulate and prove the theorem for this more general setup. Generalizing
(5.A.3), the pseudo-Bayes posterior odds are now defined as:

πps(H1 | Y τ)
πps(H0 | Y τ)

= BFps(Y τ) ·
π(H1)
π(H0)

with BFps(Y τ) =
p(τ)
δ+
(Y τ)

p(τ)
δ−
(Y τ)

. (5.B.1)

Let again REJECTτ,r be the event that πps(H1 | Y τ)/πps(H1 | Y τ)≥ r.

Theorem 5.B.1. Let {Pδ,γ : δ ∈∆,γ ∈ Γ } represent a family that satisfies the two properties
above for all n. Fix some δ− < δ+ and define H1, H0 and BFps correspondingly; also fix some
arbitrary priors π(H0),π(H1) and Π0 on ∆0, Π1 on ∆1. We have the following for each
r > 1 and each stopping time τ and each n in the support of τ: the true posterior odds of H1
vs. H0 satisfy:

π
�

H1 | REJECTτ,r ,τ= n
�

π
�

H0 | REJECTτ,r ,τ= n
� ≥ r ·

P̄1(τ= n)
P̄0(τ= n)

·
Pδ−(τ= n)
Pδ+(τ= n)

. (5.B.2)

The earlier Theorem 5.A.1 is immediately seen to be a special case.

Remark The fact that we can go beyond exponential families raises the question of
how general the result is. In this respect, we note that our conditions imply that the se-
quence of pseudo-Bayes factors BFps(Y 1), BFps(Y 2), . . . in (5.B.1) define a test martingale
or equivalently, a product of conditional E-values under H0 (Grünwald et al., 2019). In-
terestingly, unconditional frequentist error control under arbitrary stopping times can be
given for arbitrary test martingales. All Bayes factors satisfying the conditions of the gen-
eral version of the theorem below define two-sided test martingales: by this, we mean
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that 1/BFps(Y 1), 1/BFps(Y 2), . . . defines a test martingale under H1. One might therefore
suspect that our result continues to hold whenever we set our pseudo-Bayes factor equal
to a two-sided test martingale, even if the MLR property does not hold. But it is not clear
whether this really is the case. An example is the safe logrank test of Ter Schure et al.
(2020b) (Chapter 2). The pseudo-Bayes factor we develop there is a ratio of partial like-
lihoods, and it defines a two-sided test martingale. Nevertheless, it is easily seen that due
to the data not being i.i.d. the MLR property does not hold, and this property seems cru-
cial for the argument used in the proof. Whether or not a (perhaps slightly weakened, i.e.
≥ r in (5.A.6) replaced by ≥ cr for some c < 1) version of the theorem holds for general
pseudo-Bayes factors given by general two-sided test martingales is an interesting topic
for future research.

Proof of Theorem 5.B.1
Fix n ∈ N in the support of τ. The proof makes crucial use of Lemma 5.B.2, which we
state and prove first. We prove the theorem and the lemma only for the discrete case (with
each Yi taking values in a countable setYi ⊂ R), for which all densities become probability
mass functions. It is straightforward to extend the results to the general case by replacing
all probability mass functions with appropriate densities and sums by integrals.

Lemma 5.B.2. Suppose that the MLR Property holds for some given n in the support of τ
relative to some Sn as above. Then

1. The MLR Property holds for the set of distributions {P(n)
δ
(· | τ = n) : δ ∈ ∆} relative

to Sn. That is, for each δ0 < δ1 with δ0,δ1 ∈∆, p(n)
δ1
(yn | τ = n)/p(n)

δ0
(yn | τ = n) is

an increasing function of sn(yn), on the set of all yn with p(n)
δ
(y (n) | τ = n) > 0 for

some δ ∈∆.

2. As a consequence, for all a > 0,

Pδ

�

p(n)
δ+
(Y n | τ= n)

p(n)
δ−
(Y n|τ= n)

≥ a | τ= n

�

(5.B.3)

is increasing in δ for all a.

Proof. For the first part, note that for each yn as above, we have:

p(n)
δ1
(yn | τ= n)

p(n)
δ0
(yn | τ= n)

=
p(n)
δ1
(yn)

p(n)
δ0
(yn)

·
P(n)
δ1
(τ= n | yn)

P(n)
δ0
(τ= n | yn)

·
Pδ0
(τ= n)

Pδ1
(τ= n)

=

p(n)
δ1
(yn)

p(n)
δ0
(yn)

·
Pδ0
(τ= n)

Pδ1
(τ= n)

,

where the first equality is Bayes’ theorem and the second equality follows, because for
the type of stopping rule we employ, conditioned on the sequence yn, the probability of
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stopping exactly after having seen outcomes is independent of δ. But the rightmost ex-
pression shows that the likelihood ratio for the densities conditioned on τ= n must be an
increasing function of sn(yn) since, by assumption, the original, unconditional likelihood
ratio is as well.

The second part follows immediately from the well-known connection (Lehmann, 1986)
between monotone likelihood ratios and stochastic dominance; see
https://math.stackexchange.com/questions/733291/
why-mlr-monotone-likelihood-ratio-implies-stochastic-increasing for
a very short, simple, yet correct proof.

In the remainder of the proof, we write pδ(· | τ = n) instead of p(n)(· | τ = n) for brevity.
Let Er,n be the event that πps(H1 | Y n)/πps(H0 | Y n) ≥ r. Since by the irrelevance of the
stopping rule we have

πps(H1 | Y n)
πps(H0 | Y n)

=
πps(H1 | τ= n, Y n)
πps(H0 | τ= n, Y n)

=
πps(H1 | τ= n)
πps(H0 | τ= n)

·
pδ+(Y n | τ= n)
pδ−(Y n | τ= n)

we have that Er,n is equivalent to the event that pδ+ (Y
n|τ=n)

pδ− (Y n|τ=n) ≥ r π
ps(H0|τ=n)
πps(H1|τ=n) . We then have:

π
�

H1 | Er,n,τ= n
�

π
�

H0 | Er,n,τ= n
�

(a)
=

P̄1

�

Er,n | τ= n
�

π(H1 | τ= n)

P̄0

�

Er,n | τ= n
�

π(H0 | τ= n)

(b)
≥

Pδ+
�

Er,n | τ= n
�

π(H1|τ= n)

Pδ−
�

Er,n | τ= n
�

π(H0|τ= n)

(c)
=
π(H1 | τ= n) ·

∑

yn pδ+(yn | τ= n) · 1 pδ+ (y
n |τ=n)

pδ− (y
n |τ=n)≥

πps(H0 |τ=n)
πps(H1 |τ=n) ·r

π(H0 | τ= n) ·
∑

yn pδ−(yn | τ= n) · 1 pδ+ (y
n |τ=n)

pδ− (y
n |τ=n)≥

πps(H0 |τ=n)
πps(H1 |τ=n) ·r

(d)
≥

π(H1 | τ= n) ·
�

r · π
ps(H0|τ=n)
πps(H1|τ=n)

�

·
∑

yn pδ−(yn | τ= n) · 1Er,n

π(H0 | τ= n) ·
∑

yn pδ−(yn | τ= n) · 1Er,n

(e)
= r ·

P̄1(τ= n)
P̄0(τ= n)

·
Pδ−(τ= n)
Pδ+(τ= n)

.

Here (a) is an instance of (5.A.1). We note that this inequality still holds in our generalized
set-up as long as the probability of the set E1 under Pδ,γ does not depend on γ. (b) follows
by first applying Lemma 5.B.2. (5.B.3) gives, using that P̄1 is a mixture of Pδ with δ ≥ δ+,
that P̄1(pδ+(yn)/pδ−(yn) ≥ r | τ = n) ≥ Pδ+(pδ+(yn)/pδ−(yn) > r | τ = n). Similarly
it gives that P̄0(pδ+(yn)/pδ−(yn) ≥ r | τ = n) ≤ Pδ−(pδ+(yn)/pδ−(yn) > r | τ = n),
and then (b) follows. (c) is merely writing out the definition, (d) follows by applying the
inequality in the event in the indicator function and for (e) we used Bayes’ theorem again.

This chain of inequalities gives (5.B.2), thus finishing the proof for the discrete case.

https://math.stackexchange.com/questions/733291/




6| Data sharing
in a live meta-analysis

The scientific response to the Covid-19 pandemic was far from perfect. Conflicting results
on hydroxychloroquine made officials in the U.S. first recommend the anti-malaria drug
and then warn against it. Similarly, systematic reviews on ivermectin could not draw
robust conclusions when they first included results in the meta-analysis and had to exclude
them later after their retraction from a preprint server. How different was the response of
the research community studying the Bacillus Calmette-Guérin (BCG) vaccine! No BCG
researcher went on television to state that they single-handedly proved that the BCG
vaccine – originally developed to protect against tuberculosis – makes us invincible. On
the contrary, the BCG community worked closely together and remained cautious until
this day. The results will be published later this year, so here we want to simply chronicle
how it all started and what we learned along the way.

Early 2020, BCG researchers from the university medical centers of Utrecht and Nijmegen
were among the first to announce their clinical trial (newspaper Trouw, Van der Wier,
2020, March 18). Not only were they early, but also generous in sharing their protocol
when other researchers around the world started similar trials. Already from the begin-
ning these trials had much in common and great potential to be analyzed together. The
chaos surrounding hydroxychloroquine shows how important coordination can be. The
story of ivermectin illustrates the risks of a meta-analysis that waits for summary estimates
to appear in (preprint) publications.

Even if trials are performed perfectly, however, unreliable results can arise due to multiple
testing when many trials address the same question simultaneously. Fortunately, the BCG
researchers were warned of this risk by their trial statistician dr. Henri van Werkhoven. A
consequence of this risk is that the first trial to find an effect could be an outlier, but still
be published quickly and threaten the continuation of the other trials. In the urgency of
a pandemic, a disagreeing meta-analysis might come too late to start the trials up again.
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ALL-IN meta-analysis
When we offered the Dutch BCG researchers a solution to this problem they had al-
ready contacted many of the trials around the world. For statistical validity, the BCG trials
needed coordination and needed to be analyzed together. For efficiency’s sake, we should
start the statistical analyses as soon as possible. Our plans got a name: ALL-IN meta-
analysis, for Anytime Live and Leading Interim meta-analysis. We provided the statistical
methodology to analyze all these BCG trials together continuously, while they were still
ongoing.

The BCG researchers courageously embraced our novel methods and ALL-IN-META-BCG-
CORONA was born (Van Werkhoven et al., 2021). It became a collaboration by two groups
of clinical studies, of 7 and 4 each, that decided on trial selection together, shared their
data at interim stages, and monitored the results live in a dashboard. We will focus here
on the 7 trials that studied healthcare workers (the others study the elderly) and on the
outcome measure of Covid-19 infections (the other being severe Covid-19 infections re-
quiring hospitalization).

The main goal was to find out whether an immune response to BCG provides indirect
protection against Covid-19. If a beneficial effect were to be confirmed quickly, this could
save many lives since BCG is widely available around the world, which was not the case
for any other treatment or Covid-19 specific vaccine at the time. On the other hand, if
futility or harm could be confirmed, studies could be stopped early and resources saved
and put to better use elsewhere in the scientific response to the pandemic.

Lessons learned
Working in a large-scale multi-center collaboration across the globe comes with many
lessons. First, we learned the intricacies of time in sequential time-to-event analysis in
our development of the safe logrank test and anytime-valid confidence sequences for the
hazard ratio (Chapter 2). Second, we realized the need for a software package safestats
(Turner et al., 2022) with transparent tutorials and a webinar (Ter Schure et al., 2020a).
Third, we were confronted with meta-analysis issues that arise from a bottom-up collab-
oration, like heterogeneity in trials, (dis-)agreement on decision rules, and interpretation
of results. The experience does make us hopeful about the benefits of the approach in
general, in terms of efficiency, collaboration, and communication (Chapter 1). Finally, we
learned about data sharing, which is what we would like to discuss here. We came up
with solutions to the issues at hand, but still have questions to discuss that remain.

Crucial is that the statistical test and confidence intervals that we developed and applied
are valid at any time. Figure 6.1 shows the dashboard that we used to communicate
interim results to the participating trials. (The dashboard is in a demo mode and based
on synthetic data: “fake” values for each trial based on public trial characteristics.)

We kept track of an e-value (Grünwald et al., 2019), a measure of evidence and test



Judith ter Schure 175

Figure 6.1. Dashboard used to communicate interim results in ALL-IN-META-BCG-CORONA
to all data uploaders with a login. The involved trials were performed in the Netherlands
(NL), Denmark (DK), the United States (US), Hungary (HU), Brazil (BR), France (FR), and
Guinea-Bissau/Mozambique (AF). The dashboard is in demo mode with “fake” values. Note
that the y-axis is on the log scale.

statistic that we compared to the threshold 1/α = 4001. Whenever the cumulative meta-
analysis e-value would cross this threshold, we could declare statistical significance – you
can think of an e-value as 1/p-value, with the crucial difference that it keeps its validity
for testing irrespective of when we stop the data collection. This procedure guarantees
type-I error control at level α=0.0025 regardless of the sampling plan, the number of
analyses, or their timing. Apart from hypothesis testing, we also kept track of confidence
intervals that were anytime-valid. In Figure 6.3 we show examples of these.

Practical hurdles arise when data are shared. This is true in general, but in our ambition
to do a live analysis this was even more pronounced. We wished to retrospectively pro-
cess each newly updated trial data set to show how the evidence since the last upload
had changed. Not only to find a conclusion of benefit as early as possible, but we also
wanted to show whether the evidence was moving in the right direction and make it pos-
sible to prepare for future conclusions. By showing an e-value for each calendar day, our
dashboard allowed users to spot trends in the evidence very easily.

1This level of α agrees with the FDA’s two trial rule (two trials at level α= 0.05 give a total level of 0.052 =
0.0025), but was argued by attributing 10% of α = 0.05 to the outcome measure of Covid-19 infections and
90% to a co-primary outcome measure of severe Covid-19 infections requiring hospitalization (with very few
occurrences in a population of working-age healthcare workers).
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6.1 Sharing live results while keeping researchers blinded
In clinical trials like the BCG trials, most involved researchers and doctors are blinded
to the allocation of treatment and placebo, as well as to any results. After all, if you
know that the results point towards effective treatment, this might also indicate whether a
participant that is improving has received treatment or placebo. For our analysis, however,
we needed at least one person to handle a trial’s data fully unblinded. This turned out to
be no problem since most trials had a trial statistician that would also perform interim
analyses and/or provide interim data to a data safety and monitoring board. We asked
for this person to be the data uploader for the meta-analysis.

These data-uploaders were the first the get access to the dashboard, each with personal
login details. The reason is that the dashboard could reveal a participant’s allocation to
those that still needed to remain blinded. The dashboard of Figure 6.1 shows that the
line goes up if an event occurs in the control group (evidence against the null brings us
closer to the threshold at 400 for benefit) and that the line goes down if an event occurs
in the BCG group. This level of detail in the dashboard reveals both the time and place of
occurrences of Covid-19 by the calendar date and trial. If you observe that a sequence of
e-values goes up at a certain calendar date, and you know the person that tested positive
for Covid-19 that day, you can deduce with certainty that the person was randomized to
placebo (and similarly to BCG if the e-values go down).

In the early stages of the meta-analysis, these logins only gave permission to view the
overall meta-analysis e-values and the data uploader’s own trial contribution. This mech-
anism made sure that no one could access the dashboard that needed to stay blinded to
interim results and that the data uploaders could not access privacy-sensitive data from
other trials. Observed Covid-19 infections from other trials were bundled together in the
meta-analysis e-values such that the location of those events could not be derived from
the dashboard.

Remaining questions

• If we would group more than one observation of Covid-19 by calculating an e-
value by week or month, instead of by day, would that make it sufficiently hard to
deduce randomization from observed events? Would that be enough to allow data-
uploaders (not blinded to their own trial results) to inspect other trials’ e-values?
Or even to allow all participating researchers (blinded to their own trial results) to
inspect all trial results except their own?

6.2 A central analysis
In collecting the data from the trials we had two options for analysis by calendar date (as
in the dashboard in Figure 6.1). Either do a meta-analysis based on summary statistics
(so-called two-stage meta-analysis) or do a meta-analysis on the raw data (so-called IPD
meta-analysis, for Individual Patient Data). While this decision is a familiar one in meta-
analysis, for the first option, we had to ask the data-uploaders something completely
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unfamiliar. We did not only want them to share new summary statistics at each data
upload but to share a sequence of summary statistics by calendar date each time they
uploaded new data. On the other hand, for the IPD-analysis of the second option, there
was nothing special and we needed all trials to simply upload their data so far to an
upload-only folder that only we could access. We chose that second option.

Figure 6.2 shows the type of data we requested for our BCG analysis. The analysis was
stratified by hospital, so for each healthcare worker randomized in the trial, we had to
receive information about their location. We allowed the trials to label the hospitals (‘A’,
‘B’) without actually naming them since by knowing the hospitals, the data would become
more privacy-sensitive. If you know the hospital and the calendar date that someone en-
tered the study (dateRand), you could recognize that person in the raw data and identify
whether the person had Covid-19. The approach did not mitigate this risk entirely, though,
since some trials were performed in a single hospital so their participants could still be
recognized in this way.

Figure 6.2. Example (fake) data set from the working instructions to data-uploaders
(Ter Schure et al., 2020a).

Remaining questions

• Would it even be possible to collect summary statistics by calendar date from trials?
Maybe if we would write an R script that each data-uploader could run locally? Or
would too many problems arise for the time we had to overcome them and would
this not be any faster than sharing the raw data?

• Would it even be possible to ask all involved trials to work in R? By allowing the
use of other software packages, we risk that trials share incorrect summary statis-
tics. What we asked for was not trivial, since we analyze the data as left-truncated
calendar time. Even in R, no standard software outputs the right logrank statistic
and we had to write our own.
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6.3 Data transfer agreements
To share clinical trial data such as in Figure 6.2, the usual approach involves agreeing on
a Data Transfer Agreement (DTA) and signing it. These agreements protect the privacy of
the participants in the trial but also cause an enormous delay. For some of the trials in our
meta-analysis, it took months for the lawyers on both ends to agree on the terms in the
DTA. Interestingly, halfway through this process, a lawyer commented that we might not
even have needed DTAs for data of the structure described in Figure 6.2.

Remaining questions

• Were these DTAs really necessary given the limited amount of data we asked for
(Figure 6.2)?

• How does our requested data compare to full Kaplan-Meier plots or Epi curves,
which are routinely included in medical publications?

• How do we convince trials in the future to share limited raw data without DTAs?

6.4 Estimation
So far, we have focused our discussion on testing the null hypothesis. This was the main
aim in our ALL-IN meta-analysis: rejecting the null hypothesis in favor of an alternative
hypothesis of minimal clinical relevance set at a hazard ratio of 0.8 (see Safe design in Fig-
ure 6.1). Such a rejection could lead to the conclusion of the meta-analysis and advice to
stop the individual trials. A second aim is of course estimation. Here, two more disadvan-
tages arise for meta-analysis on summary statistics that we, fortunately, did not encounter
since we analyzed the raw data. First, a meta-analysis of time-to-event summary statis-
tics is biased. This is a technical point that we will not discuss in detail here. For practical
purposes, it is common to settle for biased estimates (Simmonds et al., 2011). For our pur-
poses, however, there is a second disadvantage of summary statistics. If we cannot collect
the summary statistics for each calendar day, they produce wider confidence intervals.

Remember that a (1-α)-confidence interval is a collection of parameter values that, if
taken as the null hypothesis, each cannot be rejected at level α. This means that if we have
a sequence of such confidence intervals, each of which is valid at any time, we can take
its running intersection. Once a value for the parameter is rejected by an anytime-valid
test, it never has to be re-included in the interval. A running intersection often achieves a
narrower interval, as is shown in Figure 6.3. Making full use of this running intersection
is only possible if we have can calculate the interval at each calendar date, and not if we
only have limited summary statistics.

6.5 Conclusion
In summary, we believe that it was wise to not only collect summary statistics. Summary
statistics are known to be much more prone to mistakes and manipulation than IPD meta-
analysis (Lawrence et al., 2021). Collecting the raw data indeed allowed us to turn data
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Figure 6.3. Anytime-valid confidence sequences corresponding to the fake data in Figure 6.1
with the running intersection for the meta-analysis sequence. Data generated according to
the meta-analysis design with effect just slightly larger (hazard ratio = 0.7) than that of
minimal interest (hazard ratio = 0.8).

cleaning into a collective effort between the data uploader and the meta-trial statistician
and to spot the inadvertent mistakes. We could also confirm a suspicion of insufficient
randomization in one trial which led to its exclusion due to increased risk of bias.

The main question is still whether we could have done the same approach without the
delay of data transfer agreements. Crucial here is maybe how different this approach was
to usual research. The involved trials put the research line before their own publication. If
this becomes more commonplace, we might also view the need for DTAs very differently.
Or the opposite is true and DTAs can serve a role in this transition from a science of
individual interests to a science of live collaboration.
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ALL-IN meta-analysis asks for a culture change that leaves behind the uneasiness of shar-
ing your ‘gold’ before your own publication. ALL-IN-META-BCG-CORONA shows that this
is possible in a pandemic and, hopefully, also is outside a pandemic. No one tried to make
the headlines with their own study. The involved trials put collaboration before their own
interests. These are the attitudes we need to increase value and reduce research waste.



Discussion and future work

In the course of my Ph.D., I have always kept an eye on developments at Cochrane, pre-
viously known as the Cochrane Collaboration. Cochrane is an independent, international
non-profit organization that is a leading authority on the methodology for systematic
reviews and meta-analysis of clinical trials. It has found itself in quite some turbulence
recently – e.g. dropping the “collaboration” from its branding – that has even led to insid-
ers asking: “Has Cochrane lost its way?” (Newman, 2019). Part of this criticism came from
members that felt that Cochrane should not only be the authority on systematic reviews
but should also lead the way in improving the primary evidence: improve how and when
clinical trials are performed.

While new procedures were implemented at Cochrane on living systematic reviews and
network meta-analysis, not much changed in the basic statistical recommendations. In
this discussion, I would like to reflect on how ALL-IN meta-analysis relates to standards
at Cochrane in updating meta-analyses and judging redundant trials in cumulative meta-
analysis. The concluding section discusses future work.

Updating meta-analyses
In 2018, a scientific expert panel was asked: “Should Cochrane apply error-adjustment
methods when conducting repeated meta-analyses?” Its answer was “no”, so Cochrane
meta-analysts could simply continue their practice of recalculating p-values and confi-
dence intervals each time a review was updated. Obviously, the expert panel knew that
this practice increases type-I errors. For meta-analyses specifically, the false-positive risk
of updating meta-analyses is estimated to range between 10% and 30% (Borm and Don-
ders, 2009; Imberger et al., 2016); a lot more than the 5% that meta-analysis usually sets
out for. In my view, the recommendation to stick to basic statistical methods had a lot to
do with practical limitations of the available methodology at the time. These limitations
do not apply for or can be mitigated by ALL-IN meta-analysis.

A year earlier Simmonds et al. (2017) had provided a review of all possible methods
available for sequential meta-analysis that was part of the expert panel’s deliberations.
Two practical arguments dominate this review and the discussion of the expert panel
(Cochrane Scientific Committee et al., 2018). The first is the lack of control over the
primary studies. The second is the need to model heterogeneous results.
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The meta-analysis has no control over primary studies
Most approaches discussed by Simmonds et al. (2017) take methodology from sequential
clinical trials – either group sequential methods or its generalization in α-spending (Lan
and DeMets, 1983)– and apply these to meta-analysis. What is lacking in meta-analysis
(but exists in clinical trials) is control, and that lack of control is the main challenge of ap-
plying these methods outside a single clinical trial. Statistical properties for error control
rely on stopping rules, and only if those can be enforced does the methodology guarantee
type-I error control. Both group sequential methods and α-spending set a maximum sam-
ple size or a maximum number of looks and a spending strategy for α that originated with
either Pocock (1977) or O’Brien and Fleming (1979). This defines the threshold for the Z-
statistic and guarantees the 5% α type-I error if the data collection stops either when the
threshold is crossed or we arrive at the maximum sample size or number of looks. The un-
fortunate consequence is that, strictly speaking, the results become uninterpretable when
these thresholds and sample size cannot be enforced and might be violated.

Moreover, if accumulation bias processes are at play, the disagreement between the stop-
ping threshold and actual stopping might be more pronounced. A first meta-analysis, e.g.
on two studies, depends on the results so far if there is a chance that the first single study
result would have halted any further studies. Without any meta-analysis result available,
clinical trials might already know of each other’s results and apply implicit stopping rules
or accumulation processes. This invalidates the meta-analysis stopping rule as soon as
clinical trialists have an evidence-based reason to carry out their trial or not – as they
should have.

This is what sets ALL-IN meta-analysis apart: Ville’s inequality is stopping-rule-free2. No
process that decides to stop the meta-analysis, decide its timing, and no process that de-
cides the accumulation of the underlying studies can invalidate its results.

Modelling heterogeneous results
The methods in the Simmonds et al. (2017) review try to capture random-effects meta-
analysis by including a measure of between-trial variability. This heterogeneity parameter
is difficult to estimate over time. Including a study in the meta-analysis that is very dif-
ferent from the earlier ones can increase the between-trial variance estimate and as such
decrease the effective sample so far. This leads to strange behavior and the observation by
Kulinskaya and Wood (2014) that sequential meta-analysis can be better off when many
small trials are included than if a few very large trials are. This disagrees with the general
notion of quality in clinical trial research that prefers large over small trials.

Any random-effects methodology for ALL-IN meta-analysis will have to deal with the same
issues. My recommendation, for now, is therefore to use close collaboration as a tool to
decrease heterogeneity (Section 1.3). This is in agreement with the recommendation from

2This property is shared by one other method in the Simmonds et al. (2017) review: a proposal to use the
law of the iterated logarithm. There are close connections between this approach and ALL-IN meta-analysis in
the work of (Robbins, 1970). The specific proposal discussed for meta-analysis has the disadvantage of requiring
some constants to be set that are not very intuitive.
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Tierney et al. (2021) to align the objective and eligibility criteria. This requires more of a
cultural change than a statistical one, however.

It is comforting that also Richard Peto believed that systematic reviews should not be
bothered too much by heterogeneity. According to Senn (2000) he even straight-out op-
posed random-effects modeling. His own words are: “In performing overviews, we are
not trying to provide exact quantitative estimates of percentage risk reductions in some
precisely defined population of patients. We are simply trying to determine whether or not
some type of treatment tested in a wide range of trials produces any effect on mortality”
(Peto, 1987).

Representativeness is part of a recurring discussion in the clinical trial methodology lit-
erature. Many statisticians and methodologists oppose the view that trial estimates are
representations of some population effect. The most colorful viewpoint that I found is by
Rothman et al. (2013), which mocks calls for more representativeness in trials as “exacted
along with motherhood apple pie and statistical significance”. They agree with Peto that
it is not that important. The main aim of clinical trials is to construct general statements
– controlling confounding variables and understanding causal mechanisms – instead of
estimating a population effect. “It is not representativeness of the study subject that en-
hances the generalization, it is knowledge of specific conditions and an understanding of
mechanisms that makes for a proper generalization.” (Rothman et al., 2013) If we be-
lieve that the trials we include study a causal mechanism well, then their fixed-effects
meta-analysis estimate can be used to evaluate the uncertainty and update our current
evidence-base.

Redundant trials in cumulative meta-analysis
The term cumulative meta-analysis refers to applying meta-analysis to a growing series of
studies, usually by using no other methods than any conventional meta-analysis would.
Baum et al. (1981) seem to be the first to do this, but the term is introduced by Lau
et al. (1992), describing its rationale as follows: “Performing a new meta-analysis when-
ever the results of a new trial of a particular therapy are published permits the study of
trends in efficacy and makes it possible to determine when a new treatment appears to
be significantly effective or deleterious.”

Many of such cumulative meta-analyses are performed retrospectively, to judge in which
year trial data could have reached a conclusion and no further trials should have been
performed. The approach was also immediately criticized, however, for applying single
sample-size confidence intervals, uncorrected for multiple looks, to repeatedly test the
same null hypothesis (Lau et al., 1995). There is an increasing interest in studying the
“redundancy” of trials in such ways, as the Evidence-Based Research Network presented at
their second conference (Evbres, 2021). They found that 31 studies performed some sort
of cumulative meta-analysis between 1981 and 2021. These do not agree on how to judge
redundancy, however. While most of these cumulative meta-analyses used a statistical
threshold in their sample to decide when the sufficient trials ended and the redundant
trials began, they managed to use 10 different ones!
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ALL-IN meta-analysis can be used to judge new trials as “redundant” in two ways: for
efficacy and for futility. For efficacy, the threshold 1/α can be used that relies on both
a pre-set level of α and a pre-set effect size of minimal interest. If those are available,
there is only one threshold for the Z-score that can be used to decide whether further
trials are redundant. This means that one can decide redundancy based on demonstrated
efficacy but not based on futility. To deal with futility as well, confidence sequences can
be used that are anytime-valid (Section 1.1.5, Section 2.4.2). This approach distinguishes
ALL-IN meta-analysis from the Wald sequential probability ratio test (SPRT) that has a
lower threshold for futility that needs to be enforced to guarantee the properties of the
upper threshold for efficacy. If the sequence of confidence intervals is closing in on very
small effects, and the interval contains only parameter values that are smaller (closer to
the null) than the effect of minimal interest, the line of research can still be considered
futile. This is an intuitive notion of futility and a straightforward decision if a pre-set effect
of minimal interest is available. In that case, the meta-analysis can advise against more
(redundant) trials.

The meta-analysis has little control over what happens next, however. There is always the
possibility that somewhere around the world a new trial is started. Even after a boundary
is reached for efficacy or futility, we want the meta-analysis to give the most complete
synthesis of the evidence base and include the new trials. For ALL-IN meta-analysis this
is no problem since the e-value and confidence intervals can still be updated. Fortunately,
in the fixed-effects meta-analysis presented in this dissertation, the uncertainty can never
increase. The intervals can only shrink (for a running intersection confidence sequence)
and the e-value can never undo a rejection of the null hypothesis (once the threshold
is reached the decision to reject has type-I error control). So even if the meta-analysis
is concluded and any new trials considered redundant, there is the possibility to extend
the meta-analysis and give a complete evaluation of the evidence. This evaluation can
supplement, but not undo, an earlier decision for redundancy that has error control for
rejecting a null hypothesis (for efficacy) or rejecting an effect of minimal interest (for
futility).

Future work

Meta-analysis beyond summary statistics
ALL-IN meta-analysis is ready to be applied to summary statistics if they construct valid
Z-statistics. As we write in Chapter 6, however, I agree with Lawrence et al. (2021) that
meta-analysis on the raw trial data – so-called IPD-meta-analysis, for Individual Patient
Data – would serve science much better. Statistical methods for IPD-ALL-IN meta-analysis
are partly available and partly still under development. Turner et al. (2021) introduces
e-values and confidence sequences for 2x2-tables, that can be easily generalized to an
anytime-valid version of the Cochran-Mantel-Haenszel test in meta-analysis. Also for time-
to-event data, we are developing confidence sequences for the hazard ratio that improve
on the Peto estimator if IPD-meta-analysis is possible. In general, methods for regression,
like linear regression and the Cox model, are a major goal for future work. Another very
interesting direction of future research is to combine ALL-IN meta-analysis with network
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meta-analysis, where there is also an interest in correct inference after updating the meta-
analysis (Simmonds et al., 2017).

Error control for the pseudo-Bayes posterior odds
The notion of pseudo-Bayes posterior odds in Chapter 5 and its appendices needs further
development. It might not be so easy to combine the notion of safety (Grünwald et al.
(2019), Theorem 2.0.2: for all P ∈ H0 EP(BFps) ≤ 1) with error control for the pseudo-
Bayes posterior odds. We expect that accumulation processes or stopping rules exist for
which the latter does not hold.

We would like to connect this research to other work on the usefulness of Bayes factor
calibration (De Heide and Grünwald, 2021) and the difference with Bayesian paradoxes
that are more like publication bias than accumulation bias (Dawid, 1994; Senn, 2008).

Data sharing and rank tests
Chapter 6 raises questions about the necessity of data transfer agreements in a live meta-
analysis like ALL-IN-META-BCG-CORONA. I plan to write a paper with a lawyer as my
co-author that answers these questions to guide future live meta-analyses. The privacy
sensitivity of this particular meta-analysis lies in the dates at which participants enter
the study (are randomized to either placebo or vaccine) and the dates at which they
experience Covid-19 infections and/or are hospitalized with Covid-19. These calendar
dates are important because we analyzed this particular meta-analysis on a calendar time
scale.

Left-truncation and staggered entry If participants do not all enter the study at once,
one of two things happens that I – following the literature – will call ‘left-truncation’ and
‘staggered entry’. Whether our analysis has to deal with either of the two depends on the
chosen time scale most relevant to the occurrence of the events3.

On the one hand, time-to-event can be calendar time, e.g. time to an infection that occurs
in (epidemic) waves. All participants in a risk set share a hazard if they are in follow-up
and event-free on the same calendar date, such that late entry occurs as left-truncated
event times. Left-truncation means that participants only enter the risk set once they en-
ter the study but have already ‘survived’ some calendar time that might have observed
an event for other participants. Nevertheless, they should not be part of the risk set to
evaluate events that happened before they entered, since we know that an event before
entry is impossible, e.g. because being alive or more general event-free is an inclusion
criterion for study enrollment.

On the other hand, time-to-event can be participant time, specific to each participant, e.g.
time since surgery. All participants in a risk set of an event share a hazard if they are in
follow-up and event-free for the same time since their own specific date of enrollmen-
t/randomization/intervention, such that late entry occurs as ‘staggered entry’. Staggered

3This explanation (this exact wording) also appears in two tutorials I wrote on left-truncation and staggered
entry that are available on our SafeStats and All-IN meta-analysis project page (Ter Schure et al., 2020a).
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entry means that participants that enter late could still enter the risk set of events that
happened earlier, for events of participants that had the same participant time since their
own date of intervention, as the late entered participant experienced since its date of
intervention.

Hence in a ‘left-truncation’ analysis, participants that enter late can only enter the risk set
of events that happen after (in calendar time) they enter the study, while in ‘staggered
entry’ analysis, participants that enter late can enter the risk set of events that already
happened. Left-truncation is no problem for our safe logrank test. Staggered entry, on the
other hand, breaks the independent increments property that we need for the underlying
martingales – those that drive our anytime-valid analysis.

In Chapter 2 we do not recommend using our safe logrank test under staggered entry.
Other sequential logrank tests, however, might suffer from the lack of an appropriate
martingale just as much. For the logrank statistic the literature shows that asymptotic
results are hopeful (Sellke and Siegmund, 1983), as long as certain scenarios are excluded
(Slud, 1984). I wonder how valid these results remain for small studies (e.g. surgery trials)
with severe staggered entry.

Rank tests In studying the staggered entry problem, my colleague Muriel F. Pérez-Ortiz
thought of an exact rank test that does construct a martingale under staggered entry.
Without staggered entry, it is very similar to the logrank test, but with staggered entry, it
is quite different. In future research we hope to investigate how powerful this test is, and
if it is not, whether there are scenarios with severe staggered entry that would make the
use of this test appropriate.

I can already think of one such scenario: live meta-analysis with easy data sharing. A pure
rank test means that trials only have to share rank data, which is minimal in terms of pri-
vacy risk. Live analysis of ranks means that they share the ranks by calendar date. At each
calendar date with an event, we need to know the group in which it occurs – treatment or
placebo – and where that event ranks in time-since-randomization in comparison to the
earlier events. We do not have to know what the event time was, or what the calendar
date of randomization was for the participant that experienced the event. So the meta-
analysis statistician cannot recognize any participants based on their date of entering the
trial or how long it has been since their randomization. If you recognize a participant by
the date of their event alone (the date of their rank), you probably also already knew that
the person was in the trial.

Thresholds
If e-value research aims to serve Evidence-Based Research it is very interesting to look into
the various thresholds already used to decide on redundancy in cumulative meta-analysis.
Of course, many of them will not be statistically valid, but they might give more insight
into what users of statistics expect from their methods and help us improve our communi-
cation of what e-values can do. Maybe some will only consider efficacy, while others also
consider futility. Maybe some of them are inspired by Bayesian reasoning (Chapter 5),
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while others are more frequentist (Chapter 4). What matters the most to those that worry
about clinical trial priority setting (Chalmers et al., 2014) might help set the priorities for
the statisticians working on anytime-valid inference.

Statistical communication
This dissertation started with p-values and I would like to go full circle and conclude it
with p-values as well. One major inspiration for my work on e-values is that p-values are so
often misunderstood (Gigerenzer, 2018; McShane and Gal, 2017). I have good hopes that
we can improve on that if we teach statistics with more reference to gambling. Personally,
I find the scale of betting scores much more intuitive than that of p-values; yet I have no
empirical evidence that statistical beginners would think so as well. In Ter Schure (2021c)
I propose to design an experiment to test this hypothesis; at least find some evidence
against the idea that both p-values and betting are both simply too difficult. I still want to
do that and – with the help of Daniel Lakens – have good hopes that we can start with a
pilot experiment. His open Coursera courses already show that many statistical beginners
do want to understand what is going on with statistical testing.

Without having played a real poker game or entered a casino, I feel that the mathematics
of strategic gambling is exciting. I hope that ALL-IN meta-analysis can encourage that
excitement in others, increase enthusiasm for statistics, and help meta-analysts recognize
the crucial role they play in strategic science. “Standing on the shoulders of giants.”

Judith ter Schure
Utrecht, November 2nd, 2021
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Samenvatting

Wetenschappelijke kennis vermeerdert zich veel te inefficiënt. Het is vaak een lappen-
deken van onderzoeksbijdragen zonder gezamenlijke afstemming. Met name in klinische
trials (zogenaamde RCT’s) zijn de vervolgstudies die worden gedaan niet altijd het meest
beloftevol. Ook zijn ze niet altijd ontworpen voor de extra bewijslast die nodig is. Is dat
wel het geval, dan maakt standaard statistiek het onmogelijk om met die slimmigheden
rekening te houden.

Dit proefschrift gaat over het stapelen van wetenschappelijke inzichten, over de statistis-
che problemen met standaard methodes (accumulation bias) en over nieuwe statistische
methodes om het beter te doen. We kunnen resultaten efficiënt samen nemen in zoge-
naamde meta-analyse door ALL-IN te gaan. Wetenschap is namelijk altijd een gok: aan
het begin van een nieuwe studie is er weinig zekerheid. Maar gokken kan strategisch, en
voor klinische trials kunnen we eerdere resultaten gebruiken om te bepalen of de nieuwe
studie noodzakelijk is en optimaal ontworpen.

In de wetenschap komt succes van studies die vragen beantwoorden; die onderscheid
kunnen maken tussen data die voor een nieuw wetenschappelijk idee spreekt, en data die
het tegen spreekt. Door slim te stapelen dwing je succes af om dat onderscheid te maken.
Zoals professioneel pokeraars in een reeks pokertoernooien gebruik maken van een bank-
rekening vol reservegeld. Dat geld verzamelen ze met eerdere successen, ze vestigen zich
ermee als professional en ze winnen pokertoernooien door all-in te gaan.

ALL-IN meta-analyse staat voor Anytime, Live and Leading INterim meta-analyse. Het kan
wetenschappers helpen om onderzoek te prioriteren, nieuwe resultaten te interpreteren
in de context van wat er al is, en zo efficiënt hun gok te wagen met nieuw onderzoek. De
noodzaak hiervan is geïnspireerd door de replicatiecrisis in de empirische wetenschap en
de beweging om Research Waste (onderzoeksverspilling) tegen te gaan in de biomedische
wetenschappen. Maar er zijn meer voordelen. ALL-IN meta-analyse kan bottom-up samen-
werking bevorderen. Statistische resultaten worden eenvoudiger om te communiceren.
Bovendien stelt ALL-IN meta-analyse centraal dat wetenschap niet om individuele pa-
pers zou moeten gaan. Met ALL-IN meta-analyse wordt het weer een voortdurend pro-
ces van tussentijdse resultaten, noodzakelijke beslismomenten en communicatie tussen
vakgenoten.
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Dankwoord

Veel vrienden en familie leefden met mij mee in mijn promotietraject. Ze deden dappere
pogingen om de p-waarde te begrijpen (en samen te verketteren), ze kwamen kijken
bij de Nacht van de Wetenschap/Science Battle/Pint of Science, ze hielpen me met mijn
artikeltjes en blogs of stuurden me enthousiaste berichtjes als ze gepubliceerd waren –
ze konden zelfs mij uitleggen waarom het belangrijk was. Ik hoop dat ze er mogen zijn
op 7 april 2022. Niet alleen om hen het Leidse academiegebouw te laten zien, maar om
iedereen te laten zien wie zíj zijn!

Dat zou niet kunnen zonder mijn promotor, Peter Grünwald. Ik kende hem al als de pro-
fessor die met een journalist durfde te praten, die had geholpen Lucia de B. uit de cel te
krijgen en dat niet alleen deed vanwege het directe effect van statistiek op de samenleving,
maar ook omdat er fundamentele statistische kwesties aan de hand waren. Ondertussen
heeft Peter zijn blik van buitenaf altijd bewaard – zijn carrière bouwde hij in de infor-
matietheorie en theoretische machine learning – en daarom zie ik hem als dé expert in
Nederland op het gebied van de fundamenten van statistiek. Ik heb echt enorm veel van
hem geleerd.

Statistiek als gokken was voor Peter niet alleen een fundamenteel idee, het ging hem
juist om de handvaten voor wetenschappers: concrete statistische oplossingen, zoals een
t-test gebaseerd op gokken en een test voor 2x2 tabellen. Toch liet hij mijn interesse
gaan waar het heen ging, en zo kwam er dus een methode voor meta-analyse – ALL-IN
– en legde hij het eerste contact om het écht te gaan toepassen in de begindagen van
de coronapandemie. Ik gun iedereen zo’n promotor. Een promotor die je bovendien op
congres in Zwitserland een berichtje stuurt: "Hoe ging het? Ik ben benieuwd :-) (maar
alleen als je tijd hebt, als je nog aan het skiën bent gaat dat even voor!) Groeten Peter"

Mijn tweede promotor, Daniel Lakens, heeft me ook cruciale zetjes gegeven. Hij vertelde
al zijn volgers op Twitter dat mijn eerste paper over accumulation bias de moeite waard
was en liet me kennismaken met zijn geweldige netwerk van methoden- en open science
hervormers. Hij leerde me dat wetenschap niet alleen draait om goede ideeën. Soms moet
je zelf iets gedaan krijgen, zoals hij deed toen Nederland als eerste ter wereld een ronde
wetenschapsfinanciering kreeg voor replicatieonderzoek. In het begin van de coronapan-
demie vond ik nog zo iemand: Henri van Werkhoven, die het aandurfde om samen de
schouders te zetten onder een live meta-analyse; misschien wel de eerste in de geschiede-
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nis. Met dank aan Marc Bonten, Mihai Netea, Lina Gurskaite en mijn collega Alexander
voor hun vertrouwen en hulp.

Hoe een groot wiskundige eruit ziet weet ik dankzij mijn collega’s: Alexander, Muriel,
Wouter, Alice, Rianne, Rosanne, Allard en Tom, ik ben vaak enorm van jullie onder de
indruk en vind het geweldig dat jullie je talent en training inzetten voor de wetenschap.
Fijn is ook de strategie van het CWI, die steunt dat CWI’ers het soms net een beetje anders
willen doen. Grote dank aan de ambitieuze open science collega’s van de bibliotheek en
de trouwe IT’ers van systeembeheer. En niet te vergeten de enthousiaste receptiemensen
en betrokken collega’s van ons restaurant (Rob, ik zal je naam nooit vergeten!).

Dankzij Marjolein, Kilian, Rinske, Thomas, Elsa en Arnold heeft dit boekje zo’n mooie foto
op de kaft. Creatieve ideeën zijn er altijd in Steenwijkerwold, waar ik ben opgegroeid. Ik
ben Irene en Arnold, mijn ouders, en Anneke, Elsa en Rinske, mijn zusjes, enorm dankbaar
dat ze alle gekkigheid aanmoedigen. Ook mijn nichtje Noor (2 jaar) helpt me herinneren
om grenzen te verkennen: maximaal met de roltrap voordat je een winkel uit moet, head-
first van de glijbaan, of voor het eerst logeren bij oma samen met tante Judith.

Over gekkigheid gesproken: Laura en Martijn, jullie zijn knetter. Knetter dat jullie mijn
promotieonderzoek zo mateloos interessant vinden, dat je komt met het woord “nemesis”
voor in het voorwoord en dat ik jullie mag bedanken omdat “zonder ons had je niet
kunnen zeggen dat er zonder jou geen proefschrift was geweest”. Het is geweldig dat
jullie er zo voor me zijn!

Marnick, best indrukwekkend dat je mijn onderzoek kunt uitleggen met al die halfbakken
ideeën die je hebt aangehoord! Het helpt zoveel om die hardop te zeggen. (Niet alles
blijft even goed hangen, zoals het concept supermartingaal – bij jou lang bekend als
“Super Mario!” – al wilde je wel samen op vakantie naar Martigues!) Ik ben je heel erg
dankbaar, niet in de minste plaats voor je kritische proeflezen en steun bij de laatste lood-
jes. Dankjewel dat je ook houdt van CO2-besparing/=C-excelsheets, dat je me coacht om
een betere klimmer te worden en dat je je skills als vakantieplanner inzet zodat ik af en
toe eventjes uit kan.
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Science Battle, and Pint of Science.

Judith was born in 1992 in the hospital of Meppel. During her high school Gymnasium
education at RSG Tromp Meesters in Steenwijk (SEPT 2004 - MAY 2010), choosing
between the sciences and humanities proved too difficult. So she cobbled up a collection
of subjects including mathematics, chemistry, physics, and biology, with economics and
history – although she cheated the languages by choosing Latin for its dictionary and
similarity to math and philosophy instead of brute force remembering words. She now
has to look up how to spell “brute force”. A spell checker and calculator stay must-haves
to prepare any writing or calculating in public. Still, good preparation is good practice,
as she learned to be a committee and board member of mountain sports associations
(USAC, NSAC, NKBV) during her university studies. It is this experience that she still
builds on in governing the professional society VVSOR and her homeowner’s society of 32
owners and tenants; building towards ideals of professionalism, sustainable involvement
of members/owners, and energy efficiency.

Judith has always been fascinated by systems of argument and decision making and wrote
a high school dissertation on rhetoric (“profielwerkstuk”, cum laude) and a Bachelor’s the-
sis on logical fallacies. She had to admit that there are limits to the logic of language, how-
ever. Most decisions have to resort to data and do not have a written truth (to paraphrase
the "In God we trust, all others bring data" W. Edwards Deming quote). This moment
arrived during a Bachelor’s program in Artificial Intelligence at Utrecht University
(SEPT 2010 - MARCH 2014, cum laude) that combined formal logic, philosophy, lin-
guistics, and psychology with mathematics and computer science. On a Leiden University
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website, she read that according to Hal R. Varian (Google’s Chief Economist, 2009) “the
sexy job in the next ten years will be statisticians (sic)”. She thereupon entered the Mas-
ters program in Statistical Science at Leiden University (SEPT 2014 - MARCH 2017,
cum laude) and completed this Ph.D. dissertation with the Leiden Alma Mater as well
(MAY 2017 - JAN 2022)4.

It proved very fortunate to find her Ph.D. position with professor Peter Grünwald in his
Machine Learning group at an institute that encouraged uncompromising ideals: CWI,
the Netherlands institute for mathematics and computer science. Peter shared her inter-
est in statistics’ influence on society, helped her believe in the sweeping possibilities of
their research results, and above all, taught her the value of the mathematical precision
to produce them (and was ruthless to help her learn from her mistakes). With Peter, she
got a very thorough education into the fundamentals of statistics and how to ground their
new approach. Applications presented themselves in the clinical sciences, motivated by
research waste opponents and the early work of evidence-based medicine enthusiasts (of-
ten the same very inspiring people). She was drawn to clinical biostatistics and specifically
the regulatory clinical trials she believed to be the realm of statistical decision-making,
only to find out that “statisticians need to become more like data scientists”. This was
uttered by EMA head of data analytics Dr. Peter Arlett, at a regulatory statistics meeting
in 2021. (EMA is the European Medicines Agency that she believed to be the center of
statistical decision-making to regulate new medicines.) This interesting world of data had
lost its appetite for statistical decision-making, while she had just gained that appetite!

The large amounts of data going into Covid-19 pandemic decisions had solidified her
love for statistics nevertheless, especially the kind that designs well-controlled random-
ized trials. Many interesting statistical problems remain and solving them can immensely
improve scientific and medical decision making, as she learned by reading blogs and books
by Stephen Senn. These lured her back to language; to the many great stories that still
need to be told. Some of the best decisions during the Covid-19 pandemic were made by
those designing the Covid-19 vaccine trials, and effective treatment platform trials like
RECOVERY. Honestly, if statisticians need to be like anything other than statisticians, it
is like the doctors and funders that pushed for well-designed, large, and simple clinical
trials. A bit more ambition and initiative wouldn’t hurt the profession. It can be a very
sexy job indeed.

4Four full-time equivalent years: between May 1st, 2017 and February 1th, 2022 she spent 44 months working
80% of her working week (≈ 35 weeks full-time equivalent) on this Ph.D. research and 13 months working
100%, so 48 full-time months in total.
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