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Chapter 6

The research presented in this thesis concerns common workflows and scalable tools
in proteomics data analysis that minimize the need for human intervention and make
the analyses as experiment-independent as possible. Three themes recur throughout
the thesis: automation of mass spectrometry data analyses, FAIR datal, and data
integration. The themes are strongly interrelated and are almost impossible to

disentangle.

Mass spectrometry in proteomics

Mass spectrometry is a very powerful tool for identifying, characterizing, and
quantifying proteins. However, there is still room for improvement on the
instrumental side to enable the analysis of complete proteomes in a manageable time
with high sensitivity. Higher resolving power, sensitivity, and speed result in
tremendous amounts of mass spectrometry data. Development and adoption of
technologies like trapped ion mobility, as in the Bruker Daltonics timsTOF?, increases
the sequencing speed without losing sensitivity by taking advantage of parallel
accumulation with serial fragmentation and introduces ion mobility as a fourth
dimension into the data. Higher degrees of multiplexing, such as the TMTpro 16-plex3
by Thermo Fisher Scientific, are now common in quantitative proteomics. All these
trends suggest mass spectrometry data will continue to grow exponentially and
become more complex. The ability to quickly analyze, document, and share data and
results sometimes struggle to keep pace with developments on the instrument side.
The methods and tools presented in this thesis make use of various practices such as
scientific workflows, ontologies, FAIRification of data and software to help in this

endeavor.
Mass spectrometry-based proteomics data analysis

Analysis of proteomics samples with mass spectrometry is becoming more accessible
to researchers and has, without a doubt, established itself as an essential analysis
method in the field. The technology has developed in recent years in terms of speed
and flexibility, and there has been an increase in the number of core facilities
performing these analyses for researchers. As vendor software tools are not readily

and freely available for the research groups that do not own the equipment but
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instead get their mass spectrometry data from core facilities or public repositories, it
is quite common to use academic tools that are usually free and open. Academic tools
and method developments are usually initial ideas or alternatives that eventually end
up in vendor software and constitute a rich ecosystem for analyzing mass
spectrometry-based proteomics data. Although there are exceptions, academic
software is prone to decay, as most of the time, update and management efforts fade
after the project is finished or runs out of funding. There are initiatives to support the
management of existing software, such as “Essential Open Software for Science”,
which aims to fund the further development and management of software with
proven impact*. Hopefully, in the era of Open Science, more of these initiatives will
help open software to reach the level of vendor software in terms of service quality,
maintenance, and bug-fixing.

Different techniques and experimental procedures require different analyses.
There are more tools available than common operations in proteomics data analysis,
creating a burden for the researcher to find the right tool for their experimental setup,
let alone the most appropriate tool for the job5¢. Apart from the experiments,
input/output formats are also important when selecting a tool. Software registries
with functional annotations such as Elixir bio.tools” make finding the right tool for a

specific task easier8 and facilitate building workflows?®.

Automation of data analysis

Terabytes of mass spectrometry data are being generated every day. Analyzing them
becomes an enormous burden for data scientists, given the time and resources
available. Complex data requires multiple steps of analysis that need extra effort for
channeling the data flow through different steps. Each step usually employs different
data analysis modules that are not readily interoperable with each other’s input and
output. This issue can be managed to a certain extent using command-line “shims”.
However, these solutions are not particularly user-friendly. There is no doubt that
scientific workflow management systems are gaining popularity since they are very
efficient for combining modules that are not readily compatible for data flow while

remaining easy to use and share10.11,12,13,
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The recalibration tool presented in Chapter 5, msRecal, improves the mass
measurement accuracy through internal calibration. As a result, the number of high
confidence identifications is increased. The output format is the same as the input, so
this module can be easily plugged into a bottom-up label-free analysis workflow, such
as the one that we used to analyze the data in Hussaarts et al.14, as demonstrated for
ion trap-FTICR data by de Bruin et al.1>

Managing the flow of data through interoperating tools is a good starting point;
however, automation of data analysis also requires semantic interoperability within
and across these modules. In mass spectrometry-based proteomics, experimental
attributes such as instrument type, sample preparation methods, biological species,
etc., are important as different parameters are required for different set-ups when
performing data analysis. Controlled vocabularies and ontologies are frequently used
for this purpose, as they are easier for machines to interpret, and they also solve the
ambiguities in semantics to a certain extent!?. Open data formats such as mzXML,
mzML, and mzData support embedded metadatalé. The data elements are annotated
as free text descriptions in mzXML, while mzML and mzData rely heavily on controlled
vocabularies for this purpose. Commonly, the data elements in these files are
annotated with high-level terms, or sometimes even with incorrect terms, since the
raw vendor files usually do not contain information at a sufficient level of detail in the
first place. Having the annotation at the correct hierarchy level can help choose a
better suiting analysis method or visualization. Vendors should provide sufficient
metadata using controlled vocabularies with the raw output, and open software
developers should use the same vocabularies in the tools they develop. The tools that
use metadata to select analysis or visualization methods should be flexible to traverse
between different levels of abstraction. This is demonstrated with the anatomical
ontology visualization tool presented in Chapter 4 and the recalibration tool in
Chapter 5.

A literature study is an essential first step when designing an experiment or data
analysis in any field, and mass spectrometry-based proteomics is no exception.
Comprehensive manual literature analysis is prohibitively time-consuming.
Bibliometrics emerged in the first half of the 20th century and was concerned with

measuring various aspects of books and different forms of publications. As a field, it
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has developed its own methods and practices!’. Nevertheless, it is possible to design
compact and reproducible field-specific literature analysis workflows without getting
lost in the details of advanced bibliometrics methods. In Chapters 2 and 3, some
examples of bibliometrics analysis applicable in mass spectrometry and proteomics
research are presented. The bibliometrics workflows in these chapters could be used
before designing or conducting an experiment. The information in the literature could
also guide choosing the settings and parameters for certain steps in data analysis, like
recalibration in Chapter 5, where data from different experimental set-ups typically
require different settings. Bibliometrics analysis also comes in handy at the end of a
study to map or contextualize experimental results relative to the literature to expand
existing knowledge. Scientific workflows such as those presented in Chapter 2 can
guide users and help them find relevant publications, or even potential collaborators,
on a particular topic, especially when different authors use slightly different
vocabulary. The use of different terms by authors working in the same field is also
explored in this chapter. This ambiguity in naming terms is one of the reasons why
common nomenclatures and controlled vocabularies of species, chemicals, genes,

proteins, and methods are necessary.

Data availability and reusability

In increasing numbers of proteomics and mass spectrometry journals, the researchers
are required to submit their raw data and analysis results. There are several public
mass spectrometry repositories, with PRIDE being the largest and most popular
repository of mass spectrometry-based proteomics datal819, Each dataset uploaded to
PRIDE is linked to a publication. The publications using new or already existing data
available on PRIDE also have links to the datasets; thus, the data and the publication
are accessible in both ways.

Although data analysis is one of the final steps in a proteomics experiment, how it is
done can have tremendous effects on the results and how much can be inferred from
the experimental data. An inadequate analysis can easily squander an otherwise well-
designed and conducted experiment. Making data FAIR prevents poorly annotated
good data from going to waste. Usually, it is easier to comply with the first two

principles of FAIR, findable and accessible, than the last two, interoperable and
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reusable, as it requires more than trivial effort to make them such. FAIR data can be
retrieved by other groups and reanalyzed to draw new biological conclusions. The
anatomical visualization tool in Chapter 4 and the mass recalibration tool in Chapter
5 are meant to analyze new experimental data and existing data from public
repositories. The scientific workflows presented in Chapters 2 and 3 are useful for
searching published studies and retrieving findings.

In addition to the data itself, it is crucial to make the metadata FAIR as well, since
they are essential when analyzing data on public repositories. The standardization of
the metadata is a relatively new concept in the field; recently European bioinformatics
community has initiated an open-source project called Sample to Data file format for
Proteomics for this purpose20, Without a doubt, such efforts will make data reanalysis

easier in the future.
Data integration

To comprehensively study the biological mechanism, integrating heterogeneous
sources of data is practically necessary for omics research. None of the omics fields
exist in a vacuum; they all complement each other?l. However, integrating data across
different omics levels is only one side of the story. Data across similar experiments are
also integrated to minimize experiment-dependent variations2Z. Inherently, such
integration is more straightforward than integrating data from different omics levels;
however, the metadata remains a crucial component since even the slightest
difference in sample preparation, or instrumental setup that is overlooked can lead to
a greater diversion from reality. The importance of vendor support of open data
formats remains central for the feasibility of data integration as it is the melting pot
for data from different sources. Data integration will be quite complex or even
impossible if the data on public resources are not FAIR.

The anatomical visualization tool from Chapter 4, COMICS, uses metadata to
automate the selection of anatomical abstraction levels. It requires only one standard
input for any omics experiment, smoothly integrating data across different omics
experiments. The msRecal tool presented in Chapter 5 can also be used to integrate

data from different mass spectrometers and experiments if the analyses are
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performed on similar samples. The msRecal tool works with an open format, mzXML,

and it can analyze data from many different types of mass spectrometers.

Future perspectives

Increasing acceptance of FAIR and open science notably improves the logistics of
conducting scientific research in mass spectrometry-based proteomics. These efforts
take the field one step closer towards achieving automated, wide-coverage robust
analyses that can reuse and integrate existing data. Open data repositories such as
PRIDE!® and MassIVE23 have existed for some time already. Although they provide
invaluable data resources for reanalysis, the requirements for uploading data on these
repositories still have room for improvement. The data on these repositories are
usually linked to their respective publications explaining the original experiment, data
analysis methods, and results. However, most of the essential information is not
readily machine-readable, and some datasets have incomplete or missing metadata.
As a result, extensive manual labor is still needed to get the data ready for reanalysis.
For the time being, automated literature search and information extraction methods
like the ones presented in this thesis could make these steps manageable to a certain
extent. As the requirements for uploading data to these repositories become stricter in
the future, automated literature search could be employed beyond its horizon rather
than making up for the missing bits that should have already been there. One
foreseeable use case scenario would be using web services integrated with machine
learning for advanced, direct, and manual-labor-free reanalysis of data.

The generation of good quality data undoubtedly needs a lot of technological
resources (i.e.,, mass spectrometers and other lab equipment) and human resources
for operating this high-end instrumentation and analyzing the results. The resources
and efforts needed for designing and developing efficient data analysis tools are often
overlooked in biological sciences. Time-wise and funding-wise, data analysis tools
should get their fair share in bioscience research. As much as the FAIRness of data is
crucial, applying these principles for data analysis tools is also essential and well
worth the investment in the long term. There is already a rich ecosystem for finding
and sharing data analysis tools, such as GitHub?2# for version control and source code

management, WorkflowHub?25 and MyExperiment2¢ for sharing scientific workflows,
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Galaxy Community?? for sharing Galaxy workflows and deploying Galaxy Servers, and
ELIXIR bio.tools? for a comprehensive registry of bioinformatics software. The
importance of these communities for data and tool sharing, bug reporting is evident,
and a broader audience in bioscience research should support them.

Initiatives for developing community standards, such as HUPO PSI?8 and EDAM
ontologies??, are vital for achieving the goals listed here. Standard open data formats
are also fundamental, although they need more vendor support to reach their full
potential in data automation. Some of the workflow managing software used today for
automation may become obsolete in the future. However, the concept of scientific
workflows with scalable components is here to stay, and most likely, there lies the

future of proteomics data analysis.
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