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General Introduction




Chapter 1

Mass spectrometry is a powerful and comprehensive technique for studying
proteomics. Instrumentation and techniques for generating and analyzing mass
spectrometry data are constantly evolving. This first chapter introduces the essential
topics and concepts that the research in this thesis is built upon, such as; proteins and
proteomics, use of mass spectrometry in proteomics, analysis of proteomics data, and
scientific workflows. The scope of the thesis and the content of the following chapters

are also briefly introduced.
Proteins - the building blocks of life

Proteins are the executive molecules in cells. They interact with many other
molecules, and their structure and behavior affect how cells function. Being key
players in cellular mechanisms and disease pathologies, the study of proteins remains
one of the main interests of biomedical researchl.

The functional properties of a protein are determined by its structure, which is
directly influenced by its amino acid sequence? “The central dogma of molecular
biology” refers to the unidirectional transfer of sequence information from nucleic
acids to proteins. This transfer of information is first carried out in a process called
transcription from deoxyribonucleic acid (DNA) to ribonucleic acid (RNA) and then
from RNA to protein in a process called translation3. In eukaryotic cells, these
processes take place in different compartments of the cell. Transcription happens in
the nucleus where the DNA is located; then, the synthesized mRNA is transferred to
the cytoplasm for translation*s. The synthesized protein folds to its three-dimensional
conformation and can be further matured by post-translational modifications that
alter its function®. (Figure 1.1) Proteins can be transported to various compartments
in the cell or secreted?89.

Genes are essentially the blueprints for proteins that are synthesized in the cell.
The collection of all the genes in the genetic material of an organism, the genome, is
highly similar in virtually all the cells of the organism. The set of expressed proteins,
on the other hand, varies extensively depending on time and condition1011. The name
proteome refers to the set of proteins, as they are the complements expressed from
the genomel2. Since a protein can have many different forms and take part in higher-

order complexes, the term proteomics is expanded to all the processes that follow
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General Introduction

protein synthesis. Proteomics processes are inherently very dynamicl3. Due to the
proteome’s dynamic nature, it is not possible to determine the biological function of
the genes and their expressed proteins merely from the genomic sequences. That is
why proteomics is essential to make sense of genomics data, as both fields support
and complement each other in every sensel415, In addition, knowing the amounts of
proteins synthesized and present in a cell and how they change throughout different

timepoints and conditions provides valuable insights into cellular processes?é.

Folding
S ?&
Protein o
..

DNA

mRNA ul-Jclulcl-clcululcl- B

Figure 1.1. DNA is transcribed into complementary RNA in the nucleus during
transcription. The mature RNA exported into the cytoplasm is translated into the final
gene product: protein. The translated protein folds to its three-dimensional structure
and further matures by post-translational modifications.

Proteomics aims at developing an understanding of how the different proteins in an
organism function. In order to accomplish this with vast amounts of data, efforts are
being made to catalog and organize existing knowledge on proteins with initiatives
like the Gene Ontology!’. Various technologies are being developed, advanced, and

used to compare proteins and their abundances in different samples and to unravel
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Chapter 1

the roles of post-translational modifications, localization of proteins, and protein

interactions18.
Mass spectrometry-based proteomics

Proteomics is a big omics domain following its older sibling genomics, providing new
insights into biological functions!s. Proteomics complements genomics since proteins
are generally the end products of genomic expression. However, in contrast to the
genome, which is relatively static, the proteome is a dynamic entity and quite
complex. Therefore, higher throughput and sensitivity are absolute necessities in
proteomics analyses!3. Mass spectrometry is a highly sensitive analytical technique
that is commonly preferred in proteomics as it can detect even very low abundance
proteins in a complex sample?9,

Mass spectrometry measures the mass-to-charge ratio of analytes to characterize
and identify them, even in complex mixtures. Analytes may be further fragmented, and
the ionized fragments can be measured and used in further characterization and
identification. In the top-down sequencing approach, the analytes are the intact
proteins; in bottom-up sequencing, the analytes are the peptides of digested
proteins20. Top-down approaches are beyond the scope of this thesis. A typical
bottom-up analysis usually starts with isolated, intact proteins digested into peptides
using a protease. In complex samples, proteins may be fractionated prior to digestion
using a protein fractionation technique such as SDS-PAGE. The proteins are then
digested in-gel following band excision. The resulting peptides are separated using an
appropriate separation method. There are different separation methods used for this
purpose; this thesis focuses on high-performance liquid chromatography. The
separation reduces the complexity of the peptide mixture introduced to the mass
spectrometer at any given time, and it is directly coupled to a mass spectrometer?!. In
data-dependent acquisition, the mass spectrometer first analyzes the ionized intact
peptides. The peptides are then isolated by their mass to charge ratio and selected for
further fragmentation and measurement?2. The identification of peptides is based on
the mass-to-charge ratio of intact peptides and their fragmentation patterns?3. An
example experimental workflow is shown in Figure 1.2. The ionization step and mass

analyzers are central to the mass spectrometry technology, and they have a strong
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General Introduction

influence on the output and are usually taken into consideration when analyzing

performance and interpreting results24.
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Figure 1.2. Following the sample collection, intact proteins are extracted and isolated.
Proteins are fractionated to reduce complexity, and the bands excised from the gel are
treated with protease to digest the proteins into peptides. The peptides are separated
by liquid chromatography before entering the mass spectrometer. The intact peptides
are ionized, and mass-to-charge ratios are measured. Elution times of the intact
peptides, along with the mass-to-charge ratios and intensities of the ionized peptides,
are all recorded by the mass spectrometer.

Analysis of proteomics data

Analysis of complex and large datasets, such as the ones acquired by mass
spectrometry, requires a range of different tools with different functionalities from
start to finish. The computational analysis workflow is often not straightforward and
requires interventions by the user to channel the output from one tool to another?2s.
Even though this means flexibility to a certain extent, it usually comes with a price,
too. First of all, computational analyses requiring manual labor are impractical and

time-consuming?6. Second, leaving the user with too many options may be confusing,
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Chapter 1

and they could take incorrect approaches concerning the nature of data. Overall,
selecting an appropriate set of tools and optimal parameters is crucial, as any failure
to do so often results in accumulation of error or loss of quality?7.

Nevertheless, even when a complete sequence of analysis is performed successfully
on mass spectrometry-based proteomics data, it is usually not enough on its own to
make biological derivations. Comparison among different analyses and datasets is the
starting point for finding meaningful explanations for certain behaviors and
characteristics?8. However, differences among samples cannot be attributed to
biological variations only. Technical variability in sample preparation, instrument
settings, computational analysis, and statistics performed on the data also affect the
results293031, In order to assess the outcomes of an experiment objectively, relevant
information about these factors should be known. The Proteomics Standards Initiative
proposed a “Minimum Information About a Proteomics Experiment (MIAPE)” as a
guideline on how relevant contextual data should accompany proteomics data32. The
contextual data accompanying the measurement data itself is often referred to as the
metadata. Providing relevant information about the experiment, measurement, and
data analysis in the metadata is necessary for objectively evaluating the study and also
contributes to experimental repeatability and reproducibility33. It is essential that the
metadata is presented in a semantically unambiguous manner3#4. Unsurprisingly, the
rapid evolution of mass spectrometry-based proteomics techniques also brought
along the same need that genomics once had, and still has, with the explosion of
advanced sequencing technologies: a common language for nomenclature!?. This goal
is generally accomplished by “scientific ontologies” or “controlled vocabularies” that
represent knowledge in a formalized manner by using the hierarchies and
relationships among the domain entities as a backbone.

Bioinformaticians need information on biological species, sample preparation, and
instrumentation to choose suitable data analysis methods. Formalized representation
of the metadata, on the other hand, paves the way for using the ultimate potentials of
computers in interpreting knowledge and making decisions35. Another primary
benefit of formalized knowledge is semantic interoperability, as integration from
different sources across different tools becomes more manageable when the

vocabulary of a domain is standardized3¢. All in all, the use of formalized vocabularies
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General Introduction

and ontologies makes automated decision-making in computational analysis a
reality37. Since the initiation of Gene Ontology, bio-ontologies have come a long way.
There are many controlled vocabularies and ontologies for different life sciences
domains, the majority of which can be found in the Open Biological and Biomedical
Ontologies (OBO) foundry38. The most relevant one for mass spectrometry-based
proteomics is the Human Proteome Organization (HUPO) Proteomics Standards
Initiative Controlled Vocabulary (PSI-CV), which consists of all the terms used in mass
spectrometry pipelines for proteomics3?. Primarily, sub-branches below ‘spectrum
generation information’ provide annotations regarding instrumentation, sample, and
scans that are invaluable for optimizing parameters in automated analysis. The EDAM
ontology is helpful in describing and constructing data analysis workflows for mass
spectrometry-based proteomics, having a comprehensive definition of bioinformatics
methods, data types, and operations2540,

Data types are another aspect that should be taken into account while performing
mass spectrometry data analysis. There are many different types of mass
spectrometers manufactured by different vendors, and almost all of them have their
unique raw data format. As a result, too many, not necessarily novel, software are
being developed for analyzing data in different formats, while integration and
interoperation between them are almost impossible. Standard data formats that can
be used across different tools and platforms are necessary to tackle this issue*!. There
are several open data formats for mass spectrometry data, e.g,, mzXML*2 and mzML43,
Each takes advantage of XML’s portability, while mzML, being developed by the HUPO
PSI team, uses the PSI-CV terms to represent metadata and goes with a more flexible
format for new annotations in the future3?.

Reproduction and reuse of scientific data, building upon previous work, are
fundamentally important to the progress of science*445. The most established
guidelines for reaching these goals are outlined in the FAIR principles, where FAIR
stands for Findability, Accessibility, Interoperability, and Reusability*¢. Deposition of
mass spectrometry data to online repositories fulfills these principles to some extent,
and some journals even have this as a requirement for the publication of findings from
mass spectrometry-based proteomics data. Besides the raw data itself, the software

and methods used for the data analysis and data formats for input and output are also
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Chapter 1

“data” in a different domain, i.e, bioinformatics. Thus, the community standards
should be followed for the management of research software as well#7:48, The adoption
of standard open data formats is an important step towards this aim#649.59, There are
efforts to popularize these formats by providing tools for conversions from raw
vendor formats; this is one of the many aims of the ProteoWizard projectsl. Newly
developed open-source bioinformatics tools should work with common open data
formats, and existing tools should be integrated into analysis pipelines when possible
to avoid reinventing the wheel52. The Trans-Proteomic Pipeline (TPP) is a perfect
example in that respect, as it contains a variety of tools that work with common open
data formats>33. It is also possible to incorporate TPP components into other pipelines,
as shown in Chapter 5 of this thesis. A conceptual framework of the mass

spectrometry-based proteomics data analysis ecosystem is presented in Figure. 1.3.
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Figure 1.3. The raw data is converted to one of the standard open formats first. A
sequence database search is performed to identify the peptides in the sample.
Information on identified peptides is used to infer the proteins in the sample. The
identified proteins can be quantified using various methods, such as spectral counting
or intensity-based calculation. Further statistics can be performed to show the
differences among the samples or to visualize the findings. Existing literature,
controlled vocabularies, and databases are essential tools in bioinformatician’s
toolbox; they can be employed at any step of the analysis.
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Scientific workflows

Analysis workflows that use many different software components face challenges
since different software components have different requirements and use different
data types?2®. Scientific workflow managers are developed to overcome this challenge
as they assemble different software units by controlling and directing data inputs and
outputs in a workflow54.

Scientific workflows are helpful for automating mass spectrometry-based
proteomics data analyses that typically require several different tools>>56, However,
connecting different modules is not sufficient for the complete automation of analyses.
Most multi-step processes require data-dependent decisions. Knowledge level
information processing with conditional constructs is one approach for automating
data analyses. Formalized knowledge, such as ontologies and controlled vocabularies,
can make such condition-based decision-making feasible within scientific
workflows26. Furthermore, using scientific workflows rather than taking the data
through a traditional step-by-step analysis minimizes user interference and supports
modularity and reusability>>. A simple scientific workflow schema for integrating
different tools in mass spectrometry-based proteomics is shown in Figure 1.4.

There are many scientific workflow managers publicly available for orchestrating
complex data analyses. Some are suitable for analyzing data from a wide range of
research disciplines, such as the KNIME Analytics Platform>7 and the Kepler System58,
while some are designed towards a specific field, like the Galaxy Workflow System>°
used in biomedical research. Taverna®® was one of the pioneering workflow managers
and the first that saw widespread use in bioinformatics. The Taverna workflow
management system is particularly suitable for high-throughput omics analysis as

access to many popular life science tools and services are readily provided®?.
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Figure 1.4. A schematic data analysis workflow that integrates modular tools for
literature search, anatomical visualization, and mass recalibration.
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Scope of the thesis

The aim of this thesis is to build capable scientific workflows for mass spectrometry-
based proteomics research and create modular, interchangeable, and interoperable
tools for different steps of data analysis. The thesis is concerned with bottom-up, data-
dependent proteomics experiments; however, the concepts and methods are
applicable to all types of LC-MS/MS-based proteomics.

The Taverna workflow suite is used to demonstrate the capabilities of scientific
workflow managers (Chapters 2 and 3). If not all, most of the things demonstrated in
this study could also be reproduced on other platforms, as they share the same basic
principles. The workflows and tools presented in this thesis are deposited online and
could be used in their original version or modified according to the user’s needs. The
programming languages used mainly throughout the study are as follows: R for
statistics and visualizations (Chapters 2, 3. 4, and 5), C for open format reader/writer
libraries and mass spectrometry data recalibration tool (Chapter 5). All the data used
for testing the tools were retrieved from public databases. The ontologies and
controlled vocabularies mentioned are also publicly available in the OBO foundry.

Chapter 2 introduces scientific workflows and how they could be used to assemble
different tools for multi-step analyses. A traditional scientific study starts with a
literature review, and this chapter sets the foundations needed for initiating an
experiment or analysis from scratch. The capabilities and services demonstrated here
are general; however, each workflow could easily be adjusted to retrieve field-specific
or even topic-specific bibliometrics data that would be crucial to come up with a clear
goal and a valid hypothesis for the prospective study.

Chapter 3 builds on the study presented in Chapter 2, advancing bibliometric
analyses by integrating Web services in Taverna. One of the many advantages of this
functionality is that it enables the analysis of curated information online, for instance,
from UniProt®2 or PDB®3. This functionality broadens the horizon from general
bibliometric analyses to exploring protein-disease associations, biomolecular
interactions, and more. This type of exploration is valuable for researchers when
beginning a study and interpreting findings at the end to see where it fits in the

context of annotated or published information.
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Chapter 4 presents an interactive tool for the anatomical visualization and
exploration of omics data in several model organisms. In omics research, integration
of genomics, transcriptomics, and proteomics data is becoming a common practice.
However, this usually complicates the data analysis as there are not many generic
tools for anatomical visualization capturing spatial information at arbitrary levels of
detail. The tool presented here uses anatomical ontologies to map data at different
levels of anatomical detail and is compatible with any type of omics data.

Chapter 5 focuses on a recalibration component that is generally applicable in
most mass spectrometry-based proteomics data analysis workflows. This calibration
tool, msRecal, improves mass measurement accuracy through automated internal
calibration. Accurate determination of precursor ion masses increases confidence in
identifications and also improves quantitative precision in label-free proteomics. This
version of msRecal can recalibrate data from FTICR, Orbitrap, and TOF instruments.
The calibration mode is chosen based on the mass analyzer type retrieved from the
metadata. Notably, the msRecal component does not change the type or format of the
data in any way. Thus, it can easily be plugged into virtually any bottom-up
proteomics data analysis workflow.

Finally, Chapter 6 offers a general discussion on the methods and concepts
presented in this thesis. The current issues regarding them are reflected, and future

perspectives are discussed.
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Chapter 2

Abstract

Scientific workflows organize the assembly of specialized software into an overall
data flow and are particularly well suited for multi-step analyses using different types
of software tools. They are also favorable in terms of reusability, as previously
designed workflows could be made publicly available through the myExperiment
community and then used in other workflows. We here illustrate how scientific
workflows and the Taverna workbench in particular can be used in bibliometrics. We
discuss the specific capabilities of Taverna that makes this software a powerful tool in
this field, such as automated data import via Web services, data extraction from XML
by XPaths, and statistical analysis and visualization with R. The support of the latter is
particularly relevant, as it allows integration of a number of recently developed R
packages specifically for bibliometrics. Examples are used to illustrate the possibilities

of Taverna in the fields of bibliometrics and scientometrics.
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Introduction

Information processing permeates the scientific enterprise, generating and organizing
knowledge about nature and the universe. In the modern era, computational
technology enables us to automate data handling, reducing the need for human labor
in information processing. Often information is processed in several discrete steps,
each building on previous ones and utilizing different tools. Manual orchestration is
then frequently required to connect the processing steps and enable a continuous data
flow. An alternative solution would be to define interfaces for the transition between
processing layers. However, these interfaces then need to be designed specifically for
each pair of steps, depending on the software tools they use, which compromises
reusability. Whether the data flow is automated or manually done by the researcher,
the latter still has to deal with many detailed, low-level aspects of the execution
processl.

Scientific workflow managers connect processing units through data, control
connections and simplify the assembly of specialized software tools into an overall
data flow. They smoothly render stepwise analysis protocols in a computational
environment designed for the purpose. Moreover, the implemented protocols are
reusable. Existing workflows can be shared and used by other workflows, or they can
be modified to solve different problems. Several general purpose scientific workflow
managers are freely available, and a few more optimized for specific scientific fields?.
Most of these managers provide visualization tools and have a graphical user
interface, e.g. KNIMES3, Galaxy* and Tavernas. Not surprisingly, scientific workflows are
now becoming increasingly popular in data intensive fields such as astronomy and
biology.

In this paper, which builds on a recent ISSI conference paper®, we describe the use
of scientific workflows in bibliometrics using the Taverna Workbench. Taverna
Workbench is an open source scientific workflow manager, created by the myGrid
project’, and is now being used in different fields of science. Taverna provides
integration of many types of components such as communication with Web services
(WSDL, SOAP etc.), data import and extraction (XPath for XML, spreadsheet import

from tabular data), and data processing with Java-like Beanshell scripts or the
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statistical language R8. Beanshell services allow the user to either program a small
utility from scratch and towards a specific goal, or to integrate already existing
software into the workflow. The R support is a particularly powerful feature of
Taverna. Although R was initially developed as a language for statistical analysis, its
widespread use has seen it adopted for many tasks not originally envisioned—a fate
not unlike its commercial cousin, MATLAB. One such task is text mining. The R
package “tm”? provides basic text mining functionality and is used by a rapidly
growing number of higher-level packages, such as “RTextTools”10, “topicmodels”1! and
“wordcloud”12. Similarly, there are many toolkits and frameworks for text mining in
Java that could also be called from within a Taverna workflow. For geographic and
geospatial analysis, e.g. using author affiliations, there are also a number of very
powerful R packages. One such package is “rworldmap”13, projecting scalar, numerical
data onto a current map of the world using the ISO 3166-1 country names. rworldmap
gives the user control of most aspects of the map drawing, and enables different map

projections to be applied to the maps.
A simple example: comparing two authors

We designed a simple workflow, Compare_two_authors (Figure 2.1), to generate a
histogram for the number of publications over time and a co-word map for the titles of
the two authors’ publications. The workflow takes as inputs PubMed results in XML,
the names of two authors, a list of excluded words and a minimum number of
occurrences.

The PubMed results are retrieved in an XML format, and the extraction of
publication years, titles and author names are done by XPath services. XPath is a query
language for selecting elements and attributes in an XML document. The XPath service
in Taverna eases this process by providing a configuration pane to render an XML file
of interest as a tree and automatically generate an XPath expression as the user selects
a specific fragment from the XML (Figure 2.2). The results of the query can either be

passed as text or as XML to other workflow components.
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- Workflow input ports

| author_2 || author_1 || pubmed_output || excluded_terms ” min_occurrences | A

get_author_info get_publication_year | get_titles

v S,
| get_author_initials | get_author_lasthame
\ Prd

| concatenate_author_name |

import_dictionary

find_co_authorship

count_words

. Workflpw output poyts

histogram ” graph |v

Figure 2.1. A workflow Compare_two_authors designed in Taverna for comparing the
scientific output over time and word usages of two researchers (authors). Taverna
uses color to indicate the type of service or tool. Although not performing a
particularly sophisticated bibliometric analysis, this workflow demonstrates the use
of Beanshells (burly wood brown), local services (heliotrope violet), spreadsheet
import (turquoise), XPaths (laser lemon yellow) and Rshells (air force blue). The inputs
(sky blue) are some PubMed results in XML, the names of two authors, a dictionary of
excluded terms and the minimum number of occurrences. Each execution of the
workflow creates two outputs: a histogram of the publications in each year for the two
authors and a co-word map comparing their research topics. Common words can be
excluded for clarity. The import_dictionary spreadsheet import service is used to read
a text file with one word per line containing words to be excluded.
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& Compare_two_authors:get_publication_year @

<?xml version="1.0" encoding=" L+ llFubmedArtideSet
<!DOCTYPE PubmedfrticleSet PUB 9---‘_& PubmedArticle
[=E2 3 ¥ VedlineCitation

(- <> PMID - 25184817
E}--w DateCreated
Lt ear

@ <» Month - 10
i-¢» Day - 03

B 43 Article

-- 4> MedlineJournalInfo

+4» CitationSubset - M

(- ¢ OtherID - PMC4184456 [Available on 09/03/15]
Fil- 43 Keywordlist hl

L= Load XML from file ’ 4» Generate XPath expression ] [ Show XML tree settings... ]

Q ¥Path expression | PubmedArticeSet/PubmedArticle MedlineCitation/DateCreated,Year
Show namespace mappings. ..

I

« r

Executed XPath expression: /PubmedArtideSet/Pubmedartice MedlineCitation/DateCreatedYear

Mumber of matching nodes: 62

Results as text | Results as XML

<Year>2014</Year>
<Year>2014</Year>
<Year>2013</Year>

»

[ Help H Apply H Close ]

Figure 2.2. The XPath configuration pane provides a simple interface for extracting
particular data fields from XML files, here publication years from PubMed search
results in XML. There are several “years” in a PubMed entry, corresponding to the
date-of-creation for the Medline citation, the article publication date or journal issue
publication date. Only the Medline citation date is always present. The
XPath/PubmedArticleSet/PubmedArticle/MedlineCitaTion/DateCreated /Year
extracts the year from this date.

The data extracted by the spreadsheet import and XPath services is fed to a series
of Beanshell components that find co-authorships and count co-occurrence of words
in the extracted titles. Beanshell is a light-weight scripting language that interprets
Java. In our workflow, the Beanshell services do simple operations on strings, such as
concatenation of surnames and initials that are extracted separately using XPath
(concatenate_author_names), = matching  strings to  find co-authorships
(find_co_authorship) and counting the number of words occurring in each title
authored by one or both authors (count_words). The two authors’ usage of the words,
excluding excluded_terms, that appear at least min_occurrences times in total, are then

used to draw a co-word map using the “igraph” R package!. Excluded terms may be
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very common, non-informative words like articles and prepositions that would not
carry any meaning in a co-word map. It is generally up to the workflow designer what
part of the workflow to code in Java (Beanshell), in R, or in third language called via
the Tool command-line interface. More types are available for data connectors
between R components (logical, numeric, integer, string, R-expression, text file and
vectors of the first four types) than between Beanshell components, where everything
is passed as strings. Therefore, when dealing with purely numerical data, we
recommend R over Beanshells within Taverna.

After all the necessary inputs are provided, the workflow is ready to be executed. In
the Taverna Workbench Results perspective (Figure 2.3), each completed process is
grayed out to show the progress of the workflow run. The execution times, errors and
results are also visible in this perspective. We ran the workflow for two scientists
active in our own field of mass spectrometry: Gary L. Glish and Scott A. McLuckey,
whom we knew to have worked on similar topics over a long period of time and also
co-authored a number of articles. However, the workflow will work on any two
authors with publications indexed by PubMed. The co-word map in
Figure 2.4 visualizes the co-occurrence of words in titles by the location and thickness
of the connecting edge, while the relative frequency of usage by the two authors is
indicated by color (here from red to blue). This is an example meant to illustrate the
capabilities of scientific workflows, not to show a difficult or even particularly
interesting bibliometric analysis, although we were surprised to see how strongly
individual language preferences appear in these maps, even for two researchers who
have a long history of collaboration. For example, one researcher (Glish) may have a
strong preference to specify that a “quadrupole ion trap” was used in an experiment

whereas another (McLuckey) may refer to the same apparatus as simply an “ion trap”.
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Figure 2.3. Workflow Progress report in the Taverna workbench Results
perspective—here with a completed execution of the Compare_two_authors workflow
in Figure 2.1. The “histogram” output is here captured by Taverna, allowing the user
to browse the results and select what to save or export to a different data format. In
this particular case, the histogram is colored according to relative author output, with
red being Glish and blue McLuckey.
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author 1 only (McLuckey)
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Figure 2.4. Co-word map output from the Compare_two_authors workflow. Graphical
output from an Rshell can either be in PNG format to be captured by Taverna and
browsed in the Results perspective or in a vector format such as SVG or PDF. A
workflow can start from data available online, orchestrate all processing and analysis
steps, and produce figures or charts in PDF, suitable for publication. Such workflows
enable readers to replicate exactly what was published by another researcher with a
few mouse clicks. As in the histogram in Figure 2.3, red stands for Glish and blue for
McLuckey.

Citation analysis

As a second example, we will use a Taverna workflow to analyze citation networks.
Citation networks are widely used in bibliometrics to study patterns of who-cites-
whom and to study associations between academic groups or areas of research. To
simplify the example, we will start from existing networks and compare the citation
networks cit-HepPh and cit-HepTh!5, which show the citation relations between all
papers published in the e-print archive arXiv between January 1993 and April 2003 on
high-energy physics phenomenology (cit-HepPh) and high-energy physics theory (cit-
HepTh). Specifically, we compare the eigenvector centrality of the papers in both
networks. The eigenvector centrality is a measure of the importance of a node in the
network and depends on the centrality of the nodes it is linked tol6. The workflow
(Figure 2.5a) takes as input the citation graphs as edgelist files, as available from the

Stanford Large Network Dataset Collection (https://snap.stanford.edu/data/).
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SpreadsheetImport services are used to read the edgelist tables, skipping the first four
header lines of each. The arXiv paper identifiers are renumbered consecutively,
starting from zero, for improved compatibility with igraph. The indispensable
components in the workflow are the Rshells compute_eigenvector_centrality, which
calculate the eigenvector centrality using the igraph evcent() function. In this instance,
directionality is ignored by specifying ‘directed = FALSE’. The output of the Rshells are
the original arXiv paper identifiers for the N papers with the highest eigenvector
centrality in each network. Beanshell components are then used to create a query and
fetch the abstract page of these papers directly from arXiv using the Taverna
Get_Web_Page_from_URL service. Embedded in the abstract extraction services are
also XPath components that extract the abstract texts from the HTML files. The
corpora are then passed to a pair of Rshells for drawing wordclouds on common
words in these two extreme sets of abstracts using the tm and wordcloud R packages.
The output of the workflow shows the word clouds for the N=100 most central
papers in the cit-HepPh (Figure 2.5b) and cit-HepTh (Figure 2.5c) citation networks.
The phenomenology word cloud includes physical units, such as TeV, and
experimental facilities such as the LHC particle accelerator. The theory word cloud,

» o«

perhaps unsurprisingly, is dominated by “string”, “theory”, and the related terms “M-

» o« » o«

theory”, “supersymmetry”, “elevendimensional”, and so on. Using citation analysis and
comparing measures of centrality in two citation networks distills the essential
difference between two closely related fields—here two aspects of high-energy
physics. Units of measurements have previously been shown to have the weakest co-

occurrence coupling with terms such as “theory”, “model” and “simulation” in the field

of analytical chemistryl7.

36



Figure 2.5. Citation networks as
defined by eigenvector centrality.
Taverna workflow for citation
analysis (a), wordclouds for 100
core papers in the high-energy
physics phenomenology (b) and
theory (c)
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Connecting to web services and external databases

As shown in the previous example, Taverna workbench can automatically analyze or
generate networks directly from online data. Taverna can also invoke Web Services
Description Language (WSDL) style Web services given the URL of the service’s WSDL
document. The WSDL is an XML-based interface description language often used
together with a Simple Object Access protocol (SOAP) to access the functions and
parameters of a service. Many bibliographic resources are available through Web
services, such as Web of Science (WoS) or PubMed Central (PMC). Some services,
including the WoS, require authentication. An entire bibliometric study can be
contained inside a single Taverna workflow that authenticates the user, if needed,
takes the user queries, or questions of the study, generates the Web service requests,
executes these, retrieves the data and proceeds with further (local) statistical analysis
and visualization.

A Taverna workflow that invokes WSDL services from WoS to automatically
execute a query may look like in Figure 2.6. This Taverna workflow takes as input
common search parameters and a generic WoS query string, and pass these to the
Web service via the WoS WSDL interface. Values that have only one possible value,
such as the language (English, “en”) are here hard-coded in the workflow as Text
constants.

A workflow that connects to the EBI Europe PubMed Central (PMC) SOAP Web
service and maps the author affiliations article by article, ordered by publication year,
is part of the workflow shown in Figure 2.7. The output of the entire workflow is a
world map showing the geographic trends collaborative patterns of an individual
researcher. The workflow can easily be adapted to show geographic trends in
research topics, publications in a particular journal etc. All that needs to be modified
are the PMC search query and the XPaths, and this can be done in a few mouse clicks

without typing any code.
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Figure 2.6. Taverna interface to the Thomson Reuters Web of Science Web services
lite. This Web service has a relatively complex WSDL interface and also requires
authentication. Taverna reveals the WSDL interface allowing the user to understand
what is required by, and what can be retrieved from, the service. The port names are
the same as in the Thomson Reuters Web service documentation.
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Geographic analysis of publications

Using the rworldmap package described above, we constructed another simple
example workflow, Compare_pubmed_results_geographically, to project author
affiliations onto a map of the world, displaying the number of publications on a
particular topic per country (Figure 2.8a). This example highlights how geographical
(country) information can be extracted from the affiliation field in PubMed XML,
matched to present-day countries in the ISO 3166-1 standard while transferring data
from former countries (as defined in ISO 3166-3) to their successor states. This
process works relatively well for publications later than ca. 1949, after we provided
the workflow with a table linking former countries with their contemporary
counterparts. The latter will obviously never be a perfect process, and some
arbitrariness is unavoidable. For example, should research output from the former
USSR be shared equally (on the map) between all fifteen independent states that
emerged after the dissolution of the Soviet Union, or exclusively to the Russian
Federation? Should it depend on where the authors were located at the time? Some
borders, such as that between the former West and East Germany, have disappeared
from the map in rworldmap. However, for visualization of research activity in the past
two decades, rworldmap does the job well. rworldmap also allows some control of
granularity and what area of the globe to plot. For example, Antarctica and small
islands can be omitted without appreciable loss of accuracy. There are currently no
human inhabitants on the Bikar Atoll in the Pacific, let alone research institutes.

The workflow in Figure 2.8a takes a PubMed XML, extracts all author affiliations
and maps these to present-day countries in ISO 3166-1, tallies the publications and
maps the total number per country onto a current map of the world. This workflow is
also available on myExperiment!8. The results from running this workflow on the
topic defined as all articles matching “mass spectrometry” in their title or abstract
published between 2010 and 2015 is shown in Figure 2.8b. As an alternative to
starting from a PubMed XML file, we can connect the output from the PMC Web
service as input to Compare_pubmed_results_geographically (Figure 2.7). This
combined workflow is also available on myExperiment. In addition to producing static
maps, it is also possible to export a series of author affiliation maps as a movie using

the “animation” R package.
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Journals covering in the same scientific field may have regional bias, with for
example researchers based in the US preferentially publishing in an American journal
and European researchers preferring a European journal. To investigate whether
there is such a bias in the field of medicinal chemistry, we looked specifically at
the Journal of Medicinal Chemistry (published by the American Chemical Society) and
the European Journal of Medicinal Chemistry. To this end we assembled the workflow
shown in Figure 2.9a. This workflow analyzes the geographical bias in author
affiliation between any two journals, not just the two investigated here. The output is
again a map generated by rworldmabp, this time with a color gradient representing the
relative number of publications in the two journals for each country (Figure 2.9b). It is
clear from this analysis that authors from many Western European countries have a
preference for the American journal. This may have something to do with this journal
having a higher journal impact factor (as measured by the Thomson Reuters journal
impact factor) and consequently being considered more prestigious in the field. On the
other hand, other Western European countries such as France and Italy do not show
this preference. may be explained by the fact that a sizeable share of the editorial

board is comprised of researchers working in France or Italy.
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a - Workflow input ports
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Figure 2.8. a. PubMed XML output contains information on author affiliations as
provided by the authors themselves. This Taverna workflow extracts geographic
information (here countries) and converts it to a standardized format (ISO 3166) from
the PubMed XML output. The workflow counts the number of appearances of each
country in the author affiliations in the XML file and uses the R package “rworldmap”
to visualize them. rworldmap and similar tools require country names to be in a
standard format, e.g. the three letter code from ISO 3166. The text mining component
is therefore necessary to connect PubMed with geographic visualization. b. Output of
the workflow for the search string “(mass spectrometry|[Title/Abstract]) AND
(“2010/01/01”[Date-Publication]: “2014/12/31”[Date- Publication])” in PubMed,
showing the geographic distribution of active (and actively publishing) researchers in
the field of mass spectrometry in the past 5 years.
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Figure 2.9. a. A workflow Compare_two_journals_geographically reusing the
embedded map_affiliations workflow matching author affiliations with countries in
Figure 2.6 for analyzing geographical bias in two medicinal chemistry journals: the
American Chemical Society (ACS)-published journal of Medicinal Chemistry and the
European Journal of Medicinal Chemistry between 2000 and 2015. b. The results of
the workflow above with publication bias shown as color from red to green
representing a bias of a factor 27 = 128 in publishing in the ACS over the European
journal. The numbers of publications were normalized to the total number of articles
in the two journals (11,219 articles in Journal of Medicinal Chemistry and 5842 articles
in the European Journal of Medicinal Chemistry respectively). The most recent
Thomson Reuters journal impact factor is 5.447 for the ACS journal (2014) and 3.432
for the European journal (2013), respectively.
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Discussion and conclusions

The use of scientific workflows in bibliometrics is still in its infancy. The direct
support of R inside Taverna workflows is particularly useful for bibliometrics and
scientometrics. A number of R packages for bibliometric analysis have recently been
released, ranging from simple data parsers such as the “bibtex” packagel® for reading
BibTeX files to libraries or collections of functions for scientometrics, such as
the CITAN package20. The latter package contains tools to pre-process data from
several sources, including Elsevier’s Scopus, and a range of methods for advanced
statistical analysis. The igraph package itself comes with some functions specifically
for bibliometric analysis, e.g. “cocitation” and “bibcoupling”. Clustering or rearranging
the graph spatially so that strongly connected words appear closer together is
possible with igraph, but may also be assisted by other packages. We opted for
showing a few simple but more or less representative examples here. Much more
complex analyses can be designed based on or using the workflows and components
here as a starting point. We did not include any advanced text mining functionality for
homonym disambiguation or natural language processing. The “openNLP” R package
currently in development provides an interface to openNLP?! and may be used to
extract noun phrases and refine the analyses.

In the examples here, we could show that individual language preferences can
dominate when comparing two authors working in the same field. We could also show
that the geographical bias between two medicinal chemistry journals, one European
and one published by the American Chemical Society, probably has more to do with
impact factor and perceived prestige than author location, based on the observation
that researchers from the European countries usually ranking high in international
research surveys, i.e. Denmark, the Netherlands, Sweden, Switzerland and the United
Kingdom, also have the strongest preference for publishing in the higher-impact factor
American journal. To the extent that such rankings are based on impact factors, this is
of course in part a circular argument. We also observe that European countries well
represented on the editorial board of the European journal, e.g. France and Italy, show
no preference for the American journal. This is probably not a coincidence.

Scientific workflow managers are powerful tools for managing bibliometric

analyses, allowing complete integration of online databases, Web services, XML
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parsers, statistical analysis and visualization. Workflow managers such as Taverna
eliminate manual steps in analysis pipelines and provide reusability and repeatability
of bibliometrics analyses. All workflows for bibliometrics and scientometrics
presented here can be found in the myExperiment group for Bibliometrics and

Scientometrics (https://edu.nl/cag4d).
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Chapter 3

Abstract

Quantitative analysis of the scientific literature is a frequent task in bibliometrics.
Several large online resources collect and disseminate bibliographic information,
paving the way for broad analyses and statistics. The Europe PubMed Central (PMC)
and its Web Services is one of these resources, providing a rich platform to retrieve
information and metadata on scientific publications. However, a complete
bibliometric analysis that involves gathering information and deriving statistics on an
author, topic, or country is laborious when consuming Web Services on the command-
line or using low level automation. In contrast, scientific workflow managers can
integrate different types of software tools to automate multi-step processes. The
Taverna workflow engine is a popular open-source scientific workflow manager,
giving easy access to available Web Services. In this tutorial, we demonstrate how to
design scientific workflows for bibliometric analyses in Taverna by integrating Europe
PubMed Central Web Services and statistical analysis tools. To our knowledge, this is
also the first time scientific workflow managers have been used to perform

bibliometric analyses using these Web Services.

52



Automating Bibliometric Analyses Using Taverna Scientific Workflows

Introduction

As science becomes more data intensive, access to data and the process of generating
meaningful information from them become the main vehicle in the scientific process.
In this process, the primary challenge is moving from generated or retrieved data to
information. As in most fields, typical bibliometric analysis workflows require several
discrete steps, each employing different software tools. Frameworks that allow users
to efficiently but easily connect data access points to information generation play a
key role here. However, it is not always straightforward to use a generic framework or
design custom workflows every time a new analysis protocol is to be implemented. In
the absence of a framework, users have to manually connect the inputs and outputs of
individual steps through the entire analysis. This risks introducing errors and makes
analyses difficult to reproduce, especially for other researchers.

Scientific workflow managers integrate several processing units to automate a data
analysis procedure. They are field-independent, so analysis on data from any field,
including bibliometrics, can be automated. Scientific workflows typically have inputs
and outputs, where series of operations are performed on the inputs in order to
produce the outputs. Thus various atomic processing units can be assembled to
produce an analysis protocol that can run without manual intervention!. On the other
hand, reusability and reproducibility are also important for in silico experiments,
facilitating collaboration and combining efforts. These are promoted by online
scientific workflow repositories such as myExperiment2. However, deciphering the
hierarchical composition of a workflow, its control and connections could be difficult
in a larger-scale workflow3. Taking a modular approach and defining the scope of each
module in the workflow eases this process. Most of the freely available scientific
workflow managers have a graphical user interface that helps to visualize the overall
protocol, both when designing and when executing the workflow. Galaxy*, KNIME>
and Taverna® are popular examples of such scientific workflow managers that also
allow modular design. Automating an analysis consisting of several steps, such as in
bibliometrics, using scientific workflow managers makes the process less laborious
and decreases the risk of human errors. Scientific workflow managers follow a

different paradigm than interactive software tools, such as the domain-specific (or
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perhaps domain-limited) BibExcel?, Publish or Perish8 and Sci2? though Sci2 certainly
provides some aspects of the modularity and tool integration of the workflow
managers.

We have previously presented how scientific workflows can be used to solve simple
bibliometrics problems, using Taverna Workbench!0. Like any other scientific
workflow manager, Taverna enables the user to integrate different types of
components. What makes Taverna very useful for bibliometrics is that it already
provides custom support for a number of tools and services that are easily adopted for
performing such analyses, e.g. R tools and XPath, Beanshell and WSDL services. The
programming language R is primarily developed for statistical computing and
visualization. Specific R plug-ins or packages expands its capabilities to machine
learning, text mining and natural language processing!?,12, The XPath service is a user-
friendly tool for creating XPath queries to parse XML documents by simply selecting
nodes from an XML tree with a few mouse clicks. This is highly convenient, as most
bibliometric databases can export information in XML format. For tabular formats, the
Spreadsheet import service provides a similarly minimalistic tool for parsing tables.
For general tasks, Beanshell services allow inclusion of scripts using a Java-like
language. Last but not least, integrated support for Web Services allows Taverna
workflows to directly communicate with remote databases using WSDL queries!3. As
most Web Services use XML as the preferred message format, the Taverna XPath
service is typically used to parse the results returned from Web Service calls.

An important functional aspect of Taverna is that iterations over individual
processes or parts of the workflows are done implicitly by list handling. This feature
provides great flexibility if a process or a sub-workflow has more than one input port.
The user can specify whether the inputs are subjected to a “cross product” (all list
elements in one input against all list elements in the other input) or a “dot product”
(element-wise), or for processors with more than two inputs a combination of both;
all while being able to define the order and precedence of the workflow operations on
these input lists. A core set of built-in features and services provides basic list
handling, such as flattening, merging a list to a string and removing duplicates.

Here we present a tutorial on how to use Taverna to build workflows that interact

with the Europe PubMed Central Web Services. In principle, Taverna could interact
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with any Web Service that provide a SOAP or RESTful interface. The reason we are
demonstrating the integration of Web Services in Taverna using PubMed rather than
Scopus® or Web of Science™14 is that, among these three, PubMed is currently the only
that provides a free Web Service interface. PubMed is also the most used bibliographic
resource in the life sciences. In this tutorial, we show how to retrieve information
using Web Services, how to parse this information, and how to use the various built-in
Taverna services and processors to calculate and visualize the results. In principle, the
same approach could be taken using other resources, provided that the user has
access to them. We also made an example Taverna interface for connecting to the
Thomson Reuters Web of Science™ Web Services and made this available on

myExperiment (https://edu.nl/gcxpg). We have built and tested the workflows in

Taverna Workbench Bioinformatics 2.5.0, but in principle the workflows should run in
any flavor of Taverna Workbench version 2.4.0 or later. For instructions on how to

download and install Taverna, see https://edu.nl/6nhtk. For Rshells to be executable

in Taverna, R, RServe and required R packages must be installed and deployed?5.
Getting started: connecting to Europe PMC Web Services

Europe PubMed Central, or PMC (http://europepmc.org) is one of the leading
databases for peer-reviewed life science literature, providing access to 30.4 million
abstracts and 3.3 million full-text articles and metadata (December 14, 2015). The
goal of Europe PMC is to “build open, full-text scientific literature resources and
support innovation by engaging users, enabling contributors and integrating related
research data”16. This is achieved by providing access through a user-friendly Web
interface, FTP, and SOAP and RESTful Web Service APIs. Here we will use the latter
from within Taverna workflows. This is done as follows. First, the Europe PMC SOAP-
based Web Services are imported into Taverna using “Import new services” in the
Design pane using the WSDL https://www.ebi.ac.uk/europepmc/webservices/
soap?wsdl. The available Web Services should now be listed as available in Taverna
services menu. The 55-page Europe PMC SOAP Web Service Reference Guidel”
describes all details of the API to these newly imported services. Although strongly
recommended, it is not absolutely necessary to read the entire manual before starting

to integrate Europe PMC Web Services from within Taverna. A Web Service
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component is simply added to a workflow by dragging it from the service menu and
dropping it into the workflow whiteboard. To expose the component’s inputs and
outputs, we add XML splitters. These are found in the component Edit menu. For
example, the searchPublications service currently has six input ports: email, offset,
pageSize, queryString, resultType and synonym. Of these, only the queryString is
mandatory. This string corresponds to what one would normally enter in the search
field on the Europe PMC website. The email address registers the user with Europe
PMC, the pageSize the number of entries to be retrieved in one page, the offset refers
to which page of size pageSize to retrieve, synonym whether to expand the query using
the MeSH and UniProt synonyms. The resultType is used to limit the retrieval to the
data we want. It has three settings: idlist, lite and core. If we only want the PubMed IDs
(PMIDs) for subsequent queries, idlist would be sufficient. The lite results contain key
metadata such as the author list and basic bibliographic information, and core all
metadata, including abstracts and full journal details. The full article, if in Europe PMC,
is retrieved using another service, getFulltextXML. The workflow in Figure 3.1
illustrates the use of the searchPublications service with its input and output XML
splitters. The workflow performs a single search similar to using a Web browser and
the Europe PMC Website. The results is an XML tree with the first 100 results of the
Europe PMC search defined by query where the number 100 is defined by
records_to_retrieve constant. This workflow is available on myExperiment

(https://edu.nl/wef8y). In Figure 3.1, all input and output ports of every workflow

components are shown. In subsequent workflows, the ports details are hidden for
simplicity. However, these can easily be displayed in Taverna workbench.

The Europe PMC results are retrieved in XML, and the extraction of the precise
information we want are done by further XML output splitters or XPath services in
Taverna. An XPath is a query written in the XPath language for selecting elements and
attributes in an XML document. XPath allows postfix conditional statements within
square brackets. For example, to restrict the results to PMIDs of cited papers (having a
citedByCount larger than 0), the XPath /resultList/result[citedByCount>0]/pubYear
could be used on the output of the workflow in Figure 3.1 to retrieve the publication
year (pubYear) for cited papers only. The XPath service in Taverna provides a

configuration pane to automatically generate simple XPath expressions, which the

56



S9IIAI3S QM DINd @doang Ssa00€ 01 MO[JI0M dIseq *T'€ 2.Indi

57



Chapter 3

user can then customize, for example by adding conditionals, or combining several
expressions. The results of the Web Service and XML parsers can be passed to other
workflow components either as text or as XML. A second workflow attaching an XPath

statement to the workflow in Figure 3.1 is also available on myExperiment

(https://edu.nl/pwyqv). The output of the workflow, after parsing the
searchPublications output resultList with the XPath above, is a Taverna list of the
publication years of the cited articles among the 100 first retrieved articles matching
the search query query. As mentioned in the introduction, Taverna does iteration
implicitly using lists. If a component for performing a certain task is given a list as

input, the task will be performed on all elements in that list.

Publication records and citation networks

From these simple first steps, and using the same types of components, we will now
construct more advanced workflows exploring the full power of the Europe PMC Web
Services and Taverna. We do this using the notions of embedding and extensibility of
scientific workflows. A simple workflow can be embedded in more complex
workflows. Existing workflows, shared in the myExperiment community, can be
accessed from the myExperiment pane in Taverna and modified or extended
according to the user’s needs.

The well-known Thomson Reuters Web of Science™ search provides a link to a
“Citation Report” with two histograms, one over the number of published items in
each year and one over the citations for these items in each year, based on the search
results. In addition, the Citation Report provides simple statistics, such as average
citations and the h-index for these search results (the h-index may be most relevant
for a single author name search, but is calculated and reported for any set of
publications). We can produce similar histograms based on the Europe PMC database
using a Taverna workflow. For this, it is necessary to use two Web Services,
searchPublications as before, and getCitations to get the publication year of papers
citing the papers returned by the searchPublications query (for example on an author
name). Figure 3.2 shows such a workflow, which is also available on myExperiment

(https://edu.nl/uddhg). The workflow uses two Europe PMC Web Services:
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searchPublications and getCitations to generate publication statistics in the form of a

“citation report” for a particular author.

- Workflow input ports

[omsm]a

| build_query || articles_to_retrieve || resultType_lite || offSet_zero

searchPublications

PubMed_and_MEDLINE || citing_articles_to_retrieve || extract_id_for_cited_work || extract_pubYear_for_all_work

getCitations

| extract_pubYear_for_citing_articles |

. Workflow|output ports :

Figure 3.2. A workflow to generate simple statistics of the citation related to a specific
author

The workflow in Figure 3.2 takes as input the full name of an author. This argument
is passed to a Java BeanShell build_query that constructs the specific query "auth:\" "
+author_name+"\" sort_date:y". Combined with a value 1,000 for the number of
articles_to_retrieve, this will request the 1,000 most recent publications (sorted by
date) for the author or authors matching author_name. The list of PMIDs returned by
searchPublications is used as input to getCitations, which returns a list of lists of
publication years for the papers citing the papers returned by searchPublications. In
this workflow, XPaths are directly applied on the Web Services results. This skips the

two XML output splitters and simplifies the visual appearance of the workflow.

Whether to use output splitters and short XPaths, or longer XPaths directly on the
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Web Service output, is mostly a matter of taste. The XPath extracting the pubYear for
the citing articles produces a list of lists of publication years as output. In order to
make a combined histogram over all citations to all papers from the author, we flatten
this list of lists of publication years to a single list using the built-in Flatten_List local
service. This single list of publication years is then passed to an Rshell component
draw_histogram as data of the (semantic) type “integer vector”, as specified in the
input port to this workflow component. The integer type in R exists to pass data to
programs written in strongly typed languages that expects them, and so that integer
data can be represented “exactly and compactly”18. In this workflow, the publication
years could just as well be passed as “numeric” vectors. The Rshell is very simple and
uses the hist() function!? to generate the two histograms. For authors having a unique
identifier, such as an ORCID, the build query can be changed to "authorid:\"" +
author_id + "\" sort_date:y".

An output of this workflow for the author “Jonas Bergquist” (Professor Jonas
Bergquist, Department of Chemistry - Biomedical Centre, Uppsala University, Sweden)
is shown in Figure 3.3. An extended version of this workflow is available on

myExperiment (https://edu.nl/ptexf) that combines the publications and citations

records in a two-dimensional heatmap showing the delay, increase and decrease of
citations for papers over time. The workflow can easily be extended to accept a list of
authors rather than a single author, generating either combined statistics or
individual citation reports for each author in the list.

Suppose instead we are interested in who is cited by whom or citing the work of a
particular researcher and how these authors in turn cite each other. To put it more
simply: we would like to construct and visualize a co-citation network based on one
researcher. Any network consists of multiple items (vertices or nodes) and their
underlying relationships (edges). In the case of our co-citation network, the vertices
are the single researcher and the authors cited by or citing this particular researcher.

The edges are all the citations to and from the researchers in the co-citation network.

60



Automating Bibliometric Analyses Using Taverna Scientific Workflows
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300
250
200

150

Publications
Citations

100

50

0 .
I T T T T T 1 T T T T T T 1
2002 2004 2006 2008 2010 2012 2014 2002 2004 2006 2008 2010 2012 2014

Year Year

Figure 3.3. Citation report for an author (“Jonas Bergquist”) generated by the
workflow in Figure 3.2.

Constructing and visualizing this co-citation graph requires a slightly more
elaborate workflow. Dividing up the task into smaller ones, we first look up all
publications for the author using searchPublications. For each publication in the
returned list, we then look up the references and citations in parallel using
getReferences and getCitations respectively. These three requests returns all vertices
in our co-citation graph, but does not retrieve citations, or edges, between papers by
other authors. To retrieve these we combine all the vertices and call getReferences and
getCitations again, once for each vertex. If the reference or citation is already
represented by a vertex in the graph, we add a new edge to or from that vertex. To
make the analysis more interesting, we can also have the workflow keep track of the
author’s own papers and self-citations. The best way to do this is by defining
attributes to the edges and vertices in the co-citation graph. The workflow in Figure
3.4 does this by generating a description of the graph in Pajek?? format using the
BeanShell combine_and_make_Pajek file. In most workflows, one would normally
strive to use stream data between components or use simple tabular of XML file
formats. When dealing with graphs, however, it is sensible to use a common format for
defining graphs, such as GraphML?!, GML?2, LGL?3 or Pajek. The workflow in Figure 3.4
finds all papers citing and cited in articles published by an author, and all citations

between them. The workflow generates a citation network graph that is captured by
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and displayed inside Taverna. The workflow also generates a Pajek file incorporating
the information on self-citations using different edge attributes (color) and labels the
vertices differently for the author (last name and publication year) than for the other
vertices (PubMed ID).

The Pajek content created by combine_and_make_Pajek_file and written to file by
Write_Text File is read by the Rshell draw_graph using the igraph R package?*. The
igraph package contains functions for reading and writing graphs in several formats,
including those mentioned here. The outputs of the workflow are a simplified graph in
Sugiyama layout?5 created by igraph using simplify() and layout.sugiyama(), and the
corresponding Pajek file created by write_graph() after simplification. A static but
visual representation of the graph is captured by Taverna as well as written to a PDF
file. To interactively explore and analyze the graph, the Pajek file can be opened in
Pajek or a tool such as the VOSviewer?6, which are both tools for the analysis and
visualization of (bibliometric) networks. The Pajek file created by the Taverna
workflow (run November 30, 2015) was opened in VOSviewer 1.6.3, showing the
largest set of connected items (3,782) out of the 3,851 vertices in this citation graph
(Figure 3.5; can also be opened as an interactive Java application by clicking on the
https://edu.nl/avgwc). The clustering was performed with clustering resolution 0.05
and minimum cluster size 50. The author's own papers are annotated with first
author, last name and year, other papers with PMID. The publication record in the
example above, including citations, can be visualized as a several highly
interconnected and overlapping clusters, the largest of which (red) is on proteomics.
In the center of this large cluster is a highly cited review by Aebersold and Mann on
mass spectrometry-based proteomics (PMID 12634793)27. The dark blue cluster
covers work in psychophysiology and neuroscience, excluding proteomics but
including new methods for analysis of cerebrospinal fluid28,2°. In addition to this core
of work in proteomics and neuroscience, we see a few protuberances representing
collaborations with researchers in different disciplines, such example veterinary
science applications3? (light brown) and surface chemistry techniques31,32 (magenta).
The full VOSviewer map is also included as supplemental information.

Another way to view the research topics of a particular author is to count words

and noun phrases in the titles and abstracts, visualizing the results as a graph or tag

62



Automating Bibliometric Analyses Using Taverna Scientific Workflows

cloud. A workflow using the searchPublications Web Service and the R packages tm!!
for text mining and wordcloud for visualization is also available on myExperiment

(https://edu.nl/hgwkc).

- Workflow input ports -

[
T * ..........

| build_query || articles_to_retrieve || resultType_core “ offSet_zero

searchPublications

extract_publication_year ”-pageSize | | PubMed_and_MEDLINE ” extract_id_for_cited_work | | extract_first_author_last_name

| getReferences | | getCitations |

v v

—

| extract_reference_id | | extract_citation_id |

collect_all_vertices

Flatten_List_twice

| getCitations_2 | | getReferences_2 |

(] s
| extract_citation_id_2 | | extract_reference_id_2 | /
Sa e

| combine_and_make_Pajek_ﬁleﬂ Pajek_filename |

qu_ s

Figure 3.4. A scientific workflow for generating an author citation network
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Biomolecular interactions

Resources such as UniProt33, IntAct34 and the RCSB PDB3% provide a wealth of curated
information on proteins, their functions, interactions and structures. Importantly, they
always cite the original source of the information, which most commonly is a peer-
reviewed scientific publication. Europe PMC is also cross-referenced to these and
several other databases. The getDatabaseLinks Web Service is used to access the
UniProtKB, IntAct or PDB records associated with an article. This may seem like a
trivial service, but is in fact a programmatic access that allows us to explore the
scientific literature, not only for bibliometrics, but also to investigate what the
publications are about, e.g., the chemical compounds, genes, proteins, diseases or
biological species. For example, consider a researcher who is interested in protein P
and would like to find all proteins mentioned in connection with this protein in the
scientific literature in a specific context. This context could be a molecular interaction,
being part of the same protein complex, one protein activating the other, etcetera.
Most researchers would use databases such as IntAct or UniProtKB to search for this
information under the entry for protein P. But suppose the researcher wants to look a
bit more broadly at what has been reported in the scientific literature but not yet
annotated in UniProtKB, IntAct, or any other database as a specific type of protein-
protein interaction. This can be accomplished using searchPublications and
getDatabaseLinks in the same workflow (Figure 3.6). The workflow looks up the
proteins in UniProtKB most frequently co-occurring in the literature with a query
protein and in a specified context, e.g., type of protein-protein interaction or disease.
The workflow then builds a network with the proteins as nodes and the weights of the
edges corresponding to the number of co-occurrences in the literature.

For simplicity, the input and output port splitters are embedded with the Web
Services as Taverna components in the workflow in Figure 3.6. The workflow builds a
query string from user provided input to search for a particular UniProt identifier in
the context of a certain phrase appearing in the title or abstract. The list of retrieved
article identifiers (PMIDs) is then passed to getDatabaseLinks, which, like getCitations,
returns a list of lists of all UniProt identifiers co-occurring in those publications. These
may be very few, or number in the thousands for large proteomics studies. In general,

we would expect a co-occurrence in a publication with few linked UniProt IDs to be
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more relevant than a co-occurrence in a list of several thousand proteins. The results
can be weighted using the returned dbCountList, or by limiting the number of UniProt
IDs retrieved for each PMID to a small number to reduce the influence of proteomic
studies. For example, a searchPublications query for UniProt ID P29083, or the
Transcription factor IIE alpha subunit, with the phrase “complex” in the title or
abstract returns a list of PMIDs for 9 publications (November 30, 2015). Passing this
list of PMIDs to getDatabaseLinks and specifying a pageSize of 10 to retrieve at most
10 identifiers per PMID produces a list of lists with a total of 62 UniProt IDs, of which
53 are unique. The workflow in Figure 3.6 then counts the frequencies of these
UniProt IDs and sort them in descending order using sort(table(UniProt_IDs),
decreasing = TRUE) in the Rshell count frequencies. The protein most frequently
occurring in these lists is the query protein itself (5 occurrences). The runner-up is
unsurprisingly UniProt ID P29084 or the beta subunit of the Transcription factor IIE
with 3 appearances. Three other UniProt identifiers occur twice and the remainder
once. Raising the pageSize limit to the maximum allowed 1,000 returns 2,948
identifiers, 2,550 of which are unique. Two sublists from two large-scale proteomics
reports3¢ reached the maximum of 1,000 UniProt IDs, reporting 2,932 and 5,159
identifiers respectively. The query protein is again in the top (13 occurrences), but the
beta subunit is now only in 95t place, still with only 3 co-occurrences.

The network produced by the workflow in Figure 3.6 can be further analyzed in
Cytoscape, a common tool for network visualization and analysis in bioinformatics3’.
The workflow output can be opened either directly as GML in Cytoscape. Figure 3.7
shows Cytoscape 3.3.0 with the output from the workflow in Figure 3.6 on
Apolipoprotein A-I (UniProt ID P02647) and “complex” as before with the “Edge-
weighted Spring Embedded” Cytoscape layout. The cluster of proteins associated with
Apolipoprotein A-I was analyzed for enrichment of Gene Ontology biological
processes by BiNGO 3.0.338. In Figure 3.7, proteins frequently co-occurring with
Apolipoprotein A-I and being involved in “macromolecular complex remodeling” (as
well as “protein-lipid complex remodeling” and “plasma lipoprotein particle
remodeling”) are highlighted in yellow. Again, these results are not surprising given

that Apolipoprotein A-I is the dominant protein component of high density lipoprotein
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UniProt_ID_in_paper | | phrase_in_title_or_abstract || proteins_to_retrieve | A

build_query |

PubMed_and_MEDLINE || | extract_id || UniProt |

build_query_2

extract_id_2

| extract_UniProt_id_2 | extract_dbCount |

Flatten_List_twice

Figure 3.6. Workflow to generate a protein-protein network based on co-occurrence

of UniProtKB accessions
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(the “good cholesterol”) in plasma.

The relevance of a co-occurrence (of genes or proteins) decreases with the number
of co-occurring genes or proteins in a particular publication, as long lists are the
results of broad proteomics studies rather than specific experiments probing the
interactions of a particular protein or dissecting a specific protein-protein complex.
But to take all proteins into account, a simple trick to retrieve an arbitrary number of
results from any Europe PMC Web Service in a Taverna workflow is to supply the Web
Service call with a sufficiently long list of offSet values, counting from zero. This list
can be created inside the build_query BeanShell to hide the details from the workflow
view. For example, adding a simple piece of code defining a new output offSets as  int
[] offSets = new int [] { 0, 1, 2, 3, 4 }; to build_query and connecting the output port
offSets to the offSet input port of the Web Service will retrieve at most 5 pages of
pageSize results from a Europe PMC Web Service (5,000 results with the maximum
pageSize of 1,000). This approach is generally fine for literature on genes and proteins,
but the Europe PMC Web Services, or Web Services generally, are not intended for
piecemeal retrieval of millions of records (or the entire Europe PMC). This can better
be done using the FTP access. UniProt is just one of many molecular databases linked
with Europe PMC. The API to access these database links is the same for all molecular

databases, all using the getDatabaseLinks Web Service.
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Discussion

Most scientific workflow managers interact with the user through intuitive and visual
interfaces. Like all software, Taverna also has some peculiarities. For example, to
execute R scripts, a connection to RServe must first be established. The advantage is
that this can be on a remote server just as easily as on the local machine, something
that may be useful for computationally demanding tasks. Most workflow managers
also support multiple scripting languages and types of workflow components. While
this brings a lot of flexibility and power, it also makes it more difficult for those not
familiar with all of these languages or services to understand the details of
heterogeneous workflows. In this tutorial, we have used only Beanshell, Rshell, XPath
and WSDL components. For simplicity, and because they were not needed, we did not
include any local tools or shells, JSONPaths or REST services in these workflows.
However, we have also uploaded a REST equivalent of the Figure 3.2 workflow to
myExperiment (https://edu.nl/hwéwy).

Taverna is flexible, and can be used to organize the running of locally installed
software, arrange a series of R scripts, shuffle data between external Web Services, or
any combination thereof. Unlike KNIME, Taverna is free both as in ‘speech’ (open
source) and as in ‘beer’ (gratis). Taverna’s emphasis on Web Services makes it a
perfect partner to bibliometric resources such as Europe PMC. The Taverna codebase
is in Java, whereas Galaxy’s is in Python. This is also reflected in the default scripting
language in the workflow managers (Java in Taverna, Python in Galaxy). The
programming paradigm is shared between all workflow managers however, and there
have even been efforts to enact Taverna workflows through Galaxy3°.

Documentation is important, in particular for sharing or collaborative development
of workflows. All elements (processors, data links, inputs and outputs) in Taverna
workflows can be annotated individually. These annotations follow the components
when imported from one workflow to another and are found under the “Details” tab in
the Service panel in Taverna Workbench. Components and connections only have a
generic “Description” field whereas inputs and outputs also have an “Example” field
that can be used as a default value when executing the workflow. The workflow itself
has “Author” and “Title” fields, in addition to a description. Workflows can be shared

on myExperiment, as we have done. When uploading a Taverna workflow,
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myExperiment attempts to extract workflow metadata such as title and description
directly from these annotations. This works for Taverna, Galaxy and several other
workflow managers. myExperiment also provide basic version control and allow users
to comment on and discuss workflows. All this information can then be used to find
workflows using a keyword search on the myExperiment website. Currently (May
2016), there are 3,752 workflows shared on myExperiment, so it is not practical to
browse all workflows to find the one closest to what one needs (or the best starting
point for one’s workflow).

The examples in this paper do not use any nested structures which are otherwise
common in large workflows. The legibility of complex workflows such as in Figure 3.4
may be improved by boxing the Web Service calls, hiding the details of the
input/output splitters and XPaths and allowing the user to first grasp the overall logic

of the workflow.
Conclusions

Bibliometric analyses often involve several steps that are carried out in different
software tools. This requires much manual orchestration from one software tool to
the other, which makes the process labor intensive and error prone. Scientific
workflow managers, which are increasingly being used in other data intensive fields
but have not yet seen widespread usage in bibliometrics, are useful tools to connect
these different data retrieval and computational steps in an automated way. One such
workflow manager is Taverna. In this study, we argue the direct support of Web
Services, XML parsers and R in Taverna workflows make Taverna particularly useful
for bibliometrics. With R comes direct access to a great number of powerful software
packages such as igraph, wordcloud and rworldmap#® for visualization, tm and
openNLP for text mining and natural language processing. One limitation of using a
scientific workflow manager such as Taverna, is that they are not meant for
interactive exploration of large datasets. For this, it is more sensible to use domain-
specific tools such as Pajek or VOSviewer for scientometrics, or Cytoscape for
bioinformatics, as we demonstrated here.

In addition, software such as Taverna supplies repeatability and reusability to

bibliometrics analyses. For example, all workflows discussed in this paper can be
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found in the myExperiment group for Bibliometrics and Scientometrics

(https://edu.nl/4r8x3) for anyone to open and run from within Taverna, using the

exactly the same or any other input parameters to define the query. Other Taverna
workflows in the Bibliometrics and Scientometrics group on myExperiment use
rworldmap to map differences in the geographic distribution of author affiliations
between two PubMed search results. Such workflows can for example look at
geographical patterns of research on particular diseases, or geographical bias in
different journals.

The bibliometric analyses illustrated in this study are exemplative of the kind of
analyses we do in our research and here focused on the use of the Europe PMC Web
Services. In a previous paperl? we have used Taverna for other types of bibliometric
analyses, such as geographic and temporal analyses of publication patterns, word
usage and co-citation analysis. Here we have shown how to access Europe PMC
through a Web Service API and how to perform bibliometric analyses using the

Taverna scientific workflow manager, but, more importantly, how to combine the two.
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Abstract

COMICS is an interactive and open-access Web platform for integration and
visualization of molecular expression data in anatomograms of zebrafish, carp and
mouse model systems. Anatomical ontologies are used to map omics data across
experiments and between an experiment and a particular visualization in a data
dependent manner. COMICS is built on top of several existing resources. Zebrafish and
mouse anatomical ontologies with their controlled vocabulary (CV) and defined
hierarchy are used with the ontoCAT R package to aggregate data for comparison and
visualization. Libraries from the QGIS geographical information system are used with
the R packages “maps” and “maptools” to visualize and interact with molecular
expression data in anatomical drawings of model systems. COMICS allows users to
upload their own data from omics experiments, using any gene or protein
nomenclature they wish, as long as CV terms are used to define anatomical regions or
developmental stages. Common nomenclatures such as the ZFIN gene names and
UniProt accessions are provided additional support. COMICS can be used to generate
publication-quality visualization of gene and protein expression across experiments.
Unlike previous tools that have used anatomical ontologies to interpret imaging data
in several animal models, including zebrafish, COMICS is designed to take spatially
resolved data generated by dissection or fractionation and display this data in visually
clear anatomical representations rather than large data tables. COMICS is optimized
for ease-of-use, with a minimalistic web interface and automatic selection of the

appropriate visual representation depending on the input data.
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Introduction

Ontologies

For more than a decade, ontology-based data integration has been used to merge
heterogeneous data in many domains, including bioinformatics!. In many disciplines,
ontologies have to be actively maintained to keep up with the development or new
discoveries in the field. This is particularly true for the more technical ontologies used
to annotate datasets in genomics or proteomics, such as the PRIDE Controlled
Vocabulary?, and ontologies used to describe bioinformatics operations as well as data
types, formats and identifiers, such as EDAM3. However, there are also examples of
mature and essentially complete ontologies. These include the anatomical ontologies
of well-studied organisms, the anatomies themselves being highly conserved over
time (millions of years). Simpler controlled vocabularies (CVs) may be sufficient for
some purposes, such as standardizing the way datasets in public repositories are
annotated with metadata. However, when comparing or integrating heterogeneous
(or heterogeneously annotated) data generated in different laboratories or using
different experimental protocols, such CVs lack the necessary structure. A proteomics
researcher may wish to find mass spectrometry datasets from an organism of interest
generated using any “electrospray ionization” (CV term ID “MS:1000073”) technique
to build a spectral library of comparable data. But if some such datasets are annotated
as having been acquired with “microelectrospray” (MS:1000397) and others as being
derived from a “nanoelectrospray” (MS:1000398) experiment, how does the software
know these all qualify as “electrospray ionization” mass spectrometry datasets? This
information is provided by the relationships between the terms as defined in an
ontology. In this case, both the specific “microelectrospray” and “nanoelectrospray”
have a direct “is a” relationship with the more general or parent “electrospray
ionization”. One can therefore reason that they are all “electrospray ionization”
datasets, and hence compatible for this researcher’s defined purpose.

Common methods for generating deep proteomics datasets often involve
separation or fractionation. These can be applied on the sample level, for example, by
dissection®, cell sorting5 or organelle fractionation®, each defining a spatial context of

subsequently generated data. Fractionation on the protein level is also commonplace,
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and provide a protein-level context for peptide-level data. When comparing two such
large datasets in any -omics field, we cannot assume the two datasets have been
acquired in exactly the same way. Depending on the laboratory, equipment,
experimental protocol, skills of the experimentalists involved, or allocated effort, the
dissection or fractionation may have been done differently, altering the spatial
definition of the fractions of the dataset. To integrate such datasets for the purpose of
comparison of spatial expression patterns, the datasets must be annotated using
something like an anatomical or cellular ontology, with defined relationships between
anatomical entities. Many such ontologies already exist, including the model-system
specific C. elegans gross anatomy (WBBT)7, the Drosophila gross anatomy (FBbt and
FBdv), also referred to as the Drosophila anatomy ontology (DAO)8, the Mouse Adult
Gross Anatomy (MA)° Xenopus anatomy and development (XAO)10 and Zebrafish
anatomy and development (ZFA and ZFS)!1. There are also the more general
Anatomical Entity Ontology (AEO)!2, Biological Spatial Ontology (BSPO)!3 and the
general vertebrate “Uber-anatomy” ontology (UBERON)4 currently (20170415)
containing 15,036 anatomical terms. The zebrafish ZFA and ZFS ontologies contain
3175 anatomical terms (20170627 release) and the mouse MA 3257 terms
(20170207 version). For comparison, the two major ontologies covering human
anatomy, the Foundational Model of Anatomy (FMA)!> and SNOMED-CT!6, contain

75,019 and 30,933 anatomical concepts respectively!?.

Anatomical visualization

In their classic 1987 paper “Why a Diagram is (Sometimes) Worth Ten Thousand
Words”18, Larkin and Simon demonstrated how well-made figures or diagrams use
location to group information, reduce the need for symbolic labels and enable a large
number of conceptual inferences to be made, something the human brain is extremely
good at. Larkin and Simon argued that the main advantages of diagrams are
computational - diagrams are better representations not because they contain more
information, but because the indexing of this information support extremely efficient
computational processes, including those carried out in the human brain upon trying
to grasp the contents of a research paper. Anatomical schemata or anatomograms are
now used to interact with on-line databases, such as Reactome!?, the Human Protein

Atlas?9, ProteomicsDB?2! and the EMBL-EBI Expression Atlas?2.
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This paper describes a new stand-alone freeware, COMICS, with an interactive web-
based interface designed to fit into a niche between existing tools for combined
integration and visualization of molecular expression data in some vertebrate model
organisms (zebrafish, carp and mouse). The software uses the existing anatomical
ontologies to map arbitrary omics data across experiments and between one
experiment and a particular visualization in a data-dependent manner. The method
and software can be extended to other model systems, provided the relevant ontology
and visual representation (picture). COMICS is designed for simplicity-of-use, and can
generate custom, publication-quality, vector graphics mapping molecular expression
(such as from transcriptomics, proteomics or metabolomics) data to anatomical
diagrams. In addition to molecular expression levels, the locations in the diagram
immediately convey information on similarity or dissimilarity between adjacent
structures or parts of an organ, such as the eye or the brain, tissue specificity (one part
against the whole) and differences in expression levels between genes/proteins or

between animals.

Methods

COMICS takes as input a table of numerical data (e.g., gene or protein expression
values) with each row corresponding to one CV term from an anatomical ontology,
such as the ZFA!! or MA9, and each column to one particular gene or protein, with the
CV terms as row names and gene or protein identifiers as column names. If the
molecular identifiers and anatomical CV terms are swapped, then COMICS will
automatically detect this and transpose the matrix. COMICS requires CV terms instead
of common names of anatomical features to be able to match them correctly with
parts of the picture. For carp, we also apply ZFA ontology CV-terms as there is no
specific ontology for this species. Both species belong to a single Cyprinidae family
and are quite close in terms of tissues and organs present?3.

First, the CV terms in the data uploaded by the user are matched to CV terms with a
corresponding polygon defined in the shapefile for the selected species. This is
performed using the R package ontoCAT?4, which enables extracting term parents and
children (generalization/specialization) as well as terms with a part of/has part

(whole/part) relationship with the given term from the anatomical ontology. This is a
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key step that allows any correctly annotated data to be mapped by COMICS to the
anatomical representations in the shapefiles. An example of the ontology-based pre-
processing and aggregation of molecular expression data is shown in Figure 4.1. For
computational efficiency, a lookup table for the mapping between the ontology and
visualization shapefile is computed for each ontology. This lookup table is rebuilt once
for each new version of the ontology or shapefile.

For the anatomical drawings, we used the mature QGIS open-source geographic
information system?5 to create shapefiles. These shapefiles were constructed from
simple polygons corresponding to anatomical structures such as organs or parts of
organs in zebrafish and carp. These shapefiles can easily be extended to include other
model systems or developmental stages for which anatomical ontologies are available.
Inspiration for the anatomical illustrations was drawn from previously published
work2627.28,

To visualize the numerical data obtained from the user on the anatomical
shapefiles we used the existing maps and maptools R packages commonly used for
working with maps and gridSVG to produce vector graphics in the SVG format. The
Adobe PDF is supported by the pre-installed grDevices package. The range of
numerical data is translated to a palette of colors forming a one-, two- or three-color
gradient. COMICS has several options that enable the user to choose from several
predefined color schemes or make a new one and choose the number of bins for the
gradient and scaling (linear or logarithmic). In addition, the user can keep the gradient
fixed across diagrams or scale it automatically for each visualization. The former
option is used for comparing (absolute) expression across many diagrams. The latter
automatically adapts to the minimum and maximum values in the data for each gene
or protein and is optimal for looking at tissue specificity or relative expression of two
genes or proteins. The expression of two entities can also be computed and compared
directly in COMICS.

The cartoons can be saved individually or as a collection, as vector graphics in the

PDF or SVG formats.
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Figure 4.1. ZFA anatomical ontology is used to map scalar expression data to defined
anatomical regions. This also provides a means to directly and visually compare data
from different experiments and heterogeneous datasets. In this example, the user has
provided data for “fin”, which is then propagated to the five distinct fins visualized in
the tool, through the parent-child (is a) relationships defined in ZFA. Because the fins
are not distinguished in the user’s dataset, the expression value provided by the user
is mapped to all five visible fins. If the user provides information on a more detailed
level than is visualized by COMICS, then the mean expression of all children or parts
are mapped to the anatomical structure defined in the shapefile. Here, separate
expression data for the iris, sclera and lens (all part of the eye) are averaged to the
eye. The averaging is done once, for all parts, independent of intermediate levels in the
ontological hierarchy (such as the anterior segment eye). The default shapefile
corresponds to the organs and tissues that are easy to dissect for an omics
experiment, although the shapefile can easily be modified to incorporate other
experimental designs.
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Technically, COMICS is a web application build around R scripts. For standalone
usage it is containerized using Docker. The container includes all software, including
source code, packages and scripts, making it very easy to install and run COMICS
locally, independently of other installed software. The standalone mode enables the
user to work with the application locally, without uploading datasets to any server.
Links to the Docker container and locations where COMICS can be run remotely will
be maintained on https://edu.nl/drrew.

To test COMICS, we used previously published data from the public domain.
Wildtype gene expression data for zebrafish was taken from ZFIN, already annotated
using the ZFA29. Protein expression data in adult zebrafish were taken from the
zebrafish spectral library* Expression data from carp were taken from a recent paper
on the full-body transcriptome and proteome resource for this species3?. Mouse gene
expression data was downloaded from the Mouse Atlas of Gene Expression3!, and
mouse protein data was generated in-house using the same method as for the

zebrafish spectral library.
Results

The main product of this work is a software tool with a simple web interface as shown
in Figure 4.2. The screenshot visualizes the gene expression of the carp ortholog of
zebrafish cytokeratin-8, using the ZFA ontology mapped onto the anatomy of a carp,
closely resembling that of zebrafish. The interface is divided into panels containing
basic information about the underlying data, image controls, the image itself and links
to cross-referenced databases (here UniProt, ZFIN and NCBI). The image is
interactive: as the user hovers the mouse pointer over an anatomical region, the
tooltip displays the name, ontology identifier and expression level (here for the dorsal
fin). Clicking on the anatomical structure will lead to the web page for this part in the
online version of the corresponding ontology. The image shapefiles annotated with
the ZFA and MA anatomical ontologies are available as individual files for developers

who would like to integrate them in their own software.
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Figure 4.2. Screenshot of the COMICS interface, presenting the information about the
selected dataset (top), a control panel with options and parameters for visualization
(left), the generated output image (center, right) and a table containing the selected
gene/protein description with links to the corresponding databases (bottom). Gene
expression data3? for the carp cytokeratin-8 (Q6NWF6) ortholog is here used as an
example.

The COMICS tool is generic because it aggregates and displays any numerical data
provided with anatomical ontology annotations linked to a shapefile. The tool can
therefore be used to compare the expression of a few genes or proteins in one
experiment and model system, look at the ratio of transcripts and the corresponding
proteins, or compare the expression of orthologs across model systems. Figure 4.3
shows the expression of sarcosine dehydrogenase in zebrafish (sardh gene) and
mouse (the sarcosine dehydrogenase protein), respectively, revealing the expression

pattern for this pair of orthologs is conserved across the vertebrate subphylum (the

85




Chapter 4

last common ancestor of the mouse and the two cyprinids lived over 400 million years
ago3?). As a final verification of the parsing of the anatomical ontology we looked at
the expression of four genes with well-known spatial specificity in ZFIN (Figure 4.4).
The four panels visualize gene expression, quantified as the number of experiments in
which the transcript has been observed in wildtype fish and recorded by ZFIN, of four
genes: rhodopsin (rho, ZDB-GENE-990415-271) in the eye (a), fatty acid binding
protein la (fabpla, ZDB-GENE-020318-3) in the liver (b), proopiomelanocortin a
(pomca, ZDB-GENE-030513-2) in the brain, specifically the hypothalamus (c) and
vitellogenin 2 (vtg2, ZDB-GENE-001201-2) in the liver and ovaries (d).
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Figure 4.3. Publication-quality figures, showing the expression of Sarcosine
dehydrogenase orthologs in zebrafish (sardh gene) (a), mouse (Sarcosine
dehydrogenase protein, UniProt accession number Q99LB7) (b). The numbers on the
color scales represent the fraction of experiments in ZFIN in which gene expression is
observed (a) and absolute spectral counts (b)
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ID: ZDB-GENE-990415-271 ID: ZDB-GENE-020318-3

Figure 4.4. Organ-specific expression of four genes in zebrafish: rhodopsin (a), fatty
acid binding protein 1a (b), proopiomelanocortin a (c), vitellogenin 2 (d), according
to the number of registered detection of expression among all wildtype datasets in the
ZFIN gene expression database. The color scale represent the number of experiments
in ZFIN in which gene expression was observed in a particular organ or tissue.

If COMICS detects the presence of only male or female organ data, then the
anatomical map will represent a single sex. If neither or both male and female organ
annotations are included in the dataset, then a generic anatomical representation will
be used. For mouse, a model with common superior and split inferior regions is also

available.

Discussion

To summarize, COMICS is a simple, easy-to-use tool for generating visually clear,
publication-quality vector graphics from arbitrary omics data using the mouse and
zebrafish anatomical ontologies. COMICS should not be compared with resources pre-
dating the development of these anatomical ontologies, such as the now off-line GEMS
database33, which was aimed at annotation of real images. COMICS can be used to
compare the expression of a pair of genes or proteins, such as two isoforms, or the
expression of a gene measured on the transcript and protein levels. In this way, one
can visually inspect and quickly assess results from an ontology-based aggregation of
two or more heterogeneous, spatially resolved, omics datasets. COMICS is not a tool to
provide detailed and beautiful anatomical illustrations of an organism in the tradition

of Vesalius34. Rather, we have deliberately compromised anatomical precision for
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diagrammatic simplicity, ensuring the cartoons are clear also when viewed at a small
scale, allowing quick side-by-side comparison of datasets. Future extensions of
COMICS will include shapefiles of different embryonic and larval stages using the ZFS

ontology as well as additional model systems.

Conclusions

We have here presented a simple software, COMICS, for mapping any numerical gene,
protein or metabolomics data as choropleths in anatomical cartoons referred to as
anatomograms. Unlike existing tools, COMICS makes full use of anatomical ontologies
to integrate spatially or anatomically resolved data in several animal models,
including zebrafish and mouse. COMICS is built on existing libraries and has a
minimalistic web interface for selecting the appropriate visual representation and
exporting publication-quality graphics. Additional model systems (as well as human
anatomy or other developmental stages) are easy to add to the COMICS platform,
provided an anatomical ontology in the OBO format and an organism-specific
shapefile with mappings to the CV terms in the ontology are available. COMICS can be

downloaded as a Docker image from https://edu.nl/drrew.
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Abstract

Accurate determination of ion masses by the mass spectrometer increases the
confidence of identifications and eventually leads to better identification and
quantification. Although mass measurement accuracy and resolving power of mass
spectrometers improved significantly throughout the years, there is a certain degree
of systematic and random error in every data, depending on the instrument type. It is
possible and beneficial to reduce mass measurement error after mass spectrometry
analysis using computational methods. Here, we present a modular, command-line
tool that performs automatic internal MS1 recalibration on mzXML files. msRecal
selects the suitable calibration function based on the instrument type acquired from
metadata and uses the calculated exact ion masses of high confidence identifications

as calibrants.

94



Metadata-driven Calibration of Mass Spectrometry Data

Introduction

Advances in liquid chromatography - mass spectrometry have made the high
throughput analysis of proteomics data more efficient and reliable. In bottom-up
analyses, samples are very complex, and many peptides can elute at the same time.
Thus, achieving high mass accuracy in MS1 measurements is important since
precursor mass acts as an initial filter to identify peptides!2. Due to instrumental
factors, there is always a degree of deviation from the exact mass in measurements,
affecting the accuracy and resulting in bias. Random errors are also present in
measurements, affecting the precision. Taking repeated measurements of the same
sample is not a practical solution to overcome these errors, as it is usually not feasible
when working with biological samples, and yet, the systematic error remains an issue
to tackle in any case3. Calibrating measured masses with a calibration function that
uses calculated exact masses, i.e., theoretical masses, as calibrants is an efficient way
to reduce systematic and random error4s. Typically, calibration functions take the
physics of the mass analyzer into account. There are several functions available in the
literature for common mass analyzer types. Choosing the correct calibration function
with suitable calibrants is essential for a good calibration®. Getting the instrument
type from the metadata and choosing the correct calibration function and parameters
according to this information is useful for automating mass calibration.

Open mass spectrometry data formats such as mzXML7 and mzML8 usually contain
metadata containing details about the instrument type. Human Proteome
Organization (HUPO) Proteomics Standards Initiative’s controlled vocabulary for
mass spectrometry (PSI-MS CV) defines mass spectrometry-related entities in a
hierarchical manner, including mass analyzer type®. The PSI-MS CV directly supports
open formats such as mzML, mzldentML19, and mzTab!!; however, their standardized
annotation is not enforced in the mzXML format!2.13, Nevertheless, it is still possible to
parse relevant information from the human-readable metadata present in mzXML
files.

In principle, calibrants could be chosen among the peptides already identified with
high confidence in the same analysis; however, it is also possible to use the
identifications from a different MS run after additional steps if the analyzed samples

are very similar or the same. Palmblad et al. showed that exact masses of peptides
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identified by MS/MS in an ion trap instrument could be used to calibrate MS1 spectra
from an FTICR instrument to reduce the overall mass measurement error after
aligning the retention times!4. Here, we focus on data from hybrid instruments, where

the data is recalibrated by using peptides identified in the same MS run.

Methods

msRecal takes mzXML and pepXML?5 files as inputs and uses peptide identifications
from the pepXML file to recalibrate the MS1 spectra and MS2 precursor masses in the
mzXML file. The program outputs a recalibrated and reindexed mzXML file, ready to
be used in different analysis pipelines. In principle, mzXML and pepXML files could be
from different MS runs on similar samples. Retention times of different MS runs
should be aligned before running msRecal. If identifications from the same MS run are
used as calibrants, there is no need for this additional step.

msRecal is a command-line tool programmed in C. Dedicated libraries are used to
read/write mzXML and pepXML files, and the GNU Scientific Library¢ is used to fit the
calibration function. msRecal does not change the nature of the data; the input and
output are of the same data type, mzXML. msRecal could be seamlessly incorporated
into bottom-up MS analysis workflows that work with mzXML and pepXML, like the
ones used by Bruin et al.l7 and Hussaarts et al.18 An example workflow structure
incorporating the msRecal module is shown in Figure 5.1. After recalibration with
msRecal, the recalibrated mzXML file can be searched again with the same parameters
for possible new identifications. However, since the MS2 precursor masses are
updated with more accurate masses, it is also possible to do this search within a

narrower error window than the initial search.
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Figure 5.1. The mzXML file is recalibrated using the exact masses of the peptides from
the pepXML file, obtained from the database search of the same mzXML file. The
calibrated mzXML file is searched again for possible new identifications. The pepXML
file with the results of the new search and the recalibrated mzXML can be used in
other analysis modules downstream, e.g., in a quantification module.
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The user can override the default values for parameters such as the minimum number
of calibrants, maximum mass measurement error allowed for calibrants, internal mass
measurement error target after calibration, threshold for background intensity, score
type and threshold scores, retention time window for matching calibrants. It is highly
recommended that certain parameters like ‘threshold for background intensity’,
‘maximum mass measurement error allowed’ are chosen by the user. The optimal
values for these parameters vary from one data to another and may affect the
calibration efficiency.

Application of the correct calibration function is the most critical step in the
program. Currently, msRecal makes use of three calibration functions that are specific

to instrument types19.2021,22,

. m__ A
Orbitrap S = (1)
m A
FTICR —=— (2)
z f+B
m t—B
TOF —-—=— (3)
z A

where A, B, and C are the calibration coefficients; f is the frequency; t is the time.

The calibration function is chosen according to the ‘mass analyzer type’ or ‘instrument
type’ parameters. Normally, these parameters are parsed from the metadata in
mzXML unless the user overrides them. The PSI-MS CV defines the three mass
analyzer types that the program recognizes. (Figure 5.2) It is possible that the ‘mass
analyzer type’ is missing, or sometimes even incorrect, in the mzXML metadata.
However, in most cases, ‘instrument type’ is given correctly. If the ‘mass analyzer type’
is missing or deemed incorrect by the program, then the ‘instrument type’ is used to
set the correct value for the former. The PSI-MS CV does not define a direct
relationship between the children of ‘instrument type’ and ‘mass analyzer type’
entities, so we assume a hypothetical relationship to match them, as shown in Figure
5.2.
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mass analyzer type

MS_1000443 ‘\

fourier transform ion

orbitrap time-of-flight cyclotron resonance
MS_1000484 MS_1000084 mass spectrometer
MS_1000079
v AN ¥,
AR
LTQ Orbitrap Elite Q Exactive TripleTOF 5600 solariX
MS_1001910 MS_1001911 MS_1000932 MS_1001549
Thermo Scientific Bruker Daltonics
instrument model SCIEX instrument solarix series
MS_1000494 model MS_1001548
\ MS_1000121 /

Thermo Fisher Bruker Daltonics

instr?ltl:'ri'neertztt“;!ﬁodel instrument model
MS_1000483 MS_1000122
K’ instrument model J

MS_1000031

Figure 5.2. The PSI-MS controlled vocabulary groups the mass analyzer types and the
instrument models separately. A direct match between the calibration function and
the mass analyzer type is the most straightforward approach; however, it is also
possible to make an indirect inference (shown with dashed lines) of the mass analyzer
type if only the instrument model is provided. For instance, if the mass analyzer type
is not given in the metadata, but the instrument model is stated as “LTQ Orbitrap
Elite”, then we use the function for Orbitrap.

msRecal uses the exact masses of peptides identified with high confidence to
recalibrate the mass spectrometry data, thus first builds a peptide set from the
pepXML file by selecting the peptides that fit the criteria, i.e., thresholds scores. In this
version of msRecal, only unmodified peptides without isotope errors are used as
calibrants, and the mass-to-charge ratios are calculated up to z = +4 charge state. The
user could set the upper and lower score thresholds for selecting the high confidence
peptides; by default, peptides with an expect score < 0.01 are selected. In addition to
peptides, polydimethylcyclosiloxanes (CHs[Si(CH3)20]nSi(CH3)3) are also added to the

list of potential calibrants as they may be present when nanoelectrospray ionization is
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used?3.24, Within the matching scan/retention time window, by default [-30s,+90s], the
maximum number of eligible calibrants are selected for each MS1. Only the peaks
above the background intensity threshold are used, and the potential calibrants within
the specified maximum mass measurement error window are matched to each peak.
The suitable calibration function is used to calibrate each MS1 spectrum individually.
This is done by taking the partial derivatives of the calibration function with respect
to each calibration coefficient and then using the least-squares fit.

For instance, for the Orbitrap calibration function given in Eq. (1), the partial derivate
with respect to its single coefficient is,

a(m/z) _ 1

aA r? (4)

Next, a dummy unit for fis derived from the original calibration function, Eq. (1),

f =7z 5)

The least-square minimization is applied first using all the measured calibrant m/z for
an individual MS1 scan and their calculated m/z to find the optimal value for
coefficient A. The calibration step is iterated several times while removing the
calibrants that do not fit the function better than a given internal target, by default 2
ppm, as long as a specified minimum number of calibrants, by default 3, remain.
Finally, the function in Eq. (1) is applied on the measured peak masses, using the
calculated optimal value for coefficient 4, and f in dummy units. Thus, the final

equation used for calculating the calibrated m/z for an Orbitrap will be,

m

(5) =4 (6)

z

where (m/z)’ is the calibrated mass-to-charge ratio, A is the calculated calibration

coefficient, and (m/z) is the measured mass-to-charge ratio.

It should be noted that the calibration coefficients of individual MS1 scans are used to
calibrate MS1 peaks and the precursor masses of the corresponding MS2 scans. There

is an option to exclude the uncalibrated scans in the output; otherwise, the original
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masses of the calibrated scans are replaced with the calibrated masses in the mzXML
file while the uncalibrated scans are left as is. The file is also reindexed so that the
outputted mzXML is ready to be used.

The msRecal is demonstrated on different instruments to show the calibration
performance. We used publicly available data from PRIDE with accession numbers
PXD000563%5 for Orbitrap, PXD000071%6 for TOF, PXD00467827 for FTICR. The
datasets come from hybrid instruments, so we used the database search results of the
same data to select the calibrants. The database searches and peptide validations were
performed using Comet?28 version 2021.01 rev. 0 and PeptideProphet??, respectively,
in Trans-Proteomic Pipeline39 v6.0.0. The Homo sapiens reference proteome
downloaded from Uniprot3! on October 2021, containing 78139 entries were used in
the database search. It is, of course, possible to use other database search tools and
pipelines that outputs the identifications in pepXML format. We used the default
expect score < 0.01 in Orbitrap data and the PeptideProphet probability matching FDR
< 0.01 in TOF and FTICR data as a threshold for high confidence peptides. Mass
measurement error and background thresholds are chosen based on individual data.
After the calibration, the outputted mzXML is searched again with Comet using the

same parameters to check the improvement in mass measurement accuracy.
Results

The mass measurement error distributions of high confidence monoisotopic peptides
before and after a single calibration are shown in Figure 5.3. The same thresholds

used for selecting the calibrants were applied to select the high confidence peptides.
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As shown in figure 5.3, the mass measurement error distributions tend to center
around zero and get narrower after recalibration. The mean mass measurement
errors were < 1 ppm in Orbitrap and TOF data. The FTICR data already had a
substantial residual bias to start with and did not have a high number of peptide
identifications. Although the calibration improved both the accuracy and precision in
the FTICR data, there was still some residual bias. Since the precursor masses are
closer to their exact masses after calibration, searching the recalibrated data with the

same parameters yielded more high confidence peptides in all.
Discussion and conclusions

The systematic and the random error decreases after recalibration, which is also the
case with msRecal. Calibration performance, however, is dependent on many factors.
Applying the correct calibration function is obviously the most important step, and
msRecal tries to make this selection safe and automated by extracting relevant
information from metadata. The number of high confidence peptides in the initial
search is also a factor since having many potential calibrants increases the chances of
good fits for the calibration function. On the other hand, significant mass deviation in
the original data could have a negative impact on calibration performance. Even
though this may already point to some issues in the original MS run, in most cases,
msRecal still improves the mass error to a certain degree in such data. The
improvement in peptide identifications could be observed better if the original and
recalibrated data were searched in a narrower ppm range. The minimization of mass
measurement error is beneficial for identification and should also improve
quantification, as more peaks will be found within narrow mass measurement search
windows in an MS1-based quantification. In this version of the software, only
monoisotopic masses and unmodified peptides are used as calibrants. We plan to use
them in future versions of the software as they could improve calibration performance
in certain datasets.

The mzXML data format is still widely used, although mzML is (very) slowly
replacing this format. However, since the PSI-MS CV annotation is not strictly enforced
in mzXML, incomplete and even incorrect analyzer types are sometimes given in the

metadata. For instance, the mass analyzer type for a QExactive instrument is
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annotated as a quadrupole in some datasets, whereas the mass analyzer used to
acquire the data is the Orbitrap, while the quadrupole is only used as a filter for
selecting the precursors. For the time being, we try to come over this issue by
resorting to the instrument model information. However, in the future, with extended
vendor support of PSI-MS CV terms, this could be solved more easily. Marissen and
Palmblad recently published a calibration method for mzML5. msRecal can be seen as
a complement to their work since the mzXML format is still very popular and an
automated calibration tool for this data type is very useful for reanalyzing publicly
available data.

The msRecal tool can be incorporated into any mass spectrometry analysis
workflow that analyzes data in mzXML format, as the output format is also an mzXML
file. The recalibrated mzXML can be analyzed further downstream without readjusting
the existing components of the pipeline. Automatic recalibration of data in public
repositories using metadata facilitates reuse of this data consistent with the FAIR

principles32.
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Chapter 6

The research presented in this thesis concerns common workflows and scalable tools
in proteomics data analysis that minimize the need for human intervention and make
the analyses as experiment-independent as possible. Three themes recur throughout
the thesis: automation of mass spectrometry data analyses, FAIR datal, and data
integration. The themes are strongly interrelated and are almost impossible to

disentangle.

Mass spectrometry in proteomics

Mass spectrometry is a very powerful tool for identifying, characterizing, and
quantifying proteins. However, there is still room for improvement on the
instrumental side to enable the analysis of complete proteomes in a manageable time
with high sensitivity. Higher resolving power, sensitivity, and speed result in
tremendous amounts of mass spectrometry data. Development and adoption of
technologies like trapped ion mobility, as in the Bruker Daltonics timsTOF?, increases
the sequencing speed without losing sensitivity by taking advantage of parallel
accumulation with serial fragmentation and introduces ion mobility as a fourth
dimension into the data. Higher degrees of multiplexing, such as the TMTpro 16-plex3
by Thermo Fisher Scientific, are now common in quantitative proteomics. All these
trends suggest mass spectrometry data will continue to grow exponentially and
become more complex. The ability to quickly analyze, document, and share data and
results sometimes struggle to keep pace with developments on the instrument side.
The methods and tools presented in this thesis make use of various practices such as
scientific workflows, ontologies, FAIRification of data and software to help in this

endeavor.
Mass spectrometry-based proteomics data analysis

Analysis of proteomics samples with mass spectrometry is becoming more accessible
to researchers and has, without a doubt, established itself as an essential analysis
method in the field. The technology has developed in recent years in terms of speed
and flexibility, and there has been an increase in the number of core facilities
performing these analyses for researchers. As vendor software tools are not readily

and freely available for the research groups that do not own the equipment but
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instead get their mass spectrometry data from core facilities or public repositories, it
is quite common to use academic tools that are usually free and open. Academic tools
and method developments are usually initial ideas or alternatives that eventually end
up in vendor software and constitute a rich ecosystem for analyzing mass
spectrometry-based proteomics data. Although there are exceptions, academic
software is prone to decay, as most of the time, update and management efforts fade
after the project is finished or runs out of funding. There are initiatives to support the
management of existing software, such as “Essential Open Software for Science”,
which aims to fund the further development and management of software with
proven impact*. Hopefully, in the era of Open Science, more of these initiatives will
help open software to reach the level of vendor software in terms of service quality,
maintenance, and bug-fixing.

Different techniques and experimental procedures require different analyses.
There are more tools available than common operations in proteomics data analysis,
creating a burden for the researcher to find the right tool for their experimental setup,
let alone the most appropriate tool for the job5¢. Apart from the experiments,
input/output formats are also important when selecting a tool. Software registries
with functional annotations such as Elixir bio.tools” make finding the right tool for a

specific task easier8 and facilitate building workflows?®.

Automation of data analysis

Terabytes of mass spectrometry data are being generated every day. Analyzing them
becomes an enormous burden for data scientists, given the time and resources
available. Complex data requires multiple steps of analysis that need extra effort for
channeling the data flow through different steps. Each step usually employs different
data analysis modules that are not readily interoperable with each other’s input and
output. This issue can be managed to a certain extent using command-line “shims”.
However, these solutions are not particularly user-friendly. There is no doubt that
scientific workflow management systems are gaining popularity since they are very
efficient for combining modules that are not readily compatible for data flow while

remaining easy to use and share10.11,12,13,
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The recalibration tool presented in Chapter 5, msRecal, improves the mass
measurement accuracy through internal calibration. As a result, the number of high
confidence identifications is increased. The output format is the same as the input, so
this module can be easily plugged into a bottom-up label-free analysis workflow, such
as the one that we used to analyze the data in Hussaarts et al.14, as demonstrated for
ion trap-FTICR data by de Bruin et al.1>

Managing the flow of data through interoperating tools is a good starting point;
however, automation of data analysis also requires semantic interoperability within
and across these modules. In mass spectrometry-based proteomics, experimental
attributes such as instrument type, sample preparation methods, biological species,
etc., are important as different parameters are required for different set-ups when
performing data analysis. Controlled vocabularies and ontologies are frequently used
for this purpose, as they are easier for machines to interpret, and they also solve the
ambiguities in semantics to a certain extent!?. Open data formats such as mzXML,
mzML, and mzData support embedded metadatalé. The data elements are annotated
as free text descriptions in mzXML, while mzML and mzData rely heavily on controlled
vocabularies for this purpose. Commonly, the data elements in these files are
annotated with high-level terms, or sometimes even with incorrect terms, since the
raw vendor files usually do not contain information at a sufficient level of detail in the
first place. Having the annotation at the correct hierarchy level can help choose a
better suiting analysis method or visualization. Vendors should provide sufficient
metadata using controlled vocabularies with the raw output, and open software
developers should use the same vocabularies in the tools they develop. The tools that
use metadata to select analysis or visualization methods should be flexible to traverse
between different levels of abstraction. This is demonstrated with the anatomical
ontology visualization tool presented in Chapter 4 and the recalibration tool in
Chapter 5.

A literature study is an essential first step when designing an experiment or data
analysis in any field, and mass spectrometry-based proteomics is no exception.
Comprehensive manual literature analysis is prohibitively time-consuming.
Bibliometrics emerged in the first half of the 20th century and was concerned with

measuring various aspects of books and different forms of publications. As a field, it
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has developed its own methods and practices!’. Nevertheless, it is possible to design
compact and reproducible field-specific literature analysis workflows without getting
lost in the details of advanced bibliometrics methods. In Chapters 2 and 3, some
examples of bibliometrics analysis applicable in mass spectrometry and proteomics
research are presented. The bibliometrics workflows in these chapters could be used
before designing or conducting an experiment. The information in the literature could
also guide choosing the settings and parameters for certain steps in data analysis, like
recalibration in Chapter 5, where data from different experimental set-ups typically
require different settings. Bibliometrics analysis also comes in handy at the end of a
study to map or contextualize experimental results relative to the literature to expand
existing knowledge. Scientific workflows such as those presented in Chapter 2 can
guide users and help them find relevant publications, or even potential collaborators,
on a particular topic, especially when different authors use slightly different
vocabulary. The use of different terms by authors working in the same field is also
explored in this chapter. This ambiguity in naming terms is one of the reasons why
common nomenclatures and controlled vocabularies of species, chemicals, genes,

proteins, and methods are necessary.

Data availability and reusability

In increasing numbers of proteomics and mass spectrometry journals, the researchers
are required to submit their raw data and analysis results. There are several public
mass spectrometry repositories, with PRIDE being the largest and most popular
repository of mass spectrometry-based proteomics datal819, Each dataset uploaded to
PRIDE is linked to a publication. The publications using new or already existing data
available on PRIDE also have links to the datasets; thus, the data and the publication
are accessible in both ways.

Although data analysis is one of the final steps in a proteomics experiment, how it is
done can have tremendous effects on the results and how much can be inferred from
the experimental data. An inadequate analysis can easily squander an otherwise well-
designed and conducted experiment. Making data FAIR prevents poorly annotated
good data from going to waste. Usually, it is easier to comply with the first two

principles of FAIR, findable and accessible, than the last two, interoperable and
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reusable, as it requires more than trivial effort to make them such. FAIR data can be
retrieved by other groups and reanalyzed to draw new biological conclusions. The
anatomical visualization tool in Chapter 4 and the mass recalibration tool in Chapter
5 are meant to analyze new experimental data and existing data from public
repositories. The scientific workflows presented in Chapters 2 and 3 are useful for
searching published studies and retrieving findings.

In addition to the data itself, it is crucial to make the metadata FAIR as well, since
they are essential when analyzing data on public repositories. The standardization of
the metadata is a relatively new concept in the field; recently European bioinformatics
community has initiated an open-source project called Sample to Data file format for
Proteomics for this purpose20, Without a doubt, such efforts will make data reanalysis

easier in the future.
Data integration

To comprehensively study the biological mechanism, integrating heterogeneous
sources of data is practically necessary for omics research. None of the omics fields
exist in a vacuum; they all complement each other?l. However, integrating data across
different omics levels is only one side of the story. Data across similar experiments are
also integrated to minimize experiment-dependent variations2Z. Inherently, such
integration is more straightforward than integrating data from different omics levels;
however, the metadata remains a crucial component since even the slightest
difference in sample preparation, or instrumental setup that is overlooked can lead to
a greater diversion from reality. The importance of vendor support of open data
formats remains central for the feasibility of data integration as it is the melting pot
for data from different sources. Data integration will be quite complex or even
impossible if the data on public resources are not FAIR.

The anatomical visualization tool from Chapter 4, COMICS, uses metadata to
automate the selection of anatomical abstraction levels. It requires only one standard
input for any omics experiment, smoothly integrating data across different omics
experiments. The msRecal tool presented in Chapter 5 can also be used to integrate

data from different mass spectrometers and experiments if the analyses are
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performed on similar samples. The msRecal tool works with an open format, mzXML,

and it can analyze data from many different types of mass spectrometers.

Future perspectives

Increasing acceptance of FAIR and open science notably improves the logistics of
conducting scientific research in mass spectrometry-based proteomics. These efforts
take the field one step closer towards achieving automated, wide-coverage robust
analyses that can reuse and integrate existing data. Open data repositories such as
PRIDE!® and MassIVE23 have existed for some time already. Although they provide
invaluable data resources for reanalysis, the requirements for uploading data on these
repositories still have room for improvement. The data on these repositories are
usually linked to their respective publications explaining the original experiment, data
analysis methods, and results. However, most of the essential information is not
readily machine-readable, and some datasets have incomplete or missing metadata.
As a result, extensive manual labor is still needed to get the data ready for reanalysis.
For the time being, automated literature search and information extraction methods
like the ones presented in this thesis could make these steps manageable to a certain
extent. As the requirements for uploading data to these repositories become stricter in
the future, automated literature search could be employed beyond its horizon rather
than making up for the missing bits that should have already been there. One
foreseeable use case scenario would be using web services integrated with machine
learning for advanced, direct, and manual-labor-free reanalysis of data.

The generation of good quality data undoubtedly needs a lot of technological
resources (i.e.,, mass spectrometers and other lab equipment) and human resources
for operating this high-end instrumentation and analyzing the results. The resources
and efforts needed for designing and developing efficient data analysis tools are often
overlooked in biological sciences. Time-wise and funding-wise, data analysis tools
should get their fair share in bioscience research. As much as the FAIRness of data is
crucial, applying these principles for data analysis tools is also essential and well
worth the investment in the long term. There is already a rich ecosystem for finding
and sharing data analysis tools, such as GitHub?2# for version control and source code

management, WorkflowHub?25 and MyExperiment2¢ for sharing scientific workflows,
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Galaxy Community?? for sharing Galaxy workflows and deploying Galaxy Servers, and
ELIXIR bio.tools? for a comprehensive registry of bioinformatics software. The
importance of these communities for data and tool sharing, bug reporting is evident,
and a broader audience in bioscience research should support them.

Initiatives for developing community standards, such as HUPO PSI?8 and EDAM
ontologies??, are vital for achieving the goals listed here. Standard open data formats
are also fundamental, although they need more vendor support to reach their full
potential in data automation. Some of the workflow managing software used today for
automation may become obsolete in the future. However, the concept of scientific
workflows with scalable components is here to stay, and most likely, there lies the

future of proteomics data analysis.
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Appendices

Summary

Mass spectrometry is a powerful technique that provides the high sensitivity and
throughput needed for analyzing the complex and dynamic proteome. However, this
power comes with a price; the data generated by mass spectrometers are quite
complex and require advanced multi-step analysis. Using scientific workflow systems
for the analysis of mass spectrometry data is not entirely new. However, innovative
solutions are needed to make these workflows autonomous, intelligent, flexible, and
adaptable in the era of big (and complex) data. This thesis focuses on building
intelligent workflows and modular tools for analyzing, integrating, and
contextualizing mass spectrometry-based proteomics data. These workflows and tools
could be easily adjusted for additional functionalities and be reused in different data
analysis workflows. The scope of this thesis is not limited to the downstream analysis
of mass spectrometry data; methods for automated literature search that would be
useful for designing experiments and interpreting experimental results are covered in
detail. Chapter 1 gives an overview of the core concepts related to mass
spectrometry-based proteomics and data analysis in line with the content presented
in subsequent chapters. The challenges and how they are currently being addressed
are also explained briefly.

Chapter 2 gives a detailed introduction to scientific workflows and their
advantages in multi-step analyses through bibliometrics analysis. The bibliometrics
analyses show that different authors could refer to the same domain entity using
different terms, even in the same subfield. If the literature search is performed
manually using specific keywords, some overlapping studies may be overlooked. The
workflows presented here make it easy to perform automated literature searches
without getting lost in advanced bibliometrics methods. Getting a quick overview of a
field may come in handy for authors when conducting interdisciplinary studies and
meta-analyses. Furthermore, researchers can find expert labs and other researchers
for collaborations. Chapter 3 presents more advanced workflows for bibliometrics
with the ability to use web services and perform statistical analyses on the data
retrieved. After presenting how the web services can be integrated with the Taverna

workflow manager, workflows for citation networks and biomolecular interactions
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are shown. The output of the workflows could be visualized using existing powerful
tools, i.e., the popular VOSviewer or Cytoscape. Literature analyses are favorable when
interpreting the findings of a study, visualizing them in context, and getting a roadmap
for designing future experiments; this chapter presents how these processes could be
automated.

Chapter 4 presents a robust tool for integration and anatomical visualization of
quantitative omics data from model organisms. One novelty of this tool is that it uses
anatomical ontologies to automatically visualize anatomical information regardless of
the resolution of the input data. The tool moves through the anatomical ontology
hierarchy to select the appropriate level of organ and tissue details. Second, a simple
standard data format is required from the user to visualize their data. Since this data
format does not make any omics-based assumptions, data from different omics
experiments can be integrated and visualized smoothly without further ado.

Chapter 5 presents a recalibration tool that improves mass measurement accuracy
in mass spectrometry data through automated internal calibration. As a result, more
peptides could be identified with higher confidence from the recalibrated data. The
measured masses could be calibrated using accurate peptide identifications from the
original data or from different measurements of the same or similar samples. This tool
uses mzXML metadata to select the most suitable mass analyzer-dependent
calibration function automatically. The output format is the same as the input, so this
tool can easily be plugged into any bottom-up proteomics data analysis workflow
working with mzXML in principle. This tool can be used to analyze new experimental
data and also existing public repository data.

Finally, in Chapter 6, the methods and concepts such as data availability and
reusability, automation, data integration are discussed, referring to how they apply to
the research presented in this thesis. The present and future of proteomics data
analysis are also discussed, shedding light on what needs to be done to accelerate
achieving the goal of fully automated, wide-coverage analyses that can reuse publicly
available data and knowledge from the literature. Like most software, the workflow
manager used in this thesis, Taverna, and other supporting tools, are prone to decay.
However, the concepts and methods presented with the help of these tools are here to

stay, and the future of proteomics data analysis will build upon them.
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Massaspectrometrie is een krachtige techniek voor proteomics omdat het de
benodigde hoge gevoeligheid en snelheid levert voor de analyse van het complexe en
dynamische proteoom. Echter, het gebruik van deze techniek levert
massaspectrometrische data op die ook zeer complex is, waarvoor een geavanceerde
meerstappen analyse nodig is. Het gebruik van wetenschappelijke workflows voor de
analyse van massaspectrometrie data is niet geheel nieuw. Desalniettemin zijn
vernieuwende aanpakken hard nodig in deze tijd van grote (en complexe) data
teneinde de workflows autonoom en intelligent te maken door middel van metadata,
en flexibel en adaptief door een modulair ontwerp. De focus van dit proefschrift ligt op
het creéren van intelligente workflows voor de analyse en het contextualiseren van
massaspectrometrische proteomics data. De ontwikkelde workflows en tools kunnen
eenvoudig worden aangepast voor additionele functionaliteiten en hergebruik in
verschillende data analyse workflows. Het onderzoek beschreven in dit proefschrift
beperkt zich niet tot de analyse van massaspectrometrie data, maar behandelt ook
methoden voor literatuur onderzoek, welke cruciaal zijn voor het ontwerpen van
experimenten, en de interpretatie en contextualiseren van de experimentele
resultaten. Hoofdstuk 1 geeft een overzicht van de kernconcepten van
massaspectrometrische proteomics en computationele methoden die in de volgende
hoofdstukken worden toegepast. Tevens worden uitdagingen en hoe deze momenteel
worden aangepakt kort besproken.

Hoofdstuk 2 introduceert wetenschappelijke workflows en hun voordelen in
meerstappen analyses. Zelfs in hetzelfde subveld kunnen verschillende auteurs
verschillende termen gebruiken om te refereren aan dezelfde domein entiteit.
Wanneer het literatuuronderzoek handmatig met specifieke trefwoorden uitgevoerd
wordt, kunnen deze overlappende studies over het hoofd gezien worden. De
workflows  die  hier gepresenteerd worden maken geautomatiseerde
literatuuronderzoeken eenvoudiger zonder te verdwalen in complexe bibliometrische
methoden. Het snel verkrijgen van een overzicht van een veld kan handig zijn voor
auteurs bij het uitvoeren van interdisciplinaire studies en meta-analyses. Verder
kunnen onderzoekers hiermee ook expertiselabs en andere onderzoekers vinden voor

samenwerkingen. Hoofdstuk 3 presenteert meer geavanceerde workflows voor
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bibliometrie met het vermogen om gebruik te maken van web services en statistische
analyses uit te voeren op de verzamelde data. Na presentatie van hoe de web services
geintegreerd kunnen worden in het Taverna workflowsysteem, worden workflows
voor citatie netwerken en biomoleculaire interacties getoond. De output van deze
processen kan gevisualiseerd worden in het populaire VOSviewer of Cytoscape,
daarbij gebruikmakend van krachtige bestaande tools. Literatuuranalyses zijn zeer
nuttig voor de interpretatie van de uitkomsten van een studie, deze binnen de context
te visualiseren, en een routekaart te verkrijgen voor ontwerp van toekomstige
experimenten; dit hoofdstuk bespreekt hoe deze processen geautomatiseerd kunnen
worden.

Hoofdstuk 4 presenteert een robuuste tool voor integratie en anatomische
visualisatie van kwantitatieve omics data van model organismen. Eén vernieuwing van
deze tool is dat het gebruik maakt van anatomische ontologieén om automatisch
anatomische informatie te visualiseren ongeacht de resolutie van de input data. De
tool beweegt door de anatomische ontologie hiérarchie om het geschikte niveau van
orgaan en weefsel details te visualiseren. Vervolgens wordt van de gebruiker een
algemeen en simpel data formaat gevraagd voor visualisatie van de data. Aangezien
dit data formaat geen op omics-gebaseerde aannames maakt, kan data van
verschillende omics experimenten worden geintegreerd, en probleemloos worden
gevisualiseerd.

Hoofdstuk 5 presenteert een herkalibratie tool die de accuraatheid van de
massabepaling verbetert door middel van geautomatiseerde interne kalibratie. Aan de
hand van opnieuw gekalibreerde data werden meer peptiden geidentificeerd met
hogere zekerheid. De gemeten massa’s zijn gekalibreerd met de accurate peptide
identificaties uit de originele data of uit andere metingen van hetzelfde of
vergelijkbare samples. Deze techniek maakt gebruik van mzXML metadata om
automatisch de meeste geschikte kalibratiefunctie te selecteren voor de gebruikte
massaspectrometer. Het output format is hetzelfde als de input dus deze techniek kan
in principe eenvoudig worden verbonden met elke bottom-up proteomics data analyse
workflow die gebruik maakt van mzXML.

Tenslotte, in Hoofdstuk 6, worden de methoden en concepten zoals data

beschikbaarheid en hergebruik, automatisering en data integratie besproken in de
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context van het onderzoek dat gepresenteerd wordt in dit proefschrift. Huidige en
toekomstige proteomics data analyse wordt besproken waarbij inzicht wordt gegeven
in wat noodzakelijk is voor het uitvoeren van geautomatiseerde analyses die
gebruikmaken van beschikbare data uit publieke archieven met als doel bestaande
kennis uit de literatuur te versnellen. Net als veel andere software en ondersteunende
tools is het workflowsysteem, Taverna, dat wordt gebruikt in dit proefschrift,
onderhevig aan veroudering. Echter, de concepten en methoden die in dit proefschrift
gepresenteerd worden zorgen ervoor dat deze tools hiertegen bestand zijn en bieden

een sterke basis voor de toekomst van proteomics data analyse.
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