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Appendix A

The physics behind the mechanical
nucleosome positioning code

A.1 Energy contributions of twist and cross terms

In section 2.2 we define the energy of a dinucleotide as the sum of the energy of roll
and tilt. Keeping in mind the observation that the basic nucleosome positioning rules
can be rationalized by discussing energy costs involved in the roll and tilt degrees
of freedom [14], as well as our goal to reduce our model to its bare essentials, we
chose to neglect the contribution of twist and of the cross terms between roll, tilt,
and twist. In this appendix we will show that including the twist and cross terms
does not change the qualitative agreement of our model with well-known positioning
rules (see Fig. 2.3).

We start by defining the energy of twist and the cross-terms:

Etwist(a, b) ≡ 1

2
Qtwist(a, b)

[
qtwist − q̄twist(a, b)

]2
, (A.1)

and

Ecross
p (a, b) ≡

∑
i,j∈{roll,tilt,twist}

i ̸=j

1

2
Qi,j(a, b)

[
qip − q̄i(a, b)p

] [
qjp − q̄j(a, b)p

]
. (A.2)

The bp-step dependent stiffnesses are now given by Qi(a, b), i ∈ {roll, tilt, twist} and
the corresponding intrinsic values by q̄i(a, b), i ∈ {roll, tilt, twist}. The cross terms
depend on the cross stiffnesses Qi,j(a, b), i, j ∈ {roll, tilt, twist}, i ̸= j. (Note that,
because of the constant twist, the energy associated with twist does not depend on
position p but only on the dinucleotide step.) For the twist and cross terms, too,
the hybrid parametrization [38] is used. We can redefine our energy as

Ep(a, b) = Eroll
p (a, b) + Etilt

p (a, b) + Etwist(a, b) + Ecross
p (a, b). (A.3)

Fig. A.1 was created using this redefined energy. We see that the relative behaviour
of the dinucleotide probabilities at different positions is the same as without the
cross terms, see Fig. 2.3.
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Figure A.1: Same as Fig. 2.3 but with including the cross-terms (see Eq. A.3).
The positioning rules (i.e. the relative behaviour of the dinucleotide probabilities at
different position) has stayed the same.

A.2 Validity of the average neighbour energy ap-

proximation

The average neighbour energy approximation of the probability works extremely
well. We checked it for all dinucleotides and found that the largest error of this
approximation occurs for the probability distribution of dinucleotide AA. Fig. A.2
depicts both the exact probability and its approximation for this dinucleotide. The
difference between the values is always smaller than 3.5%.

To understand why this error is so small, one needs to consider the function
Cp(x, y), defined in Eq. 2.28. The average neighbour energy approximation is exact
if this function is a constant (i.e., independent of x and y for each p). The approxi-
mation works well if the function is almost constant. That this is true is best seen
by inspecting the standard deviation of Cp(x, y), divided by its mean, and checking
whether this quantity is much smaller than one. Here the standard deviation and
mean are defined as:

std[Cp] ≡
√
⟨{Cp(x, y)−mean[Cp]}2⟩x,y (A.4)

with

mean[Cp] ≡ ⟨Cp(x, y)⟩x,y. (A.5)

Fig. A.3 shows that this ratio is indeed much smaller than one for all dinucleotide
positions.

A.3 Effect of temperature on the probability

The probabilities shown in the results section have all been obtained at room temper-
ature β = 1/kBTr. Here we study how these probabilities change with temperature,
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Figure A.2: The exact probability and its average neighbour energy approximation
to find AA steps at all dinucleotide positions. The approximation introduces an
error that is nowhere larger than 3.5%.
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Figure A.3: The standard deviation (Eq. A.4) divided by the mean (Eq. A.5)
of Cp(x, y). As this ratio is very small at all positions p the function Cp(x, y)
is nearly constant, explaining the high accuracy of the average neighbour energy
approximation.
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Figure A.4: The probability to obtain AA at all dinucleotide positions at several
temperatures.
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Figure A.5: The first-order bounds of the probability of encountering an AA step
are shown at five different temperatures. At low temperatures, the bounds become
significantly far apart from each other and only provide a qualitative description of
the behaviour of the probability as a function of position.

focusing on dinucleotide AA. Its exact probability distribution for different temper-
atures is shown in Fig. A.4. We find at temperature β = 0 a constant value 1/16 for
the probability. This is the high temperature limit where all steps are equally prob-
able. At low temperatures the probability varies between values close to 0 and 1,
reflecting the fact that the ground state sequences becomes exceedingly important.

We also evaluated the first- and second-order bounds of the AA probability
distribution at five different temperatures: β = 0, 0.1, 1, 10, and 100 (in units of
[1/kBTr]), see Fig. A.5, and Fig. A.6. At high temperatures (low β) the bounds
for both orders are very close to each other enclosing values close to 1/16. With
decreasing temperature the quality of the first-order bounds becomes poorer, giving
only a rough qualitative estimate whereas the second-order bounds continue to work
well for relatively low temperatures. Note that at β = 100 the probability takes
values close to 0 and 1 at most places.
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Figure A.6: The second-order bounds of the probability of encountering an AA step
are shown at five different temperatures. At all temperatures the method provides
a quantitative description of the probability, clearly outperforming the second-order
bounds.

68 70 72 74 76 78
dinucleotide position

0

1

pr
ob

ab
ili

ty AA, � !1 [1/kBTr]

68 70 72 74 76 78
dinucleotide position

0

1

pr
ob

ab
ili

ty AA, � !1 [1/kBTr]

(a)

(b)

Figure A.7: (a) First-order and (b) second-order bounds on the probability to find
dinucleotide AA at several dinucleotide positions on a nucleosome, in the limit of zero
temperature. Higher-order bounds get increasingly sharper. At zero temperature
the only possible DNA sequences are ground state sequences, hence the bounds
provide us statistics on the ground states of our system. When the lower and upper
bounds are 0 and 1, AA is part of an unknown number of ground states at this
position. If AA is part of all possible ground states the bounds are 1 and 1, and if
it is not a part of the ground state they are 0 and 0.
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We finally take the limit β → ∞, see Fig. A.7. This figure shows the second-order
and third-order bounds on the probability to encounter AA at zero temperature.
The only possible sequences are now ground state sequences (due to the high level
of symmetry in our model we expect many different ground states). This explains
why the probability of AA can take the values 0 and 1: at several positions AA is not
part of any ground state sequence (probability is zero), while at other positions AA
is part of all possible ground state sequences (probability is 1). At some positions
the method cannot determine the percentage of ground state sequences AA is part
of, resulting in bounds of 0 and 1.

The method of obtaining upper and lower bounds remains effective at all possible
temperatures for our model, and even provides insight into the possible ground
states. Going to higher-order bounds (i.e., taking neighbours that are further away
into account as well) or using the exact probability should eliminate the discrepancy
between the upper and lower value. However, the method employed in Chapter 3
(which uses a graph representation of all possible sequences in combination with a
shortest path algorithm) is much more efficient in obtaining ground states.



Appendix B

Shortest paths through
synonymous codons

B.1 Definition of the energy

In Chapter 3, we aim to find sequences with ‘special’ energies, e.g. the sequences
with the lowest and highest possible energies. To calculate the energy of a sequence,
we use the probabilistic trinucleotide model by Tompitak et al. [10] which is based
on the sequence preferences of a coarse grained nucleosome model, parametrized by
experimental parameters derived from protein-DNA crystals [32]. Because it is a
trinucleotide model, we are able to represent the total energy of a sequence as a
sum of ‘conditional’ trinucleotide energies, which function as the (main ingredients
of the) weights in our graphs. Here we will formally define these energies.

Let B be the set of all nucleotides, B = {A, T, C,G}. For the trinucleotide model,
it is assumed that the probability of a nucleotide depends only on the previous two.
Defining S as a sequence of length L, consisting of nucleotides Si ∈ B with i from 1
to 147, this gives a probability for the full sequence:

P (S) =

∏L−2
n=1 Pn(Sn+2 ∩ Sn+1 ∩ Sn)∏L−3

n=1 Pn(Sn+2 ∩ Sn+1)
(B.1)

where Pn(Sn+2 ∩ Sn+1 ∩ Sn) is the joint (trinucleotide) probability to obtain Sn+2,
Sn+1, and Sn at position n, and P (Sn+2 ∩ Sn+1) the joint (dinucleotide) probability
to obtain Sn+2, Sn+1 at position n. However, since the original trinucleotide model
by Tompitak et al. does not enforce the symmetry of the coding and noncoding
strand, we introduce symmetrized probabilities:

P ′
n(Sn ∩ Sn−1 ∩ Sn−2) =

1

2
[Pn(Sn ∩ Sn−1 ∩ Sn−2)]

+
1

2

[
Pn(S

′
n−2 ∩ S ′

n−1 ∩ S ′
n)
]

(B.2)

and

P ′
n(Sn ∩ Sn−1) =

1

2

[
Pn(Sn ∩ Sn−1) + Pn(S

′
n−1 ∩ S ′

n)
]

(B.3)
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where

S ′
n ≡


A148−n if Sn = T

T148−n if Sn = A

C148−n if Sn = G

G148−n if Sn = C

(B.4)

such that

P ′
n(S) =

∏L−2
n=1 P

′
n(Sn+2 ∩ Sn+1 ∩ Sn)∏L−3

n=1 P
′
n(Sn+2 ∩ Sn+1)

. (B.5)

Following Tompitak et al., we use the probability to calculate a free energy, using
E(S) = −kBTr ln [P (S)] + const . We rewrite the energy as:

E(S) =
L−2∑
n=1

En(Sn+2, Sn+1, Sn) + const . (B.6)

where

En(Sn, Sn+1, Sn+2) =
−kBTr ln [P

′(Sn+2 ∩ Sn+1 ∩ Sn)] if n = 1

−kBTr ln
[
P ′(Sn+2∩Sn+1∩Sn)

P ′(Sn+1∩Sn)

]
if 1 < n < 146

0 else.

(B.7)

We define const. such that the energy E is zero if S is the ground state.
For n = 1, En is the energy cost related to the first three bases of a sequence S,

for 1 < n < 146, it is a ‘conditional’ energy, and it is zero elsewhere. We use these
terms as weights of our graph, while keeping in mind that the sum of these weights
will provide the well-defined total energy E.

B.2 Definition of the depth of a minimum

In the main text of Chapter 3, we use the depth of a minimum D as a measure
for how well the nucleosome is positioned at this minimum. Here we will formally
define D.

Let S be some sequence of length greater than L + 10 (with L = 147). Let Sp

be a subsequence of S of length L starting at position p.
We call a nucleosome positioned at p if the energy E(Sp) is lower than the

energies at positions p − 5, p − 4, ..., p + 5 (excluding p). We denote the energy
corresponding to a nucleosome containing the sequence Sp by Ep ≡ E(Sp). For a
minimum at pmin of sequence S we are interested in its depth, D(Spmin). Now we
can formally define the depth as

D(Spmin) ≡ min
[
E max
left (Spmin),E max

right(S
pmin)

]
(B.8)

where
E max
left (Spmin) ≡ max [Epmin−i(S) for i ∈ {1, 2, ..., 5}]− Epmin

(S), (B.9)

E max
right(S

pmin) ≡ max [Epmin+i(S) for i ∈ {1, 2, .., 5}]− Epmin
(S). (B.10)
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B.3 The deepest possible minimum

Here we show how to obtain the deepest possible minimum, with only a tiny possible
error, by taking the shortest paths through the graphs G+

h,j defined in the main text.

A nucleosome is best positioned at a minimum pmin if D(Spmin) is maximal.
We assume that the deepest possible minimum D(Sdeepest) is found for a sequence
Sdeepest. Furthermore, we assume that

E max
left (Sdeepest) = Epmin+h(Sdeepest)− Epmin

(Sdeepest) (B.11)

and

E max
right(Sdeepest) = Epmin+j(Sdeepest)− Epmin

(Sdeepest) (B.12)

for h ∈ {−5,−4, ..,−1}, j ∈ {1, 2..., 5}.
Let us denote the shortest path through G+

h,j by Sh,j with the minimum at pmin.

A shortest path through G+
h,j will minimize the quantity 2Epmin

− Epmin+h − Epmin+j.
Because of this, we have

E max
left (Spmin

h,j ) + E max
right(S

pmin

h,j ) ≥ E max
left (Spmin

deepest) + E max
right(S

pmin

deepest). (B.13)

Since Spmin

deepest is the sequence with the greatest depth, we have

min
[
E max
left (Spmin

h,j ),E max
right(S

pmin

h,j )
]
≤ (B.14)

min
[
E max
left (Spmin

deepest),E
max
right(S

pmin

deepest)
]
.

Combining Eq. B.13 and B.14 leads to bounds on the depth of the deepest possible
minimum:

min
[
E max
left (Spmin

h,j ),E max
right(S

pmin

h,j )
]
≤

E max
left (Spmin

deepest) (B.15)

≤ 1

2

[
E max
left (Spmin

h,j ) + E max
right(S

pmin

h,j )
]
. (B.16)

We took the shortest path through all graphs G+
h,j for all h ∈ {−5,−4, ..,−1},

j ∈ {1, 2..., 5}. Of all the graphs, G+
−5,5 provided the deepest minimum. Using the

above equation, we obtained 83.47± 0.03 kBTr as the deepest possible minimum.

B.4 Graphs

We have defined the graphs G+
h,j, extensions of G with differently assigned weights,

for h, j ∈ {−5,−4, ..,−1, 1, 2..., 5}. A visual depiction is shown by Fig. B.1. The
graph G+

gene, an extended version of Ggene, is depicted by Fig. B.2.
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Figure B.1: Visualisation of a graph G+
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Figure B.2: Visualisation of a graph Ggene. This graph corresponds to creating a
minimum at the 7th nucleosome position on the gene YAL002W of yeast.

B.5 Create local minima on top of genes

To create local minima at a position on a gene, we came up with a specifically
tailored method where we alter the values of the constants ci with each iteration.
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iteration starting conditions action

all iterations
c0 = 1

ci = 0 for i ̸∈ {−5, 0, 5}
minimum and depth check:

D ≥ 10 kBTr

1-20 c−5 = c5 = −0.3 regular decrement

21-40 c−5 = c5 = −0.3 neighbor decrement

41-60 c−5 = c5 = −0.2 regular decrement

61-80 c−5 = c5 = −0.2 neighbor decrement

81-100 c−5 = c5 = −0.1 regular decrement

101-120 c−5 = c5 = −0.1 neighbor decrement

121-140 c−5 = c5 = 0 regular decrement

141-160 c−5 = c5 = 0 regular decrement
if all fail - take best solution

Table B.2: Schematic form of specifically tailored method to create deep local
minima at a position on a gene. The method works by altering the weights w′

i of
graph Ggene by changing the constants ci, see Eq. 4 of the main text.

This will result in a differently weighted graph each iteration and different shortest
paths. The algorithm uses at most 160 iterations per position. The iterations are
grouped in eight parts, with differing starting conditions and different increment
rules. See Table B.2 for an overview of this method.

All iterations start with c0 = 1, ci = 0 for i ̸∈ {−5, 0, 5}. Iterations 1-20
start with c−5 = c5 = −0.3. At the start of iteration 21-40, all constants are
reset and we again begin with c−5 = c5 = −0.3. Iterations 41-60 and 61-80 have
c−5 = c5 = −0.2, 81-100 and 100-120 have c−5 = c5 = −0.1, and 121-140 and 141-
160 have c−5 = c5 = 0. The different starting conditions are intended to first try to
create deep minima through a larger incentive to have high walls, but if this fails,
settle for lower minima.

At the beginning of each and every iteration a check is performed. The energy
landscape corresponding to the shortest path is evaluated to find whether a local
minimum has been created at the right position. If there is such a local minimum,
we evaluate how deep it is. If it is deeper than 10 kBTr, we accept the corresponding
sequence. If the local minimum is not deep enough, we evaluate which side of the
energy well has the lowest wall. If the left or right wall is lowest, we set c−5 →
c−5 − 0.1 or c5 → c5 − 0.1, respectively, and move to the next iteration. If there is
no local minimum, we perform one of the two distinct schemes: ‘regular decrement’
and ‘neighbor decrement’, introduced below. We perform a ‘regular decrement’ at
iterations 1-20, 41-60, etc., and a ‘neighbor decrement’ at all other iterations.

The regular decrement is defined as follows: if the position with the lowest energy
is pmin+ i instead of the intended position pmin, we perform ci → ci−0.1. Differently
stated, we give our algorithm an incentive to raise the energy at positions where the
energy is lower than at pmin. The main problem of the regular decrement is that the
lowest energy position often alternates between pmin + 1 and pmin − 1. Making the
decrements smaller turned out to be ineffective in solving this problem, so instead
we define the ‘neighbour decrement’.

The neighbour decrement is the same as the regular decrement, with one dif-
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Figure B.3: For each possible iteration, the percentage of positions solved (i.e. with
a deep enough minimum found) is depicted. All positions on genes from yeast S.
cerevisiae (ignoring genes with introns) where evaluated. The bulk of the positions
were completed at the first iteration.

ference: if the position with the lowest energy is pmin ± 1 instead of the intended
position pmin, we perform ci±2 → ci±2 − 0.1.

It is possible that, after 160 iterations, no deep enough minimum is found. Then
we take the deepest minimum we encountered (if any exists) as our result. The
percentage of positions resolved at which iteration is depicted by Fig. B.3. It shows
that the bulk of the positions were completed at the first iteration.



Appendix C

Multiplexing mechanical and
translational cues on genes

C.1 Graph to obtain highest and lowest possible

nucleosome energy

In Chapter 4 we use a graph representation of all possible sequences that code for
the same protein. To understand the new method we use in this chapter, we first
shortly summarize the method we used in Chapter 31, where we were able to obtain
the highest and lowest possible nucleosome energies on all positions of a gene. To
obtain these energies we use a graph containing all synonymous codons of the gene
section corresponding to one nucleosome position.

The DNA on a nucleosome consists of 147 base pairs, which corresponds to either
49 or 50 codons. Suppose we have a sequence of 50 codons. These codons encode a
sequence of amino acids p0, p1, p2, ..., p49. The number of different codons coding for
the same amino acid is 6 at most. Therefore, the most general representation of all
possible ways to code for the same protein at one nucleosome position is given by
figure C.1 (we use the most general representation to make it easier to understand
the graphs related to three layers of information).

In this figure, under each amino acid pn, six numbers are shown represent-
ing the (at most) six possible codons, which we will refer to in the following as
pn(1), pn(2), ..., pn(6). The actual base pairs of the codons depend on the amino
acid in question. To obtain this graph we draw the following weighted edges: from
start to p0(i) with weight zero for any i, from p49(i) to end with weight wend(p49(i))
for any i, and from pn(i) to pn+1(j) with weight wn(pn(i), pn+1(j)) for any i, j and
n = 0, 1, ..., 48. The weight wi is given by

wi(C,D) = E3i−2(C1, C2, C3) + E3i−1(C2, C3, D1) + E3i(C3, D1, D2) (C.1)

1There are two main advantages to summarizing this method again, as opposed to simply
referring to the previous chapter/appendix. It makes Chapter 4, in combination with its appendix,
readable (and hopefully comprehensable) as a single unit. Secondly: the notation we use here
is quite different, such that we can more easily incorporate translation speed in the graph (see
appendix C.2).

109
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Figure C.1: Graph GE shows all synonymous ways to encode a given amino acid
sequence p0, p1, ..., p49 in the most general case. For each amino acid six options are
shown, representing the at most six possible ways to code for the same amino acid.
The actual bases depend on the amino acid in question. When there are less than
six options, one can simply leave out the surplus of nodes. Weights are assigned
such that each path from start to end has a length equal to the total energy of the
corresponding codon sequence.

and the weight wend by
wend(D) = E145(D1, D2, D3) (C.2)

where Ck and Dk denote the kth base of codons C and D. Now the length of a path
from start to end in the graph equals the energy of a corresponding sequence. The
lowest and highest energy can be found using a shortest path algorithm.

C.2 Obtaining the highest and lowest possible nu-

cleosome energy, incorporating translation speed

Here we describe the method used to obtain the highest and lowest possible nucleo-
some energy, incorporating a restriction on the translation speed. The method uses a
graph GT&E, which is similar to graph GE. Since we study in chapter 4 five-codon av-
erages of the translation speed, GT&E incorporates translation speed by using nodes
consisting of five codons, see figure C.2. These nodes are connected such that any
node

pn(xn)pn+1(xn+1)pn+2(xn+2)pn+3(xn+3)pn+4(xn+4)

can only be connected to nodes

pn+1(xn+1)pn+2(xn+2)pn+3(xn+3)pn+4(xn+4)pn+5(xn+5)

for any xi ∈ {1, 2, ..., 6}, with weight wn+4(pn+4(xn+4), pn+5(xn+5)). All other edges
have zero weight. Now, to ensure that one does not alter the translation speed
landscape too much when changing the nucleosome energy, one can, for each node,
calculate the difference between the translation speed of that node and the original
speed. When the difference exceeds a certain threshold, the node needs to be pruned,
such that each path through the graph corresponds to a sequence that does not
change the underlying amino acid sequence and the translation speed landscape
remains the same up to the threshold. Again, the lowest and highest energy can be
found using a shortest path algorithm.
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Figure C.2: Graph GT&E is similar to graph GE from figure C.1. It incorporates trans-
lation speed by using nodes consisting of five codons. These nodes are connected
such that any node pn(xn)pn+1(xn+1)pn+2(xn+2)pn+3(xn+3)pn+4(xn+4) can only be
connected to nodes pn+1(xn+1)pn+2(xn+2)pn+3(xn+3)pn+4(xn+4)pn+5(xn+5) for any
xi ∈ {1, 2, ..., 6}. When the translation speed of five codons (a node) is too dif-
ferent from the original speed, it is pruned. The weights of the graph are again
chosen such that any path length corresponds to the nucleosome energy of the cor-
responding sequence.

C.3 Recovering the original nucleosome energy

and translation speed landscapes in host or-

ganisms

To create the closest possible translation speed landscape in a different organism,
we modify graph GT&E to become gene-wide and obtain graph Ggene see figure C.3.

We also change the weights. We denote the weights corresponding to the clos-
est possible translation speed landscape by wT. Again these nodes are connected
such that any node pn(xn)pn+1(xn+1)pn+2(xn+2)pn+3(xn+3)pn+4(xn+4) can only be
connected to nodes pn+1(xn+1)pn+2(xn+2)pn+3(xn+3)pn+4(xn+4)pn+5(xn+5) for any
xi ∈ {1, 2, ..., 6}, but now with weight wT given by

wT =

∣∣∣∣∣
i=5∑
i=1

Toriginal(pn+i(sn+i))− Thost(pn+i(xn+i))

∣∣∣∣∣ (C.3)

where si denote the original codon choices in the original organism. Now this weight
denotes the linear difference between five original codon choices in the organism
human, and five (possibly different) choices in host organism yeast. Note that the
translation speed functions T now explicitely denote for which organism they are
calculated, the original or host.

To find the sequence G′′ where both the translation speed landscape and the
nucleosome energy landscape in a host organism are close to their original coun-
terparts, we only need to change the weights of Ggene. The weight wT&E of edges
between

pn(xn)pn+1(xn+1)pn+2(xn+2)pn+3(xn+3)pn+4(xn+4)

and
pn+1(xn+1)pn+2(xn+2)pn+3(xn+3)pn+4(xn+4)pn+5(xn+5)
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Figure C.3: Graph Ggene is similar to graph GE, see figure C.2. The graph includes
the entire gene with N the number of codons on the gene. The weights of the graph
depend on its purpose: the weights can be defined such that the closest possible
translation speed landscape is found for a gene in a host organism, or a combination
of the closest translation speed and nucleosome energy landscapes.

for any xi ∈ {1, 2, ..., 6} are now given by

wT&E = cTw
T + cEw

E (C.4)

with

wE =
147+7−2∑
j=−7

∣∣∣∣∣
i=7−2∑
i=−7

Ei+j(Sp+2+i, Sp+1+i, Sp+i)− Ei+j(Xp+2+i, Xp+1+i, Xp+i)

∣∣∣∣∣ (C.5)

where X is a sequence of 15 base pairs, the sequence corresponding to

pn+1(xn+1)pn+2(xn+2)pn+3(xn+3)pn+4(xn+4)pn+5(xn+5)

and S denotes the 15 base pairs in the original organism corresponding to

pn+1(sn+1)pn+2(sn+2)pn+3(sn+3)pn+4(sn+4)pn+5(sn+5).

C.4 Genetically modified organisms: many genes

In section 4.5, we introduced a method to, when one puts a gene in a different
organism, this all three layers of information on the gene would be close to the
original. Fig. 4.5 showed the results for one exon of the gene TNF. To remove
possible bias from our results, we use the same method on a variety of human genes,
randomly selected with a few non-biasing features: the exons of each transcript are
fully translated and the first exon has a length ≥ 500 (the latter condition ensures a
nucleosome landscape of significant size). The results are depicted in Figs. C.4-C.14.
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Figure C.4: Same as Fig. 4.5 but for the first exon of transcript OR6P1-001 of gene
OR6P1 from human. This transcript was randomly selected with a few non-biasing
features: the exons of each transcript are fully translated and the first exon has a
length ≥ 500. As in Fig. 4.5, (a) depicts the translation speed landscape of this exon
in three organisms: the original (human) and two possible host organisms: yeast
and rice. Again, (b) shows the original landscape as well as the highest and lowest
possible translation speed values in the hosts.
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Figure C.5: Same as Fig. C.4 but for the first exon of transcript OR10J3-201 of gene
OR10J3 from human.

Figure C.6: Same as Fig. C.4 but for the first exon of transcript OR10T2-201 of
gene OR10T2 from human.
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Figure C.7: Same as Fig. C.4 but for the first exon of transcript OR2T6-201 of gene
OR2T6 from human.

Figure C.8: Same as Fig. C.4 but for the first exon of transcript OR2M4-201 of gene
OR2M4 from human.
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Figure C.9: Same as Fig. C.4 but for the first exon of transcript OR14K1-201 of
gene OR14K1 from human.

Figure C.10: Same as Fig. C.4 but for the first exon of transcript OR10K2 of gene
OR10K2-201 from human.
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Figure C.11: Same as Fig. C.4 but for the first exon of transcript OR2T35-201 of
gene OR2T35 from human.

(a)

Figure C.12: Same as Fig. C.4 but for the first exon of transcript OR2M7-201 of
gene OR2M7 from human.
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Figure C.13: Same as Fig. C.4 but for the first exon of transcript OR6Y1 of gene
OR6Y1-201 from human.

Figure C.14: Same as Fig. C.4 but for the first exon of transcript OR14C36 of gene
OR14C36-201 from human.



Appendix D

How mechanical information is
multiplexed on the transcribed
regions of protein-coding genes

D.1 Data acquisition using Biomart

Here we provide a manual of sorts to obtain genome data the same way we did. We
have acquired the genome data from the Ensembl Project website (www.ensembl.org),
using their web-based tool Biomart. From Biomart, we always used the database
Ensembl Genes 101. From the database we could pick an organism (such as Hu-
man genes). Under Filters, we expand the Gene menu and set the transcript type to
protein-coding. Under Attributes, we chose Sequences, and under the SEQUENCES
menu we chose Unspliced (Transcript), set Upstream flank to 1000 and Downstream
flank to 1000. Under Attributes, in the HEADER INFORMATION menu, we chose,
in this exact order: Transcript stable ID, Strand, Transcription start site (TSS), Ge-
nomic coding start, Genomic coding end, Exon region start (bp), Exon region end
(bp). Using this header information we could determine the positions of the exons,
introns and UTRs on any gene. By pressing the results button, and subsequently
the Go button, one obtains the data in a plain text file.

Alternatively, one can download the data more efficiently. By pressing the XML
button one can show the query in XML Web Service Format, which can then be
used to download the data using a software package such as wget. We downloaded
the required genomes by simply replacing the name of the organism in the XML
string by the name of any available organism. An example of a command line to
download the data for human is

119
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wget -O human.txt ’http://www.ensembl.org/biomart/martservice?query=<?xml

version="1.0" encoding="UTF-8"?><!DOCTYPE Query><Query

virtualSchemaName = "default" formatter = "FASTA" header = "0"

uniqueRows = "0" count = "" datasetConfigVersion = "0.6" ><Dataset

name = "hsapiens_gene_ensembl" interface = "default" ><Filter name =

"downstream_flank" value = "1000"/><Filter name = "upstream_flank"

value = "1000"/><Filter name = "transcript_biotype" value =

"protein_coding"/><Attribute name = "ensembl_transcript_id"

/><Attribute name = "transcript_exon_intron" /><Attribute name =

"strand" /><Attribute name = "transcription_start_site" /><Attribute

name = "genomic_coding_start" /><Attribute name =

"genomic_coding_end" /><Attribute name = "exon_chrom_start"

/><Attribute name = "exon_chrom_end" /></Dataset></Query>’

For plants, e.g. for Oryza sativa, the command line can be given by

wget -O osativa.txt

’http://plants.ensembl.org/biomart/martservice?query=<?xml

version="1.0" encoding="UTF-8"?><!DOCTYPE Query><Query

virtualSchemaName = "plants_mart" formatter = "FASTA" header = "0"

uniqueRows = "0" count = "" datasetConfigVersion = "0.6" ><Dataset

name = "osativa_eg_gene" interface = "default" ><Filter name =

"downstream_flank" value = "1000"/><Filter name = "upstream_flank"

value = "1000"/><Filter name = "transcript_biotype" value =

"protein_coding"/><Attribute name = "ensembl_transcript_id"

/><Attribute name = "transcript_exon_intron" /><Attribute name =

"strand" /><Attribute name = "transcription_start_site" /><Attribute

name = "genomic_coding_start" /><Attribute name =

"genomic_coding_end" /><Attribute name = "exon_chrom_start"

/><Attribute name = "exon_chrom_end" /></Dataset></Query>’

The Python code we use to turn the raw data into usable data is depicted below.
An early version of this code was provided by Rhys Bird.

#this function requires a data file from the Biomart webtool. It provides

three lists: cds2 is a list containing header information such as the

name of the transcript, seq2 is a list containing 2000 bases

corresponding to any transcipt, starting 1000 bp before the TSS. The

list codingseq2 contains the same, but some of the base pairs have

been replaced: all intronic bp are replaced by ";", 5’UTRs are

replaced by "<", 3’UTR by ">".

def GetGenesShort(inputfile_string,upstream=1000, downstream=1000):

cds = []

seq = []

tempseq = ’’

x=0

#here seq will be a list containing ALL bases corresponding to any

transcipt

with open(inputfile_string) as inputfile:
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for line in inputfile:

if line[0] == ’>’:

x+=1

if line.strip() != ’>’:

cds.append(line.replace(’>’,’’).split(’|’))

if tempseq != ’’:

seq.append(tempseq)

tempseq = ’’

else:

tempseq += line.replace(’\n’,’’)

for i in range(len(cds)):

cds[i][3] = cds[i][3].split(’;’)

cds[i][4] = cds[i][4].split(’;’)

cds[i][5] = cds[i][5].split(’;’)

cds[i][6] = cds[i][6].split(’;’)

codingseq = [’’]*len(seq)

for i in range(len(seq)):

Xseq = [’;’]*len(seq[i])

#cds[i][1] tells us whether the raw data is 5’ to 3’, or 3’ to 5’. In the

latter scenario, the data is flipped such that everything is 5’ to 3’.

#all UTRs are first replaced by ">", later we substitute it by "<" for

5’UTRs.

if int(cds[i][1]) == 1:

for j in range(len(cds[i][3])):

start = int(cds[i][3][j]) - int(cds[i][2])+upstream

end = int(cds[i][4][j]) - (int(cds[i][2])-1)+upstream

Xseq[start:end] = [">" for _ in range(abs(end-start))]

list(seq[i][start:end])

for j in range(len(cds[i][5])):

start = int(cds[i][5][j]) - int(cds[i][2])+upstream

end = int(cds[i][6][j]) - (int(cds[i][2])-1)+upstream

Xseq[start:end] = list(seq[i][start:end])

elif int(cds[i][1]) == -1:

for j in range(len(cds[i][3])):

start = int(cds[i][2]) - int(cds[i][4][j])+upstream

end = int(cds[i][2]) - (int(cds[i][3][j])-1)+upstream

Xseq[start:end] = [">" for _ in range(abs(end-start))]

for j in range(len(cds[i][5])):

start = int(cds[i][2]) - int(cds[i][6][j])+upstream

end = int(cds[i][2]) - (int(cds[i][5][j])-1)+upstream

Xseq[start:end] = list(seq[i][start:end])

codingseq[i] += ’’.join(Xseq)

for i in range(len(codingseq)):

codingseq[i]=upstream*","+codingseq[i][upstream:len(codingseq[i])-downstream]

+ downstream*","

seq2 = []

codingseq2 = []

cds2 = []

x=0

#here ">" is substituted by "<" for 5’UTRs. Also, all sequences are cut
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off after length 2000.

for i in range(len(seq)):

if len(seq[i])==len(codingseq[i]):

seq2.append(seq[i][0:2000])

cds2.append(cds[i][0:2000])

codingseq2.append([])

codingseq2[x]=codingseq[i][0:1000]

for j in range(1000,2000):

if codingseq[i][j] in ["A","T","C","G"]:

codingseq2[x]+=codingseq[i][j:2000]

break

if codingseq[i][j]==">":

codingseq2[x]+="<"

else:

codingseq2[x]+=codingseq[i][j]

x+=1

return cds2,seq2,codingseq2

D.2 List of animals used to obtain data

This section serves to provide a table with the list of animals of which data was
obtained from biomart.
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1 dmelanogaster Drosophila melanogaster A fruitfly
2 celegans Caenorhabditis elegans A nematode
3 cintestinales Ciona intestinalis Vase tunicate
4 csavignyi Ciona savignyi Solitary sea squirt
5 pmarinus Petromyzon marinus Sea lamprey
6 loculatus Lepisosteus oculatus Spotted gar
7 amexicanus Astyanax mexicanus Mexican tetra
8 trubripes Takifugu rubripes Japanese puffer
9 tnigrovirides Tetraodon nigroviridis Green spotted puffer
10 oniloticus Oreochromis niloticus Nile tilapia
11 gaculeatus Gasterosteus aculeatus Three-spined stickleback
12 olhni Oryzias latipes Japanese rice fish
13 pformosa Poecilia formosa Amazon molly
14 xmaculatus Xiphophorus maculatus Southern platyfish
15 lchalumnae Latimeria chalumnae West Indian Ocean coelacanth
16 xtropicalis Xenopus tropicalis Western clawed frog
17 acarolinensis Anolis carolinensis Green anole
18 psinensis Pelodiscus sinensis Chinese softshell turtle
19 falbicollis Ficedula albicollis Collared flycatcher
20 aplatyrhynchos Anas platyrhynchos Mallard
21 ggallus Gallus gallus Red junglefowl
22 mgallopavo Meleagris gallopavo Wild turkey
23 oanatinus Ornithorhynchus anatinus Platypus
24 mdomestica Monodelphis domestica Gray short-tailed opossum
25 sharrisii Sarcophilus harrisii Tasmanian devil
26 sscrofa Sus scrofa Wild boar
27 btaurus Bos taurus Cow
28 oaries Ovis aries Sheep
29 mlucifugus Myotis lucifugus Little brown bat
30 ecallabus Equus caballus Horse
31 fcatus Felis catus Cat
32 mpfuro Mustela putorius furo Ferret
33 ocuniculus Oryctolagus cuniculus European rabbit
34 cporcellus Cavia porcellus Guinea pig
35 itridecemlineatus Ictidomys tridecemlineatus Thirteen-lined ground squirrel
36 dordii Dipodomys ordii Ord’s kangaroo rat
37 mmusculus Mus musculus House mouse
38 rnorvegicus Rattus norvegicus Brown rat
39 mmurinus Microcebus murinus Gray mouse lemur
41 ogarnettii Otolemur garnettii Northern greater galago
42 csyrichta Carlito syrichta Philippine tarsier
43 cjacchus Callithrix jacchus Common marmoset
44 csabaeus Chlorocebus sabaeus Green monkey
45 panubis Papio anubis Olive baboon

continues on the next page
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46 mmulatta Macaca mulatta Rhesus macaque
47 nleucogenys Nomascus leucogenys Northern white-cheeked gibbon
48 pabelii Pongo abelii Sumatran orangutan
49 ggorilla Gorilla gorilla gorilla Western lowland gorilla
50 hsapiens Homo sapiens Human
51 ptroglodytes Pan troglodytes Chimpanzee

Table D.1: This table depicts the list of animals used to obtain data. It depicts the names of
the organisms as they appear in Biomart, as well as their Latin names and a short description
of the animal.
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