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Chapter 2

Physics behind the mechanical
nucleosome positioning code

This chapter is based on Zuiddam,
Everaers and Schiessel, 2017, Phys.
Rev. E. [31]

The positions along DNA molecules of nucleosomes, the most abundant DNA-
protein complexes in cells, are influenced by the sequence dependent DNA mechanics
and geometry. This leads to the “nucleosome positioning code”, a preference of
nucleosomes for certain sequence motives. In this chapter we introduce a simplified
model of the nucleosome where a coarse-grained DNA molecule is frozen into an
idealized superhelical shape. We calculate the exact sequence preferences of our
nucleosome model and find it to reproduce qualitatively all the main features known
to influence nucleosome positions. Moreover, using well-controlled approximations
to this model allows us to come to a detailed understanding of the physics behind
the sequence preferences of nucleosomes.

2.1 Introduction

The DNA double helix carries, in addition to the classical genetic information (the
genes encoding for the proteins), a mechanical layer of information. This is possible
because the mechanical properties of DNA depend on the underlying sequence of
base pairs (bp). Certain combinations of letters (especially bp steps) are softer than
others and some cause intrinsic bends on the DNA molecule [32]. So unlike in a
book where the stiffness of the paper does not depend on the text printed, DNA
elasticity and geometry is intimately linked to the text it carriers.

Possibly the most important biological consequence of sequence dependent DNA
mechanics is its impact on the positioning of DNA spools, called nucleosomes. The
core of each spool is a cylinder composed of eight histone proteins and it is wrapped
by a DNA stretch of 147 bp length. A short stretch of unbound DNA, the linker
DNA, connects to the next protein spool. It is known from the nucleosome crystal
structure [33] that the DNA is bound to the protein core at 14 locations where the
minor groove of the DNA double helix faces the cylinder. This defines the binding
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Figure 2.1: (a) The probability of finding GC steps peaks at positions where the
major groove of the DNA faces the histone octamer (every 10th bp) whereas TT,
AA and TA are all in phase and have their peaks in between where the minor groove
faces the cylinder. These are key rules from the so-called “nucleosome positioning
code”. (b) Visual representation of our model for nucleosomal DNA. Base pairs
represented by rigid plates are frozen in an idealized superhelical shape.

path, a left-handed superhelix of one and three quarter turns.

This structure makes nucleosomes ideal “readers” of mechanical cues. Firstly,
the length that is wrapped in a nucleosome is about one persistence length, 50 nm.
It follows that the bending energy is much larger (about 60 times [34]) than the
thermal energy. Thus even a small change in the wrapped bp sequence is expected
to have a strong effect on the nucleosome affinity. Secondly, as the binding to the
histone octamer occurs mostly with the two backbones of the DNA double helix,
there is no direct readout of the sequence but instead the nucleosome affinity results
from the elasticity and geometry of the involved DNA stretch.

It is indeed known from various experiments that nucleosomes have sequence
preferences [4–6]. High affinity sequences show certain motifs along the wrapped
DNA. This “nucleosome positioning code” is typically formulated in terms of bp
steps or, looking along one strand, dinucleotides: most importantly, the probability
of finding GC steps (nucleotide G followed by nucleotide C) peaks at positions where
the major groove faces the protein cylinder (every 10th bp) whereas TT, AA and
TA are all in phase and have their peaks in between where the minor groove faces
the cylinder (see Fig. 2.1(a)).

Over evolutionary time scales mechanical signals have evolved along genomes.
Examples are nucleosome depleted regions at transcription start sites in yeast fa-
cilitating transcription initiation [6, 9], mechanically encoded retention of a small
fraction of nucleosomes in human sperm cells allowing transmission of paternal epi-
genetic information [9, 35] or the positioning of six million nucleosomes around
nucleosome inhibiting barriers in human somatic cells [8].

However, what is still missing is a deeper understanding of the physics underlying
nucleosome positioning rules. An example, mentioned in [14], are the positions where
GC steps typically occur in high-affinity sequences. These correspond to positions
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that GC steps dislike the most. Even more remarkably, of all 16 bp steps it is the
GC step that is energetically most costly at these positions.

A first step toward understanding the nucleosome positioning rules is using coarse
grained DNA models with sequence dependent elasticity and force them into shapes
that resemble the wrapped DNA portions in nucleosomes. Several such models use
the so-called rigid base pair model [12, 13] in which the conformation of a DNA
molecule is described by the positions and orientations of its base pairs that are
modelled as rigid objects. These nucleosome models have been used to predict
nucleosome stability and positioning [15–17, 20–22, 36], forces and torques on the
wrapped DNA [37], nucleosome mobility along DNA [18] and the response of nu-
cleosomes to external forces [19]. One recent study [14] specifically addresses the
question whether such models can predict the above mentioned rules of the nucleo-
some positioning code. This was achieved by introducing the Mutation Monte Carlo
method, which mixes conformational and sequence moves. This method automati-
cally produces the sequence preferences along the wrapped DNA and it was indeed
found that it reproduces the nucleosome positioning rules. However, the model is
still far too complex to really come to a clear interpretation of how the rules result
from the underlying elasticity and geometry of the DNA.

Here we overcome this complexity by reducing the model to its bare essentials:
we consider a piece of DNA that is forcibly curved and idealize the shape by placing
it on a superhelical path (Fig. 2.1(b)). Assuming such an idealized shape (as done
in [20–22, 36]) instead of trying to imitate details of the crystal structure (as done
in [14–19]) makes our model analytically tractable and allows us to pinpoint the
dominant contributions that underlie the positioning code. Moreover we freeze the
model into this configuration, unlike in some models where the base pairs are free
to move with respect to others (at some energy cost) [14, 17–19, 36]. Variants of
our approach are in principle applicable to any model that freezes the DNA into a
fixed configuration like it is done in [15, 16, 20–22].

The goal of this chapter is not to come up with yet another tool for nucleosome
positioning. Based on the more complete model [14] we were able to build a
probabilistic model that is as fast as the model introduced here and is very successful
in predicting nucleosome positioning [9]. The goal of the current work is instead to
come to a deep understanding of the positioning rules. For instance, we will be able
to explain what cause GC steps to “favour” the most costly positions on the wrapped
DNA. To achieve this an analytical approach as presented here is indispensable.

In the next section we introduce our model. In Section 2.3 we explain how it
can be solved using transfer matrices. This is followed by two sections that develop
approximations that allow to come to a detailed understanding of the nucleosome
positioning rules: in Section 2.4 we take a limited number of neighbours around the
given base pair step into account to derive upper and lower bounds for the prob-
abilities of its occurrence, and in Section 2.5 we introduce the average neighbour
energy approximation, an effective approximation for interpreting nucleosome posi-
tioning rules. The exact dinucleotide probabilities, approximations to them and an
interpretation of the rules is presented in Section 2.6, and a conclusion is provided
in the final section.
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qroll [rad] Qroll
[
kBTr

rad2

]
qtilt [rad] Qtilt

[
kBTr

rad2

]
AA 0.012410451 126.98464 -0.024820902 207.73324
AT 0.019409417 148.42141 0 216.86174
AC 0.012372536 143.15931 -0.0017675051 221.16218
AG 0.079562987 123.91326 -0.030057128 200.28179
TA 0.058653564 73.527282 0 129.10674
TT 0.012410451 126.98464 0.024820902 207.73324
TC 0.03372236 113.06128 0.026622916 210.62471
TG 0.083496463 97.396194 -0.0088826025 146.17762
CA 0.083496463 97.396194 0.0088826025 146.17762
CT 0.079562987 123.91326 0.030057128 200.28179
CC 0.063703201 130.1586 0.0017695334 225.01953
CG 0.095824007 83.019248 0 150.88272
GA 0.03372236 113.06128 -0.026622916 210.62471
GT 0.012372536 143.15931 0.0017675051 221.16218
GC 0.0053117746 146.67053 0 214.38125
GG 0.063703201 130.1586 -0.0017695334 225.01953

Table 2.1: Parametrization used to calculate the dinucleotide energy, Eq. 2.5 to
Eq. 2.7. The symbols q and Q denote the intrinsic value and the stiffness of roll or
tilt.

2.2 Model

Our model is based on the rigid base pair model [12, 13], a coarse grained rep-
resentation of the DNA double helix, that treats the base pairs as rigid plates.
Neighbouring plates differ by six degrees of freedom called shift, slide, rise, roll, tilt
and twist. The rotational degrees of freedom, roll, tilt, and twist, are shown in
Fig. 2.2. We force this DNA model into a superhelix to mimic the bending of the
DNA inside a nucleosome, neglecting the non-uniform bending of the nucleosomal
DNA observed in its crystal structure [33]. As the general nucleosome positioning
rules hold all along the wrapped part [5], we expect that these simplifications do
not affect the rules whose origin we aim to understand here. In addition, motivated
by the observation that the basic nucleosome positioning rules can be rationalized
by discussing energy costs involved in the roll and tilt degrees of freedom [14], we
only account for them and neglect contributions from the other degrees of freedom.
This makes the model easier to analyse. The contribution of twist and any cross
terms between the rotational degrees of freedom will be discussed in Appendix A.1.
There we will show that neglecting these terms does not affect the main positioning
rules of our model.

The rigid base pair model assumes only nearest-neighbor interactions and places
a quadratic deformation energy between successive base pairs with bp step depen-
dent stiffnesses and intrinsically preferred configurations. We use in the following
the hybrid parametrization, where the intrinsic values are derived from protein-DNA
crystals and the stiffnesses from atomistic molecular simulations [38], see Table 2.1
for a list of the parameters for roll and tilt.



2.2. Model 21

In order to calculate the difference between the preferred and the actual con-
figuration, we need to formally define the shape of our superhelix. We consider a
superhelix with pitch P and radius R (similar to Morozov et al., Ref. [36]):

r⃗(s) = [R cos(s/Reff), R sin(s/Reff),−(P/2πReff)s], (2.1)

with Reff =
√
R2 + (P/2π)2. The set of Frenet-Serret vectors at position s on the

superhelix are given by

[t̂(s), n̂(s), b̂(s)] =

[
dr⃗

ds
,
dt⃗

ds
/

∣∣∣∣ dt⃗ds
∣∣∣∣ , t⃗× n⃗

]
(2.2)

where t̂ is the tangent unit vector, n̂ the principal normal unit vector and b̂ the
binormal unit vector.

The rotational orientation of a base pair plate, compared to the origin, can be
described using the three orthonormal vectors x̂, ŷ, ẑ, see Fig. 2.2(a). We place
the double helical shape of the DNA on the superhelix by defining the orthonormal
vectors with respect to the Frenet-Serret vectors, such that the double helix revolves
(twists) right-handedly around the superhelix:

[x̂(p), ŷ(p), ẑ(p)] =[n̂(s) cos(θp+ ϕ)− b̂(s) sin(θp+ ϕ),

− n̂(s) sin(θp+ ϕ)− b̂(s) cos(θp+ ϕ), t̂(s)], (2.3)

with p = s(L−1)/(2πReffα)+1/2 the positions of the dinucleotide (right in between
two plates), where α denotes the number of superhelical turns and L the number of
base pairs wrapped around the nucleosome. The constants θ and ϕ determine how
much the double helix is twisted, and which positions correspond to maximum/mini-
mum roll and tilt. To reflect the approximately 10 bp helical pitch of the DNA inside
the nucleosome, we set θ = 2π/10. The phase ϕ is set to −147π/10 such that the
bp at the central position between dinucleotide steps 73 and 74 corresponds to the
position of maximal roll, in accordance with the fact that at that position the major
groove faces the histone octamer. This is also the place where the tilt changes sign
from negative to positive values.

The convention we use to calculate the roll, tilt, and twist degrees of freedom
from the orientation of the plates has been well-explained in the literature [39] and
will not be discussed here. We will provide the (numerical) results of this method, as
well as a short explanation of the values. Using P = 25.9 Å, R = 41.9 Å, α = 1.84,
and L = 147 [36], we find expressions for the angles qip, i ∈ {roll, tilt, twist} given
by:

[qrollp , qtiltp , qtwist
p ] =[Γ cos(2πp/10− 147π/10),

Γ sin(2πp/10− 147π/10), qtwist], (2.4)

with Γ ≈ 0.0796 rad and qtwist ≈ 10.17/(2π) rad. These values can be rationalized
the following way. Our superhelix has constant curvature, and as a result, a constant
angle between each dinucleotide pair, to which roll and tilt make equal contributions
[36]. This angle is given by arccos{t⃗ [s(p)] · t⃗ [s(p + 1)]} ≈ 0.0788, which is a great



22 Chapter 2. Physics behind the mechanical nucleosome positioning code

(b)

(c) (d)

Roll

Tilt Twist

x̂
ŷ
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Figure 2.2: The rotational degrees of freedom between neighboring bp in the rigid
base pair model. Each base pair has a coordinate system (a) which can be used to
describe the relative orientation between two plates. In our model we account only
for energy contributions from (b) roll and (c) tilt but neglect contributions from (d)
twist. Also the translational degrees are not considered.

approximation for our value of Γ. The twist qtwist we report is lower than the value
for θ we defined. While roll and tilt are 10 bp periodic, the twist corresponds
with a periodicity of 10.17. This may seem counter-intuitive. However, if the twist
were equal to 2π/10, the configuration of the plates would be a ring instead of a
superhelix.

As mentioned before, we only account for two degrees of freedom and also neglect
cross terms between them. Hence the energy of placing a dinucleotide step a, b ∈
{A, T, C,G} at position p is the sum of the roll and tilt energies:

Ep(a, b) = Eroll
p (a, b) + Etilt

p (a, b) (2.5)

with

Eroll
p (a, b) ≡ 1

2
Qroll(a, b)

[
qrollp − q̄roll(a, b)

]2
, (2.6)

and

Etilt
p (a, b) ≡ 1

2
Qtilt(a, b)

[
qtiltp − q̄tilt(a, b)

]2
. (2.7)

The bp-step dependent stiffnesses in the roll and tilt degrees of freedom are given
by Qroll(a, b) and Qtilt(a, b) and the corresponding intrinsic values by q̄roll(a, b) and
q̄tilt(a, b).

2.3 Dinucleotide probabilities

Here we calculate the dinucleotide probability distribution along our nucleosome
model. Base pair steps are the mechanical units in our model and also the ex-
perimentally observed nucleosome sequence preferences are typically formulated in
terms of dinucleotides [5, 32]. We therefore aim to obtain the probability of hav-
ing nucleotides a and b at dinucleotide position p on the DNA molecule of length
L = 147. The nucleotides are numbered from 1 to L, such that the pth dinucleotide
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position contains nucleotides p and p+ 1. The probability does not merely depend
on the energy stored between a and b. These bases are connected to other bases as
well. In order to find the probability we need to sum over all possible DNA strands
containing a and b at position p, and divide by the partition sum. Therefore the
probability is given by

Pp(a, b) =

∑
n1,...,nL

np=a,np+1=b

exp

[
−β

L−1∑
i=1

Ei(ni, ni+1)

]
∑

n1,...,nL

exp

[
−β

L−1∑
i=1

Ei(ni, ni+1)

] (2.8)

where we sum over all possible states ni ∈ {A, T, C,G}, with β the inverse tempera-
ture. The probability given by Eq. 2.8 corresponds to the case where the nucleosomal
DNA sequence mutates freely. This is distinct from the scenario where various DNA
stretches compete for nucleosomes, as it is typically the case in experiments such as
Ref. [4–6]. Then also entropic effects play a role (e.g., softer bp steps prefer to reside
outside nucleosomes for entropic reasons). However, our model is also a reasonable
approximation to this case since this system is energy-dominated for physiological
temperatures (and lower). In this study, we therefore consider only energies but
neglect entropic contributions associated with conformational degrees of freedom.

This type of probabilities can be evaluated using transfer matrices. Transfer
matrix formalisms have been used both in the context of calculating dinucleotide
probabilities for a single nucleosome and evaluating many-nucleosome systems [5,
36, 38, 40] (see Ref. [41] for an overview).

We define the position-dependent transfer matrix Ti in the basis
B = {|A⟩ , |T ⟩ , |C⟩ , |G⟩} such that

⟨n|Ti|m⟩ ≡ exp [−βEi(n,m)] (2.9)

with |n⟩ , |m⟩ ∈ B. This allows us to rewrite the probability as

Pp(a, b) =∑
n1,nL

⟨n1|T1...Tp−1 |a⟩ ⟨a|Tp|b⟩ ⟨b|Tp+1...TL−1 |nL⟩∑
n1,nL

⟨n1|T1...Tp−1TpTp+1...TL−1 |nL⟩
. (2.10)

Finding this probability involves multiplying L − 1 = 146 four-by-four transfer
matrices in the nominator and denominator.

While this quantity is easy to calculate, the sheer number of terms makes it
hard to determine which terms influence the probability most and which terms can
be neglected. It seems reasonable that bases at positions far away from position
p are not as important to the probability as its close neighbours, e.g. at positions
p+ 1 and p− 1. In the next section we will show this by quantifying the effect that
far-away bases can possibly have on the probability.
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2.4 Bounds of dinucleotide probabilities

Here we show how much the probability Pp(a, b) can be affected by the energies of
nucleotides some steps away from the position p. In the following we quantify the
effect by calculating kth-order bounds of the probability, which we obtain using only
the energies of k bases to the left and k bases to the right of the dinucleotide at
position p. We assume that all the ‘unused’ bases either try to make the probability
Pp(a, b) as high or as low as possible. This is done by substituting all terms related
to the unused bases on the left by ⟨xk|, and the terms related to unused bases on
the right by |yk⟩. The probability for k ≥ 1 is then given by

Pp(a, b) =

⟨xk|
p−1∏

i=p−k

Ti |a⟩ ⟨a|Tp|b⟩ ⟨b|
p+k∏

j=p+1

Tj |yk⟩

⟨xk|
p+k∏

i=p−k

Ti |yk⟩
(2.11)

with

⟨xk| ≡
1

ck

∑
n

⟨n|T1T2...Tp−k−2Tp−k−1 (2.12)

and

|yk⟩ ≡
1

dk

∑
n

Tp+k+1Tp+k+2...TL−2TL−1 |n⟩ , (2.13)

where ck and dk are normalization constants such that | ⟨xk|xk⟩ | = 1 and | ⟨yk|yk⟩ | =
1. Note that ⟨xk| and |yk⟩ implicitly depend on p.

To find the kth-order bounds on the probability, we assume that we know nothing
about ⟨xk| or |yk⟩ other than that they represent physically possible states. We
formally define the kth-order upper/lower bound by taking the maximum/minimum
of Eq. 2.11 where we let ⟨xk| and |yk⟩ run over all their possible states. Because the
transfer matrix contains Boltzmann weights only, all entries in the transfer matrices
Ti are positive. From this it follows that |xk⟩ =

∑
n∈{A,T,C,G}

xn,k |n⟩ and |yk⟩ =∑
n∈{A,T,C,G}

yn,k |n⟩ with 0 < xn,k ≤ 1, 0 < yn,k ≤ 1. These equations are equivalent

to the quantum mechanical representation of mixed states. The probabilities to
encounter the four possible bases k positions to the left and right of dinucleotide a, b
are weighted by xn,k and yn,k, parameters that depend on the energy costs of bases
further away.

It turns out that one finds the minimally and maximally possible value of the
probability when |xk⟩ and |yk⟩ are pure states, states from the basisB = {|A⟩ , |T ⟩ , |C⟩ , |G⟩}.
Pure states correspond to exactly knowing which bases are present k bases to the
left and to the right of the dinucleotide a, b. (Strictly speaking, this happens only
when the energy costs of encountering the other possible bases are infinitely high.
In other words, this is a limiting case.)

Since, as we prove below, the minimally and maximally possible value of the
probability is found when |xk⟩ and |yk⟩ are pure states, one can compute the kth-

order upper and lower bounds of the probability, P
(k)
max,p(a, b) and P

(k)
min,p(a, b), by
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simply evaluating the probability for all 16 possible combinations of pure states.
This leads to the expressions

P (k)
max,p(a, b) =

max
|x∗

k⟩,|y
∗
k⟩∈B

⟨x∗
k|

p−1∏
i=p−k

Ti |a⟩ ⟨a|Tp|b⟩ ⟨b|
p+k∏

j=p+1

Tj |y∗k⟩

⟨x∗
k|

p+k∏
i=p−k

Ti |y∗k⟩
(2.14)

and

P (k)
min,p(a, b) =

min
|x∗

k⟩,|y
∗
k⟩∈B

⟨x∗
k|

p−1∏
i=p−k

Ti |a⟩ ⟨a|Tp|b⟩ ⟨b|
p+k∏

j=p+1

Tj |y∗k⟩

⟨x∗
k|

p+k∏
i=p−k

Ti |y∗k⟩
. (2.15)

We prove now the expression for the kth-order upper bound of the probability
(the proof for the lower bound can be obtained analogously). We substitute |xk⟩ =∑
n∈{B}

xn,k |n⟩ and |yk⟩ =
∑

m∈{B}
ym,k |m⟩ into Eq. 2.11. To prove Eq. 2.14, we need

to show that one finds the largest possible value for the probability when xn,k and
ym,k are zero for all n,m except for one value of n and m. For convenience, we

define T̄nm ≡ ⟨n|
p−1∏

i=p−k

Ti |a⟩ ⟨a|Tp|b⟩ ⟨b|
p+k∏

j=p+1

Tj |m⟩ and Tnm ≡ ⟨n|
p+k∏

i=p−k

Ti |m⟩ for

n,m ∈ B. The probability can then be stated as

Pp(a, b) =

∑
n∈B

∑
m∈B

xn,kT̄nmym,k∑
n∈B

∑
m∈B

xn,kTnmym,k

. (2.16)

Without loss of generality, we assume that

T̄ij

Tij

= min

( T̄AA

TAA

,
T̄AT

TAT

, ...,
T̄GG

TGG

)
(2.17)

holds for some i, j ∈ B, which does not have to be unique. We evaluate the sign of
the derivative of Pp(a, b) with respect to xi,kyj,k:

∂Pp(a, b)

∂(xi,kyj,k)
=

∑
n∈B

∑
m∈B

xm,kTnmyn,kTij

(
T̄ij
Tij −

T̄nm

Tnm

)
(∑

n∈B

∑
m∈B

xn,kTnmym,k

)2

≤0. (2.18)
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The less-than or equal to sign follows from the fact that T̃nm, Tnm, xm,k and yn,k
are non-negative for all n,m and from Eq. 2.17. Because the derivative is non-
positive, the probability is non-increasing as a function of xi,kyj,k, thus a maximum
can be found when xi,kyj,k is minimal, i.e., in the limit of xi,kyj,k → 0. Now we
have ‘eliminated’ one combination of variables: xi,kyj,k, and the corresponding ratio
T̃ij
Tij from Eq. 2.16) (this can be checked by inserting xi,kyj,k = 0 in Eq. 2.16). This

process can be performed iteratively until only one combination of variables is left.
Now we assume, again without loss of generality, that this final combination is
xr,kys,k for some r, s ∈ B. The probability is now independent of these variables:

P (k)
max,p(a, b) =

xr,kT̄rsys,k
xr,kTrsys,k

=
T̄rs

Trs

. (2.19)

This does not mean we can freely assign a number to xr,kys,k. Recall that |xk⟩ and
|yk⟩ are unit vectors. Since xm,kyn,k → 0 for all m ̸= r, n ̸= s, it is required that
xr,k → 1 and ys,k → 1, and xm,k → 0 and yn,k → 0 for all m ̸= r, n ̸= s. Therefore,
we find the kth upper bound of the probability when |xk⟩ and |yk⟩ are pure states
from the basis B, as we stated in Eq. 2.14.

For the zeroth-order bounds, where no neighbours are taken into account, a
similar result holds. This can be obtained in the same manner as Eq. 2.14 and
Eq. 2.15, therefore no proof is provided. These bounds are given by

P (0)
max,p(a, b) = max

|x∗
0⟩,|y∗0⟩∈B

⟨x∗
0|a⟩ ⟨a|Tp|b⟩ ⟨b|y∗0⟩

⟨x∗
0|Tp |y∗0⟩

= 1 (2.20)

and

P
(0)
min,p(a, b) = min

|x∗
0⟩,|y∗0⟩∈B

⟨x∗
k|a⟩ ⟨a|Tp|b⟩ ⟨b|y∗k⟩

⟨x∗
k|Tp |y∗k⟩

= 0. (2.21)

These bounds are 1 and 0 because min
|x∗

0⟩,|y∗0⟩∈B
⟨x∗

k|a⟩ = 0 and max
|x∗

0⟩,|y∗0⟩∈B
⟨x∗

k|a⟩ = 1.

This shows that one needs to take at least one neighbour into account to obtain
non-trivial results.

Furthermore, one can show that the bounds on the probability get sharper at
higher order, i.e., increasing k:

P (k)
max,p(a, b) ≥ P (k+1)

max,p (a, b) ≥ Pp(a, b) (2.22)

Pp(a, b) ≥ P
(k+1)
min,p (a, b) ≥ P

(k)
min,p(a, b). (2.23)

An intuitive explanation is that adding the information on more and more bases to
our calculation should lead to sharper bounds on the probability. It is straighforward
to prove. Consider Eq. 2.14 for the (l+1)th order upper bound (such that k = l+1)
with its two maximizing pure states ⟨x∗

l+1| = ⟨n| and |y∗l+1⟩ = |m⟩. This bound
is smaller or equal to the upper bound for k = l for the following reason: one
finds exactly the same expression as above if one inserts into Eq. 2.14 the states
⟨x∗

l | = ⟨n|Tp−l and |y∗l ⟩ = Tp+l |m⟩. We find the lth-order upper bound if ⟨x∗
l |

and |y∗l ⟩ are pure states. Using other values, i.e., ⟨n|Tp−l and Tp+l |n⟩, can only
result in probabilities equal to or lower than this lth-order maximum. Therefore, the
(l + 1)th-order upper bound cannot be higher than the lth-order upper bound. The
same reasoning holds for the lower bounds.
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2.5 The average neighbour energy approximation

The method of finding bounds on the probability in the previous section allows us to
quantify how much nucleotides a given number of steps away from a given position
can affect the dinucleotide preferences at that position. By comparing the results
of the bounds on the probability at different orders we will show in the next section
that long-range interactions are unimportant. On the other hand, we will also find
that a purely local picture where the probability of a dinucleotide is determined
only by its own elastic properties is not predictive. Even the first-order bounds on
the probability that take the nearest neighbours into account, are too far apart to
confine sufficiently the position-dependent variations of the probabilities. It is the
difference between the second-order upper and lower bounds that is much smaller
than these variations. This demonstrates that only a limited number of neighbours
determines the nucleosome positioning rules.

Here we further expand on this idea by showing that, for our model at room
temperature, the probability of finding a dinucleotide at a given position p mostly
depends on only two parameters: the energy of the dinucleotide at position p, and
the sum of the averages of the energies of their possible neighbours at positions p+1
and p−1. Looking at these two parameters allows us to interpret the base pair step
preferences in our nucleosome model. We will call the corresponding approximation
the average neighbour energy approximation. This approximation will be used later,
not to calculate probabilities but to give a physical interpretation of our findings
from the exact treatment.

Since the first-order bounds on the probability are not good enough to confine
the dinucleotide preferences, it may seem counter-intuitive to use only the nearest
neighbours. This can be explained by the fact that the upper and lower bounds on
the probability take extreme scenarios into account where the neglected nucleotides
have the highest possible impact on the probability, whereas the actual system does
not behave as extremely.

We introduce now the approximated probability that we indicate by a superscript
(e) as follows: P

(e)
p (a, b). Using the notation

⟨f(x)⟩x =
1

4

∑
x∈{A,T,C,G}

f(x), (2.24)

⟨g(x, y)⟩x,y =
1

16

∑
x,y∈{A,T,C,G}

g(x, y), (2.25)

we define the average neighbour energy approximation of the probability as
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P (e)
p (a, b) ≡

exp
[
−β⟨Ep−1(np−1, a)⟩np−1

]
× exp [−βEp(a, b)]
× exp

[
−β⟨Ep+1(b, np+2)⟩np+2

]∑
np,np+1

exp
[
−β⟨Ep−1(np−1, np)⟩np−1

]
× exp [−βEp(np, np+1)]

× exp
[
−β⟨Ep+1(np+1, np+2)⟩np+2

]
. (2.26)

Note that this approximation depends on Ep(a, b), the energy of the dinucleotide
step ab at position p, and on ⟨Ep−1(np−1, a)⟩np−1 + ⟨Ep+1(b, np+2)⟩np+2 , an average
of the energies of possible nearest neighbours of ab. We have calculated the error
introduced by using the average neighbour energy approximation and found it not
to be larger than 3.5 percent at any position for any dinucleotide, see Appendix A.2.

Next we provide an explanation why this approximation works so well for our
model. Our strategy is to bring the approximated probability, Eq. 2.26, and the
full probability, Eq. 2.8, into a similar form. Comparison of the two similar ex-
pressions allows then to explain the nature of this approximation that is otherwise
not straightforward to see. We start by rewriting the approximation such that it
resembles more the exact probability (Eq. 2.8):

P (e)
p (a, b) =∑

n1,...,nL
n̂p−1,n̂p+2:

np=a,np+1=b

exp
[
−β

L−1∑
i=1

⟨Ei(ni, ni+1)⟩np−1,np+2

]
∑

n1,...,nL
n̂p−1,n̂p+2

exp
[
−β

L−1∑
i=1

⟨Ei(ni, ni+1)⟩np−1,np+2

] . (2.27)

The hats above np−1 and np+2 denote that these variables are not to be summed
over. The nominator factorises in three terms: (1) a sum of terms where each term
depends explicitly on at least one of the variables n1 to np−2, (2) a sum of terms
where each term depends explicitly on at least one of the variables np+3 to nL, and
terms independent of those variables. The first and second factors cancel out with
the exact same expressions in the denominator leading back to Eq. 2.26.

We will now make the exact probability (Eq. 2.8) look more like the approx-
imation in the form of (Eq. 2.27). By substituting the function Cp(i, j), defined
as

Cp(m, o) ≡
1
4

∑
n

exp [−βEp+1(m,n)− βEp+2(n, o)]

exp [−β⟨Ep+1(m,n) + Ep+2(n, o)⟩n]
, (2.28)
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into Eq. 2.8 twice, we obtain

Pp(a, b) =∑
n1,...,nL

n̂p−1,n̂p+2:
np=a,np+1=b

exp
[
−β

L−1∑
i=1

⟨Ei(ni, ni+1)⟩np−1,np+2

]
×Cp−2(np−2, a)Cp+1(b, np+3)∑

n1,...,nL
n̂p−1,n̂p+2

exp
[
−β

L−1∑
i=1

⟨Ei(ni, ni+1)⟩np−1,np+2

]
×Cp−2(np−2, np)Cp+1(np+1, np+3)

, (2.29)

which is indeed very similar to Eq. 2.27, apart from the functions Cp. The approx-

imation Pp(a, b) ≈ P
(e)
p (a, b) is exact if Cp−2(np−2, a) does not depend on a, and if

Cp+1(b, np+3) does not depend on b. The approximation works well if these functions
show only a weak dependence on a and b. It turns out that (for our model) the latter
is true, see Appendix A.2 for details.

The approximation gets worse with decreasing temperature. We can see this by
performing a Taylor expansion in β of Cp(m, o):

Cp(m, o) ≈ 1 +
1

2
β2⟨

[
Ep+1(m,n) + Ep+2(n, o)

− ⟨Ep+1(m,n′) + Ep+2(n
′, o)⟩n′

]2⟩n. (2.30)

Only the higher-order terms depend on m and o; these terms become increasingly
important with decreasing temperature (increasing β). At room temperature the
higher-order terms are not important as the various dinucleotide energies lie close
to each other compared to the thermal energy. As a result the exponential of the
averages is a good approximation to the average of the exponentials and Cp(m, o)
shows only a weak dependence on m and o.

2.6 Results

2.6.1 The dinucleotide probability

Using the transfer matrix approach we calculate here the preferences of dinucleotide
steps along our nucleosome model. We focus in this section on the “nucleosome
positioning code” [5] which claims that high affinity sequences are characterized by
the proper positioning of four dinucleotides: the probability of finding GC steps (a
G followed by a C) peaks at positions where the major groove faces the protein
cylinder (every 10th bp) whereas AA, TA, and TT are all in phase and have their
peaks in between where the minor groove faces the cylinder.

Fig. 2.3(a) shows the combined probability to encounter AA, TA, TT along the
nucleosome and, separately, that of GC calculated using transfer matrices, Eq. 2.10.
Both signals are 10 bp periodic in accordance with the experimental observation.
Moreover, the two probabilities show the right phases: the GC signal has a peak in
the center (at the nucleosomal dyad) which corresponds to a place where the major
groove faces inward and the same holds for all other peaks of GC. The combined
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Figure 2.3: (a) The probability to find AA, TA or TT, and the probability to
encounter GC at the full range of dinucleotide positions is shown. The solid and
dashed vertical lines indicate minor and major bending sites (maximum negative
and positive roll, respectively). The probabilities are in qualitative agreement with
the well-known nucleosome positioning rules [5]. (b) Same as (a) but showing all
four dinucleotide probabilities individually.

signal of AA, TA, and TT is out of phase with the GC signal and peaks at the places
where the minor groove is compressed. In short, our model reproduces qualitatively
the well-known nucleosome positioning rules.

More details provides Fig. 2.3(b) where all four dinucleotides are plotted sepa-
rately. The figure shows that indeed AA, TA, and TT are all in phase with each
other. Strictly speaking, however, TT peaks slightly before, and AA slightly after
maxima in TA. This should be expected since TA bridges TT and AA steps. This
leads to the question whether TA steps peak at the minor groove roll position be-
cause they just “happen” to bridge TT and AA steps or whether there is an intrinsic
advantage for TA to peak at this position. As we explain further below, our model
allows to give precise answers to such kind of questions.

Finally, we mention that the 10 bp periodicities of the signals displayed in Fig. 2.3
are, of course, simply a consequence of 10 bp periodicity in our model, see Eq. 2.6
and Eq. 2.7. However, very close to the termini of the nucleosomal DNA the prob-
abilities deviate from this periodic signal. The short range of this boundary effect
suggests that the probability of finding a dinucleotide is not affected much by far-
away nucleotides. This can be demonstrated (and quantified) using the upper and
lower bounds of the probability to which we now turn.

2.6.2 The bounds on the probability

Fig. 2.4(a)-(b) show the first- and second-order bounds on the probability to en-
counter AA, TA, TT or GC at dinucleotide position 58 through 88 using Eq. 2.14
and Eq. 2.15). Note that the energy as defined by Eq. 2.5 to Eq. 2.7 allows also for
non-integer bp positions. Even though these non-integer positions have no physical
meaning due to the discrete nature of bp sequences, we plot them here as well, as
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they are a useful guide for the eye. Strictly speaking, however, only the integer
positions are physically meaningful.

By using only one neighbour to the left and right (first-order bounds) the bounds
indicate already the qualitative behaviour of the system for some of the dinucleotides
(AA, TA and TT but not GC), see Fig. 2.4(a). Accounting for two neighbours
on each side (second-order bounds) provides already an excellent estimate of the
dinucleotide probabilites as the differences between the upper and lower bounds are
much smaller than the observed overall variations in the probabilities at different
positions, see Fig. 2.4(b).

The effect of far-away bases can be characterized by one number as follows. The
difference between the upper and lower bounds decays exponentially with increas-
ing order of the bounds (i.e., increasing the number of neighbours involved), see
Fig. 2.4(c). This allows us to define an effective order κ, similar to a correlation
length:

P (k)
max,p(a, b)− P

(k)
min,p(a, b) ≈ e−k/κ. (2.31)

The value of κ is found to be approximately equal to 1.2. This shows that increasing
the order of the bounds has a huge effect around k = 1. It also explains why
only the probabilities very close to the edges of the nucleosome are not following
the 10 bp periodicity. Probabilities at positions far away from the boundaries are
(exponentially) less influenced by the edge and will not ‘feel’ its presence.

While the results shown here are obtained at room temperature, the bounds
remain an effective method at all possible temperatures, see Appendix. A.3.

2.6.3 Explaining the dinucleotide positioning rules

So far we have presented the probability distributions of a few key dinuclotides along
the nucleosome model and found good agreement with the general positioning rules.
We also demonstrated, by looking at upper and lower bounds of various orders, that
long-range interactions are not important, but nearby neighbours matter. This is
one of the reasons why the probabilities are well captured by the average neighbour
approximation. Using this approximation we explain in the following how the nu-
cleosome positioning rules in our model emerge from the elasticities and intrinsic
shapes of the various dinucleotides.

Fig. 2.3 shows that the probability (calculated using Eq. 2.10) of TA dinucleotides
peaks at positions of maximal negative roll (e.g., at positions 78 and 79) whereas
the one of GC dinucleotides peaks at positions of maximal positive roll (e.g., at
73-74). Moreover, TT peaks at positions of maximal positive tilt (such as position
77), while AA peaks at maximal negative tilt (e.g., at 70). We first discuss the rules
from a purely local perspective, i.e., just considering the elasticity and geometry
of the dinucleotide under consideration. From this perspective only some of these
findings make sense.

A local perspective on the dinucleotide probability fails

Table 2.1 presents all the parameters that were used in our model. Inspecting this
table one finds that TT and AA have large positive and negative intrinsic tilt,
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Figure 2.4: (a)-(b) Upper and lower bounds on the probabilities to have the din-
ucleotide AA, TA, TT or GC at several dinucleotide positions on a nucleosome.
Specifically (a) depicts the first-order bounds and (b) the second-order bounds of
the probability. The upper and lower bounds of the same dinucleotide have the
same colour (line style). (c) Difference between the upper and lower bounds of the
probabilities to encounter AA, TA, TT, and GC at position 79 at increasing order.
The difference, and thereby the effect of the neighbours k steps away from the din-
ucleotide of interest, decreases exponentially as the order k increases.
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TA
Position 69 70 71 72 73 74 75 76 77 78
Probability 0.116 0.098 0.077 0.059 0.050 0.050 0.059 0.077 0.098 0.116
Dinucleotide Energy [kBTr] 0.703 0.676 0.535 0.273 0.050 0.050 0.273 0.535 0.676 0.703
     -Roll 0.664 0.409 0.126 0.005 0.011 0.011 0.005 0.126 0.409 0.664
     -Tilt 0.039 0.268 0.409 0.268 0.039 0.039 0.268 0.409 0.268 0.039
Average Neighbour Energy [kBTr] 1.573 1.566 1.472 1.275 1.102 1.102 1.275 1.472 1.566 1.573
     -Roll 1.250 0.914 0.517 0.305 0.265 0.265 0.305 0.517 0.914 1.250
     -Tilt 0.323 0.652 0.955 0.971 0.837 0.837 0.971 0.955 0.652 0.323

Figure 2.5: The probability of dinucleotide TA, its energy and the average of the
energies of its possible neighbours are shown for 10 different positions along the
nucleosome, i.e., for one full DNA helical repeat. The numbers give absolute values
whereas the colours indicate how the corresponding value of the TA step compares
with the values of all other possible dinucleotides at the same position. Yellow
(light gray) colours represent relatively favourable values, red (dark gray) indicates
unfavourable values. The probability follows mainly from a ‘mixing’ of the colours of
the corresponding dinucleotide energies and average neighbour energies. The table
also provides subdivisions of the TA energies into roll and tilt contributions.

respectively, which is consistent with their preferred positions. In contrast to that,
TA has a large positive intrinsic roll, which makes positions of maximal negative roll
like 78-79 highly unfavorable, even though this is where this step peaks. Even more
surprising are the peaks for GC at positive roll positions as this is the dinucleotide
step with the smallest intrinsic roll among all dinucleotide steps, see Table 2.1.

These findings are consistent with what we have learned from the bounds on
the probabilities: zeroth-order bounds, which correspond to a purely local perspec-
tive, are not useful at all to obtain estimates of the probabilities, while first-order
bounds, which include the energies of the nearest neighbours, suffice for some of the
dinucleotides to have rather good estimates of the probability, see Fig. 2.4(a).

Neighbouring steps are equally important

The effect of the neighbours can be best understood using the average neighbour
energy approximation, see Eq. 2.26. Since this is an excellent approximation, see
Appendix A.2, the only terms important for the behaviour of the probability are
the energy of the dinucleotide itself, and the average of the energies of its possible
neighbours. To understand the nucleosome positioning rules we need thus to compare
the energy of the dinucleotide ab with the energies of the 15 other dinucleotides and
the average of the energies of all possible neighbours of ab with the averages of the
energies of all possible neighbours of the 15 other dinucleotides.

Such information can be best presented in tabular form. Fig. 2.5 provides the
relevant information for the TA dinucleotide. It presents (as numbers) the proba-
bility (obtained using Eq. 2.10) to find this dinucleotide, its energy (Eq. 2.5) and
the average of the energies of its possible neighbours (see Eq. 2.26) for a 10 base
pair stretch in one table (and some further information that we discuss further be-
low). More relevant, however, are the colours assigned to each box as they indicate
how these numbers compare to the values of all other possible dinucleotides. If
the colour is yellow (light gray), the value is relatively favourable compared to the
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GC
Position 69 70 71 72 73 74 75 76 77 78
Probability 0.039 0.042 0.050 0.060 0.068 0.068 0.060 0.050 0.042 0.039
Dinucleotide Energy [kBTr] 0.546 0.644 0.681 0.571 0.428 0.428 0.571 0.681 0.644 0.546
     -Roll 0.481 0.199 0.002 0.126 0.363 0.363 0.126 0.002 0.199 0.481
     -Tilt 0.065 0.445 0.679 0.445 0.065 0.065 0.445 0.679 0.445 0.065
Average Neighbour Energy [kBTr] 2.816 2.429 1.723 0.921 0.376 0.376 0.921 1.723 2.429 2.816
     -Roll 2.167 1.648 0.926 0.352 0.070 0.070 0.352 0.926 1.648 2.167
     -Tilt 0.649 0.781 0.797 0.569 0.306 0.306 0.569 0.797 0.781 0.649

Figure 2.6: Same as Fig. 2.5 but for GC.

ones of other dinucleotides at the same dinucleotide position (i.e., the probability
is relatively high, while the energy cost is relatively low). Red (dark gray) denotes
unfavourable values, while orange (gray) indicates that this value is average.

First consider in Fig. 2.5 row “Probability”: At positions 69 and 78, both
associated with negative roll and zero tilt, TA is favourable, as we have seen in
Fig 2.3. Next consider row “Dinucleotide energy”: The dinucleotide energy of TA
goes against this preference having the lowest values at positions 73 and 74, and
its highest at positions 69 and 78, both in absolute values (numbers) and relative
values (colours). Next turn to row “Average neighbour energy”: the absolute values
(numbers) have their lowest values at 73 and 74 but the relative values (colours)
strongly prefer the opposite. Therefore, what causes the TA preference for negative
roll positions is the average energy of the possible neighbours relative to the average
energy of the forbidden neighbours.

Now we turn to the other rows in Fig. 2.5. These extra rows provide a subdivision
of the dinucleotide energies and the average neighbour energies into roll and tilt
components. Inspecting these four extra rows reveals that the main cause for the
TA preference for positions 69 and 78 lies in the average tilt contribution of the
possible neighbour steps. This overrides TA’s own preference (relative and absolute)
for positive roll.

The same analysis as the one on TA can be performed on GC by inspecting
Fig. 2.6. This is another non-trivial dinucleotide in the sense that its behaviour
is heavily affected by its possible neighbours. Positions 73 and 74, associated with
large positive roll and bending towards the major groove, lead to a high dinucleotide
energy of GC (compared to other steps), which has a low (positive) intrinsic roll.
However, the possible neighbours cause the probability of encountering GC to be
highest at these positions and lowest at positions 69 and 78.

The complete picture

In Fig. 2.7 tables are shown that present the probabilities and relative energies for all
16 dinucleotides (again in colour code). There are seven tables corresponding to the
seven rows in Fig. 2.5 and Fig. 2.6. Using these tables one can analyse preferences
for each dinucleotide step individually, just as explained for TA and GC above.
Moreover, for cases where the average neighbour energies dominate the positional
preferences of dinucleotides (like for TA and GC), these tables allow to look up
which of the possible neighbours of a given dinucleotide are favourable.

As an example, we consider again the dinucleotide TA. In Fig. 2.7(a) we see
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that the probability of TA peaks at positions 69 and 78, which is not TA’s intrinsic
preference, Fig. 2.7(b), but that of its neighbours on average, Fig. 2.7(c). We need
now to inspect the intrinsic preferences of all the possible neighbours. At position
70, three of the four possible neighbours (dinucleotides starting with an A) are
favourable, namely AA, AT, and AC, see Fig. 2.7(b). Due to symmetry TT, AT,
and GT are favourable at position 77, see also Fig. 2.7(b). Further details are
revealed by Fig. 2.7(d), and (e) that present the roll and tilt contributions to the
dinucleotide energies. It shows that AA at 70, and TT at 77 are favourable due to
both their roll and tilt preferences whereas the other favourable steps, AT and AC
at 70, and AT and GT at 77, prefer those positions due to roll alone. Inspecting the
contributions of roll and tilt to the average neighbour energies for TA at positions
69 and 78, Fig. 2.7(f) and (g), one learns that both degrees of freedom matter but
tilt is the dominant factor. This reflects the very strong tilt preference for AA and
TT but also the fact that the only unfavourable neighbours (AG at 70, and CT at
77) are unfavourable due to roll whereas the tilt contributions are favourable.

Note that these considerations also explain preferred occurrences of larger mo-
tives, like e.g., TTAA centered around negative roll positions. In addition, similar
lines of arguments can be used to understand why TA is unfavored at high roll po-
sitions like 73 and 74, or the preferences of any other dinucleotide for that matter.

Shape is more important than stiffness

The roll and tilt terms of the energy can be subdivided even further. As can been
seen from equations Eq. 2.5 to Eq. 2.7 the sequence dependences enter the roll
and tilt energies both through the intrinsic geometries and through the stiffnesses
related to these two degrees of freedom. We show now that the stiffnesses are not
very important to the behaviour of our system. In Fig. 2.8 we compare two tables
for dinucleotide energies: the original table on the left (identical to Fig. 2.7(b)) and
on the right a table that is produced when we set all stiffnesses of roll and tilt to the
same small value, namely to 1. Even though the specific value of the stiffness affects
strongly the absolute values of the dinucleotide energies (not shown), it does hardly
affect the relative values of the energies (colour code). This reveals that, at least in
our simplified model, the sequence preferences are largely governed by the intrinsic
roll and tilt (and not the stiffnesses) of the dinucleotides. Note that this observation
is consistent with the findings reported in [42] where molecular dynamics simulations
performed on rather detailed nucleosome models revealed that nucleosome affinity
is dominated by the shape of the wrapped DNA.
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Figure 2.7: (a) Probability, (b) dinucleotide energy, and (c) average neighbour
energy of all 16 dinucleotides for one DNA helical repeat. Yellow (light gray) denotes
high probability/low energy, red (dark gray) low probability/high energy (relative
to all other dinucleotides at the corresponding location). In addition provided are
subdivisions of dinucleotide energies into (d) roll and (e) tilt, and of neighbour
energies into (f) roll and (g) tilt. The colours representing the probabilities can be
seen as a ‘sum’ of the colours of the dinucleotide energies and the average neighbour
energies. The colours corresponding to the dinucleotide energies are the ‘sum’ of the
colours for roll and tilt energies. The same holds for the neighbour energies.
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Figure 2.8: Original dinucleotide energy costs (left; same as Fig. 2.7(b)), and en-
ergy cost with all stiffnesses set to 1 (right) are shown side by side. The strong
similarity between the two tables reveals that stiffnesses play only a minor role for
the dinucleotide positional preferences.
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Conclusion

In this chapter we obtained a detailed understanding of the physics behind nucleo-
some sequence preferences as they arise from the sequence dependent geometry and
elasticity of the DNA double helix. Our strategy was to build a model that is simple
enough so that it can be solved analytically and complex enough to reproduce the
experimentally known nucleosome positioning rules. This was achieved by forcing a
coarse grained DNA model (the rigid base pair model) along a circular path and ac-
counting for the sequence dependent mechanics of only the most important degrees
of freedom (roll and tilt). With the help of transfer matrices we were able to cal-
culate the dinucleotide probabilities along our nucleosome model. These reproduce,
at least qualitatively, the rules found when nucleosome position themselves freely
along a long stretch of DNA (e.g., the yeast genome [6]).

However, to really understand the dinucleotide rules in detail, exactly solving the
model (or simulating a more detailed version of it [14]) is not sufficient, as this system
behaves rather complex. For instance, of the four “important” dinucleotides only
two (AA and TT) prefer locations that correspond to their own intrinsic preferences
whereas the other two (TA and GC) peak at their most unfavourable locations. To
solve this puzzle, we first introduced an approximation that, by taking a limited
number of neighbours around a given dinucleotide into account, provides upper and
lower bounds to its probability distribution. From this we learned that the nearest
neighbours influence strongly the preferences of a given dinucleotide whereas the
influence of nucleotides further away is small, decreasing exponentially.

With this information at hand, we finally introduced an approximation tailored
for interpreting the dinucleotide preferences. According to this average neighbour
energy approximation dinucleotide preferences are dominated by two contributions:
the intrinsic energy cost to place a given dinucleotide at a given position and the av-
erage energy of the possible neighbours before and after that given dinucleotide. This
is an excellent approximation and allows to explain all the dinucleotide preferences
found in our model. Depending on the dinucleotide at hand, a given dinucleotide is
found preferentially at certain positions mainly due to its own preferences (e.g., AA
and TT) or due to bringing in “good” neighbours (e.g., TA and GC).

Knowing the dinucleotide preferences of nucleosomes allows genome wide cal-
culations of nucleosome positioning [10]. Therefore understanding how dinucleotide
preferences along nucleosomes emerge from the sequence dependent DNA mechanics,
means ultimately to understand the physical underpinnings of biological processes
at much larger scales as the depletion of nucleosomes at gene start sites in yeast
[6, 9] or the retention of nucleosomes in human sperm cells [9, 35].


