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Adaptive Weight Estimator for Quantum Error Correction
in a Time-Dependent Environment

Stephen T. Spitz, Brian Tarasinski, Carlo W. J. Beenakker, and Thomas E. O’Brien*

Quantum error correction of a surface code or repetition code requires the
pairwise matching of error events in a space-time graph of qubit
measurements, such that the total weight of the matching is minimized. The
input weights follow from a physical model of the error processes that affect
the qubits. This approach becomes problematic if the system has sources of
error that change over time. Here, it is shown that the weights can be
determined from the measured data in the absence of an error model. The
resulting adaptive decoder performs well in a time-dependent environment,
provided that the characteristic timescale τenv of the variations is greater than
δt/ p̄, with δt the duration of one error-correction cycle and p̄ the typical error
probability per qubit in one cycle.

1. Introduction

To execute algorithms on a quantum computer, onemust prevent
the accumulation of errors bymonitoring and correcting them in
control hardware. The monitoring is made possible by a nonlo-
cal encoding of the quantum information in a redundant set of
qubits, allowing for repeatedmeasurements via auxiliary (ancilla)
qubits without collapsing and destroying the quantum superpo-
sition of the logical degrees of freedom.[1,2] Parity-checkmeasure-
ments produce strings of bits, the so-called error syndrome, that
must be decoded to infer the correction which should be applied
to the logical qubits.
For an important class of error correcting codes, the syndrome

identifies the end points of an error chain in a space-time graph
of ancilla measurements (See Figure 1). The dimensionality of
space can differ; it equals 1 in the repetition code,[3,4] 2 in the
surface code,[5–7] and 3 for topological cluster states.[8] The iden-
tification is not unique: there is in general no unique way to
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construct a chain of error events consis-
tent with a given syndrome (the decod-
ing problem). One approach to decod-
ing refers to the optimization problem of
minimum-weight perfect matching on a
graph, which may be solved by the “blos-
som” algorithm[9,10] in polynomial time.
The blossom decoder is sub-optimal,[11–14]

but it performs sufficiently well for cur-
rent quantum hardware to achieve the fault-
tolerance threshold.[15]

The weights that govern the optimization
problem can be readily obtained if one has
a calibrated model of the sources of error in
the system.[16] Such an error model may not
be available, and moreover the error rates

may vary in time during the quantum computation. This com-
plication has motivated the search for an adaptive decoder, that
would infer theweights from the syndromewithout requiring up-
dates of the error model.[17–21] Since the syndrome depends non-
linearly on the weights, this inversion problem is nontrivial—
a recent approach[21] employs a machine learning algorithm to
learn the weights from the measured data.
Here we show that the inversion can be actually carried out

by purely algebraic means: The covariance of measurements on
pairs of ancillas exactly determines the weight of their matching.
We demonstrate the method on the repetition code with time-
dependent error rates.

2. Quantum Error Correction and the
Repetition Code

To set the stage, we summarize the elements of quantum error
correction[2,22] that we need in what follows. The expert reader
may skip this section.
A quantum error correcting code stores quantum information

nonlocally in an array of physical qubits, such that it is protected
from local errors (bit flips or sign flips). The encoded state |ψ〉
evolves for a cycle time δt , after which a set of “stabilizer” mea-
surements is carried out. The stabilizers project |ψ〉 onto a state
|ψ ′〉 that may differ from |ψ〉 if an error occurrs during the cy-
cle. The outcome of the stabilizer measurements, called the syn-
drome, identifies the error and allows for a correction. It is crucial
that the stabilizer measurements do not measure the degrees of
freedom of |ψ〉 in which the relevant quantum information is
stored; otherwise this information will be lost upon projection.
The simplest example of error correction via stabilizer mea-

surement is a 1D array, in which a logical qubit is encoded into
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Figure 1. a) Space-time circuit of a d = 5 quantum repetition code. Five
data qubits (green) are entangled with four ancilla qubits (black) by means
of a CNOT gate (⊕). The ancillas aremeasured at the end of each cycle (blue
boxes, spaced by δt, with measurement outcomes πi (t), i = 1, 2, 3, 4).
A bit flip (red X) produces an error chain (red line) with end points on
an ancilla measurement or on the boundary of the array. b) Syndrome
si (t) = πi (t) ⊕ πi (t − 2δt) corresponding to the error events in panel (a).
The measurements that are connected by an error chain can be separated
in space, in time, or in both space and time. c) Alternative matching con-
sistent with the same syndrome. Theminimumweight decoder associates
a weight to each error chain and finds the matching with the smallest total
weight.

d data qubits via |0〉L = |00 · · · 0〉, |1〉L = |11 · · · 1〉. In a classical
setting, this would correspond to a distance-d repetition code, for
which one would compare the value of adjacent bits to identify up
to (d − 1)/2 bit flips. A quantum parity check achieves this goal
without collapsing the superposition |ψ〉 = a0|0〉L + a1|1〉L onto
the state |0〉L or |1〉L. The parity-check measurements are per-
formed on d − 1 ancilla qubits, which are entangled with pairs
of data qubits (see Figure 1). Each ancilla measures the stabilizer
operator Zi Zi+1 (i = 1, 2, . . . , d − 1, with Z ≡ σz a Pauli matrix).
The stabilizer does not distinguish between the states |0〉L and
|1〉L and thus preserves their quantum superposition. A bit flip
error of qubit j (X j error) is detected by the stabilizer measure-
ments Zj Zj+1 and Zj−1Zj , which change their value from +1 to
−1. A decodermay infer the underlying error from this signature
and correct it without needing to measure qubit j itself (which
would collapse the state).
As shown in the circuit of Figure 1a, the measurement out-

come πi (t) of the ancilla in cycle t is updated in the next cycle by
the addition modulo 2 (denoted by⊕) of the adjacent data qubits.
For a given stabilizer Zi Zi+1 = ±1, one has

πi (t + 1) =
{
πi (t) if Zi Zi+1 = +1,
πi (t)⊕ 1 if Zi Zi+1 = −1 (1)

Hence, if no errors occur, πi (t) is either constant in time, if the
data qubits have even parity, or πi (t) toggles between 0 and 1 from
one time step to the next, if the data qubits have odd parity. In

Figure 2. Generic space-time graph showing a pair of vertices vi0 , v j0 con-
nected by an edge ei0 j0 . A few other vertices and connecting edges are
also shown, as well as edges that connect a vertex to a boundary (ei0 i0 and
e j0 j0 ). The line thickness of an edge ei j is proportional to the probability
pi j that a single error affects the ancilla qubit measurements on vertices
i and j . We seek to determine these probabilities from measurements of
the error syndrome.

each case πi (t) = πi (t − 2δt). An error event is then signaled by
a nonzero element si (t) = 1 of the error syndrome

�s (t) = �π (t)⊕ �π (t − 2δt) (2)

A single error event is not sufficient to diagnose an error, as a
change of Zi Zi+1 could signal either an Xi error or an Xi+1 error.
To identify which qubit flipped wematch pairs of error events. As
indicated in Figure 1, the match can be between error events at
the end points of an error chain from ancilla i0 at time t to ancilla
j0 at time t + nδt . Note that the error events can be separated in
both space and time—errors correlated in time are caused by im-
perfect stabilizer extraction. The error chainmay terminate at the
boundary of the lattice (corresponding to errors on the boundary
data qubits), so some error events may remain unmatched.
This simple description to detect bit flips in a repetition code

can be extended to the detection of both bit flips and phase flips
(Xi and Zi errors) and by encoding in 2D and 3D (surface codes
and topological cluster states). The generic feature of this class of
stabilizer codes is that the decoding entails the pairwisematching
of error events in a space-time graph. The method of adaptive
quantum error correction presented in the next section applies
to this general setting, while for a demonstration we will return
to the repetition code.

3. Weight Inference from Error Syndromes

3.1. Formulation of the Inversion Problem

We collect the binary output of the stabilizer measurements in
the error syndrome �s (t). The discrete time variable t counts the
error correction cycle and the elements of the vector �s identify the
ancilla qubits. For Nancilla ancillas and T cycles there are a total of
NancillaT variables vi ∈ {0, 1}, arranged as vertices in a space-time
graph (See Figure 2). An error event corresponds to vi = 1, while
vi = 0 if the ancilla has not detected an error.
The vertices are pairwise connected by undirected edges ei j ≡

e j i ∈ {0, 1} such that ei j = 1 with probability pi j . We allow for
i = j , the edge eii connects a vertex to the boundary of the graph.
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We say that the edge is on or off depending on whether ei j = 1 or
0. The state of a vertex depends on the edges according to

vi = 1
2

[
1− (−1)

∑
j ei j

]
(3)

Each edge that is on toggles its vertex between the states 0 and 1,
so that vi = 1 if an odd number of connecting edges is on.
The pi j ’s are probabilities of a single-qubit error that correlates

ancilla measurements i and j . Correlations of ancilla measure-
ments due to uncorrelated multiple-qubit errors are described
by weights wi j . The weight wi j for i 	= j is determined from the
p’s by following all paths i 
→ k1 
→ k2 
→ · · · 
→ kn 
→ j through
the graph from vertex i to vertex j via n intermediate vertices
k1, k2, . . . , kn:

wi j = − ln

⎛
⎝pi j +

∑
n

′∑
k1,k2,...,kn

pik1 pk1k2 · · · pkn j
⎞
⎠ (4)

The prime in the sum indicates that the path should not pass
through the boundary (i 	= k1 	= k2 · · · 	= kn 	= j ). For a boundary
weight wi i the path terminates on the boundary

wi i = − ln

⎛
⎝pii +

∑
n

′∑
k1,k2,...,kn

pik1 pk1k2 · · · pknkn

⎞
⎠ (5)

These sums over error chains can be carried out in terms of the
matrix Ai j = (1− δi j )pi j by matrix inversion[15]

e−wi j =
{
[(1− A)−1]i j if i 	= j,∑

k [(1− A)−1]ik pkk if i = j
(6)

see Appendix A.
Given a set of error events V = {vi |vi = 1} the minimum-

weight perfect matching decoder searches for a subset M =
{ei j , wi j } of weighted edges such that each vertex in V is con-
nected either to one other vertex in V or to the boundary, at min-
imal total weight

∑
M wi j .

Modern implementations[10] of the blossom algorithm[9] solve
this optimization problem efficiently given an error model: A
physicalmodel for qubit errors fromwhich the error probabilities
p and hence the weights w can be calculated. Here we consider
the opposite approach: can we infer the weights from the mea-
sured error syndromes, without an underlying error model? This
is an inversion problem for Equation (3), where we seek to recon-
struct the statistics of the edges ei j from themeasured statistics of
the vertices vi . The inversion is possible, in spite of the nonlinear-
ity of Equation (3), as we show in the following two subsections
(with a more detailed derivation in Appendix B).

3.2. Solution for Edges Connecting Pairs of Vertices

We first consider a pair of distinct vertices i0 	= j0, connected by
an edge ei0 j0 . (The case of a single vertex connected to the bound-
ary will be dealt with later.) We denote the average by 〈· · · 〉, with

〈ei0 j0 〉 = 1× pi0 j0 + 0× (1− pi0 j0 ) = pi0 j0 (7)

Theorem.

pi0 j0 (1− pi0 j0 ) = 〈vi0v j0 〉 − 〈vi0〉〈v j0 〉
1− 2〈vi0 ⊕ v j0 〉

(8)

Proof. We define

Ei0\ j0 = 1
2

[
1+ (−1)

∑
j 	= j0

ei0 j
]

(9)

In words, Ei0\ j0 equals 1 or 0 depending on whether the vertex
i0 has an even or an odd number of connecting edges that are
on—excluding the connection to vertex j0. Note that the sum over
j includes j = i0, it only excludes j = j0.
We then rewrite Equation (3) for vertex i0 as

vi0 = ei0 j0 Ei0\ j0 + (1− ei0 j0 )(1− Ei0\ j0 ) (10)

Similarly, for vertex j0, one has

v j0 = e j0i0 E j0\i0 + (1− e j0i0 )(1− E j0\i0 ) (11)

Since ei0 j0 = e j0i0 = e2i0 j0 , the product (AND) of vi0 and v j0 equals

vi0v j0 = (1− ei0 j0 )(1− Ei0\ j0 − E j0\i0 )

+ Ei0\ j0 E j0\i0 (12)

while the binary sum (XOR) equals

vi0 ⊕ v j0 ≡ vi0 + v j0 mod 2

= Ei0\ j0 + E j0\i0 − 2Ei0\ j0 E j0\i0 (13)

By construction, all three variables ei0 j0 , Ei0\ j0 , and E j0\i0 are
statistically independent. The averages of the e ’s are given by
Equation (7). The averages of the E ’s are unknown, but they
can be eliminated by combining the four equations (10)–(13). We
thus arrive at the desired Equation (8).
As a final step, we note that the left-hand-side of Equation (8) is

symmetric under the exchange pi0 j0 ↔ 1− pi0 j0 . We may safely
assume that the error probabilities are < 1/2, resulting in the
probability

pi0 j0 = 1
2

−
√
1
4

− 〈vi0v j0 〉 − 〈vi0 〉〈v j0〉
1− 2〈vi0 ⊕ v j0 〉

(14)

This is an exact relation between the probability of an edge and
correlators of the pair of connected vertices. These correlators are
measurable from the error syndrome, without any prior knowl-
edge of the error model. �

3.3. Solution for Boundary Edges

Theorem.

pi0i0 = 1
2

+ 〈vi0 〉 − 1/2∏
j 	=i0

(1− 2pi0 j )
(15)

Adv. Quantum Technol. 2018, 1, 1800012 1800012 (3 of 8) C© 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.



www.advancedsciencenews.com www.advquantumtech.com

Proof. The probability pi0i0 of an edge ei0i0 connecting the ver-
tex vi0 to the boundary cannot be determined by a correlator,
since there is nothing to correlate with. We do have access to the
average

〈vi0 〉 = 1− pi0i0 − (1− 2pi0i0 )〈Ei0\i0 〉 (16)

Ei0\i0 = 1
2

[
1+ (−1)

∑
j 	=i0

ei0 j
]

= 1
2

+ 1
2

∏
j 	=i0

(1− 2ei0 j ) (17)

Using again the independence of the variables, we obtain Equa-
tion (15). So once the probabilities pi0 j for non-boundary edges
are determined from Equation (14), we can use Equation (15) to
obtain the probability of a boundary edge. �

3.4. Computational Complexity

For local sources of error the matrix pi j of error probabilities is
sparse: Error events on ancilla qubits i and j are only correlated if
they are close together (typically nearest neighbor or next-nearest
neighbor), so the number of pi j ’s unequal to zero at any given
time t is of the order of the number dD of ancilla qubits (for a
code of depth d in D spatial dimensions)—not to the square of
that number.
The adaptive decoder uses Equations (14) and (15) to deter-

mine the error probabilities pi j at time t from the averages of
a stochastic variable X ∈ {vi , viv j , vi ⊕ v j }. We collect ancilla
measurements for N time steps to determine these averages with
sufficient accuracy. As time proceeds, the averages may be stored
and incremented via the recursion relation

〈X(t)〉 ≡ 1
N

N−1∑
i=0

X(t − i )

= 1
N

N−1∑
i=0

X(t − 1− i )+ X(t)
N

− X(t − N)
N

= 〈X(t − 1)〉 + N−1[X(t)− X(t − N)] (18)

The number of operations required to increment one single pi j
is order 1 and there are of order dD nonzero pi j ’s to determine,
so the total number of time steps required for the calculation of
the error probabilities is of order dD.
Oncewe have the error probabilities, we can obtain theweights

wi j of the edges in the space-time graph bymeans of Equation (6),
which requires inversion of the matrix Ai j = (1− δi j )pi j . Pseu-
docode for these operations is given in algorithm 1.
The inversion of A is time consuming, because this matrix

is not sparse. It extends over O(dD) qubits in space and O(d)
rounds in time, and inversion of a dD+1 × dD+1 matrix requires
O(d2.4(D+1)) operations. To speed up the calculation, we used the
iterative inversion method described in ref. [15], which reduces
the complexity to O(d2D).
Parallelization, which we did not implement, offers a further

reduction of computational complexity. The different pi j ’s can

all be calculated in parallel, reducing the time requirement from
O(dD) to O(1). On-demand parallelization of the weight calcu-
lations as described in ref. [10] reduces the average calculation
of individual wi j ’s to O(1) complexity, so that the optimal com-
plexity of the adaptive decoder per error-correcting round is O(1),
independent of d or D.

Algorithm 1: Flow chart of the adaptive decoder

functionWeightGen(errorSignals)

for each non-zero pi j do

Calculate vi v j and vi ⊕ v j for this round and store.

Increment 〈vi v j 〉 and 〈vi ⊕ v j 〉 via Equation (18)
Calculate pi j via Equation (14).

end for

for each pi do

Store vi for this round.

increment 〈vi 〉
Calculate pi via Equation (15)

end for

Construct matrix A, extending back (d + 1)/2 rounds.

Invert matrix 1 − A.

Extract weights wi j following Equation (6).

Select and return required weights.

end function

4. Implementation of the Adaptive Decoder

4.1. Convergence in the Large-Time Limit

We test the adaptive decoder on the repetition code of Figure 1, for
a bit-flip error model. Between successive CNOT gates and before
each measurement, each qubit i is flipped independently with
probability γi . Though this is a fairly simplemodel, we stress that
our adaptive technique is not limited to this, and converges to op-
timal weights for minimum-weight perfect matching regardless
of the error model.
We implement the blossom decoder without any prior knowl-

edge of the error probabilities, using Equations (14) and (15) to
determine them from the measured syndrome data. We assume
local sources of error and set pi j ≡ 0 for ancilla measurements i
and j that are not connected by any local error. In a nonlocal sit-
uation, for example, because of non-negligible crosstalk, a prolif-
eration of negligibly small error probabilities can be avoided by
setting pi j ≡ 0 when the deviation from zero is statistically in-
significant.
The adaptive decoder needs sufficient syndrome data in the

training stage to estimate the probabilities. Since pi j is the mean
of a Bernoulli random variable with variance σ 2

i j = pi j (1− pi j ),
the statistical uncertainty δpi j in the estimation after N = t/δt
error cycles is of order

δpi j = N−1/2√pi j (1− pi j ) (19)
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Figure 3. Convergence of the adaptive decoder towards the ideal blossom
decoder, as determined by the relative decoder error� as a function of the
number of cycles N used to estimate the error probabilities in the train-
ing stage. Each data point with error bars results from the repetition of
N training stages, with N = 400 for distance-3, N = 200 for distance-5,
and N = 100 for distance-7. The inset shows the statistics for one partic-
ular data point. The dashed lines through the data points are fits to the
observed power-law decay (coefficients reported in labels).

The requirement that δpi j � pi j � 1 implies that a minimum
of

Nmin � 1/ p̄ (20)

measurements are needed for a reliable estimation of error prob-
abilities of typical magnitude p̄. After the training stage the
probabilities are inserted into Equation (6) to determine the
weights which are passed to the blossom decoder for error
correction.
As a figure ofmerit, we introduce a testing stage after the train-

ing stage in which we calculate the probability εadaptive(N) of a log-
ical error per cycle using the adaptive decoder trained on N cy-
cles of data. The error rates are calculated following the method
of ref. [15], measuring the average logical qubit fidelity over 100
cycles. The combination of training and testing is repeated a few
hundred times to obtain an accurate value of εadaptive(N). We com-
pare this with the probability ε0 that would follow from a blossom
decoder with pre-determined weights calculated from the error
model. The relative error

� = εadaptive/ε0 − 1 (21)

measures how well the adaptive decoder has converged to the
ideal blossom decoder.
Results are shown in Figure 3, for distance d = 3, 5, and 7 rep-

etition codes with uniform single-qubit error rate γi = 5 · 10−3.
We observe a power law convergence � ∝ N−α with α increas-
ing from 1.2 to 1.9 as the distance increases to d = 7. (We do not
have an analytical result for this exponent.) The data indicates a
convergence to � � 10−2 within N = 104 cycles.

Figure 4. Performance of the adaptive decoder in the presence of
a fluctuating noise (d = 3, γi = 0.005 for data qubits, γi = 0.005 +
0.005 sin(π t/104δt) for ancilla qubits) using three different time windows
T = Nδt for the error estimation. The average over 200 training stages is
compared to a blossom decoder (black) with optimally chosen weights at
every point in time. Small time windows suffer from sampling error, but
adapt quickly to changing error rates, while a decoder with a larger time
window lags behind. The optimal time window that balances the two ef-
fects is around T = 2000 δt in this case.

4.2. Performance in a Time-Dependent Environment

The adaptive decoder can be readily applied to sources of noise
that vary in time, by recalibration of the weights as time proceeds.
We implement this by estimating the error probabilities at time
t from the syndrome data in the time interval (t − T, t). The op-
timal time window T = Nδt should not be too short in view of
the statistical error (19), and it should not be too large in view
of the variation ωTpi j of the probabilities in the time-dependent
environment (with characteristic frequency ω). The sum of these
sources of error is minimized for

Nopt � (pi jω2δt2)−1/3 ⇒ δpopti j � p2/3i j (ωδt)1/3 (22)

The adaptive decoder fails if the noise fluctuates too rapidly to ac-
quire sufficient data for the probability estimation. The condition
δpopti j � pi j implies an upper bound

ωc � p̄/δt (23)

on the frequency of the noise variations that is adaptable for a
typical error probability p̄.
We test the adaptive decoder in the presence of time depen-

dent errors by taking γi = γ0 for the data qubits and γi = γ0(1+
sinωt) for the ancilla qubits (with γ0 = 5 · 10−3 and 2π/ω = 2 ·
104 δt). The predicted optimal time window at this frequency, for
p̄ = 5 · 10−3, is Nopt ≈ 1265. As shown in Figure 4, when a larger
window N � Nopt is used, the decoder experiences a time lag in
determining optimal weights; for a smaller window N < Nopt the
weight estimation is degraded by sampling errors.
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5. Conclusion

We have demonstrated that it is possible to analytically calcu-
late the underlying error probabilities from measured error
syndromes in a broad class of stabilizer codes. As this requires
inverting a set of non-linear equations, it is surprising that it
should be possible at all, let alone with such small overhead.
Because the inversion is exact, the convergence of our adaptive
decoder to the ideal blossom decoder should be optimal in the
absence of additional information about the error rates. This
implies that fluctuations faster than a critical frequency ωc

are uncorrectable; we have estimated ωc � p̄/δt , with p̄ the
single-qubit error probability and δt the duration of one error-
correction cycle. Such rapid fluctuations will contribute relatively
more to the logical error rate of a quantum error correcting code
than slow fluctuations to which the decoder can adapt.
It would be interesting for future work to test the adaptive de-

coder onmore complex noisemodels, where the optimal window
must be chosen for an entire noise frequency spectrum, instead
of for a single frequency.We expect white noise to be significantly
worse for quantum error correction than 1/ f noise, due to the
much larger contributions from high frequencies. Future work
could also extend our results to simulations of the surface code
or topological cluster states.

Appendix A: Derivation of Equation (6)

Starting from the definition of the matrix Ai j = (1− δi j )pi j , we
evaluate the inverse (1− A)−1 by series expansion

[(1− A)−1]i j

= δi j + (1− δi j )pi j +
∑
k1

(1− δik1 )(1− δk1 j )pik1 pk1 j

+
∑
k1,k2

(1− δik1 )(1− δk1k2 )(1− δk2 j )pik1 pk1k2 pk2 j + · · ·

(A1)

For i 	= j this reduces to

[(1− A)−1]i j = pi j +
∑
k1 	=i, j

pik1 pk1 j

+
∑

k1 	=i,k2

∑
k2 	=k1, j

pik1 pk1k2 pk2 j + · · · (A2a)

= e−wi j (A2b)

with weight wi j , i 	= j defined in Equation (4).
For the boundary weight we evaluate

∑
k

[(1− A)−1]ik pkk

=
∑
k

δik pkk +
∑
k

(1− δik)pik pkk

+
∑
k,k1

(1− δik1 )(1− δk1k)pik1 pk1k pkk

+
∑
k,k1,k2

(1− δik1 )(1− δk1k2 )(1− δk2k)pik1 pk1k2 pk2k pkk + · · ·

(A3a)

= pii +
∑
k 	=i

pik pkk +
∑
k 	=i

∑
k1 	=i,k

pik1 pk1k pkk

+
∑
k 	=k2

∑
k1 	=i,k2

∑
k2 	=k1,k

pik1 pk1k2 pk2k pkk + · · · (A3b)

= e−wi i (A3c)

with weight wi i defined in Equation (5).
Taken together, these results constitute Equation (6).

Appendix B: Intermediate Steps for the Derivation
of the Inversion Formulas in Section 3

B.1. Derivation of Equation (14)

We start from the definition

vi = 1
2

[
1− (−1)

∑
j ei j

]
(B1)

and rewrite this using the fact that ei j ∈ {0, 1}:

vi0 ≡ 1
2

[
1− (−1)

∑
j ei0 j

]
(B2a)

=
{
0 if

∑
j ei0 j even

1 if
∑

j ei0 j odd
(B2b)

=
{
ei0 j0 if

∑
j 	= j0

ei0 j even
1− ei0 j0 if

∑
j 	= j0

ei0 j odd
(B2c)

= ei0 j0
1
2

[
1+ (−1)

∑
j 	= j0

ei0 j
]

+(1− ei0 j0 )
1
2

[
1− (−1)

∑
j 	= j0

ei0 j
]

(B2d)

With the definition

Ei0\ j0 = 1
2

[
1+ (−1)

∑
j 	= j0

ei0 j
]

(B3)

we thus obtain

vi0 = ei0 j0 Ei0\ j0 + (1− ei0 j0 )(1− Ei0\ j0 ) (B4)

The same algebra with the indices i0 and j0 interchanged gives

v j0 = e j0i0 E j0\i0 + (1− e j0i0 )(1− E j0\i0 ) (B5)

Now we multiply vi0 and v j0 , using ei0 j0 = e j0i0 ,

vi0v j0 = [
ei0 j0 Ei0\ j0 + (1− ei0 j0 )(1− Ei0\ j0 )

]
× [

e j0i0 E j0\i0 + (1− e j0i0 )(1− E j0\i0 )
]

(B6a)

Adv. Quantum Technol. 2018, 1, 1800012 1800012 (6 of 8) C© 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.



www.advancedsciencenews.com www.advquantumtech.com

= [1− ei0 j0 + (2ei0 j0 − 1)Ei0\ j0 ][1− e j0i0 + (2e j0i0 − 1)E j0\i0 ]

(B6b)

= (1− ei0 j0 )
2 + (2ei0 j0 − 1)2Ei0\ j0 E j0\i0

+ (1− ei0 j0 )(2ei0 j0 − 1)(Ei0\ j0 + E j0\i0 ) (B6c)

Since e2i0 j0 = ei0 j0 , this simplifies to

vi0v j0 = (1− ei0 j0 )(1− Ei0\ j0 − E j0\i0 )+ Ei0\ j0 E j0\i0 (B7)

In the same way we evaluate the sum of vi0 and v j0 ,

vi0 + v j0 = 1− ei0 j0 + (2ei0 j0 − 1)Ei0\ j0 + 1− e j0i0

+ (2e j0i0 − 1)E j0\i0 (B8a)

= 2(1+ ei0 j0 Ei0\ j0 + e j0i0 E j0\i0 )− ei0 j0 − e j0i0 − Ei0\ j0

− E j0\i0 (B8b)

= 2(1+ ei0 j0 Ei0\ j0 + ei0 j0 E j0\i0 − ei0 j0 )− Ei0\ j0 − E j0\i0 (B8c)

Modulo 2, we are left with

vi0 + v j0 mod 2 = −Ei0\ j0 − E j0\i0 mod 2

= Ei0\ j0 + E j0\i0 − 2Ei0\ j0 E j0\i0 mod 2 (B9)

The final expression can only take the values 0 or 1, so themodulo
2 indication is superfluous. We have thus arrived at

vi0 ⊕ v j0 = Ei0\ j0 + E j0\i0 − 2Ei0\ j0 E j0\i0 (B10)

At this point we restrict ourselves to i0 	= j0. (The case i0 = j0 is
addressed in the next subsection.) We can then use the statistical
independence of ei0 j0 , Ei0\ j0 , and E j0\i0 to break up the averages
of products into products of averages. (This decoupling explains
why we excluded the ei0 j0 term from the definition of E .) We de-
note the averages by

〈ei0 j0 〉 = pi0 j0 = 〈e j0i0 〉,
〈Ei0\ j0 〉 = Ui0 j0 , 〈E j0\i0 〉 = Uj0i0 (B11)

The averages of Equations (B4), (B5), (B7), and (B10)a give the
four equations

〈vi0 〉 = pi0 j0Ui0 j0 + (1− pi0 j0 )(1−Ui0 j0 ) (B12)

〈v j0 〉 = pi0 j0Uj0i0 + (1− pi0 j0 )(1−Uj0i0 ) (B13)

〈vi0v j0 〉 = (1− pi0 j0 )(1−Ui0 j0 −Uj0i0 )+Ui0 j0Uj0i0 (B14)

〈vi0 ⊕ v j0 〉 = Ui0 j0 +Uj0i0 − 2Ui0 j0Uj0i0 (B15)

Subtraction of the product of the first two equations from the
third equation gives

〈vi0v j0 〉 − 〈vi0 〉〈v j0〉
= pi0 j0 (1− pi0 j0 )(1− 2Ui0 j0 − 2Uj0i0 + 4Ui0 j0Uj0i0 ) (B16)

and substitution of the fourth equation results in

〈vi0v j0 〉 − 〈vi0 〉〈v j0〉 = pi0 j0 (1− pi0 j0 )(1− 2〈vi0 ⊕ v j0 〉) (B17)

We solve the quadratic equation for pi0 j0

pi0 j0 = 1
2

±
√
1
4

− 〈vi0v j0 〉 − 〈vi0 〉〈v j0〉
1− 2〈vi0 ⊕ v j0 〉

(B18)

There are two solutions, related by pi0 j0 ↔ 1− pi0 j0 . Under the
assumption that pi0 j0 < 1/2 we select the smallest of the two so-
lutions

pi0 j0 = 1
2

−
√
1
4

− 〈vi0v j0 〉 − 〈vi0 〉〈v j0〉
1− 2〈vi0 ⊕ v j0 〉

(B19)

This is Equation (14) from the main text.

B.2. Derivation of Equation (15)

Turning now to the case i0 = j0, we start from

Ei0\i0 ≡ 1
2

[
1+ (−1)

∑
j 	=i0

ei0 j
]

= 1
2 + 1

2

∏
j 	=i0

(1− 2ei0 j ) (B20)

and average, using again the independence of the variables ei j :

〈Ei0\i0 〉 ≡ Ui0i0 = 1
2 + 1

2

∏
j 	=i0

(1− 2pi0 j ) (B21)

This can be substituted into the average of

vi0 = ei0i0 Ei0\i0 + (1− ei0i0 )(1− Ei0\i0 ) (B22)

to arrive at

〈vi0 〉 = pi0i0Ui0i0 + (1− pi0i0 )(1−Ui0i0 ) (B23)

= 1− pi0i0 − (1− 2pi0i0 )Ui0i0 (B24)

= 1
2 − 1

2 (1− 2pi0i0 )
∏
j 	=i0

(1− 2pi0 j ) (B25)

Solving for pi0i0 we find

pi0i0 = 1
2

+ 〈vi0 〉 − 1/2∏
j 	=i0

(1− 2pi0 j )
(B26)

which is Equation (15) from the main text.
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