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Abstract

Learning which of our behaviors benefit others contributes to forming social relationships. 

An important period for the development of (pro)social behavior is adolescence, which is 

characterized by transitions in social connections. It is, however, unknown how learning to 

benefit others develops across adolescence and what the underlying cognitive and neural 

mechanisms are. In this functional neuroimaging study, we assessed learning for self and 

others (i.e., prosocial learning) and the concurring neural tracking of prediction errors across 

adolescence (ages 9-21, N=74). Participants performed a two-choice probabilistic reinforce-

ment learning task in which outcomes resulted in monetary consequences for themselves, an 

unknown other, or no one. Participants from all ages were able to learn for themselves and 

others, but learning for others showed a more protracted developmental trajectory. Prediction 

errors for self were observed in the ventral striatum and showed no age-related differences. 

However, prediction error coding for others showed an age-related increase in the ventrome-

dial prefrontal cortex. These results reveal insights into the computational mechanisms of 

learning for others across adolescence, and highlight that learning for self and others show 

different age-related patterns.
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Introduction

Adolescence is a developmental phase that is characterized by transitions in social connec-

tions, and moreover, a phase during which social cognitive skills are acquired and/or improved 

(Blakemore & Mills, 2014; Casey et al., 2008; Crone & Dahl, 2012; Sawyer et al., 2018). As 

social acceptance and approval from peers often result from displaying prosocial behaviors, 

for adolescents establishing their social network it is key that they learn to help or benefit 

others (Steinberg & Morris, 2001). That is, to be able to behave in a prosocial manner, indi-

viduals need to learn which actions would result in positive outcomes for others. This type 

of learning is also referred to as prosocial learning (Lockwood et al., 2016; Sul et al., 2015). 

Generally speaking, learning from actions and outcomes is an important part of cognitive 

development and continues to improve in adolescence (Bolenz et al., 2017; Nussenbaum & 

Hartley, 2019; Peters, Braams, et al., 2014; Peters et al., 2016). For adolescents, an especially 

salient environment that requires learning about the consequences of their actions is the inter-

personal context (Blakemore & Mills, 2014; Nelson et al., 2005; Sawyer et al., 2018). Therefore, 

it is expected that especially prosocial learning shows improvements in adolescence. The goal 

of the current study was to unravel age-related differences in learning to benefit others using 

a prosocial learning context across adolescence.

The vast majority of recent neuroscientific studies investigating learning make use of 

formal reinforcement learning (RL) models. These models calculate individuals’ prediction 

errors (PEs) – the difference between expected and actual outcomes - over the course of 

learning. These PEs drive learning via a learning rate, which quantifies to what extent these 

PEs affect subsequent actions. Consequently, RL models and the resulting PEs enable stud-

ies to examine the neural tracking of value-guided decision-making. Neuroscientific studies 

demonstrated that PE coding in a probabilistic reinforcement task context is associated with 

activation in the ventral striatum, as well as the medial prefrontal cortex (mPFC) (see for re-

views e.g., (Cheong et al., 2017; Joiner et al., 2017; Lockwood & Klein-Flügge, 2020; Olsson et 

al., 2020; Ruff & Fehr, 2014). Developmental studies using RL models found that adolescents 

show similar neural tracking of PEs as adults when learning stimulus-outcome associations. 

However, the developmental patterns are inconsistent: some studies have reported elevated 

or lowered PE activity in the ventral striatum and connected structures in mid-adolescents 

relative to children and adults (Cohen et al., 2010; Davidow et al., 2016; Hauser et al., 2015; 

Jones et al., 2014), but this is not replicated in all studies (Christakou et al., 2013; van den 

Bos, Cohen, et al., 2012). Furthermore, age-related differences have been found in functional 

connectivity between the ventral striatum and mPFC, here referred to as ventromedial PFC 

(vmPFC), in relation to learning (van den Bos, Cohen, et al., 2012), suggesting that age-related 

improvements in learning are associated with stronger neural coupling between subcortical 

5
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and cortical brain regions (van Duijvenvoorde et al., 2016, 2019). Taken together, previous 

studies point to the ventral striatum and medial prefrontal cortex as important brain areas 

for learning in non-social environments.

Previous studies investigating the neurocomputational mechanisms of prosocial learning 

have investigated whether the same neural signaling occurs for PEs for others as for self. Re-

cently, in adults, it was found that PE tracking for both learning for others as for self occurred 

in the ventral striatum (Lockwood et al., 2016). However, the subgenual anterior cingulate 

cortex (sgACC) specifically coded PE tracking for learning for others, and these prosocial 

learning signals were predicted by cognitive empathy. That is, more empathic people showed 

more activity in the sgACC when learning to benefit others. Cognitive empathy – the ability 

to understand the emotional states of others (Netten et al., 2015; Pouw et al., 2013) - shows 

pronounced changes in adolescent development and relates positively to prosocial behaviors 

such as trust and reciprocity (Dumontheil et al., 2010; Eisenberg et al., 1995; van de Groep et 

al., 2018). Therefore, we aimed to extend prior work by Lockwood and colleagues (2016) by 

investigating the neural tracking of PEs for others, and its relation with individual differences 

in cognitive empathy, in an adolescents sample with participants aged between 9 and 21 years.

In the current study, we adopted a prosocial learning task (Lockwood et al., 2016) in which 

participants could learn to obtain rewards for themselves, others, or no one. We administered 

this task to 74 adolescents between ages 9-21 years to examine age-related differences in 

learning for self and others, combined with functional neuroimaging (fMRI) for neural track-

ing of PEs. We use the term adolescence for this broad age range, based on definitions that 

mark adolescence from the onset of puberty to the age when one reaches independence 

from parents (i.e., approximately 9-24 years; e.g., Sawyer et al., 2018). Based on prior studies, 

we performed regions-of-interest analyses for the ventral striatum, sgACC, and vmPFC. We 

expected that adolescents, similar to adults, would show PE related neural activity when learn-

ing both for self and others in the ventral striatum (Lockwood et al., 2016), and in the sgACC 

and possibly vmPFC when learning for others more than when learning for self (Christopou-

los & King-Casas, 2015; Lockwood et al., 2016). For learning for self, research has remained 

inconclusive whether this activity peaks in mid-adolescence (Cohen et al., 2010; Davidow et 

al., 2016) or shows no age-related differences (van den Bos, Cohen, et al., 2012). Therefore 

we explored linear as well as non-linear (quadratic) age effects. We predicted that sgACC and 

vmPFC activity for prosocial learning would increase with age, based on prior studies showing 

age-related improvements in social-cognitive perspective-taking (Dumontheil et al., 2010). 

Finally, consistent with (Lockwood et al., 2016), we expected that individual differences in 

cognitive empathy would relate to neural tracking of PEs for others.
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Methods and Materials

Participants

A total of 76 participants between ages 9 and 21 took part in this study. Participants were 

recruited through schools and local advertisements, as well as from participation in a previous 

study. Two participants were excluded from analyses because they were either diagnosed 

with a psychiatric disorder at the time of testing (n = 1) or because the session was stopped 

early due to discomfort in the scanner (n = 1). We did not exclude participants based on task 

performance; there were no significant outliers in task performance (i.e., >3 SD) in any of the 

conditions. Four participants missed one run of the task, due to technical issues (n = 2), or 

discomfort in the scanner (n = 2). These four participants were maintained with the available 

data in all analyses. The final sample included 74 healthy participants (39 female, M
age = 15.64, 

SDage = 4.18, range = 9.03 – 21.77 years, see Figure S1 for an overview of the number of par-

ticipants across ages). The IQ scores, estimated with the Similarities and Block Design sub-

tests of the WISC-III and WAIS-III, fell within the normal range (MIQ = 110.24, SDIQ = 10.37, 

range = 87.50 - 135.00), and did not correlate with age (r(72) = -0.11, p = .353).

The local institutional review board approved this study (reference: NL56438.058.16). Adult 

participants and parents of minors provided written informed consent, and minors provided 

written assent. All anatomical scans were cleared by a radiologist and no abnormalities were 

reported. Participants were screened for MRI contraindications and psychiatric or neurological 

disorders, and had normal or corrected-to-normal vision.

Prosocial learning task

Participants played a two-choice probabilistic reinforcement learning task (prosocial learning 

task) in the MRI scanner (see Figure 1A). Participants were instructed to make a series of de-

cisions between two pictures. One picture was associated with a high probability of winning 

1 point, the other picture with a high probability of losing 1 point. The exact probabilities were 

75% and 25% but were unknown to the participant. After the decision, participants were 

presented with the outcome to enable them to learn the reward contingencies.

The participants played the task in three different conditions: for themselves (Self), for an 

unknown other participant (Other), or for No One. The latter condition was added as a control 

condition based on Lockwood et al. (2016). Participants did not meet the other person, but 

were told that the other person was a peer also participating in the experiment who i) would 

not play the same game for them, ii) did not know who played for them (see Participant 

instructions in the Supplementary materials). Each block started with an instruction screen 

that indicated who would receive the outcomes (Self, Other, or No One) for 2000 ms. This 

was followed by the presentation of two stimuli for 2500 ms during which participants were 

required to select one of these. The stimuli were common objects, such as chairs, apples, and 

5
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shoes (see also Van Den Bos et al., 2009). If no response was given within the time frame, 

the text “Too late” appeared in the middle of the screen, and these trials were excluded from 

analyses.

Figure 1. Prosocial learning task and behavioral data. (A) Participants played a two-choice probabilistic 

reinforcement learning task in which outcomes resulted in monetary consequences for themselves 

(Self condition), for an unknown other participant in the experiment who could not reciprocate (Other 

condition), or for No One. (B) Group-level performance across trials (learning curves) per condition, 

averaged across blocks. Performance represents the fraction of selecting the stimulus with a high 

reward contingency. The dashed line indicates performance at chance level (0.5). (C) Performance 

per condition per age cohort, averaged across the entire task. In all conditions, performance improved 

across trials, but an age-related increase was only observed when learning for others. Note that age is 

used as a continuous variable in all analyses but is visualized as age cohorts for illustrative purposes. 

The age-related increase was greater for the Other than for the Self and No One condition. (D) Learning 

rates per condition per age cohort. Age-related decreases in learning rates are only observed in the 

Self and Other condition. The age-related decrease in learning rate was greater in the Other compared 

to the Self and No One condition. Asterisks indicate significant effects. Error bars represent standard 

error of the mean (s.e.m.).
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A selection frame around the chosen picture confirmed the response and remained visible 

for the duration of the interval and an additional 500 ms. A fixation screen (duration randomly 

jittered between 1000-2000 ms) preceded the outcome of their choice (+1 point or -1 point; 

1000 ms). A randomly jittered fixation screen (1000-8000 ms) was shown after the outcome 

before the two pictures were presented again. The screen position of the stimulus (left or 

right) was counterbalanced across trials. Participants were instructed that the position of the 

stimulus did not matter, to encourage them to learn the reward contingencies regardless of 

stimulus position.

There were 144 trials in total, 48 for Self, 48 for Other, and 48 for No One, presented in 

three blocks of 16 trials. Each block began with a new pair of pictures. Participants complet-

ed three separate fMRI runs with a short break in between, each with one block of 16 trials 

per condition. The order of the conditions was counterbalanced across runs and between 

participants.

Participants were instructed that the total number of points in the Self condition was 

converted to money (each point valued €0.25), which they would get paid out on top of their 

flat participation rate (€20 for 9-11 y.o., €25 for 13-17 y.o., and €30 for 19-21 y.o.). The minimum 

of this extra amount of money was €1 to avoid null scores, and the maximum was €12. Addi-

tionally, participants were instructed that their choices in the Other condition were paid out 

to a participant entering the experiment after them. Consequently, participants received an 

additional fee from a participant before them in the experiment (minimum €1 and maximum 

€12), but only at the end of the experiment. Finally, it was instructed that choices in the No 

One condition had no financial consequences.

Cognitive empathy

To assess cognitive empathy, participants completed the Interpersonal Reactivity Index (IRI; 

Davis, (1983). This widely used self-report questionnaire consists of 4 subscales (Perspec-

tive-Taking and Fantasy as cognitive empathy subscales; and Personal Distress and Empathic 

Concern as affective empathy subscales) with 6 items each. To create a measure of cognitive 

empathy, two subscales were combined (Pulos et al., 2004): the Perspective-Taking subscale 

(e.g., “I sometimes try to understand my friends better by imagining how things look from 

their perspective”, Cronbach’s alpha = 0.710) and the Fantasy subscale (e.g., “I really get in-

volved with the feelings of the characters in a novel”, Cronbach’s alpha = 0.786). All items 

can be answered on a five-point Likert scale ranging from (0) not true at all to (4) completely 

true, and higher scores indicate higher levels of empathy. Cognitive empathy scores increased 

across age (r = .309, p = .008, see Figure S8). One person did not fill in this questionnaire. This 

person was excluded from further analyses concerning measures of (cognitive) empathy. We 

5
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used a Dutch adolescent version for all ages in our study, with items adapted for the youngest 

ages in the study (Hawk et al., 2013).

Procedure

Participants were accustomed to the MRI environment using a mock scanner, and received 

instructions on the prosocial learning task in a quiet laboratory room. Instructions for the task 

were displayed on a screen and read out loud by an experimenter. Participants completed 8 

practice trials in each condition. In the scanner, participants responded with their right hand 

using a button box. Head movements were restricted with foam padding. The fMRI scan 

was accompanied by a high-definition structural scan. Questionnaires were filled out at their 

home prior to the scanning session, via Qualtrics (www.qualtrics.com).

Computational modeling of behavioral data

Model fitting

We used MATLAB 2015b (The MathWorks Inc) for all model fitting and comparison. We 

modeled learning behavior in the Self, Other, and No One conditions separately, using a 

standard Rescorla-Wagner reinforcement learning (RL) model (similar to Lockwood et al., 

2016) to obtain PEs and learning rates, which were subsequently used in behavioral and fMRI 

analyses. Simple RL models state that the expected value of a future action (Qt+1(i)) should 

be a function of current expectations (Qt(i)) and the difference between the actual reward 

that has been experienced on this trial (Rt). The learning rate α, bounded between 0 and 1, 

determines how much the value of the chosen stimulus is updated based on the new out-

come. In particular, the learning rate parameter speeds up or slows down the acquisition and 

updating of associations. Optimal learning rates differ between contexts and reinforcement 

structures (Nussenbaum & Hartley, 2019).

𝑄𝑄!"#(𝑖𝑖)	 = 	𝑄𝑄!(𝑖𝑖)	 + 	𝛼𝛼	 ∗ 	[𝑅𝑅! − 𝑄𝑄!(𝑖𝑖)].//0//1
$%&'()*(+,	

&%%+%

 

 

To select an action based on the computed values, we used a standard softmax choice func-

tion. For a given set of parameters, this equation allows us to compute the probability of the 

next choice being “i”:

𝑃𝑃!(𝑖𝑖) =
𝑒𝑒(𝛽𝛽 ∗ 𝑄𝑄",!)

∑ 𝑒𝑒(𝛽𝛽 ∗ 𝑄𝑄$,!)$
 

 

https://www.qualtrics.com/
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Beta (β) determines how strongly action probabilities are guided by their expected values 

(Q). Here, with larger β, actions are more deterministic and driven by expected values, result-

ing in selecting the option with the highest value. With lower β, actions are more random or 

exploratory. This parameter thus affects errors, where a decrease will lead to more random 

(i.e., less driven by expected values) choices. β did not differ between conditions, although 

with age, people were more strongly driven by expected values (see Figure S2 for the β across 

age cohorts for each condition).

We used the maximum a posteriori (MAP) approach (Daw, 2011) for fitting the RL model 

to participants’ choices per condition. To facilitate stable estimation across subjects, we used 

weakly informative priors to regularize the estimated priors toward realistic ones. These weakly 

informative priors and estimation procedures were based on previous research (den Ouden 

et al., 2013), and included a Beta (1.2, 1.2) distribution for the estimated α (learning rate) pa-

rameter (0 < α< 1) and a Gaussian distribution (0, 10) for the estimated β parameter (−∞ ≤ β 

≤ ∞). Mean and confidence intervals for each of the fitted parameters across all subjects are 

displayed in Supplementary Table S1.

Model comparison

Based on previous developmental findings (e.g., van den Bos et al., 2012) we compared an 

alternative model with two learning parameters (i.e., separate learning rates for gains and 

losses) in order to benchmark the performance of the one-learning parameter model (i.e., 

one learning rate). Model comparisons revealed that the one-learning parameter model had 

a superior fit to the behavioral data for each condition, according to the Bayesian Informa-

tion Criterion (BIC) (see Figure S3). This was the case in each condition for the majority of 

the participants (81.1% Self, 74.3% Other, 76.7% No One), in all age cohorts, see Figure S3. In 

none of the conditions, the BIC difference scores (Figure S3) were correlated with age (r
s, all 

p values > .14).

Simulations and parameter recovery

To assess whether computational model parameters could be successfully recovered, we 

simulated choice behavior for the range of learning rates and beta’s that we encountered in 

our dataset. That is, we simulated a new participant dataset based on the α and β values from 

our participants as input parameters. This resulted in a simulated dataset with 74 participants. 

Parameter recovery, as indicated with correlations between simulated and recovered learning 

rates and beta values per conditions, is presented in Figure S4.

Behavioral analyses

To assess learning for Self, Other, and No One, and their developmental patterns in the pro-

social learning task, we fitted logistic generalized linear mixed models (GLMMs) to decisions 

5
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(correct coded as 1, incorrect as 0) for each condition separately. These analyses were con-

ducted in R version 4.0.1 (R Core Team, 2020), using the lme4 package (Bates et al., 2014). 

Our GLMMs included fixed effects of Age in years (linear and quadratic), Condition, Trial, 

and all interactions. Since no significant main or interaction effects of age-quadratic were 

observed in the choice data, this term was dropped in the final presented behavioral models 

for model parsimony. In all models, participant ID entered the regression as a random effect 

to handle the repeated nature of the data. Where applicable, Trial was additionally included 

as a random slope per subject. We performed post hoc tests using the emmeans package 

(Lenth et al., 2021), as well as tests per condition to delineate Age x Trial x Condition effects.

Next we examined the estimated learning rates per condition. These parameters indicate 

how people updated the value of stimuli based on outcomes for Self, Others, and No One. 

Since learning rates were not normally distributed, we used a robust linear mixed effects 

model (RLMM, rlmer function, robustlmm package (Koller, 2016) in R (see also Cutler et 

al., 2021), with Condition and Age linear as fixed main effects and interaction effects. We 

performed post-hoc tests per condition and pair-wise contrasts per Condition. In all GLMM 

and RLMM models, continuous independent variables were mean-centered and scaled, and 

categorical predictor variables were specified by a sum-to-zero contrast (e.g., sex: -1 = boy, 

1 = girl). P-values for the GLMM were generated by using the Anova log-likelihood ratio tables 

from the afex package (Singmann et al., 2019). For the RLMM models, the Satterthwaite-ap-

proximated degrees of freedom generated by the lme4 model in combination with the output 

of the RLMM, was used to generate P-values.

Finally, we assessed whether cognitive empathy related to learning performance, learn-

ing rate, and PE activation when learning for others. We ran (partial) spearman correlational 

analyses with learning for self and cognitive empathy as predictors using the package ‘ppcor’ 

(Kim, 2015).

fMRI acquisition

For acquiring (functional) MRI data, we used a 3T Philips scanner (Philips Achieva TX) with 

a standard eight-channel whole-head coil. The learning task was projected on a screen that 

was viewed through a mirror on the head coil. Functional scans were acquired during three 

runs of 200 dynamics each, using T2* echo-planar imaging (EPI). The volumes covered the 

entire brain (repetition time (TR) = 2.2 s; echo time (TE) = 30 ms; sequential acquisition, 38 

slices; voxel size 2.75 x 2.75 x 2.75 mm; field of view (FOV) = 220 (ap) x 220 (rl) x 114.68 (fh) 

mm). The first two volumes were discarded to allow for equilibration of T1 saturation effects. 

After the learning task, a high-resolution 3D T1 scan for anatomical reference was obtained 

(TR = 9.76 msec, TE = 4.95 msec, 140 slices, voxel size = 0.875 x 0.875 x 0.875 mm, FOV = 224 

(ap) x 177 (rl) x 168 (fh) mm).
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Preprocessing

Data were analyzed using SPM8 (Wellcome Department of Cognitive Neurology, London). 

Images were corrected for slice timing acquisition and rigid body motion. We spatially nor-

malized functional volumes to T1 templates. Occasional framewise displacement >3mm oc-

curred for 3 participants in 1-2 volumes. For those participants with frame-frame head motion 

>3mm, an extra regressor was included corresponding to each volume (n = 3, for maximum 

2 volumes). All other participants did not exceed translational head movement more than 

3mm in any of the scans (Mean = 0.65mm, SD = 0.059mm). The normalization algorithm 

used a 12 parameter affine transform with a nonlinear transformation involving cosine basis 

function, and resampled the volumes to 3 mm3 voxels. Templates were based on MNI305 

stereotaxic space. The functional volumes were spatially smoothed using a 6 mm full width 

at half maximum (FWHM) isotropic Gaussian kernel.

General linear model

We used the general linear model (GLM) in SPM8 to perform statistical analyses on individ-

ual subjects’ fMRI data. The fMRI time series were modeled as a series of two events: the 

decision phase (Expected Value, EV) and the outcome phase (PE), convolved with a canonical 

hemodynamic response function (HRF). The onset of the choice (EV), and the onset of the 

outcome (PE) were both modeled with zero duration. Each of these regressors was associated 

with a parametric modulator taken from the computational model. At the time a stimulus 

was selected (decision phase) this was the chosen expected value, and at the time of the 

outcome, the PE. The PEs were estimated using each subject’s own alpha and beta from each 

condition. Trials on which participants did not respond were modeled separately as a regressor 

of no interest. Six motion parameters, and -if applicable- motion censoring regressors were 

included as nuisance regressors. We used the MarsBaR toolbox (Brett, Anton, Valabregue, & 

Poline, 2002; http://marsbar.sourceforge.net) to visualize the patterns of activation, in clusters 

identified in the whole-brain results. Coordinates of local maxima are reported in MNI space. 

Our main hypotheses centered on PE coding. For completeness, effects of EV at choice 

onset are included in Supplementary Table S3. In addition, uncorrected T-maps of EV and 

PE effects are uploaded on Neurovault (https://neurovault.org/collections/EOTSVZYT/). For 

condition effects, we examined contrasts of Self versus Other in concordance with Lockwood 

et al. (2016). Contrasts were obtained from a flexible factorial design with three levels (Self 

PE, Other PE, No One PE). Effects and conclusion remained the same when testing Self PE 

> Other PE + No One PE, and Other PE > Self PE + No One PE. In Supplementary Table S4 

we include all contrasts between conditions within our ROIs. Whole-brain effects for main 

effects and between conditions are included in Supplementary Tables S2 and S5, respectively. 

Age effects (linear and quadratic) were tested in follow-up regressions.

5
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ROI selection and fMRI analyses

The a priori regions of interest (ROI) in which we test our main hypotheses were defined 

anatomically and based on previous research on (prosocial) learning and feedback process-

ing (Lockwood et al., 2016; van den Bos, Cohen, et al., 2012; van Duijvenvoorde et al., 2014). 

In concordance with previous studies, masks were taken from an appropriate atlas. That is, 

the bilateral ventral striatum and vmPFC were determined by an anatomical mask from the 

Harvard-Oxford Atlas (van Duijvenvoorde et al., 2014; van den Bos et al., 2012; Braams et al., 

2015; Peters & Crone, 2017), and the sgACC was defined as Brodmann areas (BA) 25 and s24 

(Lockwood et al., 2016). The sgACC region and the ventral striatum are anatomically adjacent 

and partly overlapping (see Figure S5), but significant peak activations in either ROI were not 

observed in these overlapping voxels. Coordinates for local maxima are reported in MNI space. 

Effects in our ROIs are reported at p < .05 FWE-small volume corrected (SVC). Predictions 

were tested while correcting for multiple comparisons (3 ROIs) by limiting the false discovery 

rate (FDR; Benjamini & Hochberg, 1995); all reported tests survived this correction. Explorative 

whole-brain analyses are reported in Supplementary Tables S2 and S5, and Figure S6).

Results

Developmental differences in learning to obtain rewards for Self, Others, or 
No One

Results showed that, at the group level, participants were able to learn for Self, Other, and No 

One, as they performed above chance level in all conditions (0.5; t values > 13.0, all ps < .001, 

df = 73; Figure 1B). Using a generalized linear mixed model (GLMM) on participants’ choice 

behavior over trials, we assessed age-related differences in performance when learning for 

Self, Other, and No One. Performance in the learning task improved linearly with age (main 

effect of Age linear, p = .001). Moreover, we observed that age-related differences in learning 

performance differed per condition (Age x Condition interaction, p = .005). Post-hoc analy-

ses revealed that the age-related improvement in performance was larger when learning for 

Other than when learning for Self (p = .009) and when learning for No One (p = .02). The 

age-related improvements were similar for learning for Self and No One (p = .92). Similarly, 

we also observed age-related differences in learning curves across trials, which differed per 

condition (Age x Condition x Trial interaction, p = .007). Specifically, younger children learned 

more slowly (i.e., flatter learning curves) across trials when learning for others, but this age 

effect on trial was not observed for the Self and No One condition (Age linear x Trial, for 

Other condition, p < .001; Self and No One conditions: ps > 0.2; see Figure 1C and Figure S7). 

Together, these findings suggest that across adolescence prosocial learning shows a more 

protracted improvement than when learning for Self or No One.
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Next, we examined participants’ learning rates to assess how they updated the value 

of stimuli on the basis of outcomes for Self, Others, and No One. That is, higher learning 

rates indicate that people adjusted behavior quickly towards recent feedback, whereas lower 

learning rates indicate a slower pace in updating in which outcomes across multiple trials are 

integrated. Using a robust linear mixed effects model, we assessed effects of Condition and 

Age (linear) in learning rates (Figure 1D). We observed that learning rates for Self were lower 

than learning rates for Other ([Self vs Other], b = 0.02, p < .001) and for No One ([Self vs 

No One], b = -0.03, p < .001). Learning rates for Other and for No One did not differ ([Other 

vs No One], p = .911). Moreover, we observed that learning rates decreased linearly with age 

(main effect of Age linear, b = -0.04, p = .023), an effect that also differed across conditions. 

Specifically, learning rates decreased across age in the Other and Self condition, but more 

strongly across age for Other than for Self ([Other-Self]*Age, b = -0.02, p < .001) and for Other 

than for No one ([Other-No One]*Age, b = 0.004, p = .004). Learning rates also decreased 

more strongly across age for Self than for No One ([Self-No One *Age, b = .019, p < .001). 

Learning rates did not differ across age in the No One condition (p = .08). Together, these 

findings show that for both learning for Self and Others, younger participants responded 

more to recent feedback, whereas older participants integrated feedback more over trials. 

Moreover, this age-related change was most pronounced in the Other compared to the Self 

and No One condition.

Identifying common and distinct coding of prediction errors for Self and 
Others

To formally investigate the brain regions that were responding to PEs for Self, Others, and No 

One, we conducted a conjunction analysis to explore whether there were regions that com-

monly code PEs across all conditions. Common activation for PEs regardless of the beneficiary 

was observed in the vmPFC (MNI coordinates [x = -9, y = 44, z = -11], Z = 5.33, k = 136, p < 

.001, SVC-FWE), ventral striatum ([x = -9, y = 11, z = -11], Z = 5.05, k = 23, p < .001, SVC-FWE, 

and [x = 12, y = 14, z = -8], Z = 4.43, k = 18, p < .001, SVC-FWE), and sgACC ([x = -6, y = 14, 

z = -8], Z = 5.47, k = 32, p < .001; and Self [x = 6, y = 17, z = -8], Z = 4.60, k = 21, p = .001; and 

[x = 9, y = 8, z = -14], Z = 3.67, k = 2, p = .029, SVC-FWE) (see Figure 2). These findings show 

that all regions of interest were involved in PE coding, in each condition.

5
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Figure 2. Common prediction error (PE) coding in three regions of interest. Shown are the responses to 

prediction errors for Self, Other, and No One in (A) the vmPFC, (B) left sgACC, and (C) ventral striatum. 

(D) Significant clusters of activation in the vmPFC (blue), sgACC (cyan), and ventral striatum (yellow). 

All images displayed at p < .05 FWE-SVC.

Next, we examined which brain regions responded more to PEs for Self than for Other 

by contrasting the Self condition against the Other condition (see Supplementary Table S4 

for contrasts including the No One condition). The left ventral striatum was the only region 

to respond more strongly to PEs for Self ([x = 12, y = 11, z = -11], Z = 4.37, k = 9, p < .001, SVC-

FWE; Figure 3). When examining effects of age we observed no linear or quadratic age-related 

differences in self-related PE coding. These findings indicate that the ventral striatum responds 

more to PEs for Self than for Others, and this effect did not differ across age.

We next identified regions that corresponded to PEs for others exclusively by contrast-

ing the Other condition against the Self condition. No voxels in our ROIs responded more 

strongly to prosocial PEs than Self PEs. When adding age (linear and quadratic) to the model 

to examine whether age-differences were related to prosocial PE coding, we observed that 

the vmPFC increasingly responded to prosocial PEs with age ([x = -15, y = 50, z = 8], Z = 4.95, 

k = 45, p = .004, SVC-FWE; see Figure 4). No effects of quadratic age were observed. This 

shows that the vmPFC is increasingly involved in prosocial PE coding across adolescence.
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Figure 3. Ventral striatum response to prediction errors for Self versus Other. (A) Left ventral striatum 

[x=12, y=11, z=-11] response for Self PE and Other PE. (B) Overlay of the response for Self PE > Other 

PE in the left ventral striatum. All images displayed at p < .05 FWE-SVC.

Figure 4. Linear age effects in responses to Other PE > Self PE in the vmPFC. (A) scatterplot showing 

the relation between age and activation in the vmPFC for Other PE > Self PE. Scatterplot is only pre-

sented for visualization. (B) Overlay of the response for Other PE > Self PE in the vmPFC [-15, 41, -11]. 

All images displayed at p < .05 FWE-SVC.

Links between cognitive empathy and learning for Others

Finally, we examined the link between cognitive empathy and prosocial learning. First, we 

assessed whether cognitive empathy related to performance for Other, while controlling for 

performance for Self. We observed that individuals with higher empathy ratings, showed 

better prosocial learning (rs = .30, p = .01). Subsequently, we assessed whether cognitive em-

pathy related to learning rate in the Other condition (controlled for learning rate in the Self 

condition). Results showed that individuals with higher empathy ratings had lower learning 

rates when learning for Others (cognitive empathy, rs = -0.26, p = .027, see Figure 5B). To-

5
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gether, these findings indicate that individuals with more empathy show better learning 

performance, and integrate information more over trials when learning to benefit others. 

Finally, we assessed the relation between cognitive empathy and the prosocial PE coding in 

the vmPFC. For this purpose, we extracted the values of the Other PE > Self PE contrast in 

vmPFC that showed age-related change (see Figure 4). Results showed that greater Other vs 

Self-related PE activation in the vmPFC related to higher empathy scores (cognitive empathy, 

rs = .31, p = .007).

To examine whether age-related differences in empathy or prosocial learning may influ-

ence these relations, we additionally included age in the partial correlation analysis. When 

additionally controlling for age, the relation between empathy and learning for others re-

mained significant (p = .029), the relationship between empathy and learning rate became 

trend-level (p = .06), and the relation between empathy and prosocial PE coding was no 

longer significant (p = .15).

Figure 5. Relation of cognitive empathy with performance for Others and learning rate for Others. 

(A) Partial correlation plot showing that individuals with more cognitive empathy perform better for 

Others (controlled for performance for Self). (B) Partial correlation plot showing that individuals with 

more cognitive empathy have lower learning rates when learning for Others (controlled for learning 

rate for Self).

Discussion

This study examined the developmental trajectories of prosocial learning and self-related 

learning in an adolescent sample spanning ages 9-21 years. We examined the underlying 

mechanisms in this developmental sample by assessing the neural tracking of PEs during 

learning for self and others, and how individual differences in cognitive empathy relate to 
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prosocial learning performance. To this end, participants played a two-choice probabilistic rein-

forcement learning task in which outcomes resulted in monetary consequences for themselves 

(Self) or an unknown other (Other; prosocial). Our results show improvements in learning 

for self and others, but the developmental trajectory of prosocial learning is more protracted 

compared to learning for self. PEs for self were related to activation in the left ventral striatum, 

which did not show age-related differences. On the other hand, vmPFC-related PE activation 

during prosocial learning increased with age, and related to individual differences in cognitive 

empathy. Together, these findings highlight that learning for self and others show different 

age-related patterns.

The main goal of this study was to examine age-related differences in prosocial learning. 

Behaviorally, we observed that it is not until mid-adolescence that participants learn similarly 

for themselves and others. These findings may suggest a self-bias that is stronger in younger 

ages (van der Aar et al., 2018), and that the motivation to learn for self and others increases 

with age. Neurally, we observe that a reward-related network including the ventral striatum, 

sgACC, and vmPFC respond significantly to PEs when learning for Self, Other, and No One. 

This conjunction presented the starting point for our interest in testing condition-specific 

learning effects. Contrary to Lockwood et al. (2016), who observed similar PE neural tracking 

values in the ventral striatum for learning for Self and Others in adults, we observed that PE 

neural tracking was stronger in the ventral striatum for Self than for Others. Recent reviews, 

however, suggest that the striatum is related to a range of computations that take place 

during social learning that could reflect both self-related and other-related learning (Joiner 

et al., 2017), or the difference between winning for self and others (Báez-Mendoza & Schultz, 

2013). Therefore, one explanation for our findings could be related to the possible stronger 

self-focus or the greater focus on social comparisons reflected in the ventral striatum.

Learning for Others, compared to learning for Self, was associated with stronger activation 

in the vmPFC with age. Previous prosocial reinforcement learning studies have suggested 

that the vmPFC is also responsive to processing of self-related expected values (Sul et al., 

2015), self-representation (Sui & Humphreys, 2017), or does not differentiate between self and 

other-related PEs (Lockwood et al., 2016). On the other hand, the vmPFC is suggested to 

respond to prosocial rewards in adults (Christopoulos & King-Casas, 2015), to others’ outcome 

PEs (Burke et al., 2010), and to simulated others’ reward PEs (Suzuki et al., 2012). Our findings 

extend these prior studies by showing that the ventral striatum and vmPFC code PEs both for 

self and others (see also Joiner et al., 2017). In this first developmental sample investigating 

prosocial learning, we observe a specificity for Self PEs in the ventral striatum and an increased 

specificity for prosocial PE coding in the vmPFC, in which across age prosocial (compared 

to self-related) PE elicit more activation. Alternatively, the pattern of age-related differences 

we observed for Other and Self-learning in the vmPFC may also support the perspective of 

a decreasing self-focus with age. For instance, previous work on self-concept development 

5
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highlights that perspectives of others and self become more merged across development 

(van der Cruijsen et al., 2019). However, longitudinal studies are more powerful and essential 

for examining the true developmental trajectories of prosocial learning.

Besides the age-related differences in other-related learning, we observed that consistent 

with previous findings (Lockwood et al., 2016), individual differences in cognitive empathy 

were related to prosocial learning. Individuals with higher levels of empathy performed better 

for Others, integrated outcomes more over time (i.e., lower learning rates), and their vmPFC 

showed greater activation during prosocial PE coding. However, relations on cognitive em-

pathy and prosocial PE coding in the brain were not robustly observed when controlling for 

age. This may indicate that it is hard to disentangle whether empathy or age drives prosocial 

PE coding. Also, age-related differences in brain activity during prosocial PE tracking may be 

explained by other social cognitive mechanisms than empathy. For instance, although there 

was no reciprocity or competition, participants may have been influenced by social inequality 

preferences, such as disliking to getting more (i.e., advantageous inequality aversion), or less 

(i.e., disadvantageous inequality aversion) than the other participant (Dawes et al., 2007; 

Fehr & Schmidt, 1999; Meuwese et al., 2015; Westhoff et al., 2020). Future studies could 

more explicitly assess several social-cognitive skills, strategies, and motivations along with a 

prosocial learning task to examine what behavioral mechanisms rely most on adolescents’ 

prosocial learning.

Prior developmental studies on general reinforcement learning remained inconclusive 

about whether age-related differences were observed in PE neural tracking in the ventral 

striatum (Christakou et al., 2013; Cohen et al., 2010; Hauser et al., 2015; van den Bos, Cohen, et 

al., 2012). Here, age-related differences in PE coding for Self were not observed in the ventral 

striatum. In contrast to other studies (Cohen et al., 2010; Peters & Crone, 2017) we also did not 

find any quadratic age effects in learning or PE coding. This is possibly due to our narrower 

age range (9-21 y.o. instead of 8-30 y.o.), as another developmental study on learning also has 

not observed age-related changes in ventral striatum activity in a similar age range (van den 

Bos, Cohen, et al., 2012). Indeed, a recent review recommended using samples with wider age 

ranges, including children and adults, when examining quadratic age effects across adoles-

cence (Li, 2017). It should be noted, however, that although we did not find age-effects in the 

ventral striatum, the behavioral learning performance for Self showed linear improvements 

with age. This could also indicate that other mechanisms than simple PE coding may be relat-

ed to behavioral learning improvement over time within the current age range. For example, 

a prior study in young adults indicated that besides well-known model-free learning, another 

more sophisticated and flexible learning system is model-based learning. These two distinct 

computational strategies use different error signals which are computed in partially distinct 

brain areas (Gläscher et al., 2010). Moreover, it has been found that people may use different 

learning strategies, which show different neural activation patterns (Peters, Koolschijn, et al., 
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2014). Future studies are needed to assess whether age-related improvements in learning 

performance may be more strongly related to strategic learning differences.

We observed that, overall, learning rates decreased with age, and lower learning rates 

were related to better performance. These findings indicate that, with age, adolescents in-

creasingly integrate information across trials, which was beneficial to their prosocial learning 

performance. Intriguingly, a recent aging study with a similar prosocial learning task observed 

that better learning performance was related to higher learning rates instead (Cutler et al., 

2021; Lockwood et al., 2016). Besides the included age range in this study, a few differences 

in modeling and task structure may underlie this deviance. First, we allowed a wide range of 

beta-parameters. Since beta-parameters showed consistent age-related declines (see Sup-

plementary Figure 2), and also relate to performance (see Supplementary materials) this 

may have influenced our learning rate estimations. Second, the task structure shows differ-

ences in reinforcement structure. Most profoundly we included gains and losses compared 

to gain and no-gains in previous prosocial learning studies. Possibly, losses may influence 

the updating of values across trials differently, although we did not find evidence that gains 

and losses were weighted differently in learning across development. Future studies should 

further examine the influence of reinforcement structures on observed age-related differences 

in reinforcement learning.

The current study had several limitations that can be addressed in future research. First, 

prosocial learning was restricted to unknown others, and participants did not meet these 

others. Although we circumvented the potential effects of reputational concerns, it may have 

been more salient to include a confederate, as used in previous studies on prosocial learning 

in which participants played for a stranger who they met prior to the experimental task (Lock-

wood et al., 2016; Sul et al., 2015). Second, it would be interesting if future research would 

extend the prosocial learning task to other beneficiaries. Previous studies have shown that 

prosocial behaviors and their neural correlates in adolescence strongly depend on the benefi-

ciary (e.g., (Brandner et al., 2020; Schreuders et al., 2018; van de Groep et al., 2020; Westhoff 

et al., 2020). Future studies should further examine whether such differences between ben-

eficiaries are also visible in prosocial learning and whether this affects the concurrent neural 

tracking of PEs. Third, the neural results for the No One condition showed an intermediate 

pattern between learning for Self and Others, which is difficult to interpret. Behavioral analy-

ses showed that participants generally performed well in this condition (i.e., not significantly 

different from learning for Self), even though no monetary reinforcers were given depending 

on task performance. Although including the No One conditions in our contrasts of interest 

did not alter our main findings, this condition was possibly interpreted by participants in 

different ways, in which some participants were internally motivated to perform well (e.g., 

(Satterthwaite et al., 2012). Finally, in line with previous research we used a model with 

separate learning rates per condition (Lockwood et al., 2016). Using this established model, 
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our results also revealed expected differences in learning rate between conditions. However, 

other studies also included comparison testing whether different learning rates or beta’s are 

needed across different conditions (Cutler et al., 2021). Future studies may expand on these 

recent modeling procedure in prosocial learning in developmental and adult populations.

In conclusion, we found that prosocial learning showed age-related improvements across 

adolescence, suggesting a developmental shift from self-focus in early adolescence to self and 

other-focus in late adolescence and early adulthood (Crone & Fuligni, 2020). This developmen-

tal improvement was associated with stronger recruitment of the vmPFC for others compared 

to self. This study has implications for learning in social settings, such as educational contexts 

(Altikulaç et al., 2019), as well as for how children develop prosocial values when learning 

for unknown others. This study provides the first building blocks to understand age-related 

differences in how adolescents learn to benefit others.
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Supplementary materials

Figure S1. Number of participants across age per sex. In total, 74 participants were included (39 female, 

35 male).

Beta parameter

The Beta parameter was examined as an index to what extent participants followed expected 

value in their choice behavior, and is also considered a parameter of decision noise. Higher 

values represent less decision noise here. Using a robust linear mixed effects model, we 

assessed effects of Condition and Age (linear) in beta parameters. We observed that with 

increasing age, decision noise decreased linearly (main effect of Age, B = 2.9, p = .007), indi-

cating participants follow expected value more closely. Particularly beta parameters increased 

more strongly across age for Other than for Self (Other-Self; B = 0.47, p < .001), and did not 

differ significantly between No One and Other (No One – Other p = .19) and between No One 

and Self (No One – Self; p = .19)

5
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Figure S2. Beta parameter per condition per age cohort. Age is used as a continuous variable in all 

analyses, but is visualized as age cohorts for illustrative purposes and interpretability.

Figure S3. BIC values per condition per age cohort. Bars show BIC differences of the two-learning rate 

model (gain and loss) with the best model (one learning rate). Values on the y-axis indicate the difference 

between fit values (BIC values) for the two-learning rate model (gains and loss) and fit values for the 

one-learning rate model (the best model). BIC values were calculated per participant, and are shown 

separately per age cohort and per condition. For all age cohorts and all conditions a one-learning rate 

model is the best-fitting model. Lower bars indicate that the model fit of the one-learning rate model 

and two-learning rate model are more similar. For each condition, these BIC difference scores are not 

predicted by age (all Ps > .14). Error bars represent standard error of the mean.
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Relations between performance, learning rates, and betas

We tested non-parametric correlations between performance, learning rates, and betas per 

condition. These show that lower learning rates in the Other condition are related to better 

performance for Other (rs(74) = -.38, p = .001). Similarly, lower learning rates in the No One 

condition are related to better learning for No One (rs(74) = -.34, p = .003, but learning rates 

in the Self condition are not significantly related to learning for Self (rs(74) = -.22, p = .056). 

In addition, higher betas were strongly related to better performance in all conditions (Self, 

rs(74) = .91, p < .001; Other rs(74) = .94, p <.001; No One rs(74) = .89, p < .001. Also, in all 

conditions, lower learning rates are related to higher betas (Self, rs(74) = -.37, p < .001; Other, 

rs(74) = -.54, p < .001; No One, rs(74) = -.48, p < .001).

Figure S4. Learning rate and Beta parameter recovery. The correlation matrices represent the correla-

tions between simulated and recovered (A) learning rates, and (B) beta values. Stronger colors show 

higher values and high values on the diagonal show parameters can be recovered.

Figure S5. Regions of interest. Ventromedial prefrontal cortex (vmPFC; red), subgenual anterior cingu-

late cortex (sgACC; blue), and the ventral striatum (green).
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Figure S6. Whole brain responses for (A) Self PE, (B) Other PE, (C) No One PE, and (D) conjunction 

(common PE coding in all three conditions). All images displayed at p < .05 FWE, voxel level corrected.
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Figure S7. Learning across trials for (A) Self, (B) Others, and (C) No One, per age cohort. Note that for 

all analyses including age, we used age as a continuous variable. However, figures represent age per 

age cohorts instead for illustrative purposes and interpretability.

Figure S8. Cognitive empathy across age.

5
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Table S1. Mean model parameters with prior distributions (M, SD), constraint, and 95% confidence 

intervals around the mean.

Model Parameter Prior Constraint Mean 95% CI

RL Self α β (1.2,1.2) 0 < α < 1 0.28 .24 – .32

β Gaussian (0,10) −∞ ≤ β ≤ ∞ 8.81 7.37 – 10.26

RL Other α β (1.2,1.2) 0 < α < 1 0.34 .29 – .39

β Gaussian (0,10) −∞ ≤ β ≤ ∞ 7.43 5.92 – 8.94

RL No One α β (1.2,1.2) 0 < α < 1 0.34 .29 – .39

β Gaussian (0,10) −∞ ≤ β ≤ ∞ 7.94 6.52 – 9.37

Table S2. Main effects of whole brain prediction error responses per condition, and common prediction 

error coding (conjunction).

Brain Region Peak voxel
x y z k t z

Main effect Self PE

L Precental gyrus -27 -25 61 6235 9.68 Inf

 L precuneus -3 -58 13 9.65 Inf

 L Postcentral gyrus -30 -34 64 9.03 Inf

L Putamen -30 -13 4 481 9.52 Inf

 L Putamen -15 8 -11 8.20 7.65

R Caudate 12 11 -11 525 9.01 Inf

 R Thalamus 30 -16 7 8.22 7.65

 R Putamen 27 -7 10 8.04 7.52

L Superior frontal gyrus, medial -9 65 19 515 7.25 6.85

 L Superior frontal gyrus, medial -12 58 7 6.93 6.58

 L Superior frontal gyrus, medial 0 59 1 6.85 6.52

L Rolandic operculum -48 -28 19 271 6.95 6.60

 L Superior temporal gyrus -60 -31 19 6.71 6.39

 L Supramarginal gyrus -60 -22 16 6.57 6.27

L Middle frontal gyrus, orbital part -30 35 -14 50 6.73 6.41

L Thalamus -12 -22 4 21 6.57 6.27

R Superior temporal gyrus 63 -1 -5 83 6.52 6.23

 R Rolandic operculum 63 5 1 6.06 5.82

 R Superior temporal gyrus 66 -7 4 5.29 5.13

L Inferior frontal gyrus,triangular part -48 32 13 60 6.47 6.19

L Rolandic operculum -54 -4 4 34 6.04 5.81

R Inferior temporal gyrus 51 -67 -11 46 5.76 5.55
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Table S2. Continued
Brain Region Peak voxel

x y z k t z

 R Inferior temporal gyrus 51 -58 -20 5.41 5.23

 R Inferior occipital gyrus 42 -76 -17 5.35 5.19

R Cerebellum 21 -52 -23 20 5.60 5.41

Main effect Other PE

L Precuneus -6 -61 13 103 6.54 6.25

 L Calcarine fissure & surrounding cortex -12 -55 10 6.19 5.94

L Olfactory cortex -6 20 -11 32 6.29 6.02

R Hippocampus 30 -7 -20 17 5.66 5.46

R Superior temporal gyrus 63 -28 16 17 5.59 5.40

L Middle frontal gyrus, orbital part -9 44 -11 12 5.58 5.39

Main effect No One PE

L Middle frontal gyrus, orbital part -3 50 -11 246 9.13 Inf

 L Superior frontal gyrus, medial -6 62 1 5.92 5.69

 L Superior frontal gyrus, medial -9 55 13 5.77 5.56

R Caudate 12 8 -11 173 7.64 7.19

 L Olfactory cortex -15 11 -14 6.72 6.40

 L Olfactory cortex -5 20 -11 6.19 5.93

L Inferior frontal gyrus, orbital part -36 35 -14 182 7.60 7.15

 L Middle frontal gyrus, orbital part -24 32 -17 6.30 6.04

 L Inferior frontal gyrus, triangular part -45 32 7 5.99 5.75

L Middle temporal gyrus -60 -43 -8 134 7.21 6.82

 L Inferior temporal gyrus -54 -52 -17 6.39 6.09

L Precuneus -6 -55 16 120 7.16 6.78

 L Calcarine fissure & surrounding cortex -12 -52 7 5.88 5.66

L Median cingulate and paracingulate gyri -3 -37 40 50 6.57 6.27

L Middle frontal gyrus -24 32 49 172 6.56 6.26

 L Middle frontal gyrus -24 20 46 5.99 5.75

 Superior frontal gyrus, medial -12 59 28 5.64 5.45

L Angular gyrus -42 -67 34 122 6.14 5.89

R Parahippocampal gyrus 18 -10 -26 16 5.63 5.43

 R Parahippocampal gyrus 24 -19 -23 5.20 5.04

Conjunction

L Precuneus -6 -58 16 61 6.54 6.24

L Caudate -6 14 -8 12 5.67 5.49

For all regions, FWE p < .05 voxel-level whole-brain corrected, and presented here with k > 10. PE = Prediction 

error; L = Left; R = Right; k =cluster extent. Names of the brain regions derived from the Automated 

Anatomical Labeling (AAL) atlas.
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Table S3. Main effects of whole brain expected value responses per condition, and common ex-

pected value coding (conjunction).

Brain Region
Peak voxel

x y z k t z

Main effect Self EV

Precuneus -15 -64 19 14 5.63 5.44

Main effect Other EV

L Precuneus -9 -61 19 53 6.01 5.77

R Middle frontal gyrus, orbital part 3 56 -5 23 5.51 5.32

Main effect No One EV

L Middle temporal gyrus -51 -13 -8 11 5.36 5.19

Conjunction*

L Precuneus -12 -58 13 140 4.28 4.18

 L Precuneus -12 -58 22 3.99 3.91

 R Precuneus 6 -58 19 4.13 4.04

For all regions, FWE p < .05 voxel-level whole-brain corrected, and presented here with k > 10. PE = Prediction 

error; L = Left; R = Right; k =cluster extent. Names of the brain regions derived from the Automated Anatomical 

Labeling (AAL) atlas. *threshold p < .001

Table S4. Comparison of responses to prediction errors between conditions, in regions of interest 

(ventral striatum, sgACC, vmPFC).

Brain Region
Peak voxel

x y z k t z

No One PE > Other PE

Ventral striatum 12 8 -11 2 3.41 3.36

No One PE > Self PE

No suprathreshold voxels

Other PE > Self PE + No One PE

No suprathreshold voxels

Self PE + No One PE > Other PE

Ventral striatum 12 8 -11 8 4.52 4.42

sgACC 9 8 -11 2 3.75 3.69

Self PE > Other PE + No One PE

Ventral striatum 12 11 -11 3 3.34 3.30

No One PE > Self PE + Other PE

No suprathreshold voxels
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Table S4. Continued

Brain Region
Peak voxel

x y z k t z

Self PE + Other PE > No One PE

No suprathreshold voxels

Other PE + No One PE > Self PE

No suprathreshold voxels

For all regions, corrected at p < .05 FWE-SVC. PE = Prediction error; k =cluster extent. Names of the brain 

regions were based on the Automated Anatomical Labeling (AAL) atlas.

Table S5. Comparison of whole brain responses to prediction errors between conditions

Brain Region
Peak voxel

x y z k t z

No One PE > Other PE

No suprathreshold voxels

No One PE > Self PE

No suprathreshold voxels

Other PE > Self PE + No One PE

No suprathreshold voxels

Self PE + No One PE > Other PE

R Precuneus 15 -100 13 27 4.51 4.23

 R Calcarine 18 -100 1 3.7 3.53

L Calcarine -12 -103 -5 20 3.90 3.70

 L Calcarine -6 -103 1 3.73 3.55

L Postcentral -36 -34 67 15 3.84 3.65

L Caudate -12 -7 22 13 3.81 3.63

 L Thalamus -12 -16 13 3.68 3.51

Self PE > Other PE + No One PE

L Occipital gyrus -21 -88 22 2385 6.17 5.52

 L Cerebellum -33 -64 -20 5.02 4.64

 R Occipital gyrus 24 -88 19 5.00 4.62

L Postcentral -30 -37 67 701 5.31 4.87

 L Precentral -21 -25 58 4.85 4.50

 R Precuneus 6 -43 58 4.63 4.32

R Putamen 33 -13 4 261 4.57 4.27

 R putamen 30 -22 4 4.57 4.27

5
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Table S5. Continued

Brain Region
Peak voxel

x y z k t z

L Putamen -30 -13 4 366 4.50 4.21

 L Supramarginal gyrus -57 -28 28 4.15 3.92

R Thalamus 3 -13 55 165 4.49 4.21

 L Supplementary motor area -3 -19 58 4.42 4.14

 Median cingulate and paracingulate gyri 6 -1 43 4.13 3.90

R Middle frontal gyrus 36 50 31 22 4.13 3.90

R Supramarginal gyrus 45 -28 34 107 4.30 4.05

 R Supramarginal gyrus 54 -28 37 4.02 3.81

R Superior frontal gyrus, dorsolateral 27 -10 70 33 4.25 4.00

L Superior temporal gyrus -54 -4 4 24 4.04 3.83

L Putamen -15 11 -11 11 4.02 3.81

R Precental gyrus 42 -10 58 25 3.89 3.69

 R Precental gyrus 39 -10 49 3.83 3.64

R Thalamus 15 -22 1 10 3.75 3.57

No One PE > Self PE + Other PE

No suprathreshold voxels

Self PE + Other PE > No One PE

R Precuneus 21 -64 25 99 4.63 4.32

 R Calcarine fissure and surrounding cortex 21 -61 16 4.59 4.29

 R Cuneus 15 -82 28 3.72 3.54

L Cuneus -9 -82 22 75 4.33 4.07

 L Cuneus -15 -67 19 4.12 3.90

 L Cuneus -15 -82 31 3.29 3.17

R Insula 36 8 4 58 3.80 3.62

 R Insula 36 2 16 3.61 3.46

 R Supramarginal gyrus 66 -25 22 61 4.05 3.84

 R Superior temporal gyrus 45 -34 22 3.58 3.57

 R Supramarginal gyrus 54 -34 31 3.57 3.42

 R Heschl gyrus 45 -25 13 18 3.92 3.72

 L Middle occipital gyrus -30 -76 22 12 3.67 3.50

 L Middle temporal gyrus -57 -67 4 10 3.62 3.46

Other PE + No One PE > Self PE

No suprathreshold voxels

For all regions, p < .001 voxel-level uncorrected, extent-threshold k = 10. Names of the brain regions were 

based on the Automated Anatomical Labeling (AAL) atlas.
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Participant instructions

 “Welcome! We are going to play a game in the scanner. In this game, you will see two pictures 

on the screen. You can win or lose points by choosing one of the pictures. If you win, you get 

+1 point, and if you lose, you get -1 point. But not all pictures are equally good…”

 “With both pictures you can win and lose, but with one picture you will win more often, 

and with the other picture you will lose more often. Try to win as many points as possible! 

Note: it does not matter whether the picture is on the left or right side of the screen.”

 “To choose the left picture, you press the left button. To choose the right picture, you 

press the right button. At the end of the game, you will see how many points you won in 

total. Your points will be translated to real money using a formula. This amount of money 

will be paid out to you.”

 “You will play this game 3 times: for yourself, for another person, and for no one. On the 

screen, it says for whom you will be playing. Each time you should learn which of the two 

pictures on the screen is better. Sometimes you play for yourself. When you play for yourself, 

the gains will be paid out to you.”

 “Sometimes you play for another person. When you play for another person, the gains 

will be paid out to another player. This player is someone who participates in this experiment 

after you. This is a girl or a boy of your age. This person does not know that you are playing 

for him/her. So, he/she will receive the money you win for him/her without them knowing it 

is from you. This person will not play the game for you.”

 “Sometimes you play for no one. When you play for no one, your points don’t count and 

no one will receive your gains.”

 “Try to respond on time. You will have about 2 seconds to make your choice. We will first 

do a practice run. Good luck!”

 [24 Practice trials (8 per condition)]

“Well done! This was a practice run, so your points don’t count yet. In the scanner, we will 

play the game for real, and you will see at the end of the game how many points you won 

for yourself and for the other person. Do you have any questions left?”

5


