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2
In�uence of geometrical variations

on morphodynamic equilibria for

single inlet systems

The existence of cross-sectionally averaged morphodynamic equilibria of tidal
inlets is investigated, using a cross-sectionally averaged model, and their sen-
sitivity to variations of geometry, deposition parameter, frictional e�ects and
advective sediment transport is analysed. Di�erent geometries, from expo-
nentially converging to exponentially diverging, are considered for inlets with
lengths typical for the Dutch Wadden Sea. Standard continuation techniques
are employed to numerically obtain morphodynamic equilibrium solutions,
i.e. solutions for which the tidally averaged bed level does not change any-
more. It is known that when the water motion at the entrance of the inlet
is only forced by an M2 tidal constituent, the water level is assumed to be
spatially uniform and only di�usive sediment transport is considered, the
morphodynamic bed equilibrium has a constantly sloping pro�le for a rect-
angular inlet. We �nd that the bed pro�le in equilibrium becomes convex
(concave) when we change the frictionless embayment geometry to a diverg-
ing (converging) geometry. Upon letting the deposition parameter depend on
the depth, a more convex bed pro�le for all geometries considered is found.
Including frictional e�ects in the momentum equation has a minor e�ect when
only di�usion is considered, but the bed pro�le changes signi�cantly when
advection is included. When the tidal forcing of the sea surface elevation
depends on an M4 tidal constituent as well, the morphodynamic equilibrium
bed varies from very deep to shallow, depending on the relative phase. For
a diverging inlet geometry, there are combinations of the relative phase and
tidal basin length for which we show the existence of multiple equilibria. This
implies that for these geometries the cross-sectionally averaged bed pro�le
in morphodynamic equilibrium can change signi�cantly when the relative
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Introduction

phase or the embayment length is changed. The magnitude of the pertur-
bation necessary to actually evolve towards the other equilibrium and the
time scale associated with this change cannot be inferred from the analysis
presented in this Chapter.

2.1 Introduction

A barrier coast consists of several barrier islands with a tidal inlet between
these islands connecting one or more back barrier basins to the sea or ocean.
This type of coastal feature occurs at approximately 10% of world's coast-
line, (Glaeser, 1978). Large parts of these basins fall dry during a part of
the tidal cycle, which makes them important for ecological, economical and
recreational purposes. To manage these di�erent interests, it is essential
to obtain a better understanding of these systems and their sensitivity to
natural and human interference.

Already quite some research has been conducted on this topic. Both the
water motion and the morphodynamic evolution in shallow tidal inlet sys-
tems have been studied extensively. The linear dynamics of the tidal motion
was �rst studied by Green (1837). It was shown in Parker (1991); Zimmer-
man (1981) that nonlinear interactions result in the generation of overtides
and residual currents. In the last decades, many analytic solutions have
been presented for the tidal motion in a wide range of estuary geometries,
see Friedrichs (2010) for a review. In the studies mentioned above, no feed-
back to morphology was considered. When taking the interaction of the
currents with the erodible bed into account, complex patterns can develop,
see De Swart and Zimmerman (2009). A lot of research has been conducted
on the sensitivity of these bed patterns to various physical parameters. The
in�uence of sediment supply on morphodynamic bed equilibria was studied
by Van der Wegen et al. (2017); Maan et al. (2015); Robert and Whitehouse
(2000), the in�uence of frictional e�ects by Lanzoni and Seminara (1998,
2002); Schuttelaars and de Swart (2000), the in�uence of including mud in
the sediment transport by Van Ledden et al. (2004) and the in�uence of
geometry by Lanzoni and Seminara (1998, 2002); Van Leeuwen et al. (2000).

Although many studies have investigated a similar topic, one has to take
care in directly comparing the results, because the studies often use di�erent
models and solution methods. For a classi�cation of these di�erent types
of morphodynamic models, see De Vriend (1996); Murray (2013). Here, we
restrict ourselves to cross-sectionally averaged idealised process-based mod-
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els, which are mathematical models based on �rst physical principles. The
equations are simpli�ed such that only those processes are taken into ac-
count which, according to a detailed scaling analysis, are important. Note
that by averaging the models over the width, observed channel-shoal pat-
terns cannot be reproduced, only cross-sectionally averaged quantities are
found. However, a good understanding of cross-sectionally averaged equilib-
ria is essential as the �rst step in a depth-averaged (linear) stability approach
that can be used to unravel the initial formation of channel-shoal patterns
and the resulting �nite-amplitude patterns (see Dijkstra et al. (2014)). This
approach implies that the in�uence of tidal �ats, which are shown to be im-
portant by Ridderinkhof et al. (2016); Van Prooijen and Wang (2013) is not
parametrically included in the width-averaged model, but only starts to play
an important role as tidal �ats are formed in a 2DH analysis.
In Van Leeuwen et al. (2000), the authors used such an idealised model to

analyse geometric variations of the embayment on the morphodynamic bed
pro�les. The sea surface elevation was assumed to be spatially uniform and
the sediment concentration was given by an advection-di�usion equation.
When the sea surface elevation was only forced by an M2 tidal constituent
and di�usive sediment transport was assumed to be dominant, the authors
found that the morphodynamic bed pro�le becomes more convex as the width
convergence increases. When the sea surface elevation was forced by both an
M2 and an M4 tidal constituent and a converging embayment was assumed,
there was a maximum length for the embayment for which a morphodynamic
equilibrium could be found, for a relative phase di�erence φ betweenM2 and
M4 of φ ∈ [0°, 180°]. Letting the deposition parameter depend on the depth,
the authors found that the equilibrium bed pro�les became more convex.
Instead of �xing the bed at the landward boundary, Lanzoni and Seminara

(2002) created an inner boundary condition at the landward side to allow for
wetting and drying. Using this approach the authors de�ned the length of an
embayment as the maximum length for which a morphodynamic equilibrium
still exists. These results were con�rmed by Todeschini et al. (2008). From
these studies it was concluded that the maximum length of the embayment
was mainly governed by the convergence length, although frictional e�ects
also in�uenced the maximum length for weakly convergent embayments.
In Van Leeuwen et al. (2000); Lanzoni and Seminara (1998, 2002), the

morphodynamic equilibria were found by time-integration. A di�erent way
of solving a morphodynamic model is to make use of a �xed point seeker.
This method was �rst used in Schuttelaars and de Swart (1996). In their
model, the authors neglected e�ects of waves, density currents, inertia and
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friction and the sea surface elevation was assumed to be spatially uniform.
The authors considered a rectangular embayment with a �xed bed at the
seaward and landward boundaries and assumed the deposition parameter
to be spatially constant. The authors performed a systematic analysis of
the di�erent types of sediment transport. Considering only a prescribed
M2 tidal forcing at the entrance, a unique morphodynamic equilibrium was
found with a constantly sloping bed. When the sea surface elevation at
the entrance was forced by both an M2 and M4 tidal constituent, the bed
pro�le became either convex (0° < φ < 180°) or concave (180° < φ < 360°).
Schuttelaars and de Swart (2000) extended this analysis to embayments of
arbitrary length, including bottom friction and inertia. The existence of
multiple stable equilibria was shown for long enough embayments, when the
water motion was forced by both anM2 tidal constituent and a strong enough
M4 constituent. These results were con�rmed in Hibma et al. (2003) using
a numerical simulation model.
In Ter Brake and Schuttelaars (2010), the authors extended the idealised

model of Schuttelaars and de Swart (1996) by including a topographically
induced transport term in the bed evolution equation. The authors also
analysed the in�uence of di�erent boundary conditions on the bed. The sea
surface elevation was again assumed to be uniform and the geometry of the
embayment was considered to be rectangular.
The research presented in this Chapter extends the model of Ter Brake

and Schuttelaars (2010) by including inertial and frictional e�ects in the mo-
mentum equation and allowing for geometrical variations in the embayment.
The channel-shoal structure of observed patterns develop as instabilities on
the width-averaged morphodynamic equilibria. In this chapter, these width-
averaged morphodynamic equilibria are identi�ed. The goal of this chapter
is to analyse the sensitivity of width-averaged morphodynamic equilibria in
a rectangular, exponentially converging and exponentially diverging embay-
ment for the following physical parameters: inertia, bed shear stress, depth-
dependence of the deposition parameter, inclusion of advective processes and
inclusion of an externally prescribed overtide. To validate the model, results
are qualitatively compared to pro�les obtained from observations.
The outline of this chapter is as follows. In section 2.2, the model geometry

and equations are presented. In section 2.3 the full model equations are scaled
and analysed using an asymptotic expansion. The e�ect of choosing various
geometries for the embayment when only considering di�usive processes is
analysed in section 2.4. In this section, the in�uence of the formulation of
the deposition parameter, the friction and the inclusion of advective sediment
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Inlet 1 BasinW

x = 0 x = L
(a) (b)
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z = −H + h

x = 0 x = L

Figure 2.1: A sketch of the geometry used. (a) A top view of the embayment
with a rectangular (dashed), converging (dotted) or diverging
(solid) width pro�le. (b) A cross-sectionally view of the embay-
ment.

transport for di�erent geometries is also studied. Furthermore, the existence
of multiple equilibria is discussed. Conclusions are given in section 2.5.

2.2 The model

2.2.1 The geometry of the embayment

The geometry of the embayment that we consider has a prescribed length
L and a prescribed width W that is allowed to vary as a function of the
longitudinal coordinate x, see Figure 2.1. The embayment has three non-
erodible coastlines, an open connection to the sea at x = 0 and a bed that is
erodible. The sea surface elevation is denoted by z = ζ, the bottom is located
at z = −H + h which results in a local water depth given by H − h + ζ,
with H the undisturbed water depth. The landward boundary is located at
the intersection of the bed and the sea surface elevation. Due to the tidally
varying sea surface elevations, the landward boundary is actually a moving
boundary and is denoted by x̂. The length of the embayment is de�ned such
that 〈x̂〉 = L, with 〈·〉 representing tidal averaging.
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2.2.2 Modelling approach

In order to �nd morphodynamic equilibria, we construct a model that de-
scribes the complex interaction between the water motion, sediment trans-
port and bed evolution. The water motion is described by the shallow water
equations and transport of suspended sediment is described by an advection-
di�usion equation. The bed evolves due to convergences and divergences of
suspended load transport, resulting from erosion of the bed and deposition
of suspended material and bed load transport. When the bed is steady over
the long morphodynamic timescale, a morphodynamic equilibrium is said to
be obtained.

2.2.3 The water motion

We consider embayments, representative for those observed in the Wadden
Sea, with lengths between 10 km and 20 km, widths varying between 0.5 km
and 19 km, and depths of around 10m. Hence, the embayment is shallow
(H � L). In this case, the water motion can be described by the depth-
integrated and width-averaged shallow water equations for a homogeneous
�uid, see Csanady (1982). When the in�uence of wind and waves is not taken
into account and density di�erences are neglected, the continuity equation
and the momentum equation are given by

Wζt + [W (ζ +H − h)u]x = 0,

ut + uux +
τbed,x

ρ(H − h+ ζ)
= −gζx.

Here, u is the depth-averaged and width-averaged water velocity, g denotes
the gravitational acceleration, and ρ the density of water. We use a linearised
formulation for the bottom friction term, (Zimmerman, 1992):

τbed,x = ρru.

Here, r is the bottom friction coe�cient, which is given by r = 8Ucd
3π with

U a characteristic velocity scale and cd the drag coe�cient. At the seaward
side, the sea surface elevation ζ is prescribed as a combination of the M2

tidal constituent and its �rst overtide M4. We assume the water depth to
vanish at the landward boundary. This leads to the boundary conditions
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ζ = AM2 cos(σt− φM2) +AM4 cos(2σt− φM4) at x = 0,

u = x̂t at x = x̂,

where the frequency of the principal tide is given by σ = 2π
T , with T the tidal

period of the M2-tidal constituent. Here, AM2 and AM4 are the tidal ampli-
tudes of theM2 andM4 tidal constituents at the entrance of the embayment,
and φM2 and φM4 their corresponding phases.

2.2.4 Suspended sediment transport

To describe the sediment transport, the concentration equation is integrated
over the depth and averaged over the width, see Van Rijn (1993),

WCt + [WCu]x − κh (WCx)x = Wαu2 − ω2
s

κv
βWC,

with C the depth-integrated and width-averaged sediment concentration with
dimension kg/m2, κh the horizontal di�usivity, κv the vertical di�usivity, ωs
the settling velocity, α a sediment erosion coe�cient and β a deposition
parameter. The �rst term on the right-hand side models the whirling up of
sediment from the bed and the second term the deposition of sediment. On
the left-hand side the temporal changes of the concentration are described
by the �rst term, the second term denotes the divergence of the advective
sediment transport and the remaining term models the di�usive contribution.
Following Ter Brake and Schuttelaars (2010), we take the erosion coe�cient
α as

α = ρs(1− p)
Γωs
u2
c

,

with ρs the density of the sediment, p the bed porosity, uc the critical depth-
averaged friction velocity for erosion and Γ an empirical constant (Smith
and McLean, 1977; Van Leeuwen, 2002). Moreover, similar to Ter Brake
and Schuttelaars (2010), Van Leeuwen et al. (2000), we let the deposition
parameter depend exponentially on the local water depth:

β =
(

1− e−
ωs
κv

(H−h+ζ)
)−1

.

Since we are interested in morphodynamic equilibria we impose at the sea-
ward side the condition that the tidally averaged bed level does not change,

26



The model

implying a balance between tidally averaged sediment erosion and deposi-
tion. At the moving landward boundary no residual sediment transport is
allowed. This leads to the boundary conditions

〈
αu2 − ω2

s

κv
βC

〉
= 0 at x = 0,

−κh 〈WCx〉 = 0 at x = x̂.

Note that there is no sediment transport due to advection at x = x̂ because
we consider a moving boundary. Therefore, only the di�usive part has to be
zero. The sediment concentration can be decomposed into a �uctuating

and a residual part, C = Ĉ + 〈C〉, with
〈
Ĉ
〉

= 0. Note that there is the

possibility that a di�usive boundary layer develops at one of the boundaries
in the �uctuating part of the concentration, see Van Leeuwen et al. (2000).
To avoid these temporally �uctuating boundary conditions, we assume that,
in the limit of κh → 0, the �uctuating part of the solution of the sediment
concentration equation agrees with the solution for κh = 0. Hence, for the
�uctuating part of the sediment transport, the boundary conditions are given
by

lim
κh→0

Ĉ(x, t, κh) = Ĉ(x, t, κh = 0) at x = 0 and x = x̂.

2.2.5 The bed evolution equation

The bed evolution is described by considering the net e�ect of sediment
erosion and deposition during one tidal cycle,

Wρs(1− p)ht = ρs(1− p)µ (Whx)x −
〈
W

(
αu2 − ω2

s

κv
βC

)〉
, (2.1)

with µ the magnitude of the bedload transport related to bed slope e�ects.
The �rst term on the right-hand side of equation (2.1) represents the di�u-
sive bedload transport related to bed slope e�ects. The other terms model
the local erosion and deposition of sediment, respectively. At the seaward
boundary, we require that the bottom is �xed and at the moving landward
boundary, the undisturbed water depth is zero,
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h = 0 at x = 0,

h = H − h+ ζ at x = x̂.

Since we are looking for equilibrium solutions, a boundary condition at
the entrance has to be prescribed for the depth. Here we choose to prescribe
the depth of the tidal basin system at the entrance. For a detailed discus-
sion on the choice of the boundary condition at the entrance, we refer to
Ter Brake and Schuttelaars (2010) where it is shown how morphodynamic
equilibria which result from imposing a boundary condition at the entrance,
di�erent from the one used in this Chapter, can be obtained from the equi-
libria found with a prescribed depth at the entrance. As shown in Ter Brake
and Schuttelaars (2010), using a boundary condition di�erent from �xing
the depth at the entrance, results in morphodynamic equilibria with an a
priori unknown depth at the entrance (i.e., the depth at the entrance cannot
be chosen arbitrarily when the length of the system is prescribed). In this
Chapter, we will focus on morphodynamic equilibria for embayments with
a prescribed length and a �xed depth at the entrance (which is consistent
with requiring h = 0 at x = 0), where one can think of the prescribed length
and entrance depth as coming from observations (see Section 2.4.4 for two
examples). This implies that we try to �nd morphodynamic equilibria, given
the length of the system and the depth at the entrance. Transient behaviour
cannot be captured using this type of models.

2.3 Solution method

2.3.1 Scaling the model

To develop an idealised model that contains only the most essential processes,
we need to assess the importance of the various terms in the equations.
Therefore, we introduce dimensionless variables by scaling the dimensional
variables by their characteristic scales. Here, we use the typical orders of
magnitude of the physical parameters representative for the Ameland Inlet
system, see Table 2.1.

The relation between the dimensional and dimensionless variables is given
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Table 2.1: Characteristic values for the Ameland Inlet embayment, see Rid-
derinkhof and Zimmerman (1992); Van Rijn (1993); Dyer (1986).
This embayment can be found in the Dutch part of the Wadden
Sea.

Channel Sediment

L = 20 · 103 m cd = 0.001
H = 12 m g = 9.81 ms−2

B = 2 · 103 ma κh = 102 m2 s−1

ωs = 0.015 m s−1

Tide κv = 0.1 m2 s−1

AM2 = 0.84 m α = 0.02 kg s m−4

AM4 = 0.08 m ρs = 2650 kg m−3

σ = 1.4 · 10−4 s−1 p = 0.4
φ = 195° Γ = 7.8 · 10−5

T = 44.9 · 103 s uc = 0.3 m s−1

µ = 1.4 · 10−4 m2s−1

a

Here the width at the seaward side is chosen as the characteristic width

by

x = Lx∗, t = t∗σ−1, u = Uu∗,

ζ = AM2ζ
∗ = HU

σL ζ
∗, C = αU2κv

ω2
s
C∗, h = Hh∗

W = W0W
∗,

(2.2)

with W0 the width at the entrance of the inlet. To relate the velocity scale
to the tidal forcing, we use mass conservation arguments. Requiring the �rst
and the last term of the continuity equation to be of similar order leads to

U ∼ AM2
σL

H . Moreover, we require an approximate balance between sediment
deposition and erosion. Hence, the scaling of the sediment concentration C

is obtained by requiring αU2 ∼ ω2
s
κv
C where we assume β to be O(1).

After substituting the dimensionless variables, the dimensionless model
equations are given by
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W ∗ζ∗t∗ + [W ∗(1− h∗ + εζ∗)u∗]x∗ = 0, (2.3)

ut∗ + εu∗u∗x∗ +
r̃u∗

1− h∗ + εζ∗
+ ∆2ζ∗x∗ = 0, (2.4)

νW ∗C∗t∗ + νε (W ∗C∗u∗)x∗ − νκ (W ∗C∗x∗)x∗ = W ∗(u∗
2 − β̃C∗), (2.5)

W ∗h∗t∗ + δµ̃ (W ∗h∗x∗)x∗ + δ
〈
W ∗(u∗

2 − β̃C∗)
〉

= 0. (2.6)

The dimensionless deposition parameter reads

β̃ =
(

1− e−λ(εζ∗+1−h∗)
)−1

; (2.7)

all dimensionless parameters are de�ned in Table 2.2, along with their char-
acteristic values for the Ameland Inlet, (using Table 2.1).

Table 2.2: Dimensionless parameters for the Ameland Inlet

ε = U
σL = AM2

H ∼ 0.07 tidal excursion length
embayment length

r̃ =
8cdAM2

L

3πH2 ∼ 0.099 bottom friction parameter

∆2 = gH
σ2L2 ∼ 15.015

(
tidal wave length
embayment length

)2

ν = σκv
ω2
s
∼ 0.0622 deposition timescale

tidal period

κ = κh
σL2 ∼ 1.79 · 10−3 tidal period

di�usive timescale

λ = Hωs
κv
∼ 1.8 vertical di�usion timescale

deposition timescale

δ = αU2

σHρs(1−p) ∼ 7.19 · 10−5 tidal period
morphodynamic timescale

γ =
AM4
AM2

∼ 0.095 M4amplitude
M2amplitude

µ̃ = µ
σL2 ∼ 2.5 · 10−9

The scaled boundary conditions at the seaward side, x = 0, are given by
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ζ∗ = cos(t∗) + γ cos(2t∗ − φ),〈
u∗

2 − βC∗
〉

= 0,

lim
κ→0

Ĉ∗(x∗, t∗, κ) = Ĉ∗(x∗, t∗, κ = 0),

h∗ = 0,

where γ is the ratio of the M4 and the M2 tidal amplitude. At the landward
side, x∗ = x̂, the scaled boundary conditions result in

u∗ = x̂∗t ,

−νκ 〈W ∗C∗x∗〉 = 0,

lim
κ→0

Ĉ∗(x∗, t∗, κ) = Ĉ∗(x∗, t∗, κ = 0).

We use the approach taken in Ter Brake and Schuttelaars (2010) to trans-
form the moving boundary x∗ = x̂ into a �xed boundary condition at x∗ = 1.
The moving boundary, x̂, can be determined by studying the intersection
point of the bed and the water level which is given by the following relation

1− h∗(x∗) + εζ∗(x∗, t∗) = 0.

Next we use that the tidally averaged condition implies that the length of
the scaled embayment is 1. After substituting this condition into the con-
tinuity equation, we reformulate the boundary conditions at the landward
side. Since the boundary is now �xed, there is sediment transport due to
both di�usion and advection at the boundary. Therefore, at x∗ = 1, the
boundary conditions read

u∗x∗ is �nite,

〈ε(W ∗C∗u∗)− κ(W ∗C∗x∗)〉 = 0,

lim
κ→0

Ĉ∗(x∗, t∗, κ) = Ĉ∗(x∗, t∗, κ = 0)

Using Table 2.2, we observe that the parameter δ ∼ 7.2 · 10−5 is small.
Therefore, it follows from equation (2.6) that h∗t∗ = O(δ) and hence the
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bed level is constant on the O(1)-timescale, which is the fast hydrodynamic
timescale. Therefore, a new slow time coordinate is introduced, τ∗ = δt∗

on which h∗ does vary. Upon tidally averaging equation (2.5), we obtain

〈νε(W ∗C∗u∗)x∗ − νκ(W ∗C∗x∗)x∗〉 =
〈
W (u∗

2 − β̃C∗)
〉
. Substituting this ex-

pression for the tidally averaged erosion and deposition �ux into the bed
evolution equation (2.6), we obtain, written in terms of the slow timescale,

Wh∗τ = −〈F ∗〉x∗ . (2.8)

Here, the dimensionless sediment transport F ∗ consists of bed slope e�ects of
bedload transport and di�usive and advective contributions of the suspended
sediment transport,

F ∗ = F ∗bl + F ∗di� + F ∗adv,

with

F ∗bl = −µ̃W ∗h∗x∗ ,
F ∗di� = −νκW ∗C∗x∗ ,
F ∗adv = νεW ∗u∗C∗.

The boundary condition at the landward side for the residual sediment
concentration can also be given in terms of these sediment transport and
reads

〈F ∗bl + F ∗di� + F ∗adv〉 = 0. (2.9)

2.3.2 The analysis of the model

For some simpli�ed situations, the model can be analytically solved, see
Schuttelaars and de Swart (1996). However, in general the model has to be
solved numerically. As indicated above, the bed evolves due to convergences
of di�erent types of sediment transport. In this article, we study the in�uence
of the contribution of these di�erent processes. To systematically assess
the importance of the various transport contributions, the model output is
analysed in terms of these transport contributions. Leaving out the slope
contribution of the bedload transport is not allowed as this would make it
impossible to impose boundary conditions for the bed evolution equation
at the seaward and landward side. Since it is essential to impose these
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boundary conditions, at least the slope term of the bedload component has
to be retained, although its contribution is (at least in the main part of the
embayment) negligible.

We consider two types of advective sediment transport. We de�ne external
advective transport as transport due to those advective processes that occur
when an externally prescribed overtide is included and internal advective
transport as transport due to those advective processes that occur due to the
nonlinear interactions inside the embayment. Note that both temporal and
spatial settling lag e�ects (Burchard et al., 2018) contribute to the external
and internal advective transport. The sediment transport due to the bed
slope e�ect is a di�usive term in the bed level equation. In this analysis,
we make use of the values of Table 2.2, which indicates that both ε � 1
and γ � 1. Since γ is associated with the external advective processes
and ε with the internal advective processes, we treat these two parameters
as independent to distinguish between the two advective processes instead
of introducing one small parameter. Note that these parameters are not
necessarily of di�erent order. We expand all variables in terms of the small
parameters as

X = X0,0 + εX1,0 + γX0,1 + h.o.t., (2.10)

where X = {ζ, u, C}. The �rst superscript denotes the order of the variable
in ε and the second the order in γ.

We determine which terms of the sediment transport F ∗ that are present
in equation (2.8) are time-independent since only these terms contribute to
the bed evolution. To do this, we decompose all terms in expression (2.10)
in their �uctuating parts and their residual component as follows

Xk,j =
〈
χk,j(x)

〉
+
∑
ω

R
(
χk,jω (x)e−iωt

)
,

where the frequency of the time-dependent components is denoted by ω and
R denotes taking the real part of the expression. Here, χk,j(x) and χk,jω (x)
denote the spatial dependency of the residual and the �uctuating parts of
the solution, respectively. Note that, in general, χk,jω (x) is a complex func-
tion. We only consider the M0 (residual component), M2 and M4 tidal
constituents, and assume that all other tidal constituents are much smaller
and can be neglected. Using the boundary conditions for the sea surface el-
evation and the nonlinear terms in the sediment transport equation, we can
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deduce which tidal constituent contributes to the velocity, the sea surface
elevation and the sediment concentration at di�erent orders, see Table 2.3.

Table 2.3: The tidal constituents which contribute to the velocity, the sea
surface elevation and the sediment concentration for the leading
(order one), ε and γ order.

O(1) O(ε) O(γ)

u, ζ M2 M0,M4 M4

C M0,M4 M2 M2

We substitute expansion (2.10) into equations (2.3) - (2.5) and collect
terms of equal order to obtain model equations at leading order, O(ε) and
O(γ). We rewrite the equations at the di�erent orders back into their di-
mensional form by using the transformations (2.2) and the expressions in
Table 2.2. This way, we can immediately study the in�uence of the physical
parameters on solutions to the model. At leading order, the dimensional
equations read

Wζ0,0
t +

[
W (H − h)u0,0

]
x

= 0, (2.11)

u0,0
t +

ru0,0

H − h+ h0
+ gζ0,0

x = 0, (2.12)

WC0,0
t − κh

(
WC0,0

x

)
x
−W

(
α u0,0 2 − ω2

s

κv
β0,0C0,0

)
= 0. (2.13)

Since the deposition parameter β, see equation (2.7), also depends on ε, only
the leading order contribution,

β0,0 =
[
1− hδe−

ωs
κv

(H−h)
]−1

,

is used in the equation above. We have introduced constants 0 < hδ < 1
and h0 � 1 to prevent divergences of the deposition and bottom friction
term, respectively. From the scaling arguments we should conclude that the
di�usion term is much smaller than the other terms, (νκ ∼ O(10−4)), and
therefore, should not be present in the leading order sediment concentration
equation. However, a residual concentration term can lead to a di�usive
boundary layer. This is a thin layer at the boundaries where the di�usive
transport can still be signi�cant, compared to the other transport contribu-
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tions. For that reason, the di�usion term has to be taken into account at
leading order. The leading order boundary conditions are given by

ζ0,0 = AM2 cos(σt) at x = 0,

W (H − h)u0,0 = 0 at x = L,〈
α u0,0 2 − ω2

s

κv
βC0,0

〉
= 0 at x = 0

lim
κh→0

Ĉ0,0(x, t, κh) = Ĉ0,0(x, t, κh = 0) at x = 0, L.

At O(γ), there is no residual concentration. Therefore, we do not need the
di�usion term to compensate for a potential di�usive boundary layer. Hence,
the system of equations at O(γ) reads:

Wζ0,1
t +

[
W (H − h)u0,1

]
x

= 0,

u0,1
t +

ru0,1

H − h+ h0
+ gζ0,1

x = 0,

WC0,1
t −W

(
2αu0,0u0,1 − ω2

s

κv
β0,0C0,1

)
= 0,

with corresponding boundary conditions

ζ0,1 = AM4 cos(2σt− φ) at x = 0,

W (H − h)u0,1 = 0 at x = L,

lim
κh→0

Ĉ0,1(x, t, κh) = Ĉ0,1(x, t, κh = 0) at x = 0, L.

At O(ε), again neglecting the di�usive sediment transport, the equations
read

Wζ1,0
t +

[
W (H − h)u1,0

]
x

+
[
Wζ0,0u0,0

]
x

= 0,

u1,0
t + u0,0u0,0

x +
ru1,0

H − h+ h0
+ gζ1,0

x +
ru0,0ζ0,0

(H − h+ h0)2
= 0,

WC1,0
t +

(
WC0,0u0,0

)
x
−W

(
2αu0,0u1,0 − ω2

s

κv
β0,0C1,0 − ω2

s

κv
β1,0C0,0

)
= 0.
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Here the O(ε)-term in the deposition parameter β, equation (2.7), has to be
taken into account. It is given by

β1,0 =
ωshδ
κv

e−
ωs
κv

(H−h)
(

1− hδe−
ωs
κv

(H−h)
)−2

.

The corresponding boundary conditions are given by

ζ1,0 = 0 at x = 0,

W (H − h)u1,0 +Wζ0,0u0,0 = 0 at x = 0,

lim
κh→0

Ĉ1,0(x, t, κh) = Ĉ1,0(x, t, κh = 0) at x = 0, L.

2.3.3 Morphodynamic equilibria

Next, we study the existence of morphodynamic equilibria. We want to
emphasise that we do not use time-integration to obtain morphodynamic
equilibria. This implies that we look for a morphodynamic equilibrium, given
the length of the inlet system and a �xed depth at the entrance. We make
use of the fact that a morphodynamic equilibrium arises when hτ = 0, and
hence, using equation (2.8) and boundary condition (2.9) we �nd that

〈F 〉 = 0, (2.14)

with the dimensional sediment transport F given below by expression (2.15).
This means that the sum of the tidally averaged di�usive and advective sus-
pended sediment transports and the bed slope e�ects of the bedload transport
have to balance at each location in the embayment. To obtain these tidally
averaged transports, we use the tidal constituent information of the velocity
u and the sediment concentration C, given in Table 2.3, and the expressions
for the sediment transport (2.9). All terms with periodic behaviour average
to zero after tidal averaging. Therefore, only the terms of the sediment trans-
port which are time-independent lead to a contribution. This reveals that
the leading order tidally averaged internal advective sediment transport is
O(νε2), the external advective sediment transport is O(νεγ) and the di�usive
sediment transport is O(νκ). Using the parameter values given in Table 2.1,
this means that all types of sediment transport are of the same order, and
hence, have to be taken into account. In terms of the regular expansion, the
total tidally averaged sediment transport consists to leading order of four
components
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〈F 〉 =
〈
F 0,0
bl

〉
+
〈
F 0,0
di�

〉
+
〈
F 2,0
adv

〉
+
〈
F 1,1
adv

〉
, (2.15)

with their dimensional expressions given by

〈
F 0,0
bl

〉
= −ρs(1− p)µWhx,〈

F 0,0
di�

〉
= −κh

〈
WC0,0

x

〉
,〈

F 2,0
adv

〉
=
〈
W (u0,0C1,0 + u1,0C0,0)

〉
,〈

F 1,1
adv

〉
=
〈
W (u0,0C0,1 + u0,1C0,0)

〉
.

We denote the transport due to internal advection by F 2,0 and due to external
advection by F 1,1.

2.3.4 Numerical method

To obtain morphodynamic equilibria, the model equations at leading order,
order ε and γ are solved numerically using a �nite element method. As a
�rst step, we convert the model equations into their weak formulation and
we discretise the model equations using piecewise linear functions. We apply
a so-called continuation method: starting with a known equilibrium pro�le
for a speci�c set of parameters as an initial guess, one can obtain equilib-
ria by slowly varying parameters or the geometry using a Newton-Raphson
procedure. The morphodynamic equilibrium that we use as a starting point
in the continuation method is the morphodynamic equilibrium of a short,
rectangular embayment where sediment transport is dominated by di�usive
transport and inertia and friction are neglected. This equilibrium bed pro�le
is constantly sloping, see Schuttelaars and de Swart (1996, 2000); Ter Brake
and Schuttelaars (2010).

2.4 Results

Single tidal inlet systems consist of a back barrier basin and one inlet connect-
ing the basin to the sea. Typically, single tidal embayments in the Wadden
Sea have an embayment length between 10 km and 20 km. Hence we focus
on analysing the morphodynamic equilibria in embayments with lengths be-
tween L = 8 km and L = 22 km. Although we allow for arbitrary width
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variations, to systematically analyse the e�ect of width variations on the
morphodynamic equilibria, we mainly focus on exponentially converging and
diverging inlets:

W (x) = W0e
− x
Lb . (2.16)

Here, W0 denotes the width of the embayment at the entrance and Lb 6= 0
the exponential convergence length. For Lb approaching zero, the width
converges to the rectangular case. Our �rst results show the in�uence of ge-
ometrical variations on the morphodynamic equilibria by keeping the length
L = 20 km �xed and varying the convergence length. Next, we vary the
length of the system by keeping W0 = 2 km and Lb constant. This results in
a varying width at the landward side. We consider three di�erent geometries
with pro�les sketched in Figure 2.1: an exponentially converging, rectangu-
lar and exponentially diverging embayment. Unless stated otherwise, we use
the characteristic values of the Ameland Inlet system, given in Table 2.1.

2.4.1 Di�usively dominated transport

In this section, we assume that the suspended load transport is dominated
by di�usive processes.

Geometry We start by studying the e�ect of variations in the geometry of
the embayment on morphodynamic equilibria. Here, we neglect frictional
e�ects in the water motion (cd = 0) and we assume that the deposition
parameter is depth-independent (β = 1). In Figure 2.2, the resulting equi-
librium bed pro�les are shown for an embayment with a length of L = 20 km
for di�erent convergence lengths.
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Figure 2.2: The in�uence of geometrical variations on the morphodynamic
equilibria. (a) Equilibrium bed pro�les are shown as a function
of the location in the tidal embayment (horizontal axis) for inlets
that range from strongly converging, L−1

b = 0.2 km−1, to strongly
diverging, L−1

b = −0.2 km−1 (vertical axis). Using the default
embayment width at the seaward side of W0 = 2 km, L

Lb
= 1

corresponds to a landward width of 0.7 km and L
Lb

= −1 to a
landward width of 5.4 km. The water depth is indicated by the
colour coding where the warmer (colder) colours correspond to a
smaller (larger) undisturbed water depth. (b) Equilibrium bed
pro�les are shown for a rectangular embayment (in�nite conver-
gence length Lb, dashed-dotted orange line), a diverging embay-
ment (Lb ≈ −5.6 km, dashed red line) and a converging embay-
ment (Lb = 20 km, solid blue line).

For the rectangular inlet (orange line in Figure 2.2b), we observe that the
water depth constantly decreases. This result is similar to what was already
found in Schuttelaars and de Swart (1996) and Ter Brake and Schuttelaars
(2010), using a model formulation in which inertia was assumed to be neg-
ligible in the momentum equation. Our results show that inertia does not
in�uence the bed equilibrium pro�le. For a tidal embayment with width vari-
ations in the along-channel direction, it is found that for a more diverging
(converging) embayment, a more convex (concave) equilibrium bed pro�le is
obtained.

To explain this dependency, we neglect the bedload transport. Then, the

morphodynamic equilibrium condition is attained when F 0,0
di� = −κh

〈
WC0,0

x

〉
=
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0, in other words,
〈
C0,0

〉
must be constant in morphodynamic equilibrium.

Assuming that erosion and deposition balance approximately, it follows from
equation (2.13) that 〈

C0,0
〉
≈
〈
u0,0 2

〉
. (2.17)

Hence, in morphodynamic equilibrium the amplitude u0,0 must be indepen-
dent of x since C0,0 has to be independent of x. This result is consistent
with �ndings in Friedrichs and Aubrey (1996); Pritchard and Hogg (2003);
To�olon and Lanzoni (2010); Todeschini et al. (2008). Using the boundary
conditions at the seaward boundary and that local inertia is negligible, the
momentum equation (2.12) implies that the sea surface elevation behaves like
ζ0,0 ≈ AM2 cos(σt). Then, from equation (2.11), it follows that the resulting
velocity becomes

u0,0 ≈ σAM2Lb
H − h

(
1− e

x−L
Lb

)
sin(σt). (2.18)

Now, requiring that the amplitude of u0,0 does not depend on x, we �nd that

h(x) ∼ H − σAM2Lb

(
1− e

x−L
Lb

)
.

From this, we conclude that for a converging embayment (Lb > 0), the �rst
and second derivative of the depth are positive and hence, the morphody-
namic pro�le is concave. On the other hand, for a diverging embayment
(Lb < 0), the �rst derivative is still positive, but the second derivative is
negative, resulting in a convex bed pro�le.

Deposition parameter In the previous paragraph, morphodynamic equi-
libria were obtained assuming a constant deposition parameter, β0,0 = 1,
i.e. hδ = 0. Here, the in�uence of a depth-dependent deposition parameter
on the resulting equilibria is investigated by comparing the results obtained
with hδ = 0 (no depth-dependent deposition parameter) and hδ = 0.9 (depth-
dependent deposition parameter). Note that we do not take hδ = 1.0 to avoid
singularities. To highlight the in�uence of depth-dependent deposition on the
morphodynamic equilibria, the bed pro�les are subtracted from each other
as shown in the left column of Figure 2.3 for various embayment geometries.

We observe that for a rectangular inlet, the equilibrium bed pro�le be-
comes convex when the depth-dependency of the deposition parameter is
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Figure 2.3: The in�uence of the deposition parameter. The geometry is
diverging (top), rectangular (middle) and converging (bottom).
On the left, colourplots show the di�erence of the bed pro�les
(solhδ=0.9 − solhδ=0) for the embayment length versus the dis-
tance to the seaward boundary. Blue colours indicate that the
local water depth is not sensitive to the depth-dependence of the
deposition parameter, warmer colours indicate that the di�erence
between the local water depth with and without depth-dependent
deposition increases. On the right, examples of equilibrium bed
pro�les are shown for di�erent parameter settings.
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incorporated. This result is in agreement with earlier �ndings in Ter Brake
and Schuttelaars (2010) and Van Leeuwen et al. (2000). We see that the
same change also occurs when the geometry of the embayment is varied in
the along-channel direction. The location where the solution is most con-
vex is found in the middle of the embayment for a diverging geometry and
lies more towards the landward boundary as the embayment becomes more
converging.

These results can be explained by considering the morphodynamic equi-
librium condition, again neglecting the bedload transport. We �nd that

in order for F 0,0
di� = −κh

〈
WC0,0

x

〉
= 0 to be satis�ed, the leading order

residual sediment concentration, C0,0 cannot depend on x. Using this in

equation (2.13), it follows that
〈
β0,0C0,0

〉
≈
〈
u0,0 2

〉
. Since C0,0 has to be

spatially uniform, this implies that (u0,0)2

β0,0 must also be spatially uniform,

where β0,0 =
[
1− hδe−

ωs
κv

(H−h)
]−1

. From Figure 2.3, we deduce that the

bed pro�les are non-decreasing functions of the longitudinal coordinate x.
Since the exponent of the leading order deposition parameter depends on
the bed pro�le, this implies that the leading order deposition parameter in-
creases towards the landward boundary when hδ is non-zero. Therefore, for
(u0,0)2

β0,0 to remain spatially uniform, the amplitude u0,0 of the velocity has to

increase towards the landward boundary as well. Using expression (2.18),
we deduce that for the velocity to increase, H − h has to decrease, i.e. the
water depth has to decrease.

Friction To study the in�uence of the bottom friction on the morphody-
namic equilibria, we take the deposition parameter to depend on the depth,
hδ = 0.9, and add frictional e�ects by setting cd = 0.001 and cd = 0.003.
Again, we vary the length of the tidal embayment and subtract the solutions
obtained with and without friction. The results for a diverging embayment
are shown in Figure 2.4. The �gure shows that bottom friction becomes more
important for longer embayments. Including frictional e�ects leads to more
convex bed pro�les, although the concave-pro�le of the bed equilibrium for
a converging geometry is still present. This latter result agrees with �ndings
of Lanzoni and Seminara (2002). The in�uence for a converging and rectan-
gular embayment is qualitatively the same, although the in�uence is much
smaller.

The above results can be explained as follows. The bottom friction pa-
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Figure 2.4: The in�uence of the bottom friction parameter for a diverg-
ing embayment. The colourplots show the di�erence between
the bed pro�les when friction is included and not included, (a)
solcd=0.001− solcd=0 and (b) solcd=0.003− solcd=0. The embayment
length is varied between L = 8 km and L = 22 km (vertical axis)
and the distance to the seaward boundary is shown on the hori-
zontal axis. The colour indicates the in�uence of bottom friction:
the blue colours indicate that the morphodynamic equilibrium is
not sensitive to frictional e�ects. For warmer colours the in�u-
ence of bottom friction on the local water depth increases. The
�gure shows that frictional e�ects are negligible when the embay-
ment length is L = 8 km and these e�ects become stronger as the
length of the embayment increases with a maximum di�erence of
around 0.02 m for cd = 0.001 and around 0.1 m for cd = 0.003
when the embayment length is L = 20 km.
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rameter depends linearly on the embayment length L. This implies that as
the length of the embayment increases, the bottom friction term becomes
more important. Furthermore, the bottom friction term is divided by the
local water depth in the leading order momentum equation, (2.12). This
suggests that this term becomes more signi�cant when the local water depth
decreases. As we have seen in the previous section when friction was ne-
glected, the bed is much shallower for a diverging embayment than for a
converging one. Therefore, if friction e�ects are added, their in�uence is
largest for a diverging inlet.

2.4.2 Advective and di�usive transport without an externally
prescribed overtide

In this section, we analyse the in�uence of advective sediment transport due
to internally generated overtides and the associated suspended sediment con-
centrations on the morphodynamic equilibria. The deposition parameter is
taken to be depth-dependent and frictional e�ects are included. The solu-
tions with internal advection and without (from section 2.4.1) are subtracted
from each other. In Figure 2.5, the results are shown for various geometries.
For a rectangular inlet, we �nd that the morphodynamic bed equilibrium

is less convex compared to the case where only di�usion is considered. This
result is similar to the �ndings of Ter Brake and Schuttelaars (2010), al-
though the e�ect of adding internal advection is stronger in our study which
is due to frictional e�ects. When only di�usion is considered, friction only re-
sulted in minor adjustments to the equilibrium bed pro�le, but the in�uence
of friction is not negligible anymore when internal advection is considered.
From Figure 2.5 we conclude that for a larger embayment length, the in-
ternal advective processes become more important. Also, the importance of
internally generated advective sediment transport becomes larger for more
strongly divergent tidal inlets widths, for which the equilibrium bed pro-
�le is very shallow towards the landward side of the basin. Furthermore,
when including internal advection the velocities decrease (increase) into the
landward direction when the system is diverging (converging).
To explain this in�uence, we again study the morphodynamic equilibrium

condition, neglecting bedload transport, which now reads,

− κhW
〈
C0,0
x

〉
+W

〈
u0,0C1,0 + u1,0C0,0

〉
= 0. (2.19)

For a morphodynamic equilibrium when only di�usive processes are taken
into account, the �rst term of equation (2.19) is zero whereas the other
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Figure 2.5: The in�uence of internal advection. The embayment geometry is
diverging (top), rectangular (middle) and converging (bottom).
On the left, colourplots of the di�erence (soldi�+adv − soldi�) bed
pro�les are shown for the embayment length versus the distance
to the seaward boundary. The colour indicates the e�ect of in-
cluding the internal advection on the morphodynamic equilibria:
red colours indicate that the local water depth is not sensitive to
internal advection, for colours towards the blue the di�erence be-
tween the local water depth with and without internal advective
sediment transport increases. On the right, examples of equilib-
rium bed pro�les are shown for di�erent parameter settings.
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terms are negative. This implies that when advection is included, the ad-
vective sediment transport due to internal processes is directed towards the
sea. Therefore, for this equilibrium condition to hold, the di�usive sediment
transport needs to become positive. From (2.18) and (2.17) it follows that
this can be achieved by increasing the water depth.

2.4.3 Advective and di�usive transport with an externally
prescribed overtide

In this section, the sea surface elevation is forced by both an M2 tide and an
M4 tide. The deposition parameter β depends on the depth and frictional
e�ects are taken into account. In discussing the results, we focus on the
sensitivity of morphodynamic equilibria to the relative phase of the overtide.
We discuss the sensitivity of the maximum tidal embayment length to the
relative phase, see for example Schuttelaars and de Swart (2000); Ter Brake
and Schuttelaars (2010); Todeschini et al. (2008); Seminara et al. (2010). To
determine the maximum embayment length, morphodynamic equilibria are
obtained for each relative phase by increasing the length from L = 8 km.
The maximum embayment length is the largest L for which a morphody-
namic equilibrium can still be found numerically for the parameters under
consideration. If the embayment length L = 22 km is reached, a maximum
length might still exist but it is not in the range of lengths we are focusing
on.

Converging tidal embayment

In Figure 2.6, we show the maximum embayment length as a function of the
relative phase. The �gure shows that the maximum embayment length sig-
ni�cantly changes when varying this parameter, the drag coe�cient or the
amplitude of the external overtide. For the default parameter values, the
smallest maximum length is obtained for φ = 270° and is around L = 8 km.
We see that when frictional e�ects are increased, the maximum length in-
creases. Decreasing the amplitude of theM4 tide also increases the maximum
embayment length.

These results can be explained by analysing the di�erent sediment trans-
port contributions. Decreasing the amplitude of the M4 tide results in a
smaller contribution of the advective transport due to externally generated
overtides. Therefore, it is easier to balance this contribution by the inter-
nally generated and di�usive sediment transport, resulting in an increase
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Figure 2.6: The maximum embayment length (or 22 km) is plotted for vary-
ing relative phase on the vertical axis. The blue solid line corre-
sponds to the default parameter values given in Table 2.1. The
other lines are obtained by varying one parameter: AM4 = 0.04
(red dashed line) and cd = 0.01 (orange dashed-dotted line).

of the maximum length for all values of the relative phase. Increasing the
drag coe�cient leads to an increase of the internal advection, resulting in a
balance for longer tidal inlet systems.

Even though we observe that the maximum length of the embayment is
highly in�uenced by parameters, we �nd that the morphodynamic bed equi-
libria and the balance of their corresponding sediment transport are quite
similar when considering the same relative phase. However, when the rela-
tive phase is varied, the morphodynamic equilibria change signi�cantly. In
Figure 2.7, bed pro�les of the morphodynamic equilibria and their corre-
sponding sediment transport are shown for φ = 195° and φ = 67°. We
see that for the �rst choice of φ, the main balance is between the internal
and external advective sediment transport, whereas the balance in the latter
case is between di�usion and external advection. Note that the net sediment
transport remains zero, but the sediment transport due to external advection
changes from importing for φ = 195° to exporting for φ = 67°, which agrees
with the embayment going from �ood dominated to ebb dominated. Also,
the bed pro�le changes from a shallow to a deep one.

Rectangular tidal embayment

We performed a similar analysis for a rectangular geometry of the embay-
ment and found that the bed pro�les are, apart from being less concave,
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Figure 2.7: Morphodynamic bed equilibria are shown as solid red lines,
together with the corresponding sediment transport contribu-
tions: di�usion (solid blue line), advection due to internal pro-
cesses (dashed blue line) and advection due to external processes
(dashed-dotted blue line). The embayment has a converging ge-
ometry. In (a) The relative phase is taken to be φ = 195°, in (b)
the relative phase is φ = 67°.

qualitative the same as those for the converging geometry embayment. The
dependency of the maximum length on the relative phase is similar to the re-
lation found for the converging embayment. The maximum length decreases
as the convergence length increases for all values of the relative phase which
agrees to �ndings of Seminara et al. (2010). The maximum length for a
rectangular embayment forced by an overtide with a relative phase φ around
270° is still approximately Lmax = 8 km which was also found by Ter Brake
and Schuttelaars (2010).

Diverging tidal embayment

When we choose the geometry embayment to be diverging, the values of the
relative phase for which there is a maximum length start to di�er signi�-
cantly: there are less parameter combinations for which no morphodynamic
equilibrium can be found. The region around φ = 270° where no equilibrium
is found for larger lengths still exists, although it is much smaller than for a
converging and rectangular embayment.

A new aspect is that the morphodynamic equilibria are not necessarily
unique anymore; there exists a range of values for the relative phase and
the embayment length for which multiple morphodynamic equilibria exist.
For every combintation in this parameter plane, Figure 2.8 indicates whether
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there exists zero (diagonal lines), one (no lines) or multiple (horizontal lines)
morphodynamic equilibria.

To study this in more detail, the mean water depth is plotted in Figure
2.8b. Considering the embayment lengths L = 14 km and L = 18 km,
the mean depth of the morphodynamic equilibrium bed pro�le is large for
0° < φ < 180° and changes to a shallow pro�le for a relative phase between
180° < φ < 360°. For an embayment with L = 18 km, this transition between
a deep and a shallow equilibrium pro�le is more sudden than for L = 14 km.
For L = 19.6 km a saddle-node bifurcation takes place at approximately
φ = 70° and φ = 170°, respectively. In between these values of φ, there exist
multiple stable solutions, one corresponding to a deep pro�le and the other
to a more shallow pro�le. The deeper equilibrium still exists when increasing
the relative phase φ and the more shallow one when decreasing the relative
phase. There is also a third unstable equilibrium with a shallow character.

In Figure 2.8c, we give the three di�erent bed equilibria that exist at a
relative phase of φ = 163° for an embayment length of L = 19.6 km. The
corresponding sediment transport of these three equilibria are shown as a
function of the location in the embayment in Figure 2.9. We see for all
three equilibria that the di�usive transport is very small and that the main
balance exists between the internal and external advective sediment trans-
port. Note that the sediment transport corresponding to the shallow bed
pro�les, Figures 2.9b and 2.9c, look similar. When the bed pro�le is shallow,
the sediment transport due to external advection is exporting, whereas it
is importing when the bed pro�le has a deep character. The tidal embay-
ment is changing from �ood dominant to ebb dominant although the relative
phase has not been changed. When the geometry is more diverging, the val-
ues of the maximum embayment length for which multiple equilibria exist,
decreases.

2.4.4 Comparison with observed bed pro�les

In the previous subsections, the geometry of the embayment was taken to
be either exponentially converging, exponentially diverging or rectangular.
Since it is possible to choose arbitrary width variations in the model, we
take a realistic width pro�le.

We have used data from observations of the Ameland Inlet and the Friesche
Zeegat, both systems in the Dutch part of The Wadden Sea, with the water
level measured at Nes and Schiermonnikoog.

Using observations of the depth, (2011 observations for the Ameland In-

49



2 In�uence of geometrical variations on morphodynamic equilibria for

single inlet systems

10 15 20

Length of embayment [km]

0

45

90

135

180

225

270

315

360

R
e
la

ti
v
e
 p

h
a
s
e
 [
°]

(a)

0 45 90 135 180 225 270 315 360

Relative phase [°]

0

5

10

15

20

25

30

M
e
a
n
 u

n
d
is

tu
rb

e
d
 e

q
u
ili

b
ri
u
m

 d
e
p
th

 [
m

]

L=14 km   

L=18 km   

L=19.6 km   

A

B

C

(b)

0 5 10 15 20

Distance to seaward boundary [km]

0

2

4

6

8

10

12

U
n
d
is

tu
rb

e
d
 w

a
te

r 
d
e
p
th

 [
m

]

A

B

C

(c)

Figure 2.8: (a) Plot of the number of equilibria for the relative phase versus
the embayment length. For every combination in this parame-
ter plane, the �gure indicates whether there exists zero (diagonal
lines), one (no lines) or multiple (horizontal lines) morphody-
namic equilibria. (b) The mean value of the equilibrium bed
pro�le is given versus the relative phase for three di�erent em-
bayment lengths L = 14 km (dashed blue line), L = 18 km
(dashed-dotted orange line) and L = 19.6 km (red solid line). (c)
The three di�erent morphodynamic bed pro�les are shown for a
relative phase of φ = 163° and L = 19.6 km. Here the points A,B
and C of (b) and (c) correspond to each other.
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Figure 2.9: The sediment transport corresponding to the three morphody-
namic equilibria for an embayment length of L = 19.6 km and
relative phase φ = 163°. The blue solid line represent the di�u-
sive sediment transport, the red dashed line the advective pro-
cesses generated by internal overtides and the orange dashed-
dotted line the advective processes generated by an externally
prescribed overtide. The sub�gures (a), (b) and (c) correspond
to the bed pro�les A, B and C of Figure 2.8c, respectively.
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let and 1987 for the Friesche Zeegat), we have determined a width pro�le
and corresponding width-averaged bed pro�le of each system. First, a depth
pro�le of the area is constructed using measurements, and the center line
through the inlet has been constructed. For points on the center line, per-
pendicular lines have been drawn from one lateral boundary to the other,
where we de�ned the lateral boundary of the inlet at the locations where
the undisturbed water was 0.5 m. For each point, we choose the width of
the embayment to be equal to the distance between the two coastlines. The
corresponding depth is obtained by averaging the depth between the two
coastlines. These width and depth pro�les are shown by the dashed lines on
the left side of Figure 2.10 in blue and red, respectively.

We have then smoothed the obtained width pro�le and used this pro�le
in our model to determine the corresponding morphodynamic equilibrium
bottom. For the Ameland Inlet, we have used the characteristic values listed
in Table 2.1 and for the Friesche Zeegat, the values used in Ter Brake and
Schuttelaars (2010) have been employed. Furthermore, we have performed
a harmonic analysis on the measured values of the water level at Nes and
Schiermonnikoog resulting in the amplitude of the M2-tide and the M4-tide.
In Figure 2.10, a comparison between the data and the model results are
presented, showing a reasonable agreement with the main trends rather well-
captured.

Concerning the amplitudes of the sea surface elevation, the di�erence be-
tween the observed and the modelled amplitudes vary from 3 cm to 10 cm.
The di�erence between the data and the model results can have multiple
reasons. One, it is unknown whether the characteristic values used in this
article were the best choices for the physical parameters when the measure-
ments were carried out. We have shown in the previous section that varying
physical parameters can have a signi�cant in�uence on the bed level and,
hence, on the amplitudes of the tidal constituents. Second, the data am-
plitudes have been determined using measurements performed over a whole
year, whereas the width and depth values have been obtained at one moment.
Third, the measuring locations for the sea surface elevation are close to the
coast. It is therefore not necessarily a representative value when comparing
to the modelled width-averaged sea surface elevation. Furthermore, lateral
processes are only parametrically taken into account, and many possibly im-
portant processes were not accounted for.
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Figure 2.10: A comparison between data and model results for the Ame-
land Inlet (top) and the Friesche Zeegat (bottom). At the left,
the width pro�les and the corresponding width-averaged bed
pro�les are shown as a function of the position in the embay-
ment. The dashed lines represent the observed pro�les and the
solid lines the modelled pro�les. At the right, the modelled
amplitudes of the M2 (blue lines) and the M4 (red lines) tidal
constituent are shown as a function of the position in the em-
bayment. The dots correspond to the values of the measured
components. The measuring location Nes is about 7 km from
the seaward boundary and the location Schiermonnikoog about
9.5 km. Characteristic values for the Ameland Inlet are given
in Table 2.1. For the Friesche Zeegat, the characteristic values
that are di�erent compared to the values of the Ameland Inlet
are AM2 = 0.93 m, φ = 207°, H = 7.5 m and L = 15 km, see
Ter Brake and Schuttelaars (2010).
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2.5 Conclusion

We have analysed the existence of morphodynamic equilibria and their sen-
sitivity to geometrical variations, inertia, bottom friction, depth-dependency
of the deposition parameter and the importance of advective processes both
with and without an externally prescribed overtide. We considered tidally
dominated embayments with a length between L = 8 km and L = 22 km,
representative for basins in the Wadden Sea. The geometry of the embay-
ment was chosen to be rectangular, exponentially converging or exponentially
diverging. We used the cross-sectionally averaged shallow water equations
to describe the water motion and an advection-di�usion equation for the
sediment concentration equation. We assumed that the bed evolves due to
convergences and divergences of di�usive and advective sediment transport.

We started with only considering di�usive processes and prescribing the
sea surface elevation by only an M2 tide. For the frictionless case, the ob-
tained morphodynamic bed equilibrium was highly in�uenced by varying the
geometry. For a rectangular embayment, a constantly sloping bed pro�le was
found. When the geometry was changed, the bed pro�le became more convex
(concave) for a diverging (converging) embayment. Letting the deposition
parameter depend on the depth resulted in more concave bed pro�les. If we
increased the embayment length, the frictional in�uence became stronger as
well. The e�ect of bottom friction for a converging embayment was negligible,
but became more signi�cant for a more strongly diverging embayment. When
also advective processes were taken into account, the in�uence of frictional
e�ects increased signi�cantly. When we considered di�usive and advective
sediment transport without an externally prescribed overtide, we found that
the bed pro�les became less convex compared to those with only di�usive
processes considered. Although this occurred for all geometries considered,
the in�uence of adding advective sediment transport was much stronger when
the geometry of the embayment was diverging.

When the prescribed sea surface elevation consisted of both an M2 and an
M4 tide, we found a maximum length of the embayment for which morphody-
namic equilibria still exist. The maximum embayment length decreased when
the geometry became more converging. The smallest embayment length was
found for a relative phase of φ = 270° for converging embayments. Making
the geometry less converging, increasing the bottom friction or decreasing
the amplitude of the M4 tide, resulted in increasing maximum embayment
lengths. We obtained two types of bed pro�les, depending on the values of
the relative phase: a shallow one where the external sediment transport was
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exporting and a deep one with importing external sediment transport.
When considering a diverging embayment geometry, there is a parameter

range of relative phases and embayment lengths for which two stable bed
pro�les co-exist, along with a third unstable equilibrium. These results in-
dicate that for systems with the characteristics of the Wadden Sea systems,
there are parameter values for which both a relatively shallow and a much
deeper width-averaged morphodynamic equilibrium can exist. For a proper
management, it is important to be aware of the existence of multiple equilib-
ria in tidal inlet systems. The analysis given in this chapter does not indicate
the magnitude of the perturbation necessary to go from one equilibrium to
the other, nor the time scale at which a change would take place, this is topic
of further research. However, we would like to stress that the existence of
multiple equilibria has been observed in Schuttelaars and de Swart (2000) as
well; they found multiple equilibria for a rectangular long embayment with
a length of approximately L = 120 km, these model results were con�rmed
by simulations done with a complex numerical model (Hibma et al., 2003).
It would be interesting to investigate the presence of multiple equilibria for
longer systems with width variations.
The morphodynamic model derived in this chapter can be improved upon

by explicitly considering lateral processes which will result in observed com-
plex channel-shoal patterns. Furthermore, the accuracy of the water motion
close to the landward boundary can be improved by considering more tidal
harmonics, which might be necessary as the parameter ε is not small near
this boundary. This might shed some light on the fact that we obtain equilib-
ria which exist on a long morphodynamic timescale while many simulation
models, like Van Ledden et al. (2004); Maan et al. (2015) result in an in-
�lling of embayments which occur on an even longer timescale. Another
interesting extension to the existing model would be the inclusion of wind,
waves and density �ows, which have been shown to be important (Green and
Coco (2014); Gatto et al. (2017); Burchard et al. (2008) and the inclusion of
�ooding and drying processes.
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