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Abstract
Heat stress (HS) caused by above-optimal temperatures
adversely affects plants’ growth and development and di-
minishes crop yields. In natural and agricultural environments,
these stresses are often transient but recurrent and may pro-
gressively increase in severity over time. In addition to the
inherent ability to cope with a single HS event, plants have
evolved mechanisms that enhance their capacity to survive
and reproduce under such conditions. This involves the
establishment of a molecular ‘thermomemory’ after moderate
HS that allows them to withstand a later — and possibly more
extreme — HS event. Here, I summarize the current under-
standing of the molecular and biochemical mechanisms un-
derlying thermomemory across multiple cellular levels and
discuss aspects that require further attention.
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Introduction
In natural and agricultural environments, plants
encounter constantly changing biotic and abiotic con-
ditions, including stresses, that are often repetitive and
may increase in severity over time [1]. Temperatures
above optimal can induce heat stress (HS). This typi-
cally impairs growth and development due to cell-

damaging effects, such as accumulation of misfolded
www.sciencedirect.com
proteins and/or reactive oxygen species, if not countered
by protective mechanisms [2,3]. Amongst other effects,
HS impairs the photosynthetic machinery’s structural
integrity, thereby limiting carbon dioxide fixation [4e6].

However, plants have evolved thermotolerance,
involving HS responses encompassing the production of
molecular chaperones, including heat shock proteins

(HSPs), antioxidants, and other cellular integrity-
maintaining mechanisms. HS responses are orches-
trated by suites d 20 or more in plants d of DNA-
binding heat shock transcription factors (HSFs) [7,8].
In Arabidopsis thaliana, HSFA1a, A1b and A1d are master
HS response regulators, with essential functions in the
activation of HS-responsive transcriptional networks [9].

Plants also have ‘thermopriming’ mechanisms that
enable them to respond more effectively to subsequent,
and potentially harsher, HS following exposure to

moderate HS [10*,11,12**]. Thermopriming-induced
molecular changes may persist longer than the priming
HS, thereby collectively establishing a molecular
‘memory’ that can last for several days. Consequently,
plants respond more rapidly (or strongly) to a recurring
(‘triggering’) stress before the memory fades (Figure 1).
This review focuses on the molecular mechanisms un-
derlying memory of high-temperature stress; processes
maneuvering memory to other environmental stresses,
including cold, are reviewed elsewhere [13,14].

Initially, thermomemory research largely focused on the
control of gene expression by transcription factors (TFs),
epigenetic modulators, and post-transcriptional modifi-
cations, but recent discoveries have revealed the impor-
tance of protein stability control, primarymetabolism, and
coordinationof regulatorynetworks acrossdifferentorgans
for thermomemory. Here, I review current knowledge
regarding thermomemory’s orchestration in somatic plant
tissues. Experimental evidence indicates that offspring
may also inherit thermomemory from parents, a phe-
nomenon called transgenerational stress memory [15].
Transcriptional control of thermomemory
HS induces massive changes in gene expression, but
only a small fraction of HS-inducible genes’ transcrip-
tional changes are persistent. Two types of transcrip-

tional memory have been identified in Arabidopsis: type
Current Opinion in Plant Biology 2022, 65:102147
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Figure 1

Priming-induced thermomemory. Pre-exposure of plants to mild or transient heat stress (HS) increases their resilience to a subsequent severe
(triggering) or otherwise lethal HS, a phenomenon called thermopriming or acquired thermotolerance. Thermopriming induces changes at molecular and
biochemical levels, some of which are maintained during the recovery phase, in the absence of intervening stress, and form a molecular memory.
Thermomemory can last for several days (within a generation), and its establishment enables plants to survive and continue growth following exposure to
otherwise lethal subsequent HS events (within taxon-specific limits). The figure was prepared using BioRender (www.biorender.com).

2 Growth and Development
I transcriptional memory refers to the sustained tran-
scriptional activity of genes for a moderately long
episode (i.e. a few days) after the recovery from priming
HS, while type II memory represents a faster, or stron-
ger, change in transcriptional activity (re-activation or

-suppression) upon recurring HS (Figure 2). Transcript
analysis identified a number of type I thermomemory
genes in Arabidopsis seedlings, such as HSP18.2, HSP21
and HSP22, while others, including APX2, HSFA1E,
MIPS2, and XTR6, are categorized as type II memory
genes [11,16].

Transcriptional memory arises from a coordinated
action of TFs and chromatin regulators that affect his-
tone methylation and nucleosome remodeling
(Figure 2) [10*,17*], [18-20]. Initially, only HSFA2 was
identified as a TF that specifically functions in ther-

momemory [10*], but recently, a requirement for
HSFA3 for extending the duration of thermomemory
was detected. Loss-of-function alleles of either HSFA2
or HSFA3 substantially impair thermomemory, whereas
immediate HS responses are unaffected in those mu-
tants [10*,18**]. While HSFA2 regulates both type I
and type II transcriptional memory, the disruption of
HSFA3 specifically compromises only type I memory
[18**]. The partly complementary functions of the two
TFs may be due to their different transcriptional in-
duction dynamics after priming HS; while HSFA2
expression is rapidly induced and peaks right after
Current Opinion in Plant Biology 2022, 65:102147
priming HS, the induction of HSFA3 transcripts occurs
at a slower pace [18**].

HSFA2 controls the expression of HS memory genes by
binding to Heat Shock Elements in target promoters

[17*,19**,20]. In some cases, this binding occurs tran-
siently, 1e4 h after HS ends. A hit-and-run mechanism
[21] of HSF2A’s action has been proposed [17*] and
corroborated by data showing enrichment of histone H3
lysine 4 tri-methylation marks (H3K4me3) at actively
transcribed memory loci (Figure 2). The marks report-
edly persist after a priming HS and outlast the period of
active transcription, suggesting their importance for the
hyper-induction of memory genes upon recurring HS
[17*]. Thus, HSFA2 triggers sustained changes in
chromatin modifications, which then act in support of
HSFA2-induced transcriptional memory. Of note,

HSFA2 can form a heterodimer with HSFA3; the bind-
ing of HSFA3 to HSFA2 enhances histone H3K4
methylation at memory loci. Accordingly, nonfunctional
alleles of HSFA2/3 impair thermomemory and limit
sustained induction of type I memory genes [18**].
However, how HSFA2 and HSFA3 recruit chromatin-
modifying factors to the target loci (directly or indi-
rectly) remains to be investigated.

Another chromatin modification that plays a role in
establishing thermomemory has recently been re-

ported. Yamaguchi et al. found that multiple Jumonji C
www.sciencedirect.com
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Figure 2

Transcriptional and epigenetic control of thermomemory. (a) and (b), schematic representation of thermomemory and heat stress (HS)-responsive
non-memory genes. HS triggers changes (induction or repression) in transcriptional activity. Genes that participate in transcriptional thermomemory (a)
are grouped into two categories, genes whose transcriptional change (induction or repression) by HS continues for some time (days) after recovery from
stress (type I, upper panel) and genes whose transcriptional change (re-activation or -suppression) upon subsequent HS (following an intervening period
of no/reduced activity) is faster or stronger (type II, lower panel) [24*]. The two categories may partially overlap depending on the duration of the recovery
phase, for example, both sustained induction after priming (up to at least 52 h into the recovery phase) and hyper-activation after a second HS of
ASCORBATE PEROXIDASE 2 (APX2) transcription has been observed [17*]. (b) HS-responsive non-memory genes include those whose transcriptional
activity is similar in response to each HS. (c) HSFA1 isoforms (a, b and d) are key players in the immediate response to HS, including transcriptional
induction of HSFA2 [65]. HSFA2 transiently binds to (hits) Heat Shock Elements (HSEs) in promoters of thermomemory genes initiating their transcription,
then enrichment of histone H3K4me3 marks (Me) at the memory loci mediates their continued active transcription without binding of HSFA2 to those
promoters (run) [17*]. However, it remains unclear how HSFA2 recruits chromatin-modifying factors (directly or indirectly) to the target loci. In addition,
FGT1 binds to the chromatin of thermomemory genes near their transcription start sites, where it interacts with catalytic components of ISWI (CHR11 and
CHR17) and SWI/SNF (BRAHAMA) chromatin remodelers. The complex formation leads to maintenance of low nucleosome occupancy at the memory
loci after HS and thus sustained active transcription of thermomemory genes [26**]. The mechanism whereby the FGT1-chromatin remodeling complex
targets the memory genes and whether HSFA2 (or HSFA1s) participates in this process remains to be determined. Inset: sustained accumulation of
H3K4me3 at memory loci is promoted by binding of an HSFA2/HSFA3 heteromeric complex [18**], as well as glucose-induced HLP1 to those loci [57*].
(d) In addition to active chromatin marks, a decreased occupancy of repressive histone marks such as H3K27me3 at the gene body of thermomemory-
associated genes plays a role in establishing memory. JMJ-mediated removal of H3K27me3 marks (Me) from the HSP22 and HSP17.6C loci during the
recovery from HS priming (acclimation) contributes to their reactivation upon exposure to subsequent HS [22**]. The figure was prepared using Bio-
Render (www.biorender.com).
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domain-containing (JMJ) histone demethylases,
including JMJ11 (also called EARLY FLOWERING 6,
ELF6), JMJ12 (RELATIVE OF EARLY FLOWERING
6, REF6), JMJ30, and JMJ32, contribute to removing
repressive histone H3 lysine 27 tri-methylation
(H3K27me3) marks from thermomemory-associated

small HSP22 and HSP17.6C [22**] (Figure 2d).
Importantly, REF6 also affects transgenerational
www.sciencedirect.com
thermomemory via a heritable feedback loop that in-
volves HSFA2 [15].

Furthermore, JMJ histone demethylases influence the
expression of HSP21, which encodes a plastidic HSP
crucial for maintaining thermomemory [12**] by

balancing H3K27me3 and H3K4me3 levels at the
HSP21 locus [23]. The mechanisms involved in
Current Opinion in Plant Biology 2022, 65:102147
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4 Growth and Development
recruiting JMJs to the memory loci and their possible
interactions with other histone modifiers and TFs
remain to be explored. A similarly important question
that needs to be addressed in the future is how the
activity of the histone demethylases is balanced with
methylases acting on H3K27 to control thermomemory.
Nucleosome organization affects
thermomemory
In addition to histone methylation, nucleosome organi-
zation affects thermomemory, as recently reviewed
[24*]. Briefly, FORGETTER1 (FGT1), a functional
Arabidopsis ortholog of metazoan Strawberry notch

(Sno) [25], binds to chromatin of HS-induced memory
genes at nucleosome-free regions near transcription
start sites, and interacts with catalytic components of
evolutionarily conserved ISWI (CHR11 and CHR17)
and SWI/SNF (BRAHAMA) chromatin remodelers.
This leads to maintenance of low nucleosome occupancy
at memory loci after HS, thereby supporting sustained
transcription of memory genes (Figure 2) [26**].

Another chromatin regulator of thermomemory is
BRUSHY1 (BRU1) [27]. Early studies demonstrated the

role of BRU1, also known as TONSOKU or MGOUN3,
in DNA damage responses, epigenetic inheritance of
gene silencing, and meristem organization [28e30].
Bru1 mutants show reduced thermomemory and sus-
tained activation of memory genes. As the mammalian
ortholog TONSL functions in DNA replication [31],
BRU1 might play a key role in the inheritance of
thermomemory-related chromatin modifications across
cell divisions during growth in the memory phase [27].
Post-transcriptional regulation of
thermomemory
Through profiling transcriptome changes and alterna-
tive splicing events, a form of splicing memory has
been discovered in Arabidopsis (Figure 3a). Alterna-
tive splicing is suppressed in seedlings subjected to a
priming HS [32*], mostly leading to enhanced intron

retention [33]. Repression of splicing under HS has
been previously reported for multiple organisms and
appears to be an evolutionarily conserved phenomenon
in HS adaptation [34e39]. Intriguingly, results
showed that HS-primed plants returned to efficient
splicing following relief from a second HS, while non-
primed plants exposed to the same HS tended to
accumulate intron-retaining transcripts [32*].
Affected genes included those controlling the HS
response. Thus, HS priming establishes memory,
enabling a rapid return to constitutive/correct splicing

once the stress has subsided, which is particularly
important for the maintenance of adequate levels of
transcript and protein isoforms that support stress
survival and continuation of growth under repeated
stress conditions.
Current Opinion in Plant Biology 2022, 65:102147
The molecular mechanisms underpinning splicing
memory are still unclear, but changes in chromatin
accessibility and DNA methylation have known
involvement in intron retention regulation [40,41]. As
activation of thermomemory-related genes is affected by
chromatin status, it seems plausible that priming-
induced changes in splicing are influenced by the
chromatin environment [32*], but this possibility re-

quires further research.

MiRNA-dependent gene silencing also participates in
thermomemory, as shown for Argonaute 1, an effector
protein involved in small RNA-based gene silencing
[42], and heat-responsive miR156 [11]. Heat-induced
activation of miR156 sustains expression of thermome-
mory genes by inhibiting two squamosa promoter-
binding-like TFs, SPL2, and SPL11 (Figure 3b).
Accordingly, thermomemory is compromised in mutants
with reduced Argonaute 1 activity or miR156 expression.
Similarly, enhanced accumulation of miR156-resistant
SPL2 and SPL11 weakens thermomemory and expres-
sion of memory genes, including HSFA2 and HSPs [11].

MiR156-regulated SPLs promote developmental phase
transitions but inhibit the formation of new leaves at the
shoot apical meristem (SAM) [43e45]. Thus, inhibition
of SPLs by miR156 after HS is apparently involved in
mechanisms that counter negative effects of HS and re-
initiate growth after stress dissipation [11]. The devel-
opmental function of miR156 and its responsiveness to

HS are conserved in plants, including Arabidopsis,
Brassica rapa and wheat [46,47], highlighting its impor-
tance in the integration of thermomemory with devel-
opmental processes.
Control of thermomemory by affecting
protein stability
Findings that transcriptional memory involves a small
fraction of HS-inducible genes strongly suggest that
thermomemory involves additional regulatory mecha-
nisms, and there are growing indications that they
include selective accumulation and stabilization of
stress proteins and regulated protein degradation
(Figure 4) [12**,48-51]. For instance, transcription
patterns of heat-inducible HSP90.1, its co-chaperone

ROF1 (a plant homolog of FK506-binding proteins),
and HSP101 are not memory-associated, but elevated
levels of proteins they encode during the memory
phase are essential for extending thermomemory
[48-50,52].

HS-induced formation of ROF1-HSP90-HSFA2 com-
plexes in the cytosol and subsequent nuclear import
enhances the transcriptional activity of HSFA2 and
secure continuity of expression of HSPs [52]. HSP90
and ROF1 protein stability during the recovery phase

are at least partly regulated through selective autophagic
www.sciencedirect.com
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Figure 3

Splicing and miRNA-mediated regulation of thermomemory. (a) Primed plants can establish a splicing memory that enables them to respond
differently to an upcoming HS event [32*]. Subjecting Arabidopsis seedlings to a priming HS and later to a severe heat shock leads to repression of AS, as
shown by higher levels of intron retention (IR), the most prevalent form of splicing in plants [33]. After relief from the second HS exposure, primed plants
return to efficient/correct splicing (CS) ensuring rapid adjustment of the abundance (and functions) of stress-response components. In contrast, non-
primed plants continue to accumulate intron-retaining transcripts, mimicking those of plants under HS conditions. (b) The heat-induced miR156 enhances
plant thermomemory and survival after exposure to a second HS by downregulating SPL family TFs (SPL2 and SPL11) and thus suppressing their
inhibitory effect on expression of thermomemory genes. It is not yet known how SPLs regulate expression of thermomemory genes (directly or indirectly)
and what the identities of their other (stress-or developmental-related) target genes during the recovery phase are. The figure was prepared using
BioRender (www.biorender.com). AS, alternate splicing; HS, heat stress.
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degradation mediated by NBR1 (Next-to-BRCA1), a
plant homolog of the mammalian autophagic cargo re-
ceptor p62 [49**,53]. HSP101 stability is also regulated

by autophagy [48,50], although NBR1’s involvement
remains to be investigated. Autophagic degradation of
HSPs could participate in reversion of the cellular pro-
teome to a pre-stress state and restoration of growth
during between-stress periods.

Continued accumulation of HSP101 during the recov-
ery/memory phase is also crucial for the high abundance
of the HS-associated 32-kD protein (HSA32), another
essential component of thermomemory [50]. In return,
HSFA32 increases HSP101 stability by retarding its

degradation. Although details of the interplay between
the proteins are not yet known, a conserved positive
HSP101-HSA32 feedback loop has been found in
Arabidopsis and rice (Oryza sativa), indicating the
importance of this regulatory mechanism for thermo-
memory evolution [54].

Another recent finding of importance is that several
translation-associated/ribosomal proteins, including the
60S ribosomal proteins RPL5A and RPL10A/SAC52 and
www.sciencedirect.com
the 40S ribosomal proteins RP40 and RPS10B, are high-
confidence interactors of NBR1 during recovery from
HS [49**]. Thus, NBR1 appears to act as a receptor for

selective autophagy of ribosomes (called ribophagy) in
this process. Analyzing the details of ribophagy during
thermomemory as an important mechanism contrib-
uting to protein quality control remains an important
task of future research.

Strikingly, an ability to maintain an active protein quality
control system in organelles such as plastids appears to
be crucial for establishing thermomemory. A recent
study demonstrated that a sustained high level of plas-
tidial small HSP21 is essential for the maintenance of

the primed state and the duration of thermomemory. A
heat-induced metalloprotease, FstH6, located in the
same organelle, regulates HSP21’s in vivo stability by
degrading it and thus limiting plants’ thermomemory
capacity. Notably, natural variation in the FtsH6-HSP21
regulatory module underlies differences in thermome-
mory, corroborating this organellar mechanism’s impor-
tance in the HS response [12**]. In addition to FtsH6,
autophagy controls HSP21 abundance during the ther-
momemory phase [51].
Current Opinion in Plant Biology 2022, 65:102147
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Figure 4

Regulation of the in vivo stability of stress proteins is important for
establishing thermomemory. (a) Conceptual scheme: priming HS trig-
gers the accumulation of stress proteins such as HSPs (or molecular
chaperones in general). Sustained high levels of a subset of molecular
chaperones during the recovery phase enhance the plant’s thermome-
mory capacity and protection against an upcoming severe HS, whereas
their degradation by thermomemory-associated protein degradation sys-
tems (by autophagy or FtsH6 metalloprotease) weakens thermomemory,
and thus the response to the next HS. (b) Simplified working model
summarizing current knowledge on the control of thermomemory by
regulation of protein stability [12**,48-50,52–54]. Blunt-ending lines indi-
cate inhibition or degradation. Lines with arrows indicate activation or
transport. The figure was prepared using BioRender (www.biorender.
com). HS, heat stress; HSP, heat shock protein.

6 Growth and Development
Metabolic control of thermomemory
Establishing memory enhances plants’ capability not
only to survive harsher HS but also to recover growth
after stress dissipation [19**], so it is not surprising that

complex metabolic adjustments are involved. A mass
spectrometric analysis recently detected substantial
differences in metabolic states between HS-primed and
non-primed Arabidopsis plants [55], including markedly
higher levels of sucrose and raffinose family oligosac-
charides after HS priming. The priming generated
additional lasting metabolic imprints, some of which
(such as changes in galactinol, d-tocopherol, stachyose,
and raffinose levels) were found to persist during the
memory phase and are likely crucial for optimal re-
sponses in upcoming HS [55]. However, another recent

report did not find an increase of d-tocopherol level in
Current Opinion in Plant Biology 2022, 65:102147
Arabidopsis leaves upon prolonged (1e4 days) HS at
37 �C [56], suggesting different metabolic programs in
primed versus constantly heat-stressed plants. More-
over, levels of several HS-induced metabolites
(including sucrose) decreased to basal levels after
release from the second HS in primed plants, but
remained high in non-primed plants, resembling those
in HS-stressed plants. Collectively, these results suggest

that HS priming triggers the formation of a metabolic
memory that promotes survival and faster recovery
from stress.

Two other recent studies [19**,57*] support the
importance of carbohydrates in the establishment of
thermomemory. Sharma et al. [57*] showed that a lack
of glucose impairs maintenance of high expression of
memory genes during the recovery phase. The effect on
thermomemory appears to be due to enhanced deposi-
tion of H3K4me3 marks at memory loci through glucose-

induced HIKESHI-LIKE PROTEIN1 (HLP1), an
Arabidopsis ortholog of the human nuclear transport
receptor Hikeshi [58]. Like HSFA2, HLP1 expression is
directly regulated by HSFA1 [57*], suggesting the
cooperation of the two proteins in modulating the
epigenetic landscape of thermomemory genes.

Another important finding is that sugar availability at the
SAM is essential for the expression of memory genes,
plant survival, and growth recovery following a subse-
quent HS [19**]. The shortage of sugar reservoirs,

triggered by removing cotyledons, lowering sucrose
supply, or knocking out the primary carbohydrate
metabolism gene FRUCTOSE-BISPHOSPHATE
ALDOLASE 6 (FBA6), impairs plants’ survival and
growth recovery following recurring HS. FBA6 expres-
sion is directly controlled by HSFA2 [19**].

Levels of phospholipid glycerol backbone precursors
also increase during priming and remain higher after
recovery and even after HS in primed plants than in
non-primed plants, suggesting that membrane phos-
pholipids are important for thermomemory [55].

Accordingly, phospholipase Da2, an enzyme involved in
membrane phospholipid metabolism, is essential for
thermomemory [59].
Effects of HS on the SAM
The SAM, including its stem cells, plays crucial roles in
aboveground plant development, so it must be well
protected from potential damage by abiotic stresses.
Recent RNA-seq analysis has elucidated important as-
pects of the control of SAM development under recur-
rent HS, including a demonstration that priming
enhances a key response to a triggering HS, down-
regulation of the key stem cell regulators CLAVATA1
(CLV1) and CLV3 [19**]. This shows that both devel-
opmental control genes are bona fide thermomemory
www.sciencedirect.com
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genes. Moreover, transcriptional downregulation of the
CLV genes mostly vanished within 24 h following a
triggering HS in primed plants but persisted in non-
primed plants. These observations clearly demonstrate
that priming protects stem cells in the SAM from the
potentially damaging effects of harsher HS [19**].

Several HSF genes are induced by priming and trig-

gering treatments at the SAM of Arabidopsis plants,
including HSFA1e, HSFA2, HSFA3, HSFA7a, HSFA7b,
HSFB1, HSFB2a, and HSFB2b [19**]. In the light of
the recent finding that HSFA3, together with HSFA2,
prolongs thermomemory [18**], it will be important to
identify HSFA30s target genes at the SAM and establish
if it interacts with any of the other HSFs to exert its
function in this organ.
Concluding remarks and future
perspectives
Global warming and the increasing frequencies of heat-
waves are adversely affecting crop yields and food sup-
plies. A potentially powerful strategy for enhancing heat
tolerance is to enhance thermomemory. Recent research
has greatly increased our mechanistic understanding of

thermomemory and revealed crucial regulators acting
at various levels [12**,18**,19**,22**,32*,49**,57*].
However, despite considerable progress, many unan-
swered questions remain regarding the coordination of
regulators in different cells and organs in the establish-
ment of coherent plant-wide thermomemory; which
mechanisms act in specific cells, specific tissues and
diverse organs; the evolution of thermomemory signaling
pathways; and strategies for exploiting knowledge of
thermomemory in breeding or editing genomes of agri-
cultural crops.

Much current understanding of thermomemory stems
from research on vegetative Arabidopsis seedlings.
Processes controlling thermomemory in mature plants,
during reproductive growth, and in crops have
received surprisingly little attention so far [60,61];
although, for example, exposure of flowers to a high
temperature significantly decreases pollen viability,
fruit set, and yield [62,63]. An elegant recent study
detected differences in the orchestration of thermo-
memory at the SAM and whole seedlings [19**],
suggesting that organ-specific mechanisms are

involved in the establishment of thermomemory.
Thus, given the importance of reproductive growth
and development for agricultural yields, it is crucial to
elucidate thermomemory’s establishment and control
in reproductive organs and identify alleles that
enhance thermomemory during flowering. Once a
better understanding of thermomemory is available for
crops, precision genome editing (e.g. using CRISPR/
Cas9-based methods) can be used to enhance their
field performance in anticipated climatic conditions.
www.sciencedirect.com
Another interesting concept for improving thermotol-
erance in crops in a sustainable manner comes from
recent studies of plant-interacting microbes, that is,
root endophytes, that benefit plant growth at high
temperature by impacting the expression of thermo-
memory genes [64*]. In the future, it might be
possible to use synthetic-biology approaches to opti-
mize such beneficial interactions by modifying the

microbial or crop genomes. Finally, the identification
and optimization of small molecules that enhance
plants’ priming capacity might be useful for stress-
memory establishment in the field.
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HSFA2 dependent H3K4 trimethylation of chromatin at HS memory
gene loci.
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