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ABSTRACT: It is an important topic in environmental sciences
to understand the behavior and toxicology of chemical pollutants.
Quantum chemical methodologies have served as useful tools for
probing behavior and toxicology of chemical pollutants in recent
decades. In recent years, machine learning (ML) techniques have
brought revolutionary developments to the field of quantum
chemistry, which may be beneficial for investigating environmental
behavior and toxicology of chemical pollutants. However, the ML-
based quantum chemical methods (ML-QCMs) have only scarcely
been used in environmental chemical studies so far. To promote
applications of the promising methods, this Perspective summarizes recent progress in the ML-QCMs and focuses on their potential
applications in environmental chemical studies that could hardly be achieved by the conventional quantum chemical methods.
Potential applications and challenges of the ML-QCMs in predicting degradation networks of chemical pollutants, searching global
minima for atmospheric nanoclusters, discovering heterogeneous or photochemical transformation pathways of pollutants, as well as
predicting environmentally relevant end points with wave functions as descriptors are introduced and discussed.

KEYWORDS: machine learning, quantum chemistry, environmental process, environmental computational toxicology,
chemicals management

1. INTRODUCTION

Over 350 000 chemicals and their mixtures have been
registered for utilization in the global market.1 These chemicals
can be released into the environment and become pollutants
threatening human and ecosystem health.2 It is a prerequisite
for preventing pollution of these chemicals that their
environmental behavior and toxicological effects to humans
and ecological species be understood (Figure 1). Due to the
wide diversity of the chemical composition of pollutants, of the
environmental media under different conditions, and of the
different biological systems, it is time-consuming, expensive,
and also impossible to empirically determine all parameters
required for quantifying the environmental fate and toxico-
logical effects of all chemical pollutants.2,3 Prediction based on
quantum chemical methods (QCMs) that solve the
Schrödinger equation (or its variants) to obtain parameters
for environmental behavior and toxicological effects of
chemical pollutants is becoming an appealing alternative.4

However, it is also time-consuming to directly solve the
Schrödinger equation.5 To overcome this obstacle, various
alternative QCMs have been developed, such as the density
functional theory (DFT) that replaces the Schrödinger
equation with some easily solved equations for electron

densities.6,7 Even so, the DFT method is still too costly in
time to be applied to relatively large systems.5

In recent years, machine learning (ML) has gained the
increasing interest of quantum chemists. ML-based QCMs
(ML-QCMs) were even considered as the next big leap in the
evolution of computational chemistry, similar to the develop-
ment of DFT (the 1998 Nobel Prize in Chemistry) and hybrid
quantum-mechanical/molecular-mechanical (the 2013 Nobel
Prize in Chemistry) methods.8 ML can significantly improve
the speed of quantum chemical calculations with a negligible
loss in accuracy.9−11 One important reason lies in that, at least
in theory, ML models can learn any input−output relations
even as complex as the Schrödinger equations.8−11 Therefore,
the Schrödinger equations can be in turn replaced by the ML
models that can be comparatively easily solved.8−11

To date, only a few studies in the field of environmental
chemistry have applied the ML-QCMs, although ML has been

Received: September 3, 2021

Perspectivepubs.acs.org/est

© XXXX American Chemical Society
A

https://doi.org/10.1021/acs.est.1c05970
Environ. Sci. Technol. XXXX, XXX, XXX−XXX

D
ow

nl
oa

de
d 

vi
a 

D
A

L
IA

N
 U

N
IV

 O
F 

T
E

C
H

N
O

L
O

G
Y

 o
n 

Ja
nu

ar
y 

28
, 2

02
2 

at
 0

4:
44

:5
8 

(U
T

C
).

Se
e 

ht
tp

s:
//p

ub
s.

ac
s.

or
g/

sh
ar

in
gg

ui
de

lin
es

 f
or

 o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Deming+Xia"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jingwen+Chen"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Zhiqiang+Fu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Tong+Xu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Zhongyu+Wang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Wenjia+Liu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Hong-bin+Xie"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Willie+J.+G.+M.+Peijnenburg"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Willie+J.+G.+M.+Peijnenburg"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.est.1c05970&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.1c05970?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.1c05970?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.1c05970?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.1c05970?fig=tgr1&ref=pdf
pubs.acs.org/est?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.est.1c05970?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/est?ref=pdf
https://pubs.acs.org/est?ref=pdf


adopted in environmental studies (e.g., prediction models on
particulate matter concentrations and water resource avail-
ability12). As several recent reviews elaborated the method-
ology of the ML-QCMs,8−11 this Perspective briefly summa-
rizes the methodology and focuses on its potential applications
(Figure 1) as well as challenges that lie ahead in environmental
chemical investigations.

2. MACHINE-LEARNING-BASED QUANTUM
CHEMICAL METHOD

As Dirac mentioned in 1929: “It therefore becomes desirable that
approximate practical methods of applying quantum mechanics
should be developed, which can lead to an explanation of the main
features of complex atomic systems without too much
computation.13” It is a dream of quantum chemists to develop
methods to accurately describe many-body systems with

computational costs as low as possible. In the past decade,
new tools from the rapidly developing field of ML have
emerged to significantly impact the development of approx-
imate methods for complex many-body systems, by passing or
assisting the direct solution of the many-body Schrödinger
equations.8−11,14

There are generally two types of philosophy to build ML-
based quantum chemical models: supervised-learning (type-I)
and unsupervised learning (type-II)-based methods. Recently,
some pioneering works15,16 also employed reinforcement-
learning-based methods (type-III) to enhance sampling for
molecular dynamics simulations. However, the type-III method
has not been directly adopted for predicting chemical end
points (e.g., molecular orbitals and wave functions) so far.17,18

This Perspective mainly focuses on the type-I and type-II
methods. Some potential applications of the type-III method
are also briefly discussed.
As shown in Figure 2, for the type-I method, “machines” can

be trained based on given end points and inputs using the
supervised learning algorithms. Existing type-I models can also
be roughly distinguished into two types according to their
architectures: descriptor-based models or end-to-end models.
The descriptor-based type-I method is similar to the

quantitative structure activity relationship (QSAR) method-
ology.19−21 The end points for the type-I methods are usually
basic molecular properties (e.g., electronic energies, electron
densities, and molecular orbitals), while the end points for
QSARs in environmental chemical studies are in general more
complex (e.g., various partition coefficients, protein binding
constants, reaction rate coefficients and toxicities).19−21 The
type-I models were conventionally trained using algorithms
such as neural networks (NN), support vector machines, the
Gaussian process for regression, and kernel ridge regres-
sion.22−31 An advantage of these descriptor-based models is
that the computational complexity is low and generally linearly
scaled with regard to data quantity.18

The end-to-end type-I models directly connect chemical
structures represented by selected architecture (e.g., SchNet32

and PaiNN33 architectures) with concerned end points. No
additional descriptor is required by the end-to-end models.
The computational complexity of the end-to-end type-I

Figure 1. Role of machine-learning-based quantum chemical methods
(ML-QCMs) in environmental chemical studies (QSAR, quantitative
structure−activity relationship; QC, quantum chemistry; ML,
machine learning).

Figure 2. Type-I and type-II methods of ML-based quantum chemical models.
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method is roughly proportional to N2 where N stands for data
quantity.18

The type-I approach entirely avoids the solution of
Schrödinger equations, at the price of data sets obtained by,
for instance, the DFT methods.6,7,34 Databases such as QM7,35

QM9,36 QM-sym,37 PubChemQC,38 and recently developed
ORD39 can be adopted in the type-I modeling. Most existing
ML-based quantum chemical models were constructed in this
way.
In the type-II method, the wave functions (or electron

densities) that describe the probability of a particle’s quantum
states can in most cases be directly predicted by a NN with
some trainable parameters.40−42 In each step of the training, a
new group of the parameters is autogenerated by the Monte
Carlo method.43−47 The corresponding energies of the wave
functions characterized by the parameters can then be
calculated. The training processes are not stopped until the
energy change between two steps of the calculations reaches
prespecified convergence criteria. The wave functions and
energies for the last training step are outputs. Carleo and
Troyer41 adopted this type of thinking to establish mapping
from spin configurations represented by NN parameters to
corresponding wave functions via a restricted Boltzmann

machine (a type of unsupervised NN). The initial NN
parameters can be either guessed based on some quantum
chemical methods (e.g., the Hartree−Fock and DFT) or
randomly generated ones.41,42

As all data except for the initial guesses are automatically
generated by the Monte Carlo method, the type-II method
requires no pre-existing data on concerned end points. Another
advantage of the method is that the models can provide wave
functions (or electron densities) of investigated systems that
contain all information for the systems at the simulated
quantum states (e.g., ground states or first excited states).11

The type-II method could provide more information for
solving many problems and allow for predicting other
concerned properties. A current limitation is that the type-II
method can only be used for small molecules (typically within
30 electrons42) due to computational costs.
On the basis of the energies obtained via the ML-QCMs,

potential energy surfaces (PES), ML potentials for molecular
dynamics simulations, and reaction networks can be
constructed.48,49 For example, a reaction network for methane
combustion was built by Zeng et al.50 with the ML-QCMs.
The PES, reaction networks, chemical properties, and wave
functions predicted by the ML-QCMs are associated with the

Figure 3. Conventional (left panel) and machine-learning-based (right panel) quantum chemical methods for probing behavior of chemical
pollutants initiated by radicals (A and B), for obtaining the global minimum of concerned clusters during new particle formation processes (C and
D), and for predicting environmental chemical end points of concerned pollutants/chemicals (E and F), where in F, the mapping relationship
between structures and concerned end points can be built using neural networks like the end-to-end type-I method, and the wave functions
predicted using the type-II method can be employed as “descriptors” to predict the end points.
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behavior and toxicology of environmental chemicals, which are
discussed as follows.

3. POTENTIAL APPLICATIONS IN ENVIRONMENTAL
CHEMISTRY
3.1. Chemical Transformation. Chemical transformation

of pollutants is a classical topic in environmental chemistry.51

QCMs were adopted to calculate the PES, formation free
energies, reaction rate coefficients, and product branching
ratios for transformation of pollutants.52−54 Nevertheless, it is
very computationally expensive for accurate calculations of
chemical reactions involving large molecules. The ML-QCMs
may reduce the costs and expand applications of the QCMs in
environmental chemical studies.55

3.1.1. Chemical Reactions Involving Radicals. Reactions
with radicals (e.g., hydroxyl and halogen radicals) are
important removal pathways of chemical pollutants and have
been widely investigated with the conventional QCMs.56,57

The ML-QCMs may provide an efficient way to accurately
obtain energies and a clever way to construct PES under the
framework of the type-I or type-II methods (Figure 2).
As shown in Figure 3A and B, the ML-QCMs can discover

previously overlooked intermediates during degradation of
pollutants. Stocker et al.55 recently established an ML database
consisting of thermodynamics data for 10 712 molecules and
over 20 000 elementary reactions. On the basis of the database,
a kernel ridge regression model was trained to predict reaction
energies for the elementary reactions during CH4 combustion
processes following the type-I routine.55 By analyzing the
predicted reaction energies, Criegee intermediates overlooked
previously were found to be involved in the CH4 combustion
processes.55

The more complex the simulated system, the longer the
simulation time that is needed. The advantages in computing
speed of the ML-QCMs can enable a large system with more
specific species/conditions to be simulated.58−60 Hence, some
complex systems that can hardly be simulated by the
conventional QCMs can also be simulated with the ML-
QCMs.
3.1.2. New Particle Formation. Atmospheric new particle

formations (NPF), including nucleation and subsequent
growth, are significant sources for atmospheric particles and,
in turn, affect global climate, local air quality, and public
health.61 Quantum chemical calculations can be employed to
investigate the process of gas-phase precursors (e.g., H2SO4,
iodine, and NH3) to form small nanoclusters.62−64

However, there are two main obstacles for the calculation.
First, it is still difficult to search for the global minimum
configuration for a given cluster [e.g., (H2SO4)3(NH3)3],
although several techniques (e.g., the Artificial Bees Colony
Algorithm in the ABCluster software65 and some scripts for
randomly generating configurations62) were proposed. Second,
the accurate state-of-the-art QCMs [i.e., the CCSD(T)
method34] can only be employed for very small clusters
(typically within 30 atoms),34 due to limits in computational
capacities. This implies that the overall transition from gas-
phase vapors, via small clusters, to large particles can hardly be
captured using the conventional methods.66

The ML-QCMs may overcome the limitations. As can be
seen from Figure 3C and D, ML can be employed to discover
the global minimum of concerned clusters via mapping
relationships between energies and different configurations
for clusters with the same compositions. Once the relationships

are determined, PES for the clusters can be constructed, and
subsequently the global minimum can be obtained. In addition,
the type-I models can be constructed by a fragment
approach,66 in which individual atomic energies in clusters
are trained with experimental or high-level quantum chemical
values. With the model, energies for larger clusters can be
predicted by summarizing the energies of all the simulated
atoms. Although extensive studies are still required, the ML-
QCMs have promises in solving the puzzle of atmospheric
NPF.

3.1.3. Heterogeneous Reaction of Pollutants. Heteroge-
neous transformations of chemical pollutants were conven-
tionally investigated using molecular dynamics methods, such
as ab initio molecular dynamics (AIMD) and hybrid quantum-
mechanical/molecular-mechanical molecular dynamics simu-
lations.67−69 These methods were limited to reactions with low
energy barriers (typically <2 kcal·mol−1), as reactions with
higher energy barriers require an extremely long time to reach
transition states.70

The ML-QCMs can overcome the above difficulties via two
different ways. First, trained ML models can be used for
calculating forces and energies of a given system and, thus, can
be integrated into molecular dynamics to accelerate the
simulation. As the ML-based models are constructed for
predicting interactions between atoms rather than molecules,
the models can describe chemical reactions. This type of
thinking was successfully adopted by Galib and Limmer71 to
investigate heterogeneous hydrolysis of N2O5 at air−water
interfaces. They built a deep-learning model to predict forces
and energies based on the structures of N2O5 and the air−
water interfaces.71 The AIMD simulation was significantly
accelerated, as the new model was adopted to replace the DFT
part (the most time-consuming part) required by the
conventional AIMD.71 They found that compared with
transfer into the bulk of water, hydrolysis at the interface is
faster.71 A similar route can be adopted to explore other
heterogeneous processes of various chemical pollutants.
Second, with the type-III method [e.g., targeted adversarial

learning optimized sampling (TALOS)15,16 methods], tran-
sition states and other rare events can be searched easily.
Therefore, the time cost for obtaining the transition states can
be reduced. For example, the TALOS method was successfully
employed to explore the reaction between Cl− and CH3Cl in
aqueous phases.15 The TALOS method only took ca. 250 ps to
observe the deserved reaction. However, no transition state
was observed using some conventional enhanced sampling
techniques (e.g., metadynamics and replica-exchange simu-
lations).15 As the main difference in the simulations between
heterogeneous and aqueous phases lies in the modeling rather
than the sampling aspect,71 the type-III methods can also be
employed to unveil the mysteries hidden in environmental
interfaces.

3.2. Photochemical Transformation. Environmental
photochemical transformations, especially direct photolysis
and indirect photolysis with sensitizers, are important removal
pathways of organic pollutants.51 The conventional QCMs
were adopted to calculate electronic adsorption spectra,
excitation energies, photophysical processes (e.g., phosphor-
escence, fluorescence, and intersystem crossing), and photo-
chemical transformations.11 ML models entered into the field
of electronically excited states relatively late, and it seems that
this research field is developing at a slower pace, compared
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with the exploding field of ML for characterizing ground
states.11,72

Even so, several potential applications in environmental
photochemistry can be foreseen. The PES of excited-state
pollutants can be fitted smoothly with the ML methods. For
example, Williams et al.73 incorporated artificial neural
networks into diabatization by ansatz and fitted the diabatic
PES of excited-state ·NO3. Similar methods can be used to
investigate other chemical pollutants.
The time-cost of photodynamics simulations can also be

reduced based on the ML fitted PES.72 For example, with ML,
a 10 ns photodynamics simulation for the cis−trans isomer-
ization reaction of trans-hexafluoro-2-butene was performed in
just 2 days, in contrast to ca. 58 years with the conventional
methods.74 The ML-based photodynamics simulation method
can also be employed to investigate photochemical and
photophysical processes of some small molecules such as
NO2 and phenol. However, the current computing power may
not be sufficient for simulating macromolecules such as
polycyclic aromatic hydrocarbons, polychlorinated biphenyls,
and organophosphorus flame retardants. Therefore, faster
methods still need to be developed.
3.3. Sound Management on Chemicals. Pollution of

synthetic chemicals is a serious and growing global problem.75

Sound management of chemicals requires data on their
physicochemical properties and environmental behavioral and
toxicological parameters (e.g., octanol−water partition coef-
ficients, degradation rate coefficients, carcinogenicity, and
mutagenicity).75 QSARs within the framework of environ-
mental computational toxicology2,76 can serve as a core tool for
filling data gaps.
As shown in Figure 3E, SMILES, fingerprints, and other

descriptors/features are extracted based on molecular
structures as inputs for conventional QSAR models. In
contrast, wave functions calculated via the type-II method
and/or 3D structures characterized by the NN methods can
also be used for constructing the QSAR models (Figure 3F).
The ML-QCMs can be employed in constructing QSARs in
two aspects:
(1) Complete description of molecules. As wave functions can

be predicted by the type-II method, they can in turn be
employed to predict properties of chemicals directly.
Compared with conventional molecular descriptors that can
only partially describe molecular characteristics, the wave
functions contain all information for a certain electronic state
(e.g., the ground state, the first excited state) molecule and can
be better descriptors in QSARs. In other words, molecular
structural information on chemicals cannot be lost using wave
functions as inputs. Further studies can be performed in this
aspect.
(2) Direct mapping “structure” and “activity”. QSARs pursue

“structure” and “activity” relationships but usually do not
directly employ 3D structures of molecules as inputs.
Alternatively, most QSARs map “molecular characteristics”
(e.g., energies of the highest occupied molecular orbitals) and
“activity”. As aforementioned, the type-I and type-II methods
can directly adopt molecular 3D structures as inputs via, for
instance, graph NN representations (Figure 3F) and predict
molecular properties or toxicities. Recently, Wang et al.24

developed a new framework named SepPCNET to represent
3D molecular structures and adopted the framework to predict
estrogen receptor activities of chemicals. The prediction
accuracy of the model constructed under the SepPCNET

framework was higher than in the case of using the
conventional routines by 5−14%.24 It is expected that further
studies blend the ideas of the conventional QSARs and the
ML-based quantum chemistry, which will be conducive to the
development of environmental computational toxicology.

4. CHALLENGE
To date, the ML-QCMs have been rarely employed in
environmental chemical studies. The following challenges
should be solved to promote the use of the ML-QCMs:
(1) Dif ferent philosophies. Quantum chemists prefer to use

simple model molecules to elucidate mechanisms or computa-
tional methods, whereas environmental chemists are commit-
ted to using the methods for probing behavior and toxicology
of environmental chemicals that are always significantly larger
than the chemical model molecules. Therefore, new ML-
QCMs that are more suitable for environmental macro-
molecules should be developed.
(2) Unfamiliarity. The application of quantum chemistry in

environmental chemical studies can be dated back to 1970s.77

However, the rocketing development of the ML-QCMs
emerged only in recent years. To popularize the ML-QCMs,
some package models that hide the complex principles of ML
and QCMs should be developed as initial tutorials for
environmental chemists with limited backgrounds of quantum
chemistry and/or ML.
(3) GPU prices. The speed of training ML models relies

heavily on GPU performance. However, there are few cost-
effective GPUs in circulation, and the price of GPUs is falsely
higher than their ex-factory price by >200%, as a result of the
GPUs being acquired by the mine owners of virtual currency
(such as bitcoin).78 Although some countries, such as China,
have cracked down on bitcoin mining, the prices of cutting-
edge GPUs are also expensive,78 limiting popularization of the
ML-QCMs.
(4) Complex environmental conditions. All models are wrong,

but some are useful.79 Model complexity should only be
increased when necessary. Building simulation models for
complex systems is an ever-lasting challenge for quantum
chemists. Due to limitations in computational capacity,
simulation of a big system as complex as the “real” world
that contains all relevant elements is almost impossible. The
ML-QCMs can reduce the computational costs and simulate a
larger system that considers more essential elements. Never-
theless, further investigations are needed to clarify what key
elements should be considered in the ML-QCM simulation
and how to consider the additional factors with the ML-
QCMs.
(5) Methodological dilemmas. (a) Applicability domain

characterization. In the conventional QSAR models, applic-
ability domains are characterized by various range-based,
probability-density-based, and distance (including leverage)/
similarity-based methods.2,80,81 These methods have been
proved to be useful for the models aiming at predicting typical
environmentally relevant end points (e.g., physicochemical
properties, environmental behavioral, and toxicological param-
eters) and using topological indices and fingerprints as
descriptors.2,81 However, it is unclear whether the methods
can also be adopted for the models developed with the ML-
QCMs. Further studies are needed to examine the effectiveness
of the applicability domain characterization methods. (b)
Model evaluation. Criticism on ML-based quantum chemical
models often arises from the fact that assessment or validation
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of the models can be very tricky.18 Mean absolute errors and
root mean squared errors were conventionally adopted to
characterize the accuracy of ML-based quantum chemical
models.18 Some other indicators commonly used in QSARs,
such as determination coefficients and leave-one-out cross-
validated determination coefficients, can also be adopted.2,80

Overfitting exists widely in some ML models.12 There is still
no universal method to avoid overfitting. It seems important to
select representative and high-quality data to construct a
training set, a validation set, and a test set, to avoid overfitting
and ensure model quality. However, a perfect data set cannot
be always guaranteed. Therefore, it is still a challenge to
construct models with defective data sets. (c) Model
interpretation. Many ML-based quantum chemical models are
constructed via data-driven methods, leading to low interpret-
ability for humans. To improve the interpretability, a useful
way is to divide a NN model into several small blocks with
clear physical/chemical meanings. Hermann et al.42 combined
several NNs with physical meanings (e.g., Jastrow factors and
backflow functions) to predict correlation energies that
characterize the Coulomb interactions between electrons and
found that the backflow functions are important for predicting
the energies. Other ways to improve model interpretability are
also worthy of investigation.
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(33) Schütt, K.; Unke, O.; Gastegger, M. Equivariant message
passing for the prediction of tensorial properties and molecular
spectra. Proc. Mach. Learn. Res. 2021, 139, 9377−9388.
(34) Bartlett, R. J.; Musiał, M. Coupled-Cluster Theory in Quantum
Chemistry. Rev. Mod. Phys. 2007, 79, 291−352.
(35) Rupp, M.; Tkatchenko, A.; Müller, K.-R.; von Lilienfeld, O. A.
Fast and Accurate Modeling of Molecular Atomization Energies with
Machine Learning. Phys. Rev. Lett. 2012, 108 (5), 058301.
(36) Ramakrishnan, R.; Dral, P. O.; Rupp, M.; Von Lilienfeld, O. A.
Quantum chemistry structures and properties of 134 kilo molecules.
Sci. Data 2014, 1, 140022.
(37) Liang, J.; Xu, Y.; Liu, R.; Zhu, X. QM-sym, a symmetrized
quantum chemistry database of 135 kilo molecules. Sci. Data 2019, 6,
213.
(38) Nakata, M.; Shimazaki, T.; Hashimoto, M.; Maeda, T.
PubChemQC PM6: Data Sets of 221 Million Molecules with
Optimized Molecular Geometries and Electronic Properties. J.
Chem. Inf. Model. 2020, 60 (12), 5891−5899.
(39) Kearnes, S. M.; Maser, M. R.; Wleklinski, M.; Kast, A.; Doyle,
A. G.; Dreher, S. D.; Hawkins, J. M.; Jensen, K. F.; Coley, C. W. The
Open Reaction Database. J. Am. Chem. Soc. 2021, 143 (45), 18820−
18826.
(40) Choo, K.; Mezzacapo, A.; Carleo, G. Fermionic neural-network
states for ab-initio electronic structure. Nat. Commun. 2020, 11, 2368.

Environmental Science & Technology pubs.acs.org/est Perspective

https://doi.org/10.1021/acs.est.1c05970
Environ. Sci. Technol. XXXX, XXX, XXX−XXX

G

https://doi.org/10.1021/acs.est.9b06379?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.9b06379?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.0c07040?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.0c07040?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.0c07040?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrestox.8b00393?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrestox.8b00393?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrestox.8b00393?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/C1CP21830A
https://doi.org/10.1039/C1CP21830A
https://doi.org/10.1146/annurev-physchem-042018-052331
https://doi.org/10.1146/annurev-physchem-042018-052331
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1021/acs.jpclett.9b03664?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.4946894
https://doi.org/10.1063/1.4946894
https://doi.org/10.1063/1.4946894
https://doi.org/10.1021/acs.chemrev.1c00033?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrev.0c00749?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrev.0c00749?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.1c01339?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.1c01339?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1098/rspa.1929.0094
https://doi.org/10.1098/rspa.1929.0094
https://doi.org/10.1021/acs.chemrev.0c01111?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrev.0c01111?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.9b02173?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.9b02173?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/5.0026836
https://doi.org/10.1063/5.0026836
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1021/acs.jpca.0c04473?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpca.0c04473?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.0c06891?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.0c06891?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.0c06891?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s41586-019-1923-7
https://doi.org/10.1038/s41586-019-1923-7
https://doi.org/10.1016/j.scitotenv.2016.08.051
https://doi.org/10.1016/j.scitotenv.2016.08.051
https://doi.org/10.1016/j.scitotenv.2016.08.051
https://doi.org/10.1016/j.scitotenv.2016.08.051
https://doi.org/10.1021/acs.jpca.0c03201?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpca.0c03201?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpca.0c03201?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.8b00908?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.8b00908?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.1c01228?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.1c01228?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.1c01228?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.1c01228?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/anie.201703114
https://doi.org/10.1002/anie.201703114
https://doi.org/10.1039/c1cp00051a
https://doi.org/10.1039/c1cp00051a
https://doi.org/10.1039/c1cp00051a
https://doi.org/10.1103/PhysRevLett.104.136403
https://doi.org/10.1103/PhysRevLett.104.136403
https://doi.org/10.1103/PhysRevLett.104.136403
https://doi.org/10.1063/1.5024577
https://doi.org/10.1063/1.5024577
https://doi.org/10.1063/1.5024577
https://doi.org/10.1063/1.5024577
https://doi.org/10.1063/1.5003074
https://doi.org/10.1063/1.5003074
https://doi.org/10.1063/1.5003074
https://doi.org/10.1002/jcc.26004
https://doi.org/10.1002/jcc.26004
https://doi.org/10.1063/1.5020441
https://doi.org/10.1063/1.5020441
https://doi.org/10.1063/1.5019779
https://doi.org/10.1063/1.5019779
https://doi.org/10.1103/RevModPhys.79.291
https://doi.org/10.1103/RevModPhys.79.291
https://doi.org/10.1103/PhysRevLett.108.058301
https://doi.org/10.1103/PhysRevLett.108.058301
https://doi.org/10.1038/sdata.2014.22
https://doi.org/10.1038/s41597-019-0237-9
https://doi.org/10.1038/s41597-019-0237-9
https://doi.org/10.1021/acs.jcim.0c00740?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.0c00740?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.1c09820?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.1c09820?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s41467-020-15724-9
https://doi.org/10.1038/s41467-020-15724-9
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.1c05970?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(41) Carleo, G.; Troyer, M. Solving the quantum many-body
problem with artificial neural networks. Science 2017, 355 (6325),
602−605.
(42) Hermann, J.; Schätzle, Z.; Noé, F. Deep-neural-network
solution of the electronic Schrödinger equation. Nat. Chem. 2020,
12 (10), 891−897.
(43) Graziano, G. Deep learning chemistry ab initio. Nat. Rev. Chem.
2020, 4 (11), 564−564.
(44) Nagy, A.; Savona, V. Variational Quantum Monte Carlo
Method with a Neural-Network Ansatz for Open Quantum Systems.
Phys. Rev. Lett. 2019, 122 (25), 250501.
(45) Hartmann, M. J.; Carleo, G. Neural-Network Approach to
Dissipative Quantum Many-Body Dynamics. Phys. Rev. Lett. 2019,
122 (25), 250502.
(46) Vicentini, F.; Biella, A.; Regnault, N.; Ciuti, C. Variational
Neural-Network Ansatz for Steady States in Open Quantum Systems.
Phys. Rev. Lett. 2019, 122 (25), 250503.
(47) Yoshioka, N.; Hamazaki, R. Constructing neural stationary
states for open quantum many-body systems. Phys. Rev. B 2019, 99
(21), 214306.
(48) Bonati, L.; Piccini, G. M.; Parrinello, M. Deep learning the slow
modes for rare events sampling. Proc. Natl. Acad. Sci. U.S.A. 2021, 118
(44), e2113533118.
(49) Schran, C.; Thiemann, F. L.; Rowe, P.; Muller, E. A.; Marsalek,
O.; Michaelides, A. Machine learning potentials for complex aqueous
systems made simple. Proc. Natl. Acad. Sci. U.S.A. 2021, 118 (38),
e2110077118.
(50) Zeng, J.; Cao, L.; Xu, M.; Zhu, T.; Zhang, J. Z. H. Complex
reaction processes in combustion unraveled by neural network-based
molecular dynamics simulation. Nat. Commun. 2020, 11 (1), 5713.
(51) Rene, P. S.; Gschwend, P. M.; Imboden, D. M. Environmental
Organic Chemistry; John Wiley & Sons, Inc., 2002; pp 461−488.
(52) Ma, F. F.; Guo, X. R.; Xia, D. M.; Xie, H.-B.; Wang, Y. H.; Elm,
J.; Chen, J. W.; Niu, J. F. Atmospheric Chemistry of Allylic Radicals
from Isoprene: A Successive Cyclization-Driven Autoxidation
Mechanism. Environ. Sci. Technol. 2021, 55 (8), 4399−4409.
(53) Yu, Q.; Xie, H.-B.; Li, T. C.; Ma, F. F.; Fu, Z. H.; Wang, Z.; Li,
C.; Fu, Z. Q.; Xia, D. M.; Chen, J. W. Atmospheric chemical reaction
mechanism and kinetics of 1,2-bis(2,4,6-tribromophenoxy)ethane
initiated by OH radical: a computational study. Rsc Adv. 2017, 7
(16), 9484−9494.
(54) Li, C.; Chen, J. W.; Xie, H.-B.; Zhao, Y. H.; Xia, D. M.; Xu, T.;
Li, X.; Qiao, X. L. Effects of Atmospheric Water on center dot OH-
initiated Oxidation of Organophosphate Flame Retardants: A DFT
Investigation on TCPP. Environ. Sci. Technol. 2017, 51 (9), 5043−
5051.
(55) Stocker, S.; Csanyi, G.; Reuter, K.; Margraf, J. T. Machine
learning in chemical reaction space. Nat. Commu. 2020, 11 (1), 5505.
(56) Ji, Y. M.; Zheng, J.; Qin, D.; Li, Y.; Gao, Y.; Yao, M.; Chen, X.;
Li, G.; An, T. C.; Zhang, R. Y. OH-Initiated Oxidation of
Acetylacetone: Implications for Ozone and Secondary Organic
Aerosol Formation. Environ. Sci. Technol. 2018, 52 (19), 11169−
11177.
(57) Zhang, Q. Z.; Qu, X. H.; Wang, W. X. Mechanism of OH-
Initiated Atmospheric Photooxidation of Dichlorvos: A Quantum
Mechanical Study. Environ. Sci. Technol. 2007, 41 (17), 6109−6116.
(58) Huang, B.; von Lilienfeld, O. A. Quantum machine learning
using atom-in-molecule-based fragments selected on the fly. Nat.
Chem. 2020, 12, 945−951.
(59) Ramakrishnan, R.; Dral, P. O.; Rupp, M.; von Lilienfeld, O. A.
Big Data Meets Quantum Chemistry Approximations: The Δ-
Machine Learning Approach. J. Chem. Theory Comput. 2015, 11,
2087−2096.
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