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CHAPTER 6

Abstract

Background. Prediction tools that identify CKD (Chronic Kidney Disease) patients at a high
risk of developing kidney failure have potential for large clinical value, but limited uptake.
The aim of the current study is to systematically review all available models predicting
kidney failure in CKD patients, organize empirical evidence on their validity, and ultimately
provide guidance in the interpretation and uptake of these tools.

Methods. PubMed and Embase were searched for relevant articles. Titles, abstracts and
full-text articles were sequentially screened for inclusion by two independent researchers.
Data on study design, model development and performance were extracted. The risk of bias
and clinical usefulness were assessed and combined in order to provide recommendations
on which models to use.

Results. Out of 2183 screened studies, a total of 42 studies were included in the current
review. Most studies showed high discriminatory capacity and the included predictors
had large overlap. Overall, the risk of bias was high. Just under half the studies (48%)
presented enough detail for the use of their prediction tool in practice and few models
were externally validated.

Conclusions. The current systematic review may be used as a tool to select the most
appropriate and robust prognostic model for various settings. Though some models showed
large potential, many lacked clinical relevance due to being developed in a prevalent patient
population with a wide range of disease severity. Future research efforts should focus
on external validation and impact assessment in clinically relevant patient populations.
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Background

Chronic kidney disease (CKD) may lead to kidney failure, though rates of progression vary
substantially between individuals.! Prediction tools that can identify patients at high risk
of developing kidney failure could have a large clinical value. They could be used to inform
individualized decision making, be employed in determining the appropriate time for
referral to nephrologists, and be used in the planning and preparation of renal replacement
therapy (RRT). Prediction tools might also offer opportunities for risk stratification in
research and improvement of health policies.?

Multiple prediction models have been developed to identify individuals at high risk
of kidney failure, and have been previously described in two systematic reviews.** Many
of these models showed good predictive abilities in development. However, despite
nephrologists and patients acknowledging a lack of prognosis discussions in practice,
clinical uptake of these tools is still limited.® Policy makers also seem hesitant in endorsing
prediction tools. The most recent KDIGO guideline recommends the use of prediction
models for timely referral for planning RRT.® The guideline, however, fails to provide
guidance on which risk prediction tool should be used to do so.

The lack of uptake by clinicians and policymakers has been partly attributed to
substandard methodology, lack of external validation and shortage of easy calculation
options.” The last two published reviews in 2012 and 2013 both included 8 studies on
prediction of kidney failure in CKD patients.?* Since then the number of available models
hasincreased exceedingly. A new systematic review of the available models is the first step
towards the use and recommendation of robust prognostic tools. The aim of the current
study is therefore to systematically review all available models predicting kidney failure
in CKD patients, organize empirical evidence on their validity, and ultimately provide
guidance in the selection of the best prediction tool for various settings.

Methods

Data sources and searches

The current review was framed by the search for prognostic prediction models for CKD
patients, predicting the future event of kidney failure. To ensure transparent reporting
and accurate study appraisal, the PRISMA, TRIPOD and CHARMS guidelines were followed
where applicable.?'* We searched PubMed and Embase databases on the 315t of December,
2017 for English language studies regarding risk prediction in CKD patients. The search
strategies were designed to include relevant development, validation and implementation
studies, and are provided in the supplement.
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CHAPTER 6

Study selection

Titles, abstracts and full-text articles were sequentially screened for inclusion by two
independent researchers (CLR and Yd]). Discrepancies on inclusion of full-text articles
were solved by consulting a third co-author (MvD). Articles were included if they met the
following pre-defined selection criteria: 1) The study must develop, validate, update or
implement a multivariate prognostic prediction model, with a prediction research question
as aim, as opposed to an etiological or methodological goal. 2) The study must present at
least one measure to assess model performance. 3) The study population must consist of
adult CKD patients. 4) The study outcome must include kidney failure or end-stage renal
disease. The references of included studies and related reviews were manually screened
in order to identify additional relevant studies.

Data extraction and quality assessment

Following selection, two reviewers (CLR and Yd]) independently conducted the data
extraction and quality assessment. Discrepancies were discussed with input from an
additional co-author (MvD) where necessary. Conform CHARMS recommendations,
information on the source of data, population, outcome, sample size, missing data, model
development, and model performance were extracted and summarized. Additionally, data
on external validations of models were extracted. Furthermore, the risk of bias and clinical
usefulness were judged by both reviewers independently. In order to facilitate further
comparison, studies were grouped by study population which ranged from very broad
(general CKD) to specific CKD subgroups such as IgA-nephropathy or diabetic nephropathy.
Quality and risk of bias were assessed in both development and validation studies by
making use of a novel tool, the Prediction study Risk Of Bias Assessment Tool (PROBAST).
Though this tool has yet to be published in its complete form, there is no other formal
risk of bias assessment available that is applicable to prediction studies. The PROBAST
is specifically designed for systematic reviews of prediction studies and uses a domain-
based approach with 23 signalling questions that categorize the risk of bias into high, low
or unclear for 5 separate domains: participant selection, predictors, outcome, sample size
and missing data, and analysis. It also assesses usability of a model. It has been used in
multiple reviews in the past year and was presented in part at the 2016 Cochrane Colloquia.
1 The final test version of PROBAST was obtained through personal email contact with
the first author dr. R. Wolff.

Data synthesis

Given the multitude of different models and heterogeneity in study characteristics, we
opted for a narrative synthesis of results supported by extensive tables and figures with
study characteristics listed per article. Model performance was evaluated by examining
the discrimination and calibration of included prediction tools. Discrimination is most
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often described by the C-statistic and indicates how well the model discriminates between
patients with and without the event of interest. It lies between 0.5 and 1, where 0.5 is
similar to tossing a coin and 1 indicates perfect discrimination. '* Important to take
into account, is that the C-statistic of the same model can vary highly, dependent on the
population on which the model is tested. When a population is heterogeneous in the
predictors that make up the prediction tool, the C-statistic may increase substantially.
13 Calibration on the other hand, describes the agreement between the absolute number
of predicted events and observed events population wide. It is best represented in a plot,
wherein the predicted probability of kidney failure is plotted against the observed rate of
kidney failure. 1?To evaluate the sample size and risk of overfitting in development studies,
the events per candidate predictor (EPV) were extracted. A minimum of 10 events per
candidate predictor has been suggested as rule of thumb for an acceptable sample size in
model development studies.' For external validation studies it has been recommended to
include a minimum of 100 events in total to obtain a precise estimate of performance.

Results

Study selection

The study selection process is described in a flowchart (Figure 1). Overall, 2183 titles
were identified, of which 431 abstracts were assessed, and 90 full-text publications were
evaluated in-depth. From these articles, a final 42 studies met all inclusion criteria and were
included in the current review. Most full-text exclusions were due to the predicted outcome
not including kidney failure or the lack of a multivariate model. Though prediction research
has seen a great surge in nephrology the last few years, the first included predictive model
was already published in 1986 for IgA-nephropathy patients. Since the beginning of the
2000’s a substantial increase of published models is apparent, as can be seen in Figure 2.
Though the number of developed models has increased almost every year, the number of
validation studies has remained small. Out of the 42 included studies, 7 studies exclusively
externally validated already existing models.’**2 Besides development, 10 studies also
externally validated their own or previously published models. Disconcertingly, no study
assessing the impact of using such a prediction tool was found, which is ultimately the only
way of assessing whether the model can improve patient care.
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Figure 1: PRISMA Flow Diagram of study inclusion.
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Figure 2: Cumulative number of published development and validation studies for models that
predict kidney failure in CKD patients (N=42).
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Characteristics of development studies

A total of 35 studies were published on the development of novel tools to predict kidney
failure in CKD patients. Generally, a distinction can be made between models developed
for a general CKD patient population (n=16), and models developed for a population with a
specified primary renal disease (n=19), mainly IgA-nephropathy or diabetic nephropathy.
The characteristics of all included development studies are described in Table 1. Since
each study developed between 1 and 12 prediction models, the results presented in
Table 1 concern the final model(s) as selected by the authors, or the model with the best
performance if no final model was suggested. The population size differed greatly between
studies and ranged from 75 to 28779 patients. A small sample size was a problem in
17/35 studies, as they had less than 10 events per candidate predictor, thus running the
substantial risk of overfitting their model.'* To assess to what extent these models are
overfit, external validation is of key importance. Before validity of these models has been
tested they should not be used in practice. For specific renal diseases the baseline was
almost always the first biopsy (and disease confirmation), providing a clear moment in time
for when to use the prognostic model or score. Models developed in general CKD, however,
rarely defined the moment in time when their prediction tool should be used, as most of
these studies enrolled prevalent CKD patients with a large range of disease severity. Only
two models developed their model on incident patients, who were included at the first
referral to a nephrologist.?® **There was some variation in outcome definitions, but for
most studies renal failure was defined as the need for renal replacement therapy (dialysis
start or kidney transplantation). Five studies used eGFR or creatinine as a proxy for kidney
failure. Two development studies used RRT start or death as a composite outcome measure.
A total of 4 studies did not report their definition of ESRD. The time-frame over which
the models predict kidney failure ranged from 6 months to 20 years and 9 studies failed
to define a prediction time-frame, presumably using the maximum study follow-up. The
specific predictors included per development study are presented in Figure 3. There is a
large amount of overlap in final predictors, with almost all studies including age, sex, eGFR
(or serum creatinine), proteinuria and histological features for [gA-nephropathy tools.
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patiént characteristics comorbidities laboratory variables
General CKD
Cheng, 2017 X X | X X X X X,
Schroeder, 2017| X X X X X X X X X
Hsu,2016f X X X X X | X X X X
Tangri, 2016 AJKD| X X X X X X X X
Xie, 2016| X X X X X
Marks, 2015 X X X X
Maziarz, 2015 X X X X X
Levin, 2014 X X X X X X X
Maziarz, 2014| X X X X X
Drawz, 2013| X X X X X X
Smith, 2013 X X X X,
Tangri, 2011 4v model| X X X X
Tangri, 2011 8v model| X X X X X X X X
Landray, 2010 X X X X
Johnson, 2008| X X X X X X
Johnson, 2007| X X X X X X
Dimitrov, 2003 X X X X
Specified Renal Disease
Bidadkosh, 2017| X X X X X X Xy
Tang, 2017 X Xs| X
Barbour, 2016 X Xa| X X
Li, 2016 X X X,
Pesce, 2016| X X X X X X
Diciolla, 2015 X X X X X X
Hoshino, 2015| X X X X
Tanaka, 2013 X3 | X X
Xie, 2012 X X X X
Berthoux, 2011 X X X
Desai,2011f X X X X, Xs X X X X X
Day, 2010 X X
Goto, 2009] X X X X X X X X
Kent,2007| X X X X X
Keane, 2006 X X X X
Magistroni, 2006 X X X X
Wakai, 2006 X X X X X X X X
Frimat, 1997 X X X
Beukhof 1986| X X X X,

Figure 3: predictors included in development studies (N=35). The inclusion of a predictor is shown
as “X”. The subscriptunder X (e.g. “X,”) indicates the number of predictors included from that category.

Concerning the reporting of performance measures, discrimination measures were
reported far more often than calibration measures. Discrimination in the form of a
C-statistic was reported in 28/35 studies. The C-statistic ranged from 0.72 to 0.96 and
was generally high, indicating good to excellent discrimination in most studies. Calibration
was presented far less frequently, with only 11 studies presenting a calibration plot, bar
chartor test.

In order to calculate an individual’s risk, the model constant and HRs/regression
coefficients per predictor are needed. Many studies only presented HRs per predictor
without the constant (intercept or baseline hazard value), and some gave no data on the
model equation at all. The full formula for the developed model was presented in only 6/35
studies. Just 3 studies provided a web-calculator for easy use of which two web-calculators
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are no longer in working order. A total of 13 studies provided a simplified scoring system.

In total 25 final models were validated in some form, either internally and/or externally.

Cross-validation, bootstrapping and random split sample were the most used forms of

internal validation.

Characteristics of external validation
studies

A total of 17 studies externally validated one
or more of the developed prediction tools, the
characteristics of these models and validations
can be found in Table 2. Most validation
studies were performed by the same group of
researchers who developed the models, and
often presented in the same publication as the
development. Compared to the development
performance, the C-statistic was lower in 68%
of the validations. Two studies updated the
validated model by recalibrating the baseline
hazard and two studies added predictors to the
existing model. In total 5 risk scores predicting
prognosis in IgA-nephropathy patients and 7
prognostic tools for general CKD patients were
externally validated. Only the Absolute Renal
Risk (ARR) score, Goto score and Kidney Failure
Risk Equation (KFRE) (3, 4 & 8-variable) were
validated multiple times. The largest validation
study of the KFRE was performed by Tangri et
al. '8, and summarized the validation of the KFRE
in more than 30 countries including over half a

million patients.

Risk of bias

Risk of bias was assessed in all 42 included
studies, using signalling questions from the
PROBAST specified to detecting methodological
flaws in both development and validation
prediction studies. Overall, the risk of bias was
high, as can be seen in Figure 4a and b. Forty-one
out of 42 studies received a high bias risk in at
least 1 of the 5 domains, the only study with an
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Figure 4a: Risk of bias and usability of
prediction models (N=42). Assessed using
the PROBAST. The five risk of bias domains
were evaluated as low risk (+), unclear risk
(?), or high risk (-). Usability was evaluated
asyes (+) orno (-).
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overall low risk of bias was by Schroeder et al.?® The majority of studies had a high risk of
bias in the domain sample size and missing data. This was often due to the use of complete-
case analysis, which is generally an inappropriate method of handling missing data. A small
sample size was a frequent problem limiting model usage, as a small sample often results
in an over-fit model and thereby biased results. In the domain statistical analysis 83% of
studies had a high risk of bias. The largest reason was incomplete reporting of performance
measures as few studies reported sufficient calibration results. Also, many studies did not
correct their model for overfitting through internal validation. The usability of the model
was assessed in a separate domain. If the full model formula, a calculator or a risk score
with absolute risk table was available the tool was considered usable. Less than half the
studies (48%) presented enough detail for the use of their prediction tool in practice. The
usable models that specified a prediction time-frame are presented in Figure 5, categorized
by type of patient population and outcome. This figure may be employed as selection guide
when wanting to calculate an individuals’ prognosis, taking into account that many of the
models have significant shortcomings and may not be ready for use in clinic.

Study participants
Predictors

Outcome

Sample size and missing data

Statistical analysis

Usability

0% 25% 50% 75% 100%

B Low risk of bias  OUnclearrisk of bias B High risk of bias

Figure 4b: PROBAST risk of bias summary for all studies (N=42).
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Discussion

This systematic review provides an overview of all development and validation studies
of predictive models for progression of CKD to kidney failure. Since the last reviews on
this topic, the number of publications has more than doubled.? Most included studies
report high model performance measures, implying that calculating an individual’s risk
of renal failure with high accuracy is attainable. This is further emphasized by the similar
predictors included in various models. There were, however, substantial shortcomings
in many publications. As in many medical prediction studies, etiological and prediction
goals were often confused, limiting interpretability and applicability.”?® Firstly, more than
half the tools provided insufficient details to calculate an individual’s prognosis of kidney
failure, rendering it useless to its intended purpose. Secondly, the clinical relevance of many
models is limited due to the selection of derivation population. Thirdly, a high risk of bias
was observed across studies, mainly due to high risk of overfitting, inadequate handling
of missing data and incomplete reporting of performance measures. Fourthly, sufficient
validation was largely lacking, increasing research waste and limiting reliability of models.
And finally, not a single impact study on the effect of clinical uptake has been performed. It
is, therefore, not surprising that clinical uptake of models remains sporadic and guidelines
on which model to use are lacking.

Providing absolute evidence for the single ‘best’ prognostic tool to use is complicated by
differences between studies, mainly concerning varying study populations, use of different
prediction baselines, use of varying time-frames and multiple outcome definitions. A
selection guide including all usable models is presented, that may assist clinicians and
patients in choosing the tool appropriate to their setting (Figure 5). There are many factors
to take into account when selecting the most appropriate model, depending on the user’s
wishes and specific clinical setting. Users should be wary of overfitting in models developed
on small sample size studies and we would advise against use of these models, unless
validated in a sufficiently large sample. Based on our results we would advise the use
of a tool with an overall low risk of bias, which has shown good performance in external
validation in a similar population to the population in which use is intended, and ideally
has been assessed in an impact study.

For kidney failure prediction in a general CKD cohort with stage 3-5 patients, we would
recommend the 4- or 8-variable KFRE, as it has been externally validated extensively for
a time-frame of 2 and 5 years. Though the development study potentially introduced bias
by selecting predictors that were recorded up to 365 days after prediction baseline and
by using univariate analysis to select predictors, the model has shown consistently good
performance in CKD stage 3-5 patients from less-biased external validation studies.’®2*
Alternatively, for 5 year predictions the KPNW model as updated and externally validated
by Schroeder also has great potential, mainly due to its methodological rigor and low risk
of bias, though it is less easy to use than the KFRE.? Various other general CKD models
showed promising results in development, but should be further externally validated to
ensure consistency of performance before clinical use. 22728 For prediction of disease
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progression in IgA-nephropathy patients, a large number of models are available. These
models, however, were generally developed on a small sample size and often had a high
risk of bias. The most evidence on validity was found for the risk scores developed by Goto
et al and the ARR (by Berthoux).??3° The Goto score does contain some risk of bias due to
a complete-case analysis and univariate selection of predictors, but was developed on a
relatively large sample size and has been externally validated twice. Though the ARR score
was developed using questionable model building methods and with incomplete reporting
of performance, this score has been externally validated the most times and a recently
updated version presented by Knoop et al. shows great potential.?!

Clinical relevance proved to be largely lacking for many of the included models in the
current review. Specifically models for general CKD patients were often developed on
prevalent patients with a large range of disease severity, and did not specify a specific time-
point when the model should be used. Prediction of renal failure can be extremely accurate
when using a population with GFR’s ranging from 10 to 60 ml/min/1.73m/1.73m?. However,
in practice, such tools would probably be employed for a more homogeneous group of
patients in which it is clinically relevant to discuss prognosis. The predictive capacities of
the model would be lower in such a population. This is exemplified in the KFRE validation
performed by Peeters et al., where the AUC of the 4-variable KFRE dramatically decreased
from 0.88 in the whole population (CKD stage 3-5) to 0.71 in the more relevant population
of CKD stage 4 patients.’” Another factor limiting usability and interpretability is that a
number of studies didn’t define a prediction time-frame. Finally, the definition of outcome
differs between studies. The use of composite endpoints is particularly problematic, as it
limits the value of the model for clinicians, as each separate endpoint requires different
interventions. In conclusion, an ideal model is developed for one clearly defined clinically
meaningful and objective endpoint in a population for which prediction is clinically
relevant. Few models included in this review met these recommendations and this lack of
clinical relevance could be a large contributor to the slow uptake seen in practice.

Despite the limited uptake and discussed shortcomings of existing tools, risk prediction
models for kidney failure have a large potential for improving patients’ decision making,
treatment and overall health. In future studies, there is need for improvement of quality
of reporting and used methodology. As the majority of models included had a high risk of
bias, these models should not be implemented unless their validity is proven in unbiased
external validation studies. Hopefully, efforts such as the TRIPOD guidelines will improve
these inadequacies and result in more robust, usable and unbiased prognostic tools.’
To limit research waste and improve clinical uptake, it is firstly of crucial importance
that development studies provide enough model information (formula/score with
absolute risk table) to enable use. For specific renal diseases and homogenous patient
populations, there certainly appears to be space for improvement in model development.
For populations in which multiple models are available, we advise that future research
focusses on the updating, validation and implementation of these existing prognostic
tools. Previous studies have shown that the combination of well-established clinical risk
factors and kidney disease markers can accurately predict renal failure in a general CKD

124



Systematic review of kidney failure prediction tools

population. Therefore, one might advise to focus resources on updating models for more
clinically relevant populations in an unbiased fashion. To do so, comprehensive validation
of multiple models in different settings is key. Additionally, translation of mathematical
model formulas to simple tools such as web-calculators, and enabling automated uptake
is of great importance for integration into daily clinical routine. Ultimately, impact
studies will be necessary to determine whether the implementation of such tools truly
improve patient outcomes. Ideally such impact studies would be randomized controlled
trials and would assess the effect of implementing a prediction model in clinical practice.
Different outcomes might be considered as end-points in such studies, partly dependent
on the time of prediction. Relevant outcomes might be timely referral to nephrologists,
timely placement of vascular access, better informed patients, improved quality of life and
possibly even improved survival.

The current review has a number of strengths. First of all, we expect to have included
a complete overview of existing models. Furthermore, this is the first study on kidney
failure models to perform a formal risk of bias assessment aimed specifically at prediction
research. The study is limited by the inclusion of only English language articles. Also, the
differences in case-mix and characteristics of included studies makes it difficult to directly
compare their performances. Herein we are limited by the lack of validation studies that
compare multiple models in the same cohort. Finally, we limited the scope of this review to
models predicting kidney failure, though other outcomes such as death or cardiovascular
events may also have significant clinical value.

In conclusion, this study provides a systematic overview of existing models for
predicting progression to kidney failure in CKD patients. The results may be used as a
tool to select the most appropriate and robust prognostic model for various settings.
Finally, we hope the current review motivates researchers in this field to decrease the
generation of new models and combine efforts to explore, analyse and update existing
models in clinically relevant settings, in order to ultimately stimulate clinical uptake and
improve patient outcomes.
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Supplemental Material for Chapter 6

Search strategies used on December 315 2017.
PubMed:

("ESRD”[ti] OR "ESKD”[ti] OR ((end stage*[ti] OR endstage*[ti]) AND ("renal”[ti] OR
kidney*[ti])) OR "Kidney Failure, Chronic”[majr] OR ”"Chronic Kidney Failure”[ti] OR
"Chronic Renal Failure”[ti] OR "Renal Insufficiency, Chronic”[majr] OR “chronic Renal
Insufficiency”[ti] OR "chronic kidney Insufficiency”[ti] OR "CKD”[ti] OR "chronic kidney
disease”[ti] OR "chronic kidney diseases”[ti] OR nephropath*[ti]) AND ("predictive
model”[ti] OR "predictive models”[ti] OR predictive model*[ti] OR "prediction model”[ti]
OR "prediction models”[ti] OR prediction model*[ti] OR "prediction rule”[ti] OR "prediction
rules”[ti] OR "predictive rule”[ti] OR "predictive rules”[ti] OR "prognostic model”[ti] OR
"prognostic models”[ti] OR prognostic model*[ti] OR "risk score”[ti] OR "risk scores”[ti]
OR "score”[ti] OR "scoring”[ti] OR "predictive”[ti] OR "predicting”[ti] OR "predict” [ti] OR
"predicts” [ti] OR "prediction”[ti] OR "Risk Assessment”[Majr] OR "risk assessment”[ti] OR
"risk assessments”[ti]) AND English[lang]

Embase:

("ESRD”.ti. OR "ESKD"”.ti. OR ((end stage*.ti. OR endstage*.ti.) AND (“renal”.ti. OR kidney*.
ti.)) OR exp *chronic kidney failure/ OR ”"Chronic Kidney Failure”.ti. OR "Chronic Renal
Failure”.ti. OR "chronic Renal Insufficiency”.ti. OR "chronic kidney Insufficiency”.ti. OR
"CKD”.ti. OR "chronic kidney disease”.ti. OR "chronic kidney diseases”.ti. OR nephropath*.
ti.) AND ("predictive model”.ti. OR "predictive models”.ti. OR predictive model*.ti. OR
"prediction model”.ti. OR "prediction models”.ti. OR prediction model*.ti. OR "prediction
rule”.ti. OR "prediction rules”.ti. OR "predictive rule”.ti. OR "predictive rules”.ti. OR
"prognostic model”.ti. OR "prognostic models”.ti. OR prognostic model*.ti. OR "risk score”.
ti. OR "risk scores”.ti. OR "score”.ti. OR "scoring”.ti. OR "predictive”.ti. OR "predicting”.ti.
OR "predict” .ti. OR "predicts” .ti. OR "prediction”.ti. OR exp *”Risk Assessment”/ OR "risk
assessment”.ti. OR "risk assessments”.ti.) AND English.lg. NOT (conference OR conference
abstract OR conference paper OR “conference review”).pt.
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