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CHAPTER 5

Abstract

Background. External validation of prognostic models is necessary to assess the accuracy 
and generalizability of the model to new patients. If models are validated in a setting where 
competing events occur, these competing risks should be accounted for when comparing 
predicted risks to observed outcomes.

Methods. We discuss existing measures of calibration and discrimination which 
incorporate competing events for time-to-event models. These methods are illustrated 
using a clinical data-example concerning the prediction of kidney failure in a population 
with advanced chronic kidney disease (CKD), using the guideline-recommended Kidney 
Failure Risk Equation (KFRE). The KFRE was developed using Cox regression in a diverse 
population of CKD patients and has been proposed for use in patients with advanced CKD 
in whom death is a frequent competing event.

Results. When validating the 5-year KFRE with methods that account for competing events, 
it becomes apparent that the 5-year KFRE considerably overestimates the real-world risk 
of kidney failure. The absolute overestimation was 10 percentage points on average and 
29 percentage points in older high-risk patients.

Conclusion. It is crucial that competing events are accounted for during external validation 
to provide a more reliable assessment of a model’s performance in clinical settings where 
competing risks occur.
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Glossary 

Prediction horizon The specified time period over which predictions are made, in our clinical 
validation this is 2 and 5 years.

Event of interest The primary event that is being predicted, in our clinical validation study 
this is kidney failure.

Competing event Any events that may preclude the primary event from happening, in this 
case death without kidney failure.

Absolute risk The cumulative risk of the event of interest within the prediction horizon, 
given that patients may be censored and patients with a competing event 
will not experience the event of interest. This risk is also referred to as 
real-world risk, actual risk, crude risk or cumulative incidence. It can 
be calculated through a non-parametric cumulative incidence functions 
which is also termed Aalen-Johansen estimator.

Predicted risk The risk predictions (output) from a prediction model over the specified 
prediction-horizon. In this study we assume the predicted risks are 
available, calculated from an existing model. The accuracy and precision 
of these predicted risks is evaluated in external validation.

Observed 
probability

The observed rate of the event of interest in the validation cohort, which is 
compared to the predicted risk. If there is no censoring and no competing 
events this is the proportion of patients who experience the primary 
event. If competing risks and censoring are present and the researcher 
wants to account for this, the observed probability for a group is the same 
as the absolute risk (detailed above).

“Accounting for 
competing events”

The use of methods that allow patients to fail from competing events. 
These patients are retained in the dataset but dealt with using 
assumptions in a way that precludes them from experiencing the 
event of interest after the competing event, thereby differing from the 
assumptions for patients censored due to loss to follow-up or other 
reasons.

“Ignoring competing 
events”

Using statistical methods with inappropriate assumptions concerning 
competing events, most often by assuming no competing risks or that 
competing risks could be eliminated.

5
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CHAPTER 5

1. Introduction

Prognostic models have rapidly become an integral part of medical practice. As clinical care 
moves towards individualized monitoring, decision-making, and treatment, it is imperative 
to collect information on an individual’s risk profile and many prognostic models have 
been developed.(1-3) External validation of prognostic models is a crucial step to assess 
the accuracy and generalizability of the model but may present various methodological 
challenges including the occurrence of competing events.(4)

Competing events prohibit patients from experiencing the prognostic outcome of 
interest, and often occur when studying high-risk interventions, long prediction-horizons, 
or cause-specific mortality. For instance, the prediction of kidney failure in patients with 
advanced chronic kidney disease (CKD) is complicated due to patients dying from other 
causes before they can develop kidney failure. A conventional time-to-event regression 
model (such as a standard Cox model) that predicts an individual’s risk of kidney failure 
would censor all patients with incomplete follow-up in the same manner, including patients 
with competing events (death). Such a model would therefore overestimate the absolute 
risk of kidney failure.(5-7) The overestimation of risks due to unaccounted competing 
events can result in counterintuitive and misleading prognostication. For instance, in a 
population with kidney failure, the 5-year risk of cardiovascular death and the 5-year risk 
of non-cardiovascular death sum to 107% when calculated separately without correctly 
accounting for competing events.(8) The calculated probabilities are hypothetical risks 
assuming no patient dies from the other cause. Though there are exceptions, ‘the risk 
assuming no occurrence of death’ ordinarily has little clinical relevance. In this study, we 
thus assume that researchers aim to estimate the absolute risk of prognostic outcomes in 
a real world setting in which competing events occur.

The importance of using appropriate competing risk modelling techniques (such as 
Fine & Gray subdistribution regression models or combined cause-specific Cox models) 
for prognostic model development is increasingly recognized.(6, 9-16) Nevertheless, most 
clinical time-to-event prognostic tools are developed using conventional regression models.
(9, 17, 18) Therefore, it is important to recognize that the influence of competing events can 
also be evaluated during external validation, as will be illustrated in this article. By doing 
so, existing time-to-event models can be validated in settings in which competing events 
may be more or less frequent than the development setting. This paper was inspired by a 
recent publication from our research group in which existing kidney failure models were 
validated while accounting for the competing risk of death.(19) In this process many lessons 
on involved statistics and interpretation of results were learnt which we hope to share.

The aim of this paper is to draw attention to the importance of externally validating 
time-to-event prognostic models in a manner that appropriately accounts for competing 
events. First, we concisely discuss the technicalities of assessing performance measures in 
a competing risk setting. Secondly, we provide a real-data example in which we externally 
validate an existing prognostic model of kidney failure in patients with advanced CKD. This 
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example illustrates the effects of competing events on measures of prognostic performance 
and details how such analyses can shift clinical conclusions considerably.

2. Predictive performance at external validation

In this paper we assume that the time-to-event model of interest has already been 
developed and may or may not have accounted for competing risks. Secondly, we assume 
that the aim is to validate this model in a setting in which competing events occur, and 
that clinicians and patients want individualised absolute risk predictions that reflect this. 
Finally, we assume a specified prediction-horizon for which validation is of interest.

External validation of a prognostic model assesses the accuracy of predictions made by 
the model in individuals that were not used to develop the model.(20) Important elements 
of prognostic model performance are assessed by comparing how well the predicted 
risks agree with the observed outcomes (calibration) and how well predictions separate 
patients who will and will not experience the outcome of interest (discrimination). We 
now discuss existing measures of calibration and discrimination which incorporate 
competing events for time-to-event models. The supplementary material includes a more 
in-depth explanation on these various methods and we have provided a GitHub repository 
(in collaboration with authors from a STRATOS initiative guidance paper) with available 
R-code on how to validate a competing risk model.

Calibration

Calibration of predicted and observed outcomes can be assessed through calibration-in-
the-large (overall calibration) and visualised using calibration plots.(21) When dealing 
with competing events it is key that the observed probability is calculated in a way that 
accurately accounts for the competing events and thereby represents the absolute risk of 
the event of interest.

Calibration-in-the-large can be assessed by comparing the average predicted risk for 
the outcome to the observed probability at the prediction horizon. Dividing the observed 
probability by the average predicted probability gives the O/E ratio. The average predicted 
risk is known, since we assume all individual predicted risks according to the existing 
prediction model are given. In the case of censoring, the non-parametric Kaplan-Meier 
estimator is often used to calculate the observed probability. However, in the presence 
of competing events, the KM estimate will overestimate the absolute risk of the event of 
interest.(8, 22) A more appropriate method to calculate the observed outcome probability 
in the presence of competing events is the non-parametric cumulative incidence function 
(CIF).(23) Calculating the CIF is similar to using the KM method, but quantifies the risk 
for the event of interest and competing events; all of which increase over time. Using 
the CIF, patients who experience a competing event are no longer at risk of experiencing 
the outcome of interest, and the probability of the outcome of interest is scaled by the 

5
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cumulative probability of experiencing any event. No assumptions are needed on the 
independence of competing events and the outcome.(6, 8)

In calibration plots, the predicted and observed outcome probabilities are plotted 
against each other to visualize their agreement. Often the cohort is divided into subgroups 
based on quantiles of predicted risks. The average predicted and observed outcome 
probabilities for each subgroup can be computed (accounting for competing events as 
described above) and plotted. This approach has been criticized as the categorization 
is arbitrary and can lead to loss of precision and misleading results.(24) It is therefore 
recommended to include a smoothed curve in the calibration plot. In the presence of 
censoring this smoothed curve is often based on pseudo-values. In the presence of 
competing events, this smoothed curve can be obtained using pseudo-values, as described 
by Gerds et al.(25) By using these pseudo-values which are based on cumulative incidence 
estimates, the model calibration is estimated over the full range of predicted probabilities.

Discrimination

Discrimination examines the model’s ability to distinguish between those who will 
experience the outcome of interest from those who will not and is based on the ranked 
order of predicted risks.(26) For survival data, Harrell’s C-index is the most frequently 
reported measure of discrimination, which is the proportion of all examinable pairs in 
which the individual with the highest predicted risk is observed to experience the outcome 
sooner than the other individual.(24) A C-index of 1 is perfect discrimination and 0.5 is 
equivalent to chance. Censored patients are treated as if they might still experience the 
outcome in the future which is an incorrect assumption in the case of censoring due to a 
competing event.(27)

In the presence of competing events, various methods to calculate a C-index are 
available, some of which are referenced.(11, 13, 28) In the case of complete outcome data 
(no or very few patients are lost to follow-up), a simple adaptation of Harrell’s C-index 
as proposed by Wolbers et al. can be employed.(11) Instead of censoring patients who 
experience a competing event, these patients are retained in the risk set whilst setting their 
follow-up time to infinity (or the prediction horizon), thus indicating that they will never 
experience the event of interest. In the case of only administrative censoring, also termed 
‘censoring complete’, an adaptation of the Wolbers’ approach can be used in which patients 
with the competing event are censored at the administrative censoring date (instead of 
infinity).(29, 30) In the case of informative censoring more suitable methods are available; 
some of which have been adapted for competing risks settings, using inverse probability of 
censoring weighting (IPCW).(13, 28, 31, 32) In IPCW a pseudo-population that would have 
been observed if no censoring occurred, is created. This pseudo-population contains only 
patients who are followed until they experience either the event of interest, a competing 
event or the end of follow-up. This is done by upweighting patients who are similar to 
censored patients but remain in the study (under the assumptions of exchangeability, 
consistency and positivity). Royston and Sauerbrei’s D statistic is a measure of prognostic 
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separation.(33) It can be interpreted as the coefficient (log hazard ratio) for comparing 
two equal-sized prognostic groups, created by dichotomizing the model’s linear predictor 
estimates in the cohort at the median value.(34) Higher values of the D statistic represent 
greater separation between the survival curves for these prognostic groups. To calculate 
the D statistic in an external validation study, the linear predictors (for each individual) 
from the prognostic model are ranked and scaled. The scaled ordering of the linear 
predictors is then entered in a new regression model with the event of interest as the 
outcome; the resulting regression coefficient is the D statistic. In an external validation of a 
time-to-event model, the scaled linear predictor values are generally entered into a new Cox 
model. To adapt this measure to a setting with competing events in an external validation, 
the Cox model can be replaced by a Fine & Gray regression model.(35) The D statistic can 
be transformed to the proportion of explained variation: R2

D.(36) This measure indicates 
how much of the observed variation in the outcome is explained by the prognostic model.

3.  Real-data illustration: predicting kidney failure in  
advanced chronic kidney disease patients from the  
Swedish Renal Registry

Rationale

Predicting kidney failure in advanced CKD patients is of interest for timely preparation 
of dialysis and transplantation, adequate monitoring of patients, possible referral back to 
primary care and informing patients of their likely prognosis. As the rate of progression to 
kidney failure highly varies between individuals, prognostic models have been proposed 
for use in clinical practice. The Kidney Failure Risk Equation (KFRE) is a prognostic model 
that was developed to predict kidney failure in patients with CKD stage 3-5 who were 
referred to a nephrologist.(32) It was later externally validated and updated in a large 
meta-analysis and is recommended for use in international medical guidelines.(37-39)

Cox proportional hazards models were used in KFRE model development and external 
validation studies, meaning patients who died before experiencing kidney failure were 
censored.(32, 39-43) This means the predicted outcome is the risk of kidney failure in a 
setting in which patients are prevented from dying at least until kidney failure occurs. This 
risk is, however, not defined as such in the study. Instead, the predicted risk is presented as 
the absolute risk of kidney failure which is more clinically relevant and conducive towards 
medical decision making. In the KFRE development study, the use of a competing risk model 
was explored as sensitivity analysis, but not published as the predicted risks were deemed 
similar to those from the Cox model.

In this clinical illustration the aim is to externally validate the KFRE in two ways, 
first using methods that are fitting for a Cox prediction model and treat patients with a 
competing event the same as any other censored patient (similar to the development study). 

5
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Secondly, we will use methods described previously to account for competing events in 
order to validate how well the KFRE predicts the real-world risk of kidney failure.

Methods

The KFRE includes the four following predictors: age, sex, eGFR and urine albumin-to-
creatinine ratio. The outcome kidney failure is defined by the initiation of dialysis or 
kidney transplantation within 2 or 5 years. The full prediction formulas are provided in 
the development studies and are also shown in our supplement.

Patients were included from the Swedish Renal Registry (SRR), an ongoing registry of 
chronic kidney disease patients capturing 98% of the nephrology clinics in Sweden.(44, 
45) Patients who entered the registry between January 1st 2012 and June 30th 2018 were 
included. The analysis was restricted to patients aged 18 years or older with an estimated 
glomerular filtration rate (eGFR) between 8 and 30 ml/min/1.73m2. The eGFR is a measure 
of kidney function; below 30 indicates advanced CKD. Time zero (moment of prediction) 
was inclusion in the SRR which is generally the first referral to a nephrologist.

Results

In total, 13,489 patients were included in our analysis of whom 1,818 (13%) developed 
kidney failure (the outcome of interest) within 2 years and 2,764 (20%) within 5 years. 
Slightly more patients died without experiencing kidney failure; 2,158 (16%) within 2 
years and 3,357 (25%) within 5 years. No patients were lost to follow-up. All patients were 
administratively censored on June 30th 2018. The median follow-up was 1.7 years and the 
maximum 6.7 years. In total, 3,548 patients (26%) were administratively censored within 
2 years and 6,410 patients (48%) within 5 years. For each individual, the predicted 2 and 
5-year risks were calculated using the KFRE formulae. Missing predictors were imputed 
using the R-package mice.(46) For the illustrative purposes of this article we used a single 
imputed dataset for all analyses, more information on the imputation and baseline data is 
shown in the supplemental material.

The difference between observed outcome probabilities of kidney failure, death, and 
event-free survival, calculated using the KM and CIF methods, are shown in a stacked 
histogram (Figure 1) and in cumulative incidence curves (Figure 2). At two years, the KM 
risk for death and kidney failure are both 2 percentage points higher than when calculated 
with the CIF, resulting in a total risk of 104%. At 5 years, the sum of the risks using KM 
increases to 120%. Risks based on the CIF method always sum to 100%.
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Figure 1: Differences between KM and CIF estimates of the observed outcome probabilities in 
the presence of competing events. 

Figure 2: One minus Kaplan-Meier curves and cumulative incidence curves of the observed 
outcome probabilities in the SRR for kidney failure and Death. For illustrative purposes patients 
who experienced kidney failure were censored or regarded as competing event in the lower plot.

5
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To assess the calibration-in-the-large, the observed kidney failure outcome probabilities 
based on KM and CIF were compared to the model’s average predicted risk of kidney failure 
(Table 1). The 2-year KM and 5-year KM outcome probabilities are both similar to the 
average predicted probability. When we consider the competing risk of death using the 
CIF, the observed 2-year probability of kidney failure is slightly lower but still similar to 
the model’s average predicted risk with an O/E of 0.94 (95% CI: 0.91-0.98). The 5-year 
observed probability however is almost 10 percentage points lower than the predicted 
risk, with a corresponding O/E of 0.76 (95% CI: 0.74-0.78). Similar results are seen in 
the calibration plot using KM and CIF. In Figure 3a, the 2-year calibration curves for both 
methods are quite similar. In Figure 3b, the calibration plot for the 5-year KFRE is shown. 
When calculating observed probability with the standard KM method, calibration appears 
to be excellent. However, when we take the competing risk of death into account, the KFRE 
appears to considerably overpredict the actual proportion of patients with kidney failure, 
particularly in high-risk patients. Out of the tenth of patients with an average predicted 
5-year kidney failure risk of 81%, only 58% (95% CI: 56%-61%) experienced kidney failure.

For model discrimination, the differences are less pronounced between accounting 
for competing risks or not (Table 1). When patients who die are censored, the standard 
Harrell’s C-index is 0.829 for the 5-year KFRE. When these patients are no longer censored 
but set to the follow-up time they would have had if administratively censored (to indicate 
that patients who die will not experience kidney failure), the C-index is slightly lower: 
0.814. The D statistic and explained variance also reflect that when competing risks are 
accounted for, the 5-year discrimination is slightly lower (Table 1).

Table 1: Calibration and discrimination results for external validation of the 2 and 5-year 
KFRE, in the entire validation cohort (n=13489). The external validation was performed in 
two manners, first by ignoring the competing risk of death by censoring these patients and using 
KM-estimates. Secondly, we validated the models whilst taking account of competing risks in all 
performance measures.

KFRE 2-year model KFRE 5-year model

Ignoring 
competing events 
by censoring

Taking 
competing events 
into account

Ignoring 
competing events 
by censoring

Taking 
competing events 
into account

Average predicted 
risk

17% 17% 41% 41%

Average observed 
probability (95% CI)

18% (17%-19%) 16% (15%-17%) 41% (40%-42%) 31% (30%-32%)

O/E ratio 1.06 (1.02-1.10) 0.94 (0.91-0.98) 1.00 (0.98-1.02) 0.76 (0.74-0.78)

C-index (95% CI) 0.840 (0.831-0.849) 0.834 (0.825-0.843) 0.829 (0.821-0.837) 0.814 (0.806-0.822)

D statistic (95% CI) 2.34 (2.25-2.42) 2.32 (2.20-2.43) 2.13 (2.06-2.19) 2.04 (1.95-2.14)

R2
D 57% 56% 52% 50%

Abbreviations: KFRE: kidney failure risk equation, O/E: observed/expected, CI: confidence interval
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Figure 3a (left) and b (right): Calibration plots for external validation of the 2 and 5-year KFRE. 
The external validation was performed by using KM-estimates (ignoring competing risks) and 
by using a competing risks approach. The competing risks approach (green points and line) 
represents the model performance for the absolute kidney failure risk in a setting in which 
patients may die.

As death without kidney failure is more frequent in older CKD patients, we also validated 
the KFRE in a subgroup of patients who were 70 years or older (n=8654). These patients 
had a higher risk of death; 1064 patients (12%) experienced kidney failure within 5 years, 
whilst 2847 patients (33%) died without kidney failure. The median follow-up time was 
1.7 years and the maximum follow-up time 6.5 years. All analyses were repeated in this 
subgroup and these results are shown in Table 2 and Figure 4. Overall, the differences 
between ignoring competing events and accounting for them are even more pronounced 
in this high-risk subgroup. These differences are larger for the 5-year model, and more 
apparent in measures of calibration than discrimination. For the 5-year model the O/E is 
0.84 (95% CI: 0.81-0.87) when ignoring competing events and 0.57 (95% CI: 0.54-0.59) 
when accounting for them. The 10% of patients with the highest predicted 5-year risk (most 
right data-point in Figure 4b) have an average predicted risk of 89%. Without considering 
the competing risk of death, 81% (95% CI: 78%-83%) of them are expected to experience 
kidney failure. However, when accounting for competing events, we observe that only 52% 
(95% CI: 48%-55%) of these patients actually experience kidney failure.

5
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Table 2: Calibration and discrimination results for external validation of the 2 and 5-year 
KFRE, in a subset of patients aged 70+ years (n=8654). The external validation was performed 
in two manners, first by ignoring the competing risk of death by censoring these patients and using 
KM-estimates. Secondly, we validated the models whilst taking account of competing risks in all 
performance measures.

KFRE 2-year model KFRE 5-year model

Ignoring 
competing events 
by censoring

Taking 
competing events 
into account

Ignoring 
competing events 
by censoring

Taking 
competing events 
into account

Average predicted risk 13% 13% 34% 34%

Average observed 
probability (95% CI)

11%
(11%-12%)

10%
(9%-10%)

28%
(27%-29%)

19%
 (18%-20%)

O/E ratio
(95% CI)

0.91
(0.86-0.96)

0.78
(0.73-0.83)

0.84
(0.81-0.87)

0.57
(0.54-0.59)

C-index
(95% CI)

0.826
(0.810-0.841)

0.813
(0.797-0.828)

0.817
(0.803-0.830)

0.791
(0.778-0.805)

D statistic
(95% CI)

2.23
(2.10-2.36)

2.04
(1.90-2.17)

2.09
(1.98-2.20)

1.75
(1.63-1.86)

R2
D 54.3% 49.8% 51.1% 42.1%

Abbreviations: KFRE: kidney failure risk equation, O/E: observed/expected, CI: confidence interval

Figure 4a (left) and b (right): Calibration plots for external validation of the 2 and 5-year KFRE in 
a subset of older patients. The external validation was performed by using KM-estimates (ignoring 
competing risks) and by using a competing risks approach. The competing risks approach (green 
points and line) represents the model performance for the absolute kidney failure risk in a setting 
in which patients may die.
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Conclusions

From the external validation of the KFRE in which we have taken the competing risk of 
death into account, we conclude that the 2-year KFRE adequately predicts the absolute 
risk of kidney failure in patients with advanced CKD. However, if we wish to interpret 
the kidney failure risk as kidney failure in a real-world setting with competing events, 
the 5-year KFRE is poorly calibrated and considerably overestimates the absolute risk of 
kidney failure. This overprediction is more pronounced in older patients. The difference 
between performance of the 2 and 5-year model can be attributed to a lower number of 
patients dying without kidney failure within 2-years. If clinicians interpret the 5-year 
KFRE estimate as the absolute kidney failure risk (instead of the hypothetical risk given 
no patient can die before kidney failure), the overestimation could lead to patients being 
unnecessarily prepared for dialysis (which includes vascular access surgery and frequent 
hospital visits). As the four variable 5-year KFRE substantially overpredicted kidney failure 
risk when considering the competing risk of death, this model is not recommended for use 
in patients with advanced CKD. An alternative model which accounts for competing events, 
such as the 4-year Grams model is recommended instead.(47) This model has recently been 
compared head-to-head with the KFRE in an external validation study and demonstrated 
superior performance when accounting for the competing risk of death.(19)

4. Discussion

In this paper, we highlighted the importance and implications of appropriately managing 
competing events during external validation. We provided explanation and tools on existing 
measures of calibration (O/E ratio and calibration plots) and discrimination (C-index, D 
statistic and R2

D) that have been adapted to a competing risk setting.
The importance of competing event analyses has received increased attention in 

prognostic research.(6, 9-11, 17, 18) However, existing studies have mainly focussed on the 
importance of using competing risks methods in the development of prognostic models. It 
may well be that a prognostic model is developed in a setting with no or very few competing 
events, and therefore a valid representation of the absolute risk for that population. 
However, if that model is then validated in a different population in which competing events 
are more frequent, it is crucial that these competing events are appropriately managed in 
the external validation process.

The presence of competing events may influence all model performance measures, 
though in general the effect on absolute measures (calibration) is larger than on relative 
measures (discrimination). Researchers should carefully consider and select the risk 
they wish to predict; if a model censors patients that experience a competing event, the 
predicted risk is the hypothetical risk in a setting in which the competing event does not 
exist.(48) If death is the competing event, approaches that assume no competing risks will 
give a more extreme overestimation of the absolute risk in older populations and for longer 
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prediction-horizons, as shown in our data-example. This overestimation will be overlooked 
if conventional validation methods are used.

The predicted risk of prognostic models is crucial in regard to medical decision-
making. For instance, the KFRE is proposed for use in timely preparation for dialysis and 
kidney transplantation. Predicted risks that are too high, may negatively influence clinical 
treatment decisions. External validation without accounting for competing risks, may 
lead to implementation of prognostic models that surreptitiously overpredict real-world 
outcomes and consequently result in overtreatment of patients.

The current study has a number of limitations. We have not developed any novel 
statistical approaches and do not provide information on how to adapt all available 
performance measures to a competing risk setting. Particularly measures of net benefit 
and decision-curve analysis were outside the scope of the current paper. Additionally, 
further research may focus on adapted measures of the calibration slope and integrated 
calibration index to a setting with competing events.(49) Furthermore, our data-example is 
based on a single dataset and some of the observed results may be attributable to sampling 
variability. In the future, a data-simulation study in which the outcome, competing event 
and censoring prevalence is varied, may provide more insight on how model performance 
is affected in different competing risks scenarios. Although the data example focussed on 
the validation of the KFRE which was developed using a Cox prognostic model, a strength 
of the current paper is that the discussed methods are applicable to other time-to-event 
models such as (flexible) parametric models, competing risks models or machine learning 
models such as random survival forests.

In conclusion, depending on the underlying clinical question, competing events may be 
crucial to consider when externally validating time-to-event prognostic models. If an existing 
prediction model has targeted the incorrect estimand, we can expect a poorer performance 
when validating this model while accounting for competing events (and thereby adjusting 
the estimand). Such external validation studies can help determine whether such models are 
transportable to a real-life setting in which competing events occur.
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Supplemental Material for Chapter 5

Statistical details and code

A GitHub repository is available at https://github.com/survival-lumc/ValidationCompRisks. 
This GitHub page accompanies a more in depth STRATOS statistical guideline on available 
methods to validate competing risk models from our co-author Nan van Geloven. This 
STRATOS statistical guideline is still in preparation at the current time of article 
submission. The Prediction_CSC.md in depth markdown document with script provides 
R-code for the validation measures discussed in our main manuscript as detailed below.

1. Calibration-in-the-large

The O/E ratio using non-parametric cumulative incidence functions to calculate the 
observed probability is a measure of calibration-in-the-large or overall calibration. 
R-code to calculate this is shown in section 2.1.3 of the in-depth GitHub repository (in-
depth markdown document). The corresponding confidence interval can be calculated 
according to a method by Debray which is also included in the R-code.1

2. Calibration plot

For the quantiles in a calibration plot the methods detailed under calibration-in-the-large 
can be used in subgroups. For a smoothed curve a non-parametric estimation method 
has been proposed using pseudo-observations. The R-code is provided in section 2.1.1.1 
of the GitHub repository. The pseudo-observation for a particular patient is calculated 
by taking the weighted difference between the cumulative incidence estimate at the 
prediction horizon based on all patients and the same value leaving that patient out. 
This pseudo-observation is between 0 and 1 and functions as the observed probability 
for an individual patient. The advantage is that censored patients (who don’t have an 
event indicator) do have a pseudo-observation. After transforming the data into pseudo-
observations, a smooth curve of actual risks can be obtained using a nearest-neighbor 
smoother. This smoother averages the pseudo-observations within a small interval 
using a rolling bandwidth along the observed distribution of the risk estimates.2

3. C-statistic

In the case of complete outcome data, an adaptation of Harrell’s C-index as proposed 
by Wolbers et al. can be employed.3 Instead of censoring patients who experience a 
competing event, these patients are retained in the risk set whilst setting their follow-
up time to infinity (or the prediction horizon), thus indicating that they will never 
experience the event of interest. Pairs where one individual has the primary event 
(within the prediction horizon) and the other has the primary event later or experiences 
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a competing event can be compared. The R-code is provided in section 2.2.1 of the 
GitHub repository. The C-index is influenced by the censoring distribution and this is 
particularly problematic when this censoring distribution depends heavily on other 
covariates.4 When pairing cases with non-cases, Harrel’s C-index cannot evaluate a pair 
in which the non-case is censored at an earlier time-point than the case. These non-
evaluable pairs are ignored and this may induce bias.4 More appropriate methods for 
calculating the C-index in time-to-event data with independent censoring have been 
developed. Most of these methods use inverse probability censoring weights (IPCW). 
In IPCW a pseudo-population that would have been observed if each patient were a 
complete-case, is created. A complete-case is an individual that has either experienced 
the event of interest, a competing event or is still at risk at the prediction-horizon. 
Complete-case patients are weighed inversely to their probability of having their 
particular outcome. In other words, patients who were not likely to remain in follow-up 
(but did), are up-weighted. To minimize bias in an external validation study of a time-
to-event model with a considerable number of patients with dependent censoring, we 
advise to use IPCW estimates of the C-index.5

4. Royston-Sauerbrei D statistic and R2
D

R-code for Royston and Sauerbrei’s D-statistic as measure of prognostic separation and 
the R2

D can be found in section 2.2.3. To calculate this, each individual’s linear predictor 
value is ordered and the corresponding rankits (standard normal order statistics) are 
calculated and scaled by a factor  . The scaled rankits are regressed on the 
outcome using a Fine & Gray model in the case of competing events. The resulting 
regression coefficient is the D-statistic. The D-statistic can be scaled to the log relative 
hazard scale to calculate the R2

D. The D-statistic and R2
D rely on a proportional hazards 

assumption and the assumption that the underlying linear predictor values are normally 
distributed (normality assumption). 6 7

KFRE model

The KFRE Web calculator can be found at: https://kidneyfailurerisk.com/. To compute 
predicted risks, eGFR was calculated with the CKD-Epi formula. ACR is in mg/g, serum 
albumin in g/dL, phosphate in mg/dL, bicarbonate in mEq/L, calcium in mg/dL. The 
following non-North America formulas were used (as provided in the KFRE eAppendix 
2 of the meta-analysis and update paper).[43] KFRE 4 variable 2-year probability = 1 – 
0.9832 ^ exp (-0.2201 × (age/10 – 7.036) + 0.2467 × (male – 0.5642) – 0.5567 × (eGFR/5 
– 7.222) + 0.4510 × (logACR – 5.137)). KFRE 4 variable 5-year probability = 1 – 0.9365 ^ 
exp (-0.2201 × (age/10 – 7.036) + 0.2467 × (male – 0.5642) – 0.5567 × (eGFR/5 – 7.222) + 
0.4510 × (logACR – 5.137))

5
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Multiple imputation and baseline data

For the purpose of this illustration a single multiple imputation was used with 5 iterations, 
instead of multiple imputations. However, all suggested methods can be applied on multiply 
imputed data, though for calibration choices will have to be made on whether to use the 
predicted risk from one of the imputed datasets at random or combine predicted risks 
from all imputed sets for an overall mean predicted risk per individual. ACR was the 
only predictor with missing values (42%). Our single imputation included the following 
variables as predictors at time zero to impute ACR: diabetes, hypertension, cardiovascular 
disease, blood pressure, albumin, calcium, phosphate, potassium, bicarbonate, eGFR, age, 
gender, log(ACR) at 6 months, log(ACR) at 12 months, kidney failure & time to kidney failure, 
death & time to death.

Baseline table of the SRR population. Continuous baseline characteristics are presented as mean 
values with standard deviations or median values with interquartile ranges when not normally 
distributed.

Missing Total
n = 13489

No kidney 
failure within 
5 years
n=10725

Kidney failure 
within 5 years
n=2764

Age (year)
0% 74.3 (65.7-81.2) 76.0 (68.5-

82.2)
66.6 (53.8-74.2)

Sex (% male) 0% 61.3% 60.0% 66.4%

Primary Kidney Disease (%) 0%

 Diabetes mellitus 21.5% 18.8% 32.1%

 Glomerular disease 6.9% 5.4% 12.7%

 Hypertension 30.2% 32.7% 20.4%

 Other 41.4% 43.1% 34.8%

Comorbidities (%)

 Congestive heart failure 0% 21.0% 23.3% 12.1%

 Cardiovascular disease (other) 0% 21.3% 23.3% 13.5%

 Hypertension 0% 73.2% 75.0% 66.1%

 Diabetes mellitus 0% 36.4% 35.0% 41.9%

Laboratory parameters

 eGFR (MDRD) (ml/min/1.73m2) 0% 21.9 (5.7) 22.9 (5.3) 18.2 (5.6)

 ACR urine (mg/mmol) 41.8% 36 (7 - 155) 24 (5 - 101) 175 (57 - 340)

 Serum Albumin (g/L) 6.9% 36 (5.2) 37 (34 - 40) 35 (32 - 39)

 Serum Creatinine (µmol/L) 0% 227 (194-278) 232 (65) 306 (97)

 Serum Calcium (mmol/L) 13.4% 2.29 (0.29) 2.31 (0.16) 2.24 (0.18)

 Serum Phosphate (mmol/L) 9.0% 1.30 (0.29) 1.26 (0.27) 1.44 (0.32)

 Serum Bicarbonate (mmol/L) 73.4% 22 (3.4) 23 (3.4) 22 (3.2)
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Baseline table of the SRR population. Continued.

Missing Total
n = 13489

No kidney 
failure within 
5 years
n=10725

Kidney failure 
within 5 years
n=2764

 Serum Potassium (mmol/L) 54.4% 4.43 (0.55) 4.41 (0.53) 4.50 (0.59)

Clinical parameters

 Body-mass index (kg/m²) 33.5% 28.3 (6.0) 28.2 (6.0) 28.5 (6.3)

 Systolic Blood pressure (mmHg) 5.7% 141 (22) 139 (22) 147 (22)

 Diastolic Blood Pressure (mmHg) 5.8% 77 (12) 76 (12) 81 (13)

5
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