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CHAPTER 9

Abstract

Background

Gut colonization by antibiotic resistant E. coli strains, including extended-spectrum
beta-lactamase (ESBL)-producing E. coli is a risk factor for developing overt infection.
The gut microbiome can provide colonization resistance against enteropathogens, but
it remains unclear whether it confers resistance against potentially pathogenic ESBL-
producing E. coli.

Materials

From a Dutch cross-sectional population study (PIENTER-3), feces from 2751
individuals were used to culture ESBL-producing bacteria. Of these, we selected 49
samples which were positive for an ESBL-producing Escherichia coli (ESBL"), and
negative for a variety of variables known to affect microbiome composition. These were
matched in a 1:1 ratio to ESBL- samples based on age, sex, having been abroad in
the past six months and ethnicity. Shotgun metagenomic sequencing was performed
and taxonomic species composition and functional annotations (microbial metabolism
and carbohydrate-active enzymes) were determined. Targeted quantitative metabolic
profiling ("H NMR-spectroscopy) was performed to investigate metabolomic profiles.

Results

No differences in alpha or beta diversity were observed, nor in relative abundance,
between ESBL" and ESBL- individuals based on bacterial species level composition.
Machine learning approaches based on microbiota composition did not accurately predict
ESBL status (area under the receiver operating characteristic curve (AUROC)=0.53),
neither when based on functional profiles. The metabolome did also not convincingly
differ between ESBL groups as assessed by a variety of approaches, including machine
learning through random forest (AUROC=0.61).

Conclusion

Using a combination of multi-omics and machine learning approaches, we conclude that
asymptomatic gut carriage of ESBL-producing E. coli is not associated with an altered
microbiome composition or function. This may suggest that microbiome-mediated
colonization resistance against ESBL-producing E. coli is not as relevant as it is against
other enteropathogens.
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Introduction

Escherichia coli is a common gut commensal, but several strains possess virulence
factors that enable them to cause gastrointestinal, urinary and extraintestinal infections'-2.
Colonization of the gut by multidrug-resistant organisms (MDRO), including extended-
spectrum beta-lactamase (ESBL)-producing E. coli and carbapenem-resistant E. colli,
often precede infections®. The gut microbiome can mediate colonization resistance
against several enteric pathogens, but it remains unclear whether this is also the case
for MDROs such as ESBL-producing E. coli, especially since many individuals harbor
commensal E. coli. Colonization resistance can be conferred by the gut microbiome
through nutrient competition, production of antimicrobial compounds, support of gut
barrier integrity, bacteriophage deployment and through interaction with the immune
system®. However, studies in humans have reported conflicting evidence regarding
which bacterial genera or species within the gut microbiome could be of relevance in
providing colonization resistance against ESBL-producing E. coli or ESBL-producing
Enterobacterales. These conflicting results can, at least partially, be traced back to
several confounding factors (e.g. medication) in those studies®®. It was recently shown
that unevenly matched case-controls studies with regard to lifestyle and physiological
characteristics can produce spurious microbial associations with human phenotypes like
disease, or in this case, colonization by ESBL-producing E. cols’.

Here, we aimed to compare the gut microbiome and metabolome between individuals
asymptomatically colonized with an ESBL-producing E. coli (ESBL") and individuals
who are not (ESBL"), determined by culture-based and molecular approaches. To avoid
confounding factors from affecting study results, we selected samples from a large Dutch
cross-sectional population study (PIENTER-3) for which 2751 fecal samples were used to
culture ESBL-producing bacteria'®. With this high number of samples available, we could
apply stringent sample selection with regard to known confounders in microbiome studies
such as antibiotic use, proton-pump inhibitor use, a variety of diets etc. Subsequently,
we performed case control matching based on a variety of epidemiological and health
related variables. We performed extensive functional and taxonomic profiling of the gut
microbiome through metagenomics and metabolomics to investigate whether there are
differences in the gut microbiome between matched ESBL" and ESBL- individuals.

Materials and methods
Sample collection

Samples were selected from a large Dutch population-wide study (PIENTER-3)'. This
cross-sectional population study was carried out in 2016/2017, primarily designed
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to obtain insight into age-specific seroprevalence of vaccine-preventable infectious
diseases. Out of the 98 included samples for the current study, 95 were stored in the
freezer within 15 minutes after defecation, one person did not provide information on
this and two individuals took longer than one hour to store their sample in the freezer.
Samples were kept on average for 2.97 days (+2.82) (six individuals did not indicate
this information) in people’s freezer before being delivered (on cold packs) to the
mobile study team!®. Fecal samples were kept on dry ice during transport to the National
Institute for Public Health and the Environment and stored at -80°C the next day.

Detection of ESBL-producing Enterobacterales

Details of the microbiological methods have been described elsewhere (Willems RPJ,
van Dijk K, Dierikx CM, Twisk JWR, van der Klis FRM, de Greeff SC, Vandenbroucke-
Grauls CMIJE. Gastric acid suppression, lifestyle factors and intestinal carriage of
ESBL and carbapenemase-producing Enterobacterales: a nationwide population-based
study [Submitted]). Briefly, stool specimens were enriched by tryptic soy broth with
ampicillin (50 mg/L) and then cultured on selective agar plates (EbSA, Cepheid Benelux,
Apeldoorn). Next, up to five oxidase-negative morphotypes were subcultured, identified
to species level, and tested for antimicrobial susceptibility using standard procedures
(VITEK 2 system, bioMérieux, Marcy-L’Etoile, France). Antimicrobial susceptibility
was classified according to European Committee on Antimicrobial Susceptibility
Testing clinical breakpoints''. ESBL production was screened for with combination
disk diffusion and confirmed by polymerase chain reaction (PCR); PCR was performed
for the bla, ., \.»
European Committee on Antimicrobial Susceptibility Testing guidelines'.

blag,, and bla . groups'>. ESBL testing was done according to the

Sample selection

2751 fecal samples were cultured for ESBL- or CPE-producing bacteria, of which
198 samples were positive. For the purpose of our study, we selected samples positive
for ESBL-producing E. coli, resulting in 176 potential samples. Next, we applied
stringent exclusion criteria for all samples based on variables known to affect the gut
microbiome. Individuals were excluded based on the following criteria: current proton-
pump inhibitor use, antibiotic use in the last three months, diarrheal symptoms in the last
month (defined as at least three thin stools within 24 hours), vomiting in the last month,
blood in stool during the last month, abdominal pain or nausea during the last month,
use of any pre- or probiotics, consumption of a special diet (vegetarian, cow’s milk free
diet, hen’s egg protein-free diet, gluten free, nut and/or peanut-free, lactose limited diet,
diabetes-related diet, limited protein diet, limited fat and/or cholesterol diet, enrichment
of dietary fiber, caloric restriction, low in sodium, easily digestible, coloring agent-free,
enriched in energy/protein, ‘other diet’) and whether stool was stored in the freezer after
defecation (samples were excluded if not stored in the freezer). This selection resulted
in 51 ESBL* samples for inclusion, which were subsequently matched to 51 ESBL-
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samples using the R Matchlt package (v3.0.2) with the “nearest” method in the matchit
function. Subjects were matched based on age, sex, having been abroad during the last
6 months (yes/no) and ethnicity. ESBL negative samples were selected using the same
exclusion criteria. Three samples (1 ESBL- sample and 2 ESBL" samples) were further
excluded as insufficient DNA was available for sequencing. One additional sample
(ESBL") was excluded as we discovered afterwards that this individual had provided
ambiguous answers regarding dietary habits. The final dataset for analysis contained 49
individuals in each group.

DNA extraction for metagenomic shotgun sequencing

DNA was extracted by mechanical disruption (repeated bead-beating) and purified
in a Maxwell RSC instrument (Promega Benelux BV, Leiden, The Netherlands).
The Maxwell RSC Blood DNA extraction kit was according to manufacturer’s
instructions with several modifications, as follows. Fecal samples were thawed on ice
and approximately 250 mg of well-homogenized fecal material was resuspended in
S.T.A.R (stool transport and recovery buffer) buffer (Roche Diagnostics, Almere, The
Netherlands), with 0.1 mm zirconia/silica beads and 2.5 mm glass beads. The fecal
suspension was mechanically disrupted three times for one minute in a FastPrep-24
Instrument at room temperature and 5.5 oscillations, and maintained on ice after every
cycle. Samples were further heated at 95°C for 15 minutes shaking at 300 rpm, and
centrifuged for 5 minutes at full speed. Resulting supernatants (fecal lysates) were
collected and the pellet was further resuspended in an additional 350 ul of S.T.A.R.
buffer following the same procedure. Pooled fecal lysates were then transferred to the
Maxwell RSC Instrument for further purification steps. Eluted sample was cleaned-up
using the OneStep PCR Inhibitor Removal Kit (Zymo Research, Irvine, California), and
DNA was quantified using a Quantus Fluorometer (Promega Corporation, Madison, WI,
USA). Every extraction round included two negative DNA extraction controls (blank
samples with S.T.A.R. buffer without any added fecal material) and two microbial mock
communities as positive controls (ZymoBiomics Microbial Community Standards;
Zymo Research, Irvine, California, USA).

Metagenomic shotgun sequencing

Shotgun metagenomic sequencing was performed by GenomeScan B.V. (Leiden, The
Netherlands) using the NEBNext® Ultra™ II FS DNA Library Prep Kit (New England
Biolabs, Ipswich, Massachusetts, USA) and the NextSeq 500 platform (paired-end,
150bp). Two positive sequencing controls (ZymoBiomics Microbial Community DNA
Standards; Zymo Research, Irvine, California, USA) and two negative sequencing
controls (sterile water) were included. Average number of raw reads (of 98 samples and
four positive controls) is 4,747,908 (range 2,565,232 — 62,035,096) and a median of
4,142,237 paired-end reads. Raw shotgun sequencing reads were quality checked using
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the FastQC (v0.11.9) and MultiQC (v1.8) tools, both before and after cleaning files
for low-quality reads and human reads using the kneaddata (v0.7.10) tool with default
parameters.

Taxonomic and functional annotation were performed on cleaned reads using the
NGLess language (v1.2.0), associated tools and the Integrated Gene Catalog (IGC)
database'*'®, For taxonomic analysis, mOTUs (v2.5.1) was used with default parameters
and unclassified reads (-1 category in mOTUs) were not included for downstream
analyses'. Functional annotation was performed by aligning cleaned reads to the
annotated IGC database (we annotated the IGC through eggNOG mapper v2.1.0
using default parameters and the “-m diamond” argument) using Burrows-Wheeler-
Aligner MEM (BWA, v0.7.17)"7- 1820 Unclassified reads were not taken into account
for downstream analyses. Default parameters were used, apart from the ‘normalization’
argument, which was specified as normalization="scaled”, which corrects for size of
the feature (gene). Aligned reads were then aggregated using the Kyoto Encyclopedia
of Genes and Genomes (KEGG), KEGG Orthology (KO) groups and Carbohydrate-
active enzymes (CAZymes) annotations present in the IGC (features="KEGG_ko” or
features= “CAZy” argument in NGLess)?" 22,

Multi-locus sequence typing on E. coli was performed using the MetaMLST tool (default
parameters). MetaMLST aligns sequencing reads against a database (which can be
customized) of housekeeping genes to identify sequence types present in metagenomes.
A custom E. coli database (Achtman MLST scheme) was created with MLST data from
October 16" 2020 (https://pubmlst.org/bigsdb?db=pubmlst ecoli_achtman_seqdef)*. No
sequence types could be reliably detected in the samples, likely due to the very low relative
abundance of E. coli and the corresponding low number of reads and coverage of E. coli.

Resistome profiling

To profile the antimicrobial resistance genes in the metagenomes, cleaned reads were
aligned to the MEGARes database (v2.00) using BWA MEM with default settings'”.
The resulting SAM file was parsed using the ResistomeAnalyzer tool (https://github.
com/cdeanj/resistomeanalyzer) and the default threshold of 80% was used, meaning

an antibiotic-resistance determinant was only included if at least 80% of the gene is
detected in a sample®*. Read counts originating from alignments to housekeeping genes
associated with antimicrobial resistance (AMR) (e.g. rpoB and gyrA) that require single
nucleotide polymorphisms to confer resistance were filtered out of the count table
before downstream analyses, as previously reported®. Gene level data (e.g. tetO, tetQ
and fetW) were used for calculating alpha and beta diversity metrics and for differential
abundance analysis. For visualization purposes, gene level outputs were aggregated at
the mechanism level (e.g. beta-lactams, mupirocin).
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Positive and negative controls for metagenomic sequencing

Eight mOTUs were detected in all four positive controls, exactly matching theoretical
expectations. With regard to expected relative abundances, sequencing controls were, as
expected, more accurate (average fold error of 1.14) than the DNA extraction controls
(average fold error of 1.42 with underrepresentation of Gram-positive bacteria). The
four included negative controls (two extraction controls and two sequencing controls)
did not generate any reads. These results indicate good performance of sequencing,
DNA extraction procedures and bioinformatic processing of the data.

Metabolomics
The method for NMR analysis of fecal samples was adapted from the protocol developed
by Kim et al. with a few minor adaptations®.

Sample preparation

Each feces-containing sample tube was weighed before sample preparation. To each
sample tube 50 pl of 0.5 mm zirconium oxide beads (Next Advance, Inc.) and 750 pul
of milli-Q water were added. Then, the tubes were subjected to bead beating for four
sessions of one minute. The tubes were subsequently centrifuged at 18,000 g at 4°C
for 15 minutes. For most samples, 600 pul of supernatant was transferred to new 1.5 ml
Eppendorf tubes. In some cases the volume of available supernatant was slightly less.
These tubes were centrifuged at 18,000 g at 4 °C for 1 hour. 270 ul of supernatant
was added to 30 ul of pH 7.4 phosphate buffer (1.5 M) in 100% D,O containing 4
mM TSP-d, and 2 mM NaN,. A customized Gilson 215 liquid handler was used to
transfer the samples to a 3.0 mm Bruker NMR tube rack. The original sample tubes were
cleaned, dried and weighed again.

NMR measurements

'"H NMR data were collected using a Bruker 600 MHz Avance Neo/IVDr spectrometer
equipped with a 5 mm TCI cryogenic probe head and a z-gradient system. A Bruker
SampleJet sample changer was used for sample insertion and removal. All experiments
were recorded at 300 K. A standard sample 99.8% methanol-d4 was used for temperature
calibration before each batch of measurements?’. One-dimensional (1D) 'H NMR
spectra were recorded using the first increment of a NOESY pulse sequence® with
presaturation (yB, = 50 Hz) during a relaxation delay of four seconds and a mixing time
of 10 ms for efficient water suppression®. Initial shimming was performed using the
TopShim tool on a random mix of urine samples from the study, and subsequently the
axial shims were optimized automatically before every measurement. Duration of 90°
pulses were automatically calibrated for each individual sample using a homonuclear-
gated mutation experiment®® on the locked and shimmed samples after automatic tuning
and matching of the probe head. 16 scans of 65,536 points covering 12,335 Hz were
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recorded. J-resolved spectra (JRES) were recorded with a relaxation delay of 2 s and 2
scans for each increment in the indirect dimension. A data matrix of 40 x 12,288 data
points was collected covering a sweep width of 78 x 10,000 Hz. Further processing
of the raw time-domain data was carried out in the KIMBLE environment®'. The Free
Induction Decay of the 1D experiment was zero-filled to 65,536 complex points prior
to Fourier transformation. An exponential window function was applied with a line-
broadening factor of 1.0 Hz. The spectra were automatically phase and baseline corrected
and automatically referenced to the internal standard (TSP = 0.0 ppm). A sine-shaped
window function was applied and the data was zero-filled to 256 x 16,384 complex data
points prior to Fourier transformation. In order to remove the skew, the resulting data
matrix was tilted along the rows by shifting each row (k) by 0.4992x (128-k) points and
symmetrized about the central horizontal lines.

Metabolite quantification

Metabolites were quantified using KIMBLE and the results were checked by quantifying
the same metabolites both in the JRES and in the NOESY 1D experiments and in 10
randomly chosen spectra using the Chenomx NMR Suite version 8.6 (Chenomx Inc.,
Edmonton AB, Canada).

Statistical analysis

Statistical software used for downstream analysis

Analyses and visualizations were performed in R (v4.0.4), using the following packages:
phyloseq (v1.34.0), microbiome (v1.12.0), vegan (v2.5-7), tidyverse packages (v1.3.0),
SIAMCAT (v1.10.0), tablel (v1.2.1) and ropls (v1.22.0)**3%. All analytical R code will
be made publicly available upon acceptance of the manuscript. For all used tools, default
parameters were used unless stated otherwise.

Community composition analysis of metagenomic data

We tested for differences in overall microbiota composition with permutational
multivariate analysis of variance (PERMANOVA) using Bray-Curtis dissimilarity. As
violation of the assumption of homogenous dispersions can lead to wrong conclusions
regarding PERMANOVA, we first tested this assumption using the betadisper function
of the vegan package. No heteroscedasticity was observed between the ESBL" and
ESBL- group. To investigate both linear and non-linear patterns in the data, we performed
dimension reduction using both principal coordinates analysis (PCoA) and t-distributed
stochastic neighbor embedding (t-SNE), both based on Bray-Curtis dissimilarity. Alpha
diversity indices were compared using independent t-tests.

Differential abundance analysis in metagenomic data
Differential abundance analysis of mOTUs, KO groups, CAZymes and resistance
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genes between ESBL™ and ESBL samples was performed using STAMCAT on relative
abundance matrices. Features (mOTUs, KO groups or CAZymes) had to be present in
at least 25% of samples to be included in the analysis. Regarding resistome analyses, a
gene had to be present in 10% of samples to be included, as the 25% prevalence cut-off
was too stringent resulting in only fourteen genes included in the analysis. To correct for
false discovery rate, p-values were corrected in all tests using the Benjamini-Hochberg
procedure®.

Machine learning classifier on metagenomic data

We used obtained taxonomic and functional profiles for feature selection and construction
of prediction models. To this end, least absolute shrinkage and selection operator
(LASSO) logistic regression using the SIAMCAT package was performed to select
predictive features and remove uninformative features based on species composition or
functional profiles. Preprocessing was done by filtering mOTUs, KO groups, or CAZyme
families which were present in at least 25% of samples. The vignette from SIAMCAT
(https://siamcat.embl.de/articles/SIAMCAT _vignette.html) was followed*’. In short, we
performed data normalization using the “log.unit” method, 5-fold cross validation to
split the data in several combinations of training and test data, trained the model using
LASSO logistic regression (“lasso” parameter) and, lastly, made the predictions.

Metabolomics data

Metabolomic concentrations were first log10 normalized to reduce heteroscedasticity.
Metabolite concentrations were subsequently centered and scaled to a mean of 0
and standard deviation of 1, as previously described®. Differences in concentrations
between ESBL groups were tested using t-tests where p-values were corrected for
multiple testing using two methods (to establish robustness of potential findings),
namely Benjamini-Hochberg and Holm correction (with Holm correction being more
conservative)® #!. Next, we performed multivariate analyses using PCA and Partial
Least-Squares Discriminant Analysis (PLS-DA). Lastly, random forest was applied
to investigate whether ESBL" and ESBL- individuals could be accurately classified
based on their respective metabolite profiles. As input to the random forest, normalized
metabolite concentrations were used and, similarly as with metagenomic data, 5-fold
cross validation was implemented in STAMCAT.

Results

Participant and ESBL-producing E. coli isolates characteristics
The original sample selection contained 51 individuals in each group, but three samples
were not suitable for metagenomic sequencing due to too low DNA concentrations after
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extraction. One more individual had to be excluded due to ambiguous answers regarding
dictary habits. Ultimately, this resulted in metagenomics data from 49 individuals per
group. Demographic and participant characteristics were highly similar between the
ESBL" and ESBL-group and antibiotic use between the preceding three to twelve months
was also evenly matched (Table 1). With regard to the ESBL-producing E. coli isolates
that colonized our 49 ESBL" participants, 44 carried a CTX-M-type. The majority of
these were CTX-M-1 (25) and CTX-M-9 (18) and one could not definitively be typed
(CTX-M-1 or CTX-M-8). Isolates of four individuals were negative for CTX-M
genes and for one participant it could not be determined. Additional information on
antimicrobial susceptibility of the strains can be found in Supplementary Table 1.

Table 1: Characteristics of participants included in the study. P-values were obtained using an
independent t-test (for numerical variables) or Fisher’s exact test (for categorical variables).

ESBL negative ESBL positive P-value
(N=49) (N=49)
Age (years)
Mean (SD) 44.1(15.2) 46.6 (15.3) 0.43
Median [Min, Max] 45.0 [20.0, 74.0] 46.0 [21.0, 74.0]
Sex
Male 26 (53.1%) 23 (46.9%) 0.69
Female 23 (46.9%) 26 (53.1%)
Abroad in last 6 months
Yes 39 (79.6%) 37 (75.5%) 0.81
No 10 (20.4%) 12 (24.5%)
Ethnicity
Dutch 38 (77.6%) 36 (73.5%) 0.79
First generation other-Western 1 (2.0%) 0 (0%)
Second generation other-Western 2 (4.1%) 3(6.1%)
First generation Suriname+Aruba+Dutch Antilles 3(6.1%) 3(6.1%)
Second generation Suriname+Aruba+Dutch Antilles 1 (2.0%) 0 (0%)
First generation other non-Western 4 (8.2%) 7 (14.3%)
Antibiotic use in the prior 3 to 12 months
Yes 6 (12.2%) 7 (14.3%) 0.77
No 43 (87.8%) 41 (83.7%)
Do not know 0 (0%) 1 (2.0%)

No differences between the ESBL* and ESBL- individuals in bacterial species
composition or diversity parameters

We investigated potential differences in microbiota composition and diversity between
ESBL* and ESBL- samples. A total of 1178 species (mOTUs) were detected in our
cohort. Overall bacterial composition at the family and genus level are shown in Figure
S1. The most abundant species and their average relative abundance in this cohort were
Bifidobacterium adolescentis (4.6% + 6.9%), Ruminococcus bromii (3.4% =+ 4.8%)
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undefined Ruminococcaceae spp. (2.9% = 3.2%), Eubacterium rectale (2.7% + 2.8%)
and Prevotella copri (2.5% + 5.7%). We did not observe differences in alpha diversity
(observed mOTUs and Shannon index, Figure 1A and B), nor in beta diversity (PCoA
and t-SNE, Figure 1C and D).

Next, we investigated whether there were differences in relative abundance between
the study groups at the species level (mOTUs). Prior to differential abundance testing,
mOTUs were filtered based on a prevalence of at least 25%, resulting in 261 mOTUs
(representing 22.2% of the total observed mOTUs). No significant differentially abundant
mOTUs were detected (all corrected p-values > 0.7). In order to elucidate whether
microbiota composition is predictive of ESBL carriage, a machine learning classifier
(LASSO logistic regression) was applied to the filtered mOTUs relative abundance
matrix, which provided an AUROC value of approximately random classification
(AUROC of 0.53, Figure 1E), indicating that mOTUs relative abundance does not allow
for reliable prediction of ESBL status.

No differences in the resistome of individuals colonized by an ESBL-producing E.
coli and ESBL- individuals

Of all cleaned reads, an average of 0.035% (£0.024%) reads per sample mapped against
the MegaRes 2.0 database. There was no difference between ESBL groups in the
average number of reads aligned to MegaRes 2.0 (independent t-test, p=0.84). A total of
98 unique antimicrobial resistance genes (ARGs) were detected with 17 different AMR
mechanisms (e.g. beta-lactam), and the number of detected ARGs was not different
between ESBL groups (independent t-test, p = 0.46) (Figure 2A). Overall ARGs
profiles in the study groups assessed by plotting beta diversity, did not show a clear
separation between ESBL groups (Figure 2B), which was confirmed by PERMANOVA
(p=0.21). The most abundant ARGs and AMR mechanisms are visualized in Figure
2C and D. No differences in relative abundance of ARGs were found between the
groups using differential abundance analysis (all corrected p-values > 0.4). Tetracycline
resistance was most abundant in the resistomes (47.7% + 24.7%, Figure 2C), followed
by mupirocin resistance (33.7% =+ 28.6%). Tetracycline resistance was conferred by
several fet genes, while mupirocin resistance was conferred through the i/eS gene. As
it is known from literature that Bifidobacterium spp. can be intrinsically resistant to
mupirocin through the ileS gene*, we analyzed the correlation between the relative
abundance of Bifidobacterium (at genus level) and the ileS gene, which was indeed high
(R=0.78, p<2.2x10'%) (Figure S2). We then moved on to investigate functional profiles
of our participants.
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diversity (B) and overviews of the most abundant resistance mechanisms (C) and resistance genes
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No differences between the ESBL* and ESBL- individuals in functional capacity of
the microbiome

To compare the functionality of the gut microbiome between the study groups,
cleaned reads were mapped against the annotated IGC database. On average, 95.8%
(+1.7%) of reads aligned against the IGC, and the aligned number of reads was not
different between ESBL groups (independent t-test, p=0.23). From the aligned reads,
49.2% (+2.2%) aligned against a gene annotated by a functional group (KO group)
and this was not different between ESBL groups (independent t-test, p=0.13). There
was no difference in overall functional profiles between the groups (PERMANOVA,
p=0.19). 8450 KO groups were detected and after filtering on 25% prevalence, 5179 KO
groups remained for differential abundance testing. No KO groups were significantly
differentially abundant between ESBL groups (all corrected p-values > 0.2). To identify
functional groups predictive of ESBL status, LASSO logistic regression was applied
to the relative abundance matrix of KO groups. No accurate prediction model could
be constructed (AUROC of 0.61), indicating that the functional groups do not contain
information allowing for prediction of ESBL status.

No functional differences in Carbohydrate Active Enzymes (CAZymes) between
the ESBL" and ESBL- group

From the aligned reads, 2.1% (+0.2%) aligned against a gene annotated to a CAZyme
family and this was not different between ESBL groups (independent t-test, p=0.48). A
total of 109 CAZyme families were detected with a mean of 77.7 (£5.7) per individual,
with no differences between ESBL groups (independent t-test, p=0.34) (Figure 3A). The
three most abundant CAZymes in our study were glycoside hydrolase (GH)13 (19.4%
+ 3.3%), GH3 (11.4% + 1.6%) and GH31 (6.2% + 0.9%) (Figure 3C), corresponding
to breakdown of starch and glycogen (GH13) and breakdown of plant cell wall glycans
(GH3 and GH31)*®. Variation in CAZyme relative abundance profiles could not be
explained by ESBL group (PERMANOVA, p=0.57, Fig 3B). Compositional plots
based on the top 20 most abundant CAZymes were highly similar between the ESBL
groups (Figure 3C), and no differences in relative abundance of individual CAZyme
families was observed (all corrected p-values > 0.6). To identify potential drivers of
ESBL-producing E. coli colonization we used LASSO logistic regression on relative
abundances CAZymes, which did not result in an accurate prediction model (AUROC of
0.56). This indicates there is only very low to no predictive power in relative abundances
of CAZymes with regard to ESBL status.
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Metabolomics profiling shows no clear differences between ESBL groups at the
functional level

For metabolomic analysis we quantified metabolite concentrations in all individuals,
except for one ESBL"sample that was excluded as a good quality NMR spectrum could
not be recorded due to shimming problems. First, to investigate whether any differences
in metabolite concentrations existed between ESBL groups, we performed univariate
testing (independent t-tests). These results strongly depended on the method used for
multi-error correction (11 metabolites were significantly different at p=0.048 with
Benjamini-Hochberg, but none with Holm) (Figure S3 and Figure S4).

Unsupervised dimensionality reduction using PCA was performed to investigate
whether any separation could be observed based on ESBL carriage (Fig 4A). Over 46%
of the metabolome variation could be explain on the first principal component, with
some separation of the study groups. However, supervised analysis using a PLS-DA
indicates that no predictive value could be obtained for class separation based on two
PLS components (Q2Y =-0.06). Lastly, we performed a random forest prediction model
to investigate whether ESBL status could be predicted based on metabolite profiles, but
this was not the case (AUROC = 0.61) (Figure 4B). Altogether, minor differences in
metabolite concentrations could be detected using t-tests, but these were dependent on
the method applied for correction for multiple testing. PCA between the ESBL groups
showed a small overall signal, but no predictive value could be confirmed by both PLS-
DA and random forest.

ROC curve for random forest on metabolite concentrations
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ESBL status
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Figure 4: Metabolomic analyses with PCA (A) and the ROC curve of random forest based on
metabolite profiles (B). The ROC curve shows the mean AUC value and its respective 95% CI.
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Discussion

We present a unique study investigating differences in the gut microbiome and
metabolome between individuals asymptomatically colonized by an ESBL-producing E.
coli and matched non-colonized individuals. Importantly, in contrast to previous studies
on this topic, we applied stringent inclusion criteria and matched ESBL" individuals
with ESBL-individuals on important epidemiological variables, which minimized the
chance for observing effects which could be attributed to confounding variables. The
combination of metagenomics and metabolomics allowed for a deep molecular resolution
of the gut microbiome, both at the taxonomic and functional level. We show that there is
no difference in the gut microbiome of individuals asymptomatically colonized with an
ESBL-producing E. coli as compared to individuals who are not colonized.

Confounding factors may, at least partially, be the reason for the previously reported
differences in microbial signatures associated with protection from asymptomatic
colonization by ESBL-producing bacteria and MDROs across different studies. It must
be noted that these studies have mostly investigated vulnerable patient populations,
such as nursing home residents and hospitalized patients. In such populations it is very
complex to disentangle observed differences between colonized and non-colonized
individuals from differences due to confounding variables (such as comorbidities and
medication) between compared individuals® % *-4¢, In our study we excluded individuals
based on many microbiome-influencing clinical factors, and performed matching on
several clinical variables, as recently recommended for cross-sectional microbiome
studies’. In this way, we could study the effect of colonization of ESBL-producing £.
coli in isolation and convincingly show that no differences exist in the gut microbiome
between colonized and non-colonized individuals.

In addition, previous research has generally not focused on species-specific colonization
resistance, but rather on a broad category of MDROs (such as ESBL-producing
Enterobacterales)® *4° Given the large genomic diversity within species?’, let alone
within the order of Enterobacterales, it is highly unlikely that a common mechanisms
exists which could prevent colonization of e.g. both ESBL-producing Klebsiella
pneumoniae and ESBL-producing E. coli. Therefore in the current study we focused on a
single species (E. coli), rather than a broad group of ESBL-producing Enterobacterales.
Microbiome composition of individuals in our study population reflects that of other
population cohorts in general. For example, B. adolescentis has been previously described
in another Dutch cohort as the most abundant bacterial species, with an average relative
abundance of 9.51% (+10.8%)*. In addition, P. copri, R. bromii and E. rectale were also
highly abundant and prevalent, in line with the findings in the current study*®.
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The resistome profiles identified in our study also corresponded well with what is
generally described in literature, with tetracyline resistance being the most abundant
resistance mechanism in the human gut*-='. The observed high relative abundance to
mupirocin in our study could be explained by the intrinsic resistance of Bifidobacterium
spp. to this, of which relatively high abundances were observed in this cohort.

We show that despite inter-individual variation in taxonomic profiles, the functionality
of the microbiome as assessed by the relative abundance of CAZyme families, is highly
consistent between individuals. These finding are in line with previous findings showing
functional similarity at the metabolic level despite taxonomic diversity>* *.

This study is, to our knowledge, the first study to profile the gut metabolome in relation
to colonization of ESBL-producing E. coli. We did not observe a relation between the
metabolome, or any specific metabolite, and ESBL status. For other enteric pathogens,
like Salmonella enterica serovar Typhimurium and C. difficile, specific metabolites have
been shown to be strongly related to colonization resistance in rodent models™ 3. It
should however be mentioned that these are infection models rather than asymptomatic
colonization models, which would better represent our study.

A limitation of our study is that we do not have longitudinal data on the microbiome of
these participants, and are therefore unable to make any statements about the duration
of colonization of ESBL-producing E. coli and associations with the gut microbiome
in time. This is particularly relevant considering the large variation in the duration of
colonization between individuals®® . It could be speculated that individuals who are
long-term colonized have a different gut microbiome than individuals who are only
colonized for a short period of time, although there is no clear evidence for this in
literature to our knowledge. Furthermore, longitudinal observations would allow us to
identify changes occurring at the compositional and functional level when asymptomatic
carriage turns into active infection or when people become decolonized. Lastly, one
would have ideally have microbiome data of an individual shortly before an ESBL-
producing E. coli would colonize and at time of colonization, so that microbiome
changes within an individual can be investigated. Secondly, we do not have whole-
genome sequencing data of the ESBL-producing E. coli isolates, which prevents us from
placing these data into a broader epidemiological context. For example, if the majority
of isolates would be sequence type (ST)131, an endemic ST, this would be valuable
extra information and further extend the clinical relevance of our findings.

This study is however unique in the fact that ESBL* and ESBL-individuals were selected

from a large Dutch cohort (n=2751), and therefore we could apply stringent inclusion
criteria and match the two groups on several demographic and clinical variables. To the
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best of our knowledge, this is one of very few studies in the microbiome field that applied
such a stringent study setup. This setup ensured that the potential effect of confounding
factors was minimized. In addition, this study is the first to investigate differences in the
gut microbiome and metabolome between individuals colonized by an ESBL-producing
E. coli and non-colonized individuals using a combined approach of metagenomics and
metabolomics. Therefore, it provides insight into both the composition and function of
the gut microbiome.

Conclusions

Our study shows that there are no differences in the gut microbiome or metabolome of
individuals who are, or are not, asymptomatically colonized by an ESBL-producing E.
coli. We hypothesize that microbiome-mediated colonization resistance may therefore
not be as relevant against ESBL-producing E. coli as it is for other enteric pathogens
(like C. difficile and vancomycin-resistant Enterococcus), although longitudinal studies
or controlled human colonization models are necessary to confirm this hypothesis.
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