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Abstract 

Background
Gut colonization by antibiotic resistant E. coli strains, including extended-spectrum 
beta-lactamase (ESBL)-producing E. coli is a risk factor for developing overt infection. 
The gut microbiome can provide colonization resistance against enteropathogens, but 
it remains unclear whether it confers resistance against potentially pathogenic ESBL-
producing E. coli.

Materials
From a Dutch cross-sectional population study (PIENTER-3), feces from 2751 
individuals were used to culture ESBL-producing bacteria. Of these, we selected 49 
samples which were positive for an ESBL-producing Escherichia coli (ESBL+), and 
negative for a variety of variables known to affect microbiome composition. These were 
matched in a 1:1 ratio to ESBL- samples based on age, sex, having been abroad in 
the past six months and ethnicity. Shotgun metagenomic sequencing was performed 
and taxonomic species composition and functional annotations (microbial metabolism 
and carbohydrate-active enzymes) were determined. Targeted quantitative metabolic 
profiling (1H NMR-spectroscopy) was performed to investigate metabolomic profiles. 

Results
No differences in alpha or beta diversity were observed, nor in relative abundance, 
between ESBL+ and ESBL- individuals based on bacterial species level composition. 
Machine learning approaches based on microbiota composition did not accurately predict 
ESBL status (area under the receiver operating characteristic curve (AUROC)=0.53), 
neither when based on functional profiles. The metabolome did also not convincingly 
differ between ESBL groups as assessed by a variety of approaches, including machine 
learning through random forest (AUROC=0.61).

Conclusion
Using a combination of multi-omics and machine learning approaches, we conclude that 
asymptomatic gut carriage of ESBL-producing E. coli is not associated with an altered 
microbiome composition or function. This may suggest that microbiome-mediated 
colonization resistance against ESBL-producing E. coli is not as relevant as it is against 
other enteropathogens.
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Introduction

Escherichia coli is a common gut commensal, but several strains possess virulence 
factors that enable them to cause gastrointestinal, urinary and extraintestinal infections1, 2. 
Colonization of the gut by multidrug-resistant organisms (MDRO), including extended-
spectrum beta-lactamase (ESBL)-producing E. coli and carbapenem-resistant E. coli, 
often precede infections3. The gut microbiome can mediate colonization resistance 
against several enteric pathogens, but it remains unclear whether this is also the case 
for MDROs such as ESBL-producing E. coli, especially since many individuals harbor 
commensal E. coli. Colonization resistance can be conferred by the gut microbiome 
through nutrient competition, production of antimicrobial compounds, support of gut 
barrier integrity, bacteriophage deployment and through interaction with the immune 
system4. However, studies in humans have reported conflicting evidence regarding 
which bacterial genera or species within the gut microbiome could be of relevance in 
providing colonization resistance against ESBL-producing E. coli or ESBL-producing 
Enterobacterales. These conflicting results can, at least partially, be traced back to 
several confounding factors (e.g. medication) in those studies5-8. It was recently shown 
that unevenly matched case-controls studies with regard to lifestyle and physiological 
characteristics can produce spurious microbial associations with human phenotypes like 
disease, or in this case, colonization by ESBL-producing E. coli9. 

Here, we aimed to compare the gut microbiome and metabolome between individuals 
asymptomatically colonized with an ESBL-producing E. coli (ESBL+) and individuals 
who are not (ESBL-), determined by culture-based and molecular approaches. To avoid 
confounding factors from affecting study results, we selected samples from a large Dutch 
cross-sectional population study (PIENTER-3) for which 2751 fecal samples were used to 
culture ESBL-producing bacteria10. With this high number of samples available, we could 
apply stringent sample selection with regard to known confounders in microbiome studies 
such as antibiotic use, proton-pump inhibitor use, a variety of diets etc. Subsequently, 
we performed case control matching based on a variety of epidemiological and health 
related variables. We performed extensive functional and taxonomic profiling of the gut 
microbiome through metagenomics and metabolomics to investigate whether there are 
differences in the gut microbiome between matched ESBL+ and ESBL- individuals.

Materials and methods

Sample collection
Samples were selected from a large Dutch population-wide study (PIENTER-3)10. This 
cross-sectional population study was carried out in 2016/2017, primarily designed 
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to obtain insight into age-specific seroprevalence of vaccine-preventable infectious 
diseases. Out of the 98 included samples for the current study, 95 were stored in the 
freezer within 15 minutes after defecation, one person did not provide information on 
this and two individuals took longer than one hour to store their sample in the freezer. 
Samples were kept on average for 2.97 days (±2.82) (six individuals did not indicate 
this information) in people’s freezer before being delivered (on cold packs) to the 
mobile study team10. Fecal samples were kept on dry ice during transport to the National 
Institute for Public Health and the Environment and stored at -80°C the next day.

Detection of ESBL-producing Enterobacterales
Details of the microbiological methods have been described elsewhere (Willems RPJ, 
van Dijk K, Dierikx CM, Twisk JWR, van der Klis FRM, de Greeff SC, Vandenbroucke-
Grauls CMJE. Gastric acid suppression, lifestyle factors and intestinal carriage of 
ESBL and carbapenemase-producing Enterobacterales: a nationwide population-based 
study [Submitted]). Briefly, stool specimens were enriched by tryptic soy broth with 
ampicillin (50 mg/L) and then cultured on selective agar plates (EbSA, Cepheid Benelux, 
Apeldoorn). Next, up to five oxidase-negative morphotypes were subcultured, identified 
to species level, and tested for antimicrobial susceptibility using standard procedures 
(VITEK 2 system, bioMérieux, Marcy-L’Étoile, France). Antimicrobial susceptibility 
was classified according to European Committee on Antimicrobial Susceptibility 
Testing clinical breakpoints11. ESBL production was screened for with combination 
disk diffusion and confirmed by polymerase chain reaction (PCR); PCR was performed 
for the blaCTX-M, blaSHV and blaTEM groups12. ESBL testing was done according to the 
European Committee on Antimicrobial Susceptibility Testing guidelines13.

Sample selection
2751 fecal samples were cultured for ESBL- or CPE-producing bacteria, of which 
198 samples were positive. For the purpose of our study, we selected samples positive 
for ESBL-producing E. coli, resulting in 176 potential samples. Next, we applied 
stringent exclusion criteria for all samples based on variables known to affect the gut 
microbiome. Individuals were excluded based on the following criteria: current proton-
pump inhibitor use, antibiotic use in the last three months, diarrheal symptoms in the last 
month (defined as at least three thin stools within 24 hours), vomiting in the last month, 
blood in stool during the last month, abdominal pain or nausea during the last month, 
use of any pre- or probiotics, consumption of a special diet (vegetarian, cow’s milk free 
diet, hen’s egg protein-free diet, gluten free, nut and/or peanut-free, lactose limited diet, 
diabetes-related diet, limited protein diet, limited fat and/or cholesterol diet, enrichment 
of dietary fiber, caloric restriction, low in sodium, easily digestible, coloring agent-free, 
enriched in energy/protein, ‘other diet’) and whether stool was stored in the freezer after 
defecation (samples were excluded if not stored in the freezer). This selection resulted 
in 51 ESBL+ samples for inclusion, which were subsequently matched to 51 ESBL- 
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samples using the R MatchIt package (v3.0.2) with the “nearest” method in the matchit 
function. Subjects were matched based on age, sex, having been abroad during the last 
6 months (yes/no) and ethnicity. ESBL- negative samples were selected using the same 
exclusion criteria. Three samples (1 ESBL- sample and 2 ESBL+ samples) were further 
excluded as insufficient DNA was available for sequencing. One additional sample 
(ESBL-) was excluded as we discovered afterwards that this individual had provided 
ambiguous answers regarding dietary habits. The final dataset for analysis contained 49 
individuals in each group.

DNA extraction for metagenomic shotgun sequencing
DNA was extracted by mechanical disruption (repeated bead-beating) and purified 
in a Maxwell RSC instrument (Promega Benelux BV, Leiden, The Netherlands). 
The Maxwell RSC Blood DNA extraction kit was according to manufacturer’s 
instructions with several modifications, as follows. Fecal samples were thawed on ice 
and approximately 250 mg of well-homogenized fecal material was resuspended in 
S.T.A.R (stool transport and recovery buffer) buffer (Roche Diagnostics, Almere, The 
Netherlands), with 0.1 mm zirconia/silica beads and 2.5 mm glass beads. The fecal 
suspension was mechanically disrupted three times for one minute in a FastPrep-24 
Instrument at room temperature and 5.5 oscillations, and maintained on ice after every 
cycle. Samples were further heated at 95°C for 15 minutes shaking at 300 rpm, and 
centrifuged for 5 minutes at full speed. Resulting supernatants (fecal lysates) were 
collected and the pellet was further resuspended in an additional 350 µl of S.T.A.R. 
buffer following the same procedure. Pooled fecal lysates were then transferred to the 
Maxwell RSC Instrument for further purification steps. Eluted sample was cleaned-up 
using the OneStep PCR Inhibitor Removal Kit (Zymo Research, Irvine, California), and 
DNA was quantified using a Quantus Fluorometer (Promega Corporation, Madison, WI, 
USA). Every extraction round included two negative DNA extraction controls (blank 
samples with S.T.A.R. buffer without any added fecal material) and two microbial mock 
communities as positive controls (ZymoBiomics Microbial Community Standards; 
Zymo Research, Irvine, California, USA). 

Metagenomic shotgun sequencing
Shotgun metagenomic sequencing was performed by GenomeScan B.V. (Leiden, The 
Netherlands) using the NEBNext® Ultra™ II FS DNA Library Prep Kit (New England 
Biolabs, Ipswich, Massachusetts, USA) and the NextSeq 500 platform (paired-end, 
150bp). Two positive sequencing controls (ZymoBiomics Microbial Community DNA 
Standards; Zymo Research, Irvine, California, USA) and two negative sequencing 
controls (sterile water) were included. Average number of raw reads (of 98 samples and 
four positive controls) is 4,747,908 (range 2,565,232 – 62,035,096) and a median of 
4,142,237 paired-end reads. Raw shotgun sequencing reads were quality checked using 
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the FastQC (v0.11.9) and MultiQC (v1.8) tools, both before and after cleaning files 
for low-quality reads and human reads using the kneaddata (v0.7.10) tool with default 
parameters. 

Taxonomic and functional annotation were performed on cleaned reads using the 
NGLess language (v1.2.0), associated tools and the Integrated Gene Catalog (IGC) 
database14-18. For taxonomic analysis, mOTUs (v2.5.1) was used with default parameters 
and unclassified reads (-1 category in mOTUs) were not included for downstream 
analyses19. Functional annotation was performed by aligning cleaned reads to the 
annotated IGC database (we annotated the IGC through eggNOG mapper v2.1.0 
using default parameters and the “-m diamond” argument) using Burrows-Wheeler-
Aligner MEM (BWA, v0.7.17)17, 18, 20. Unclassified reads were not taken into account 
for downstream analyses. Default parameters were used, apart from the ‘normalization’ 
argument, which was specified as normalization=”scaled”, which corrects for size of 
the feature (gene). Aligned reads were then aggregated using the Kyoto Encyclopedia 
of Genes and Genomes (KEGG), KEGG Orthology (KO) groups and Carbohydrate-
active enzymes (CAZymes) annotations present in the IGC (features=”KEGG_ko” or 
features= “CAZy” argument in NGLess)21, 22. 

Multi-locus sequence typing on E. coli was performed using the MetaMLST tool (default 
parameters). MetaMLST aligns sequencing reads against a database (which can be 
customized) of housekeeping genes to identify sequence types present in metagenomes. 
A custom E. coli database (Achtman MLST scheme) was created with MLST data from 
October 16th 2020 (https://pubmlst.org/bigsdb?db=pubmlst_ecoli_achtman_seqdef)23. No 
sequence types could be reliably detected in the samples, likely due to the very low relative 
abundance of E. coli and the corresponding low number of reads and coverage of E. coli. 

Resistome profiling
To profile the antimicrobial resistance genes in the metagenomes, cleaned reads were 
aligned to the MEGARes database (v2.00) using BWA MEM with default settings17. 
The resulting SAM file was parsed using the ResistomeAnalyzer tool (https://github.
com/cdeanj/resistomeanalyzer) and the default threshold of 80% was used, meaning 
an antibiotic-resistance determinant was only included if at least 80% of the gene is 
detected in a sample24. Read counts originating from alignments to housekeeping genes 
associated with antimicrobial resistance (AMR) (e.g. rpoB and gyrA) that require single 
nucleotide polymorphisms to confer resistance were filtered out of the count table 
before downstream analyses, as previously reported25. Gene level data (e.g. tetO, tetQ 
and tetW) were used for calculating alpha and beta diversity metrics and for differential 
abundance analysis. For visualization purposes, gene level outputs were aggregated at 
the mechanism level (e.g. beta-lactams, mupirocin).
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Positive and negative controls for metagenomic sequencing
Eight mOTUs were detected in all four positive controls, exactly matching theoretical 
expectations. With regard to expected relative abundances, sequencing controls were, as 
expected, more accurate (average fold error of 1.14) than the DNA extraction controls 
(average fold error of 1.42 with underrepresentation of Gram-positive bacteria). The 
four included negative controls (two extraction controls and two sequencing controls) 
did not generate any reads. These results indicate good performance of sequencing, 
DNA extraction procedures and bioinformatic processing of the data.

Metabolomics
The method for NMR analysis of fecal samples was adapted from the protocol developed 
by Kim et al. with a few minor adaptations26.

Sample preparation
Each feces-containing sample tube was weighed before sample preparation. To each 
sample tube 50 µl of 0.5 mm zirconium oxide beads (Next Advance, Inc.) and 750 µl 
of milli-Q water were added. Then, the tubes were subjected to bead beating for four 
sessions of one minute. The tubes were subsequently centrifuged at 18,000 g at 4°C 
for 15 minutes. For most samples, 600 µl of supernatant was transferred to new 1.5 ml 
Eppendorf tubes. In some cases the volume of available supernatant was slightly less. 
These tubes were centrifuged at 18,000 g at 4 °C for 1 hour. 270 µl of supernatant 
was added to 30 µl of pH 7.4 phosphate buffer (1.5 M) in 100% D2O containing 4 
mM TSP-d4 and 2 mM NaN3. A customized Gilson 215 liquid handler was used to 
transfer the samples to a 3.0 mm Bruker NMR tube rack. The original sample tubes were 
cleaned, dried and weighed again.

NMR measurements
1H NMR data were collected using a Bruker 600 MHz Avance Neo/IVDr spectrometer 
equipped with a 5 mm TCI cryogenic probe head and a z-gradient system. A Bruker 
SampleJet sample changer was used for sample insertion and removal. All experiments 
were recorded at 300 K. A standard sample 99.8% methanol-d4 was used for temperature 
calibration before each batch of measurements27. One-dimensional (1D) 1H NMR 
spectra were recorded using the first increment of a NOESY pulse sequence28 with 
presaturation (γB1 = 50 Hz) during a relaxation delay of four seconds and a mixing time 
of 10 ms for efficient water suppression29. Initial shimming was performed using the 
TopShim tool on a random mix of urine samples from the study, and subsequently the 
axial shims were optimized automatically before every measurement. Duration of 90° 
pulses were automatically calibrated for each individual sample using a homonuclear-
gated mutation experiment30 on the locked and shimmed samples after automatic tuning 
and matching of the probe head. 16 scans of 65,536 points covering 12,335 Hz were 
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recorded. J-resolved spectra (JRES) were recorded with a relaxation delay of 2 s and 2 
scans for each increment in the indirect dimension. A data matrix of 40 × 12,288 data 
points was collected covering a sweep width of 78 × 10,000 Hz. Further processing 
of the raw time-domain data was carried out in the KIMBLE environment31. The Free 
Induction Decay of the 1D experiment was zero-filled to 65,536 complex points prior 
to Fourier transformation. An exponential window function was applied with a line-
broadening factor of 1.0 Hz. The spectra were automatically phase and baseline corrected 
and automatically referenced to the internal standard (TSP = 0.0 ppm). A sine-shaped 
window function was applied and the data was zero-filled to 256 × 16,384 complex data 
points prior to Fourier transformation. In order to remove the skew, the resulting data 
matrix was tilted along the rows by shifting each row (k) by 0.4992× (128-k) points and 
symmetrized about the central horizontal lines.

Metabolite quantification
Metabolites were quantified using KIMBLE and the results were checked by quantifying 
the same metabolites both in the JRES and in the NOESY1D experiments and in 10 
randomly chosen spectra using the Chenomx NMR Suite version 8.6 (Chenomx Inc., 
Edmonton AB, Canada). 

Statistical analysis
Statistical software used for downstream analysis
Analyses and visualizations were performed in R (v4.0.4), using the following packages: 
phyloseq (v1.34.0), microbiome (v1.12.0), vegan (v2.5-7), tidyverse packages (v1.3.0), 
SIAMCAT (v1.10.0), table1 (v1.2.1) and ropls (v1.22.0)32-38. All analytical R code will 
be made publicly available upon acceptance of the manuscript. For all used tools, default 
parameters were used unless stated otherwise.

Community composition analysis of metagenomic data
We tested for differences in overall microbiota composition with permutational 
multivariate analysis of variance (PERMANOVA) using Bray-Curtis dissimilarity. As 
violation of the assumption of homogenous dispersions can lead to wrong conclusions 
regarding PERMANOVA, we first tested this assumption using the betadisper function 
of the vegan package. No heteroscedasticity was observed between the ESBL+ and 
ESBL- group. To investigate both linear and non-linear patterns in the data, we performed 
dimension reduction using both principal coordinates analysis (PCoA) and t-distributed 
stochastic neighbor embedding (t-SNE), both based on Bray-Curtis dissimilarity. Alpha 
diversity indices were compared using independent t-tests.

Differential abundance analysis in metagenomic data
Differential abundance analysis of mOTUs, KO groups, CAZymes and resistance 
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genes between ESBL+ and ESBL- samples was performed using SIAMCAT on relative 
abundance matrices. Features (mOTUs, KO groups or CAZymes) had to be present in 
at least 25% of samples to be included in the analysis. Regarding resistome analyses, a 
gene had to be present in 10% of samples to be included, as the 25% prevalence cut-off 
was too stringent resulting in only fourteen genes included in the analysis. To correct for 
false discovery rate, p-values were corrected in all tests using the Benjamini-Hochberg 
procedure39.

Machine learning classifier on metagenomic data
We used obtained taxonomic and functional profiles for feature selection and construction 
of prediction models. To this end, least absolute shrinkage and selection operator 
(LASSO) logistic regression using the SIAMCAT package was performed to select 
predictive features and remove uninformative features based on species composition or 
functional profiles. Preprocessing was done by filtering mOTUs, KO groups, or CAZyme 
families which were present in at least 25% of samples. The vignette from SIAMCAT 
(https://siamcat.embl.de/articles/SIAMCAT_vignette.html) was followed37. In short, we 
performed data normalization using the “log.unit” method, 5-fold cross validation to 
split the data in several combinations of training and test data, trained the model using 
LASSO logistic regression (“lasso” parameter) and, lastly, made the predictions. 

Metabolomics data
Metabolomic concentrations were first log10 normalized to reduce heteroscedasticity. 
Metabolite concentrations were subsequently centered and scaled to a mean of 0 
and standard deviation of 1, as previously described40. Differences in concentrations 
between ESBL groups were tested using t-tests where p-values were corrected for 
multiple testing using two methods (to establish robustness of potential findings), 
namely Benjamini-Hochberg and Holm correction (with Holm correction being more 
conservative)39, 41. Next, we performed multivariate analyses using PCA and Partial 
Least-Squares Discriminant Analysis (PLS-DA). Lastly, random forest was applied 
to investigate whether ESBL+ and ESBL- individuals could be accurately classified 
based on their respective metabolite profiles. As input to the random forest, normalized 
metabolite concentrations were used and, similarly as with metagenomic data, 5-fold 
cross validation was implemented in SIAMCAT. 

Results

Participant and ESBL-producing E. coli isolates characteristics
The original sample selection contained 51 individuals in each group, but three samples 
were not suitable for metagenomic sequencing due to too low DNA concentrations after 
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extraction. One more individual had to be excluded due to ambiguous answers regarding 
dietary habits. Ultimately, this resulted in metagenomics data from 49 individuals per 
group. Demographic and participant characteristics were highly similar between the 
ESBL+ and ESBL-group and antibiotic use between the preceding three to twelve months 
was also evenly matched (Table 1). With regard to the ESBL-producing E. coli isolates 
that colonized our 49 ESBL+ participants, 44 carried a CTX-M-type. The majority of 
these were CTX-M-1 (25) and CTX-M-9 (18) and one could not definitively be typed 
(CTX-M-1 or CTX-M-8). Isolates of four individuals were negative for CTX-M 
genes and for one participant it could not be determined. Additional information on 
antimicrobial susceptibility of the strains can be found in Supplementary Table 1.

Table 1: Characteristics of participants included in the study. P-values were obtained using an 
independent t-test (for numerical variables) or Fisher’s exact test (for categorical variables).

ESBL negative ESBL positive P-value
(N=49) (N=49)

Age (years)
Mean (SD) 44.1 (15.2) 46.6 (15.3) 0.43
Median [Min, Max] 45.0 [20.0, 74.0] 46.0 [21.0, 74.0]
Sex
Male 26 (53.1%) 23 (46.9%) 0.69
Female 23 (46.9%) 26 (53.1%)
Abroad in last 6 months
Yes 39 (79.6%) 37 (75.5%) 0.81
No 10 (20.4%) 12 (24.5%)
Ethnicity
Dutch 38 (77.6%) 36 (73.5%) 0.79
First generation other-Western 1 (2.0%) 0 (0%)
Second generation other-Western 2 (4.1%) 3 (6.1%)
First generation Suriname+Aruba+Dutch Antilles 3 (6.1%) 3 (6.1%)
Second generation Suriname+Aruba+Dutch Antilles 1 (2.0%) 0 (0%)
First generation other non-Western 4 (8.2%) 7 (14.3%)
Antibiotic use in the prior 3 to 12 months
Yes 6 (12.2%) 7 (14.3%) 0.77
No 43 (87.8%) 41 (83.7%)
Do not know 0 (0%) 1 (2.0%)

No differences between the ESBL+ and ESBL- individuals in bacterial species 
composition or diversity parameters 
We investigated potential differences in microbiota composition and diversity between 
ESBL+ and ESBL- samples. A total of 1178 species (mOTUs) were detected in our 
cohort. Overall bacterial composition at the family and genus level are shown in Figure 
S1. The most abundant species and their average relative abundance in this cohort were 
Bifidobacterium adolescentis (4.6% ± 6.9%), Ruminococcus bromii (3.4% ± 4.8%) 
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undefined Ruminococcaceae spp. (2.9% ± 3.2%), Eubacterium rectale (2.7% ± 2.8%) 
and Prevotella copri (2.5% ± 5.7%). We did not observe differences in alpha diversity 
(observed mOTUs and Shannon index, Figure 1A and B), nor in beta diversity (PCoA 
and t-SNE, Figure 1C and D). 

Next, we investigated whether there were differences in relative abundance between 
the study groups at the species level (mOTUs). Prior to differential abundance testing, 
mOTUs were filtered based on a prevalence of at least 25%, resulting in 261 mOTUs 
(representing 22.2% of the total observed mOTUs). No significant differentially abundant 
mOTUs were detected (all corrected p-values > 0.7). In order to elucidate whether 
microbiota composition is predictive of ESBL carriage, a machine learning classifier 
(LASSO logistic regression) was applied to the filtered mOTUs relative abundance 
matrix, which provided an AUROC value of approximately random classification 
(AUROC of 0.53, Figure 1E), indicating that mOTUs relative abundance does not allow 
for reliable prediction of ESBL status. 

No differences in the resistome of individuals colonized by an ESBL-producing E. 
coli and ESBL- individuals
Of all cleaned reads, an average of 0.035% (±0.024%) reads per sample mapped against 
the MegaRes 2.0 database. There was no difference between ESBL groups in the 
average number of reads aligned to MegaRes 2.0 (independent t-test, p=0.84). A total of 
98 unique antimicrobial resistance genes (ARGs) were detected with 17 different AMR 
mechanisms (e.g. beta-lactam), and the number of detected ARGs was not different 
between ESBL groups (independent t-test, p = 0.46) (Figure 2A). Overall ARGs 
profiles in the study groups assessed by plotting beta diversity, did not show a clear 
separation between ESBL groups (Figure 2B), which was confirmed by PERMANOVA 
(p=0.21). The most abundant ARGs and AMR mechanisms are visualized in Figure 
2C and D. No differences in relative abundance of ARGs were found between the 
groups using differential abundance analysis (all corrected p-values > 0.4). Tetracycline 
resistance was most abundant in the resistomes (47.7% ± 24.7%, Figure 2C), followed 
by mupirocin resistance (33.7% ± 28.6%). Tetracycline resistance was conferred by 
several tet genes, while mupirocin resistance was conferred through the ileS gene. As 
it is known from literature that Bifidobacterium spp. can be intrinsically resistant to 
mupirocin through the ileS gene42, we analyzed the correlation between the relative 
abundance of Bifidobacterium (at genus level) and the ileS gene, which was indeed high 
(R=0.78, p<2.2x1016) (Figure S2). We then moved on to investigate functional profiles 
of our participants.
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Figure 1: Taxonomic analyses between ESBL groups with comparisons of observed mOTUs (A) 
and Shannon index (B), unsupervised clustering using PCoA (C) and t-SNE (D) based on Bray-
Curtis dissimilarity and the ROC curve for LASSO (E). The ROC curve shows the mean AUC 
value and its respective 95% CI.
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Figure 2: Resistome analyses with comparisons of the number of detected ARG (A), resistome 
diversity (B) and overviews of the most abundant resistance mechanisms (C) and resistance genes 
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No differences between the ESBL+ and ESBL- individuals in functional capacity of 
the microbiome 
To compare the functionality of the gut microbiome between the study groups, 
cleaned reads were mapped against the annotated IGC database. On average, 95.8% 
(±1.7%) of reads aligned against the IGC, and the aligned number of reads was not 
different between ESBL groups (independent t-test, p=0.23). From the aligned reads, 
49.2% (±2.2%) aligned against a gene annotated by a functional group (KO group) 
and this was not different between ESBL groups (independent t-test, p=0.13). There 
was no difference in overall functional profiles between the groups (PERMANOVA, 
p=0.19). 8450 KO groups were detected and after filtering on 25% prevalence, 5179 KO 
groups remained for differential abundance testing. No KO groups were significantly 
differentially abundant between ESBL groups (all corrected p-values > 0.2). To identify 
functional groups predictive of ESBL status, LASSO logistic regression was applied 
to the relative abundance matrix of KO groups. No accurate prediction model could 
be constructed (AUROC of 0.61), indicating that the functional groups do not contain 
information allowing for prediction of ESBL status.

No functional differences in Carbohydrate Active Enzymes (CAZymes) between 
the ESBL+ and ESBL- group 
From the aligned reads, 2.1% (±0.2%) aligned against a gene annotated to a CAZyme 
family and this was not different between ESBL groups (independent t-test, p=0.48). A 
total of 109 CAZyme families were detected with a mean of 77.7 (±5.7) per individual, 
with no differences between ESBL groups (independent t-test, p=0.34) (Figure 3A). The 
three most abundant CAZymes in our study were glycoside hydrolase (GH)13 (19.4% 
± 3.3%), GH3 (11.4% ± 1.6%) and GH31 (6.2% ± 0.9%) (Figure 3C), corresponding 
to breakdown of starch and glycogen (GH13) and breakdown of plant cell wall glycans 
(GH3 and GH31)43. Variation in CAZyme relative abundance profiles could not be 
explained by ESBL group (PERMANOVA, p=0.57, Fig 3B). Compositional plots 
based on the top 20 most abundant CAZymes were highly similar between the ESBL 
groups (Figure 3C), and no differences in relative abundance of individual CAZyme 
families was observed (all corrected p-values > 0.6). To identify potential drivers of 
ESBL-producing E. coli colonization we used LASSO logistic regression on relative 
abundances CAZymes, which did not result in an accurate prediction model (AUROC of 
0.56). This indicates there is only very low to no predictive power in relative abundances 
of CAZymes with regard to ESBL status. 
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Metabolomics profiling shows no clear differences between ESBL groups at the 
functional level
For metabolomic analysis we quantified metabolite concentrations in all individuals, 
except for one ESBL+ sample that was excluded as a good quality NMR spectrum could 
not be recorded due to shimming problems. First, to investigate whether any differences 
in metabolite concentrations existed between ESBL groups, we performed univariate 
testing (independent t-tests). These results strongly depended on the method used for 
multi-error correction (11 metabolites were significantly different at p=0.048 with 
Benjamini-Hochberg, but none with Holm) (Figure S3 and Figure S4). 

Unsupervised dimensionality reduction using PCA was performed to investigate 
whether any separation could be observed based on ESBL carriage (Fig 4A). Over 46% 
of the metabolome variation could be explain on the first principal component, with 
some separation of the study groups. However, supervised analysis using a PLS-DA 
indicates that no predictive value could be obtained for class separation based on two 
PLS components (Q2Y = -0.06). Lastly, we performed a random forest prediction model 
to investigate whether ESBL status could be predicted based on metabolite profiles, but 
this was not the case (AUROC = 0.61) (Figure 4B). Altogether, minor differences in 
metabolite concentrations could be detected using t-tests, but these were dependent on 
the method applied for correction for multiple testing. PCA between the ESBL groups 
showed a small overall signal, but no predictive value could be confirmed by both PLS-
DA and random forest.
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Figure 4: Metabolomic analyses with PCA (A) and the ROC curve of random forest based on 
metabolite profiles (B). The ROC curve shows the mean AUC value and its respective 95% CI. 
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Discussion

We present a unique study investigating differences in the gut microbiome and 
metabolome between individuals asymptomatically colonized by an ESBL-producing E. 
coli and matched non-colonized individuals. Importantly, in contrast to previous studies 
on this topic, we applied stringent inclusion criteria and matched ESBL+ individuals 
with ESBL- individuals on important epidemiological variables, which minimized the 
chance for observing effects which could be attributed to confounding variables. The 
combination of metagenomics and metabolomics allowed for a deep molecular resolution 
of the gut microbiome, both at the taxonomic and functional level. We show that there is 
no difference in the gut microbiome of individuals asymptomatically colonized with an 
ESBL-producing E. coli as compared to individuals who are not colonized.

Confounding factors may, at least partially, be the reason for the previously reported 
differences in microbial signatures associated with protection from asymptomatic 
colonization by ESBL-producing bacteria and MDROs across different studies. It must 
be noted that these studies have mostly investigated vulnerable patient populations, 
such as nursing home residents and hospitalized patients. In such populations it is very 
complex to disentangle observed differences between colonized and non-colonized 
individuals from differences due to confounding variables (such as comorbidities and 
medication) between compared individuals6, 8, 44-46. In our study we excluded individuals 
based on many microbiome-influencing clinical factors, and performed matching on 
several clinical variables, as recently recommended for cross-sectional microbiome 
studies9. In this way, we could study the effect of colonization of ESBL-producing E. 
coli in isolation and convincingly show that no differences exist in the gut microbiome 
between colonized and non-colonized individuals.

In addition, previous research has generally not focused on species-specific colonization 
resistance, but rather on a broad category of MDROs (such as ESBL-producing 
Enterobacterales)6, 8, 44-46. Given the large genomic diversity within species47, let alone 
within the order of Enterobacterales, it is highly unlikely that a common mechanisms 
exists which could prevent colonization of e.g. both ESBL-producing Klebsiella 
pneumoniae and ESBL-producing E. coli. Therefore in the current study we focused on a 
single species (E. coli), rather than a broad group of ESBL-producing Enterobacterales.
Microbiome composition of individuals in our study population reflects that of other 
population cohorts in general. For example, B. adolescentis has been previously described 
in another Dutch cohort as the most abundant bacterial species, with an average relative 
abundance of 9.51% (±10.8%)48. In addition, P. copri, R. bromii and E. rectale were also 
highly abundant and prevalent, in line with the findings in the current study48. 
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The resistome profiles identified in our study also corresponded well with what is 
generally described in literature, with tetracyline resistance being the most abundant 
resistance mechanism in the human gut49-51. The observed high relative abundance to 
mupirocin in our study could be explained by the intrinsic resistance of Bifidobacterium 
spp. to this, of which relatively high abundances were observed in this cohort. 

We show that despite inter-individual variation in taxonomic profiles, the functionality 
of the microbiome as assessed by the relative abundance of CAZyme families, is highly 
consistent between individuals. These finding are in line with previous findings showing 
functional similarity at the metabolic level despite taxonomic diversity52, 53.

This study is, to our knowledge, the first study to profile the gut metabolome in relation 
to colonization of ESBL-producing E. coli. We did not observe a relation between the 
metabolome, or any specific metabolite, and ESBL status. For other enteric pathogens, 
like Salmonella enterica serovar Typhimurium and C. difficile, specific metabolites have 
been shown to be strongly related to colonization resistance in rodent models54, 55. It 
should however be mentioned that these are infection models rather than asymptomatic 
colonization models, which would better represent our study.

A limitation of our study is that we do not have longitudinal data on the microbiome of 
these participants, and are therefore unable to make any statements about the duration 
of colonization of ESBL-producing E. coli and associations with the gut microbiome 
in time. This is particularly relevant considering the large variation in the duration of 
colonization between individuals56, 57. It could be speculated that individuals who are 
long-term colonized have a different gut microbiome than individuals who are only 
colonized for a short period of time, although there is no clear evidence for this in 
literature to our knowledge. Furthermore, longitudinal observations would allow us to 
identify changes occurring at the compositional and functional level when asymptomatic 
carriage turns into active infection or when people become decolonized. Lastly, one 
would have ideally have microbiome data of an individual shortly before an ESBL-
producing E. coli would colonize and at time of colonization, so that microbiome 
changes within an individual can be investigated. Secondly, we do not have whole-
genome sequencing data of the ESBL-producing E. coli isolates, which prevents us from 
placing these data into a broader epidemiological context. For example, if the majority 
of isolates would be sequence type (ST)131, an endemic ST, this would be valuable 
extra information and further extend the clinical relevance of our findings.

This study is however unique in the fact that ESBL+ and ESBL- individuals were selected 
from a large Dutch cohort (n= 2751), and therefore we could apply stringent inclusion 
criteria and match the two groups on several demographic and clinical variables. To the 
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best of our knowledge, this is one of very few studies in the microbiome field that applied 
such a stringent study setup. This setup ensured that the potential effect of confounding 
factors was minimized. In addition, this study is the first to investigate differences in the 
gut microbiome and metabolome between individuals colonized by an ESBL-producing 
E. coli and non-colonized individuals using a combined approach of metagenomics and 
metabolomics. Therefore, it provides insight into both the composition and function of 
the gut microbiome.

Conclusions

Our study shows that there are no differences in the gut microbiome or metabolome of 
individuals who are, or are not, asymptomatically colonized by an ESBL-producing E. 
coli. We hypothesize that microbiome-mediated colonization resistance may therefore 
not be as relevant against ESBL-producing E. coli as it is for other enteric pathogens 
(like C. difficile and vancomycin-resistant Enterococcus), although longitudinal studies 
or controlled human colonization models are necessary to confirm this hypothesis. 
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