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CHAPTER 4

Abstract

When studying the microbiome using next generation sequencing, DNA extraction
method, sequencing procedures and bioinformatic processing are crucial to obtain
reliable data. Method choice has been demonstrated to strongly affect the final biological
interpretation. We assessed the performance of three DNA extraction methods and two
bioinformatic pipelines for bacterial microbiota profiling through 16S rRNA gene
amplicon sequencing, using positive and negative controls for DNA extraction and
sequencing, and eight different types of high- or low-biomass samples. Performance
was evaluated based on quality control passing, DNA yield, richness, diversity and
compositional profiles. All DNA extraction methods retrieved the theoretical relative
bacterial abundance with maximum three-fold change, although differences were seen
between methods, and library preparation and sequencing induced little variation.
Bioinformatic pipelines showed different results for observed richness, but diversity
and compositional profiles were comparable. DNA extraction methods were successful
for feces and oral swabs and variation induced by DNA extraction methods was lower
than inter-subject (biological) variation. For low-biomass samples, a mixture of genera
present in negative controls and sample-specific genera, possibly representing biological
signal, were observed. We conclude that the tested bioinformatic pipelines perform
equally with pipeline-specific advantages and disadvantages. Two out of three extraction
methods performed equally well, while one method was less accurate regarding retrieval
of compositional profiles. Lastly, we again demonstrate the importance of including
negative controls when analyzing low bacterial biomass samples.
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Importance

Method choice throughout the workflow of a microbiome study, from sample collection
to DNA extraction and sequencing procedures, can greatly affect results. This study
evaluated three different DNA extraction methods and two bioinformatic pipelines by
including positive and negative controls, and various biological specimens. By identifying
an optimal combination of DNA extraction method and bioinformatic pipeline use,
we hope to contribute to increased methodological consistency in microbiota studies.
Our methods were not only applied to commonly studied samples for microbiota
analysis, e.g. feces, but also on more rarely studied, low-biomass samples. Microbiota
composition profiles of low-biomass samples (e.g. urine and tumor biopsies) were not
always distinguishable from negative controls, or showed partial overlap, confirming
the importance of including negative controls in microbiota studies, especially when
low bacterial biomass is expected.

Introduction

Humans constantly interact with microbes that are present in the environment and
reside on or within the human body. Recently, the attention for microbes has shifted
from an exclusive interest in the pathogenicity of specific microbes toward the potential
beneficial role of the microbiota in human health . The gastrointestinal tract contains
the highest number of microbes and has been the most extensively studied body site
of all human microbial communities ®. However, many other body sites are inhabited
by various microbes composing a specific microbiota, such as the oral region, skin and
urogenital system. Microbial complexity varies between these niches, e.g. a healthy
vaginal microbiota is often mainly composed of a few Lactobacillus strains, while gut
and skin microbiota are usually more diverse .

A limiting factor in current microbiome research is that comparison of various study
results is often difficult due to the application of different methodologies and lack of
appropriate controls. These differences can affect data outcomes and lead to variation
as large as biological differences @. Variation can be introduced throughout the entire
workflow, from sample collection, storage and processing to data analysis . Recently,
more attention has been devoted to standardizing the workflow of microbiome research.
For instance, it was observed that DNA extraction has a large impact on obtained data“?
and consensus has been achieved regarding the application of bead-beating to increase
efficiency of cell wall lysis and thereby improve the yield of Gram-positive bacterial
DNA (19 Nevertheless, various kits and in-house extraction methods are used across
different laboratories. Recently, Costea et al. evaluated 21 DNA extraction methods
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across three continents and suggested one protocol, named protocol Q, as ‘golden
standard’ for human fecal samples ®. They stated that it was unknown whether this
method is optimal for other samples than fecal material, e.g. for low-biomass samples.
To evaluate performance of DNA extraction for low-biomass samples, it is crucial to
include multiple negative controls to allow for identification of bacterial DNA introduced
during the entire workflow, from sample collection to sequencing 1.

As part of optimizing the procedures for 16S rRNA gene amplicon sequencing-based
microbiota studies in our facility, we evaluated three DNA extraction methods and
two bioinformatic pipelines using various positive controls and negative controls. In
addition, we applied these DNA extraction methods to various biological specimens.

Results and discussion

Mock communities pass quality control

We evaluated three different DNA extraction methods and two bioinformatic pipelines
for microbiota profiling through 16S rRNA gene amplicon sequencing (Fig 1) using
several positive and negative controls. Included positive controls were two bacterial
mock communities and one DNA standard. Included negative controls were DNA
extraction controls and sequencing controls. Quality control (QC) passing (DNA
concentration and intact genomic fragment) were evaluated to determine extraction
method performance. It was expected that positive controls would pass QC, while
negative controls would not. Regarding mock communities, all extractions using Zymo
and Q passed QC, while for Magna one extraction did not pass QC for both the ATCC
mock community and Zymo mock community (Table S3). This was not unexpected,
as mock communities were diluted for extraction using Magna and, therefore, DNA
concentrations were lower. Negative extraction controls did not pass QC for Q and
Magna, but they did for Zymo. This likely represents a higher contamination load during
the extraction process for Zymo, which was also reflected by higher DNA concentrations
(Table S3). A full overview of all samples included in this study, their QC passing and
DNA concentrations can be found in Table S4.
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Figure 1: Study design workflow. DNA was extracted from human specimens and positive and
negative controls using three different DNA extraction methods. DNA extraction performance was
assessed on DNA yield and QC passing. Extracted DNA, and positive and negative sequencing
controls were sequenced. Raw sequencing data was processed using two bioinformatic pipelines.
Performance was assessed on microbiota composition, richness and diversity.

Positive controls: Classification, richness, diversity and relative species abundance
Primer choice in combination with bioinformatic pipeline choice may limit correct
classification of all bacterial species in mock communities

Performance of the three extraction methods in combination with two bioinformatic
pipelines, NG-Tax and QIIME 2, was evaluated on correctly identifying richness,
diversity and relative abundances from bacterial mock communities and a DNA standard.
Richness and diversity were computed at the OTU level and at genus level. Analysis of
compositional profiles was performed at genus level. Both pipelines failed to classify
one organism from either mock community; NG-Tax did not detect Cutibacterium from
the ATCC mock, while QIIME 2 did not detect Salmonella from the Zymo mock. The
inability to detect Cutibacterium is most likely a combination of different internal settings
and filtering steps in the computational pipelines and a primer choice issue, since the
universal 515F and 806R primers are known to poorly amplify Cutibacterium acnes1?.
Poor amplification of C. acnes results in limited read numbers, which may be filtered
out during bioinformatic processing. These issues could likely be solved by choosing
primers targeting different 16S rRNA gene regions, or by using adapted V4 region
primers which do allow for accurate amplification of Cutibacterium > ', Regarding
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QIIME 2 and the inability to detect Salmonella, there was an Enterobacteriaceae
family with approximately expected relative abundance for Salmonella, and we were
therefore confident this represented Salmonella. This Enterobacteriaceae family was
subsequently included as Salmonella, and designated Enterobacteriaceae (Salmonella).
This classification error likely resulted from the fact that Enterobacteriaceae members
cannot always be discriminated based on the 16S rRNA V4 region 9.

DNA standard and Zymo mock community data can be recovered independent of
extraction protocol or pipeline

The Zymo mock and DNA standard consist of respectively cell material or DNA of eight
bacterial species and two fungal species. As the 16S rRNA gene was targeted, fungi
should not be detected. Therefore, theoretical richness is eight and theoretical Shannon
diversity was calculated to be 2.01.

Regarding the DNA standard, NG-Tax overestimated OTU-based richness for both
duplicates, DNA 1 and DNA 2 (Fig 2A, table S3). Richness was however accurately
retrieved at genus level (Fig 2C). The same was observed regarding diversity, which was
overestimated at the OTU level (Fig 2B), but accurate at genus level (Fig 2D). QIIME
2 approached theoretical richness and diversity values at the OTU level (Fig 2A+B,
table S3). Richness slightly improved at genus level (Fig 2C), while diversity did not
differ from OTU-based diversity (Fig 2D). Thus, QIIME 2 better estimated richness
and diversity at the OTU level, while NG-Tax performed better at genus level (Table
S3). This likely stems from NG-Tax finding an inflated richness due to assignment of
multiple OTUs from a single organism (e.g. multiple Enterococcus OTUs). When OTUs
are collapsed at genus level, this is no longer a problem, probably explaining why NG-
Tax can perform better at genus level, while performing worse at the OTU level.

Compositional profiles of DNA | and DNA 2 are highly similar to theoretical abundance
(Fig 3A+B). To quantify differences in compositional profiles, Bray-Curtis dissimilarity
and Kullback-Leibler divergence (Fig 3C-F) !> and fold errors for each taxon (Fig 4)
were determined. For the dissimilarity and divergence values, a value of zero represents
an identical microbiota composition to the theoretical expectation. NG-Tax obtained
values closer to zero than QIIME 2 for both DNA 1 and DNA 2, although the difference
is minimal (Fig 3 and Table S2) and the performance of both pipelines can therefore be
regarded as equal. A similar conclusion can be drawn from the fold errors (Fig 4), since
both pipelines accurately retrieved expected relative abundance, with all genera having
a fold error between -1.5 and 1.5 (Table S3).
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Figure 2: Richness (observed OTUs) and diversity (Shannon) computed for Zymo DNA and
Zymo mock at OTU level (A+B) and at genus level (C+D) for each combination of bioinformatic
pipeline and DNA extraction method. Dashed lines indicate theoretical values.

Similar analyses were performed for the Zymo mock to evaluate performance of
DNA extraction methods in combination with the bioinformatic pipelines. All DNA
extraction methods, independent of pipeline, resulted in OTU-based richness above 20
for most samples, far higher than theoretical expectance (Fig 2A). This is especially
noteworthy for QIIME 2, as it was highly accurate in retrieving correct richness for the
DNA standard, in contrast to NG-Tax. Zymo and Q protocols in combination with NG-
Tax retrieved accurate genus level-based richness, while a slightly inflated richness was
observed for Magna (Fig 2C). No extraction method was consistent in retrieving correct
genus level-based richness in combination with QIIME 2. Regarding diversity, all DNA
extractions, independent of pipeline, retrieved highly accurate values at genus level
(Table S3). At the OTU level, however, the NG-Tax pipeline resulted in overestimation
of diversity independent of DNA extraction method, and can therefore be considered
a result of bioinformatic processing. Magna extraction resulted in Bray-Curtis and
Kullback-Leibler values closer to zero than Zymo and Q, independent of pipeline (Fig
3C-F and Table S3). A similar conclusion can be drawn from the fold errors, which are
lowest for Magna and pipeline-independent (Fig 4 and Table S3).
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Figure 3: Compositional profiles at the genus level for QIIME 2 (A) and NG-Tax (B) for Zymo
mock, theoretical composition is indicated in the first bar graph. Comparison of compositional
profiles expressed by Kullback-Leibler divergence (C+D) and Bray-Curtis dissimilarity (E+F) per
pipeline. QIIME 2 results are shown in figure C+E, NG-Tax results are shown in figure D+F. For
both Kullback-Leibler and Bray-Curtis measures, 0 indicates an identical compositional profile,
while higher numbers indicate more dissimilar profiles.
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Figure 4: Fold error per bacterium as compared to theoretical values for QIIME 2 (A) and NG-
Tax (B). Genera are ordered based on being Gram-positive or Gram-negative. A value above 1
represents overestimation, and a value below -1 represents underestimation.

Taken together, results obtained from the DNA standard indicate that QIIME 2 and NG-
Tax perform equally well in general, except for overestimation of the OTU level richness
and diversity when using NG-Tax. Results obtained from the Zymo mock, which is a
better representation of the full procedure for a microbiota study, indicate that richness
is most accurate at the genus level using Zymo or Q in combination with the NG-Tax
pipeline. In addition, bacterial microbiota composition profiles are best retrieved using
Magna, followed by Zymo, and are pipeline-independent.

In concordance with current literature ® and independent of extraction method, a
general underestimation of Gram-positive bacteria was observed, with Enterococcus
being the sole exception (Fig 4). This is most likely due to incomplete cell wall lysis of
Gram-positive bacteria. Based on the DNA standard and the Zymo mock, we conclude
that Zymo and Magna in combination with either pipeline are the best performing
combinations (Table S3). However, when high-throughput DNA extraction is required
(e.g. for large cohort studies), Magna may be preferred from a practical point of view,
although it overestimates richness independent of pipeline.
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In general, overestimation of OTUs may stem from the 100% identity setting for
clustering, combined with the natural divergence of the 16S rRNA gene %D, There
is no current consensus on OTU identity setting, and cut-offs between 97% and 100%
are most commonly used '®. An advantage of the 100% cut-off is that unique taxa
differing a single nucleotide are clustered into different OTUs. A disadvantage is that,
as intragenomic diversity in the 16S rRNA gene is common within bacterial genomes, a
100% cut-off can lead to multiple OTUs stemming from a single bacterium and thereby
inflate richness . In addition, using a 100% cut-off can theoretically inflate richness
due to sequencing errors and requires computational denoising. Apart from biological
explanations, the different algorithms and internal filtering steps used in QIIME 2 and
NG-Tax can affect the outcome for richness.

ATCC mock is recovered incorrectly, independent of extraction protocol or pipeline
The ATCC mock consists of 20 unique bacterial species, with four of them belonging to
two genera (Staphylococcus and Streptococcus). Therefore, theoretical richness at OTU
level would be 20, but eighteen at the genus level. In addition, these 20 unique bacterial
species come from different environments, including gut, oral and skin microbiota.

No values close to the theoretical profiles for the ATCC mock for any extraction method/
bioinformatic pipeline were observed, and one sample from Q consisted almost entirely
of non-classifiable reads (Fig 5), indicating sample-related issues. Bacillus was highly
overrepresented in all other samples, with a relative abundance over 30% in Zymo and
Magna extracted samples, while 6.13% is expected. Curiously, after the first mechanical
lysis step in Q, we could culture Bacillus cereus and Cutibacterium acnes (identification
scores of 1.90 and 2.00, respectively), and Bacillus cereus (identification score 2.05)
after mechanical lysis in Zymo. This is clinically important, as it means that infectious
materials cannot be considered safe or non-infectious after mechanical lysis. As culturing
of B. cereus indicates that cell wall lysis was incomplete, it would be expected that
its relative abundance was underestimated, contrarily to what was observed. Another
research group recently reported a similar overrepresentation of Bacillus in the ATCC
community 1. ATCC itself was also unable to retrieve abundances close to theoretical
expectation, neither with 16S rRNA gene amplicon sequencing nor with shotgun
sequencing ?”, Several reasons could explain this discrepancy between theoretical
profiles and obtained profiles. For example, physical cell-to-cell interactions or presence
of different metabolites may interfere with DNA extraction !¢ 2V, Therefore, based on
this synthetic community, no conclusions on the optimal extraction-pipeline combination
could be made. This proposed positive control prompts the question whether mock
communities are always reliable for assessing performance of DNA extraction methods.
As can be observed from the Zymo mock, DNA extraction kits do not necessarily inflict
observed deviations, but may rather be a result of mock community-specific properties.
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Outcomes may depend on extraction kit / community type combination, indicating the
potential necessity to use a positive control that strongly resembles the investigated

microbiome.
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Figure 5: Compositional profiles at the genus level for QIIME 2 (A) and NG-Tax (B) for the
ATCC mock. Genus ‘Other’ is the sum of the relative abundance of all genera not listed in the

legend.

Negative controls: inconsistently contaminated

Negative controls were taken along for each extraction method to check for kit-specific

contaminants, which is especially relevant for deciding whether low-biomass samples

contain real microbiota. Regarding Zymo, clear kit-contaminants were Pseudomonas
and Delftia (Fig S2A+C), consistent across the different pipelines at the genus level,
and with previous findings 1?2, For Magna and Q, specific contaminants were less

obvious, although Pseudomonas was present. Generally, negative controls mostly

consisted of genera commonly found in gut and oral microbiota, most of them also

previously described as contaminants V. In addition, negative sequencing controls
were taken along, and here no consistent contaminants could be observed (Fig S2B+D).

Potential contamination sources are multifold, such as kit contamination, index hopping,

or well-to-well contamination ®* 2%, Index-hopping is however not a likely source of
contamination, as the negative control for Magna was sequenced in different lanes,
and profiles look highly similar (Fig S2A+C). Additionally, we did not observe index-

hopping in our positive controls.

One of the contaminants we identified has not been previously described as a contaminant,
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namely Clostridioides. This likely represents C. difficile, and contamination by this
bacterium can be explained by the fact that DNA extractions were performed in our
National Reference Laboratory for C. difficile, which probably contains minor amounts
of C. difficile spores during most time points. C. difficile contamination on laboratory
surfaces has also recently been described in another clinical microbiology laboratory @,

By incorporating this information with the Zymo positive controls, it can be concluded
that Zymo and Magna are most optimal. Magna most accurately captured the expected
community profile, while kit-specific contaminants are clear and easy to discriminate
from biological signal using Zymo (Table S2).When investigating different biological
sample types it would be ideal to use a kit for which kit contaminants do not overlap
with the biological signal, e.g. Pseudomonas contamination when studying sputum
samples from cystic fibrosis patients who are frequently colonized with Pseudomonas
spp. However, this would require contaminants to be stable across batches, which has
been shown to not be the case 2.

Automatic Magna extraction yields lowest DNA for biological samples
Twenty-seven biological samples were available per extraction protocol (Table S1) and
Q was most successful in passing QC (22/27), followed by Zymo (20/27) and Magna
(17/27) (Table S3), although differences were not statistically significant (Cochran’s
Q-test, p=0.178). QC passing was based on DNA concentration and intact genomic
fragments. DNA concentrations were on average lowest for Magna, while yields were
comparable between Q and Zymo (Figure S1). Processing of raw sequencing data from
biological samples was performed using the NG-Tax pipeline at the genus level.

Fecal microbiota analysis is only slightly affected by the applied DNA extraction
methods

DNA extracted from fecal samples using the three different protocols all passed QC.
Magna, Zymo and Q achieved an average concentration of approximately 29 ng/ul, 111
ng/ul and 212 ng/ul, respectively (Fig. S1). While DNA yield varied between extraction
methods, all were sufficient for sequencing. Microbiota profiles were comparable
between extraction methods for each sample (Figure S3A). In addition, differences in
compositional profiles were quantified using Kullback-Leibler divergence (Figure 6A).
This heatmap shows that technical variation induced by DNA extraction method is much
lower than biological variation between feces samples. Profiles of the feces donors
contained many bacterial genera commonly present in fecal microbiomes %27, Healthy
fecal microbiomes largely consist of Bacteroidetes and Firmicutes phyla (~90%), while
Actinobacteria and Proteobacteria are present in smaller proportions. At the genus level,
Bacteroides, Prevotella and Faecalibacterium are among the most prevalent genera ®,
all of which were found in high abundance herein.
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Microbiota profiles of oral swabs are consistent, despite low DNA yields

Out of eighteen DNA extractions, fifteen extractions passed QC for oral swabs. Only
for Zymo, all extractions passed QC. DNA yields were highly variable for all extraction
methods, ranging from 0.12 to 6.34 ng/ul. Half of the extractions (nine/eighteen)
yielded a concentration below one ng/ul. All compositional profiles were dominated
by Streptococcus, Prevotella spp., Haemophilus and Veillonella, which was individual-
independent. In addition, technical variation induced by DNA extraction and subsequent
steps was lower than biological variation (Fig 6B). The oral microbiota, like the gut
microbiota,is highly diverse. Nevertheless,acertain core of genera (e.g. Streptococcus spp.
and Prevotella spp.) is present in most people, all of which were found in our study 252,
Together, the good QC passing rate, DNA concentrations and consistency of
compositional profiles between extraction methods lead us to conclude that all three
methods work well for oral swabs.
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Applied methodology yields inconsistent results for the urine microbiota

During the last decade, microbiota studies showed that urine contains a bacterial
microbiota®®3Y. Despite using 30-40 ml of urine and centrifugation prior to extraction®?,
we were not able to convincingly capture a urinary microbiota for all samples (Fig S3C).
DNA concentrations were high for an infected sample (between thirteen and 42 ng/ul),
but concentrations for the other samples were between 0.11 and 0.99 ng/ul. Six out of
nine samples passed QC. For the infected sample with a high bacterial load, we were
able to classify the cause of infection to Enterobacteriaceae, which is in agreement with
the fact that most UTIs are caused by members of Enterobacteriaceae. One urine sample
showed high similarity to negative controls for respective kits, with non-classifiable
reads for Q and Magna, and high relative abundance of Pseudomonas for Zymo (Fig
S3C). Another urine sample contained a high Lactobacillus relative abundance, which
has previously been shown to be prevalent in urine samples ®V. Lactobacillus spp. could
be cultured in 15% of urine samples collected by a transurethral catheter and was thereby
the most prevalent genus cultured V. Another small-scale study found that in five out
of six patients, Lactobacillus was detected in midstream urine samples and its relative
abundance was between 22 and 80% ©?. In addition, presence of Atopobium, Gardnerella,
Prevotella and Anaerococcus point towards an existing urinary microbiota ©9.
However, Pseudomonas, a common Zymo kit contaminant, was still found in this urine
sample, and for Magna more than 25% of reads could not be classified (Fig S3C). This
could indicate that the biological signal is not much stronger than contamination, and
therefore a mixed profile is observed. Further efforts and method optimization should be
undertaken, although this can be difficult to implement in routine work . In addition,
culturing could be used as a follow-up method to confirm that contaminants are not
viable bacteria, but rather bacterial DNA.

Saliva samples with long storage time and multiple freezing-thawing cycles seem
unsuitable for microbiota research

DNA yield from included saliva samples was lower as compared to literature %39 (Fig
S1). Only a single DNA extraction had a concentration of slightly above one ng/ul
(1.18; Table S4), while all other extractions had concentrations between 0.04 and 0.68
ng/ul. This is most likely associated with storage duration (~fifteen years) and the fact
that samples were thawed and refrozen several times. This also explains why only three
out of nine DNA extractions passed QC. The included saliva samples were chosen as
investigators within our facility were interested to see if microbiota studies could be
performed using these samples. Compositional profiles consisted of a mixture of genera
present in the normal oral microbiota (Oribacterium, Prevotella 7, Prevotella 9 and
Streptococcus) @, genera present in our negative controls (Pseudomonas, Delftia) and
non-classifiable reads (Fig S3D). In combination with low DNA yields, it is likely that
a mixture between biological signal and contamination signal is present. Therefore,
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we consider the applied extraction methods unsuitable for saliva samples with a long
duration of storage time and multiple freezing-thawing cycles.

The colorectal cancer microbiota present in biopsies was indistinguishable from
negative controls or fecal microbiota

As colorectal cancer development has been associated with specific gut bacteria, we
were interested to see if colorectal cancer tissue itself also contained bacteria®”-3®. DNA
concentrations were sufficient for all samples to pass QC, but extracted DNA was likely
mostly human-derived. Two of three extraction methods were not successful, as samples
extracted using Zymo and Magna showed high similarity to their respective negative
controls (Fig S3E). Using Q, Bacteroides, Fusobacterium and Gemella were identified,
all being previously associated with colorectal cancer development ¢7-3%. Several gut
commensals, including Faecalibacterium and Escherichia-Shigella were present in
both the negative controls and these colorectal cancer samples. It is therefore difficult
to discriminate whether these are contaminant bacteria, or whether they represent
biological signal.

We hypothesized that by spinning down the material, the supernatant would contain
more bacteria than the cancer tissue. DNA concentrations of supernatant were between
0.16 and 2.32 ng/ul, and seven out of nine DNA extractions passed QC (Table S4). For
one sample, it was clear that across all methods many genera were observed which were
present in negative controls (e.g. Pseudomonas), or reads could not be classified at all
(Fig S3F). A second sample seemed to contain a real microbiota. Profiles were consistent
across extraction methods, did not contain many contaminants and had specific bacteria
previously linked to colorectal cancer (e.g. Fusobacterium)©?. The third sample showed
a profile reflecting a mix between biological signal and technical contamination. Profiles
were consistent across methods and contained genera representative of a gut microbiota,
but also contained non-classifiable reads and contamination. Therefore, profiles are likely
a mixture of biological signal and technical contamination, and further optimization is
necessary prior to using this sample type for experimental studies. We have the same
recommendation for colorectal cancer sample types as for urine, as discussed above.

It remains unclear whether HPV-negative vulvar squamous cell carcinoma biopsies
contain a bacterial microbiota

Vulvar squamous cell carcinoma (VSCC) has different etiological pathways, of which
one is associated with human papilloma virus (HPV). The counterpart is non-virally
related and is frequently associated to lichen sclerosis, a benign chronic inflammatory
lesion and TP53 mutations “%4), We extracted DNA from HPV-negative VSCC tissue as
a pilot study to determine if investigating the relationship between bacterial microbiota
and HPV-negative VSCC would be potentially feasible. DNA concentrations were high
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(Fig S1), only for three extractions below one ng/ul, and eight out of nine extractions
passed QC. However, DNA was probably again largely human-derived. This was reflected
in the obtained microbiota profiles, as most reads were not classified or the profiles
showed high similarity to negative controls (e.g. high abundance of Pseudomonas) (Fig
S3G). Therefore, it is unlikely that this cancer tissue contains bacteria, or bacteria are
so lowly abundant that they are overshadowed by contamination load. In general, the
vulvar microbiota has not been extensively studied. A recent study on vulvar microbiota
observed that Lactobacillus, Corynebacterium, Finegoldia, Staphylococcus and
Anaerococcus are most abundant on this body site, but the use of negative controls
was not reported “?. These genera are also part of the vaginal microbiota, and might be
sampling contamination or reflect high similarity between vulvar and vaginal microbiota.
A large amount of formalin-fixed VSCC materials are stored in a biobank at our facility.
To investigate whether this sample collection could be used for microbiota profiling,
DNA was extracted from three formalin-fixed VSCC samples. DNA concentrations
were all below 0.3 ng/ul, and only two out of nine extractions passed QC (Table S4).
One sample extracted with Q was excluded from further analysis, as no reads were
present after sequencing. Extraction and sequencing of formalin-fixed material poses
additional problems, as DNA molecules could be highly fragmented and too short
for amplicon sequencing of the V4 region “. For Zymo, samples resembled negative
controls, with Delftia and Pseudomonas being highly abundant (Fig S3H). The same
samples had completely different microbiota profiles when using protocol Q or Magna.
Both extraction methods showed genera commonly found in the lower urogenital
tract, including Streptococcus, Prevotella and Gordonia ®-?". However, many of these
genera were also detected in negative controls. In combination with low DNA yield and
inconsistent profiles across extraction methods, we conclude that no reliable bacterial
microbiota profile could be identified in these samples. For both VSCC types, we suggest
the same way forward as for urine samples.

Sample groups with and without biological signal cluster apart

Lastly, we performed t-distributed stochastic neighbor embedding (t-SNE) clustering
using Bray-Curtis measures on all samples used in the present study (Fig 7) “¥. Based
on microbiota composition as measured by Bray-Curtis, t-SNE projects points in a two-
dimensional space, while maintaining local structures present in high-dimensional space.
Clear clusters could be identified for Zymo positive controls, feces, oral swabs and ATCC
mock (all but one sample) (Fig 7). Other biological samples and negative controls were
more dispersed throughout the plot, indicating that either more biological or technical
variation was present. This is in agreement with our detailed analysis, showing that
their microbiota cannot necessarily be distinguished from the negative controls. This
highlights the importance of including negative controls in microbiota studies, which has
previously been shown in two studies aiming to unravel the placental microbiota 49,
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and is increasingly recognized in the field. It is currently unclear whether a placental
microbiota exists, but when comparing placental samples of healthy deliveries to
included negative controls, microbiota compositions could not be distinguished “3- 49,
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Figure 7: Bray-Curtis distance measures visualized by t-distributed stochastic neighbour
embedding (t-SNE) for all samples. Each dot in the plot represents a single sample, and short
distances between samples indicate high similarity.

Strengths and limitations

The current study had several strengths and limitations. By using a positive control of
cell material with a corresponding DNA standard, we differentiated variation induced
from sequencing procedures and DNA extraction. We demonstrate the importance of
using positive and negative controls in microbiota studies, and show that negative
controls are crucial for interpretation of low-biomass samples. Another strength of the
study was that for several higher biomass biological samples (feces and oral swabs),
we showed that technical variation was much smaller than biological variation. A
shortcoming of the study is that we did not perform any other quantification next to 16S
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rRNA gene sequencing (e.g. qPCR), which may be particularly useful for quality control
of the ATCC mock. Furthermore, the current study used only three unique samples of
most biological sample types. Especially for samples for which DNA extraction was
challenging (urine samples, colorectal cancer supernatant), a higher number of unique
samples would have allowed for a more thorough evaluation.

Conclusion

The current study evaluated three DNA extraction methods and two bioinformatic
pipelines for bacterial microbiota profiling using several positive and negative controls,
and a range of biological specimens. All three extraction methods quite accurately
retrieved theoretical abundance of the Zymo mock, but not of the ATCC mock. For DNA
extraction, we recommend using the Zymo and Magna protocol, since they showed
good overall performance for all samples. Sequencing procedure only induced minor
variation, as shown using a DNA standard. We furthermore showed that the NG-Tax
and QIIME 2 pipelines perform equally well overall, each having their specific flaws.
By including negative controls and comparing these with low-biomass samples, we
evaluated whether low-biomass samples consisted of technical noise, biological signal
or a mixture. In most cases, identification of a unique microbiota was not achieved,
highlighting the importance of negative controls and sufficiently sensitive methods. The
results from this study can help other microbiome study groups to select an appropriate
DNA extraction method and bioinformatic pipeline. Lastly, we hope this study
contributes to further awareness of the usage of controls, especially when studying low-
biomass samples.

Materials and Methods

Sample collection and pre-processing

Eight different biological specimens were included in this study, namely feces, urine,
saliva, oral swabs, colorectal cancer tissue, colorectal cancer supernatant, vulvar
squamous cell carcinoma tissue and formalin-fixed vulvar squamous cell carcinoma.
Of each biological specimen, three unique samples were included. Only for oral swabs,
six unique samples were included (Table S1). These samples were anonymized and
treated according to the medical ethical guidelines described in the Code of Conduct
for Proper Secondary Use of Human Tissue of the Dutch Federation of Biomedical
Scientific Societies. A detailed overview of sample types, sample processing and storage
conditions can be found in Table S1.
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Mock communities and DNA standard

Two mock communities (ZymoBiomics Microbial Community Standard, Zymo
Research, Irvine, California, USA and 20 Strain Even Mix Whole Cell Material
ATCC® MSA2002™, ATCC, Wesel, Germany) were included as positive controls for
DNA extraction. Exact composition and relative abundances of 16S rRNA gene copies
was provided on the product sheet for ZymoBiomics Microbial Community standard
(hereafter referred to as Zymo mock), while for ATCC® MSA2002™ (hereafter referred
to as ATCC mock) we calculated expected 16S rRNA gene profiles based on genomic
information (Table S2). ZymoBiomics Microbial Community DNA Standard (hereafter
referred to as DNA standard) was taken along as a positive sequencing control.

DNA extraction

Procedures

Cancer samples were pre-processed for DNA extraction comparably to a recent study
on pancreatic cancer microbiota “7, urine samples according to a recent publication on
how to study urinary microbiota ®» and other samples according to in-house methods
for sample processing (Table S1). For solid cancer samples, the beating steps during
pre-processing were performed using a Qiagen TissueLyser LT (Qiagen Benelux, Venlo,
the Netherlands) at 50Hz for one minute (Table S1). As single saliva samples did not
contain sufficient volume for multiple extractions, several samples of the same individual
were pooled to obtain the appropriate volume. DNA was extracted in duplicate from
three unique samples for each biological material, only for oral swabs from six unique
samples, and from the two mock communities. DNA was extracted using three different
extraction protocols (see Protocols section), and for each protocol a negative extraction
(no sample) was included in duplicate. The DNA standard was taken along in duplicate.
DNA was quantified using a Qubit 3.0 Fluorometer (Invitrogen, Breda, the Netherlands)
and the Qubit™ dsDNA HS Assay Kit (Thermo Fisher, Landsmeer, the Netherlands). A
schematic overview of the study setup is shown in Figure 1.

DNA extraction protocols

Detailed protocols, including all minor adaptations, are present in Supplementary
Methods. DNA extraction was performed using three methods: 1) the Quick-DNA
Fecal/Soil Microbe kit (hereafter referred to as Zymo) (Zymo Research) according to
manufacturer instructions with minor adaptations, 2) protocol Q (hereafter referred to as
Q)@ and 3) automated DNA extraction with MagNA Pure 96 ™ (hereafter referred to as
Magna) (Roche Diagnostics, Almere, the Netherlands) using the MagNA Pure 96 DNA
and viral NA small volume kit (Roche Diagnostics), according to standard operating
procedures with minor adaptations. Mock communities were diluted to 10%-10° cells
per sample for extraction using Magna. For Q, several buffers and other materials were
not provided in the kit and therefore purchased elsewhere, namely BeadBug™ prefilled
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tubes with 2.0 mL capacity and 0.1 mm Zirconium beads (Sigma-Aldrich, Zwijndrecht,
the Netherlands), RNase A, DNase and protease-free water (10 mg/mL) (Thermo Fisher,
the Netherlands) and TE buffer (Thermo Fisher).

MALDI-TOF Mass Spectrometry (Biotyper)

To verify whether all bacteria of the ATCC mock were lysed after the first mechanical
lysis step of both Zymo and Q, the lysate was plated on a tryptic soy agar plate containing
5% sheep (VWR International, Amsterdam, the Netherlands), and aerobically and
anaerobically incubated at 37°C for five days. The MALDI Biotyper system was used
(Bruker Daltonics, Germany) to identify the bacterial species. Samples were prepared in
the following way: A bacterial colony was taken from the culturing plate and spread in
duplicate on single spots on a Bruker polished steel targetplate. Subsequently, one pl of
70% formic acid was added on each single spot and when dried, one pl prepared Bruker
Matrix HCCA according to clinical laboratory protocols was added per spot. The Bruker
polished steel targetplate was then used for MALDI-TOF MS Biotyper analysis.

Library preparation and 16S rRNA gene amplicon sequencing

Of each duplicate DNA extraction from biological specimens, the duplicate with
highest genomic DNA concentration was used for sequencing. Duplicate samples from
controls were both sequenced. Quality control, library preparation and sequencing were
performed by GenomeScan B.V. (Leiden, The Netherlands) using the NEXTflex™ 16S
V4 Amplicon-Seq Kit (BiooScientific, TX, USA) and Illumina NextSeq 500 (paired-
end, 150bp) according to their standard operating procedures. QC passing was based on
intact genomic DNA and DNA concentrations measured by GenomeScan B.V. Therefore,
those DNA concentrations were used for downstream analysis. Several samples were
sequenced on multiple lanes, which is indicated in all relevant figures and tables.

Sequencing data analysis

Read filtering, operational taxonomic unit (OTU)-picking and taxonomic assignment
were performed using two different bioinformatic pipelines, QIIME 2 and NG-Tax
0.4 4849 both using the Silva 132 SSU Ref database for taxonomic classification ©?.
For both pipelines, a read length of 120 bp was chosen based on quality of reads.
The following settings were applied for QIIME 2: forward and reverse read length of
120 bp, quality control using Deblur, identity level of 100% (default). The following
settings were applied for NG-Tax: forward and reverse read length of 120 bp, ratio OTU
abundance of 2.0 (default), classify ratio of 0.9 (default), minimum threshold of 0.1%
(default), identity level of 100% (default), error correction of 98.5 (default). Prior to
the NG-Tax run, potential left over primers were removed with cutadapt v. 1.9.1¢Y, in
paired-end mode, with additional setting -e 0.2 (increased error tolerance, 20%). This
setting was required since NG-Tax first creates a smaller custom database, based on the
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used primers. During further processing, data has to be primer sequence free, as the
primer sequence is removed from the smaller database. Furthermore, all sequences with
any deviating barcode in the fastq header were changed to the original barcode to allow
inclusion into the NG-Tax pipeline.

The obtained OTU-tables were filtered for OTUs with a number of sequences less than
0.005% of the total number of sequences . Downstream analysis was performed in
R (v3.6.1), mainly using the phyloseq (v.1.28.0), microbiome (v.1.6.0) and ggplot2
(v.3.2.0) packages %339, Alpha diversity was computed at both the OTU and genus levels,
while analysis of compositional profiles was performed at the genus level. Kullback-
Leibler divergence and Bray-Curtis dissimilarity measure heatmaps were computed by
first deleting genera that had a relative abundance of zero in all investigated samples
(positive controls, feces and oral swabs) and subsequent calculation of the respective
measure. All R code is available upon request from the corresponding author.

Notes
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