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CHAPTER 2

Summary

The gut microbiome is critical in providing resistance against colonization by
exogenous microorganisms. The mechanisms via which the gut microbiota provides
colonization resistance (CR) have not been fully elucidated, but include secretion
of antimicrobial products, nutrient competition, support of gut barrier integrity and
bacteriophage deployment. However, bacterial enteric infections are an important
cause of disease globally, indicating that microbiota-mediated CR can be disturbed,
and become ineffective. Changes in microbiota composition, and potential subsequent
disruption of CR, can be caused by various drugs, such as antibiotics, proton pump
inhibitors, antidiabetics and antipsychotics, thereby providing opportunities for
exogenous pathogens to colonize the gut and ultimately cause infection. In addition, the
most prevalent bacterial enteropathogens, including Clostridioides difficile, Salmonella
enterica serovar Typhimurium, enterohemorrhagic Escherichia coli, Shigella
flexneri, Campylobacter jejuni, Vibrio cholerae, Yersinia enterocolitica and Listeria
monocytogenes, can employ a wide array of mechanisms to overcome colonization
resistance. This review aims to summarize current knowledge on how the gut microbiota
can mediate colonization resistance against bacterial enteric infection, and on how
bacterial enteropathogens can overcome this resistance.
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CHAPTER 2

Introduction

The human gastrointestinal tract is colonized by an enormous number of microbes,
collectively termed gut microbiota, including bacteria, viruses, fungi, archaea and
protozoa. Bacteria achieve the highest cell density, estimated to be approximately 10!
bacteria/ml in the colon V. Research has long focused on pathogenicity of microbes and
not on their potential beneficial roles for human health. Beneficial roles include aiding
in immune system maturation, production of short-chain fatty acids (SCFAs), vitamin
synthesis and providing a barrier against colonization with potential pathogens .
Additionally, the gut microbiota has extensive interactions with our immune system and
it has been associated with many immune-mediated diseases both in and outside of the
gut 9, Over the last ten years, there has been an increased interest in elucidating the
bidirectional relationship between gut microbiota and human health and disease. This
has been partly propelled by improved sequencing technologies, allowing the profiling
of entire microbial communities at high efficiency and low costs ©.

Hundreds of different bacterial species inhabiting the healthy human gut have been
identified 7- ®. Initial studies seeking to elucidate the relationship between human
microbiota and health and disease were largely observational; gut microbiota composition
would be compared between diseased and healthy groups and subsequently associated
with clinical markers . Currently, the field is moving towards more functional and
mechanistic studies by including other —omics techniques.

In healthy individuals, the gut microbiota provides protection against infection by
deploying multiple mechanisms including secretion of antimicrobial products, nutrient
competition, support of epithelial barrier integrity, bacteriophage deployment, and
immune activation. Together, these mechanisms contribute to resistance against
colonization of exogenous microorganisms (colonization resistance, CR) ‘9. However,
also in absence of a fully functional immune system, the gut microbiota can provide
a crucial and nonredundant protection against a potentially lethal pathogen !". This
review will discuss the mechanisms used by gut microbiota to provide CR, the impact of
various drugs on gut microbiota and thereby CR, and the strategies of specific bacterial
pathogens to overcome CR and ultimately cause enteric infection.

Mechanisms providing colonization resistance
The gut microbiota produces various products with antimicrobial effects, including

SCFAs, secondary bile acids and bacteriocins. Each of these contribute to CR in a
product-specific manner. The following section describes their general mechanisms of
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action. The contribution of the immune system in conferring CR has been extensively
reviewed elsewhere and is outside the scope of this review (113,

Short-chain fatty acids

SCFAs are mainly produced by bacteria through fermentation of non-digestible
carbohydrates (Fig. 1) . The three main SCFAs are acetate, propionate and butyrate,
constituting 90-95% of the total SCFA pool ®. During homeostatic conditions, butyrate
is the main nutrient for enterocytes and is metabolized through -oxidation. Hereby, an
anaerobic milieu inside the gut can be maintained !©. SCFAs can impair bacterial growth
by affecting intracellular pH and metabolic functioning. SCFA concentrations have been
shown to inversely relate to pH throughout different regions of the gut !?. At lower
pH, SCFAs are more prevalent in their non-ionized form and these non-ionized acids
can diffuse across the bacterial membrane into the cytoplasm. Within the cytoplasm
they will dissociate, resulting in a build-up of anions and protons leading to a lower
intracellular pH 9,
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Figure 1: Outline of gut microbiota-mediated colonization resistance mechanisms. Fiber obtained
from the diet is fermented by gut microbiota into short-chain fatty acids (SCFAs). Bacteriocin
producers produce bacteriocins capable of targeting a specific pathogen. Primary bile acids can be
converted by a very select group of gut microbiota into secondary bile acids, which generally have
antagonistic properties against pathogens. Nutrient competition of native microbiota can limit
access to nutrients for a pathogen. Specific organisms can use SCFAs, bacteriocins and primary
bile acids to increase their virulence, as will be discussed in later sections.
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In presence of acetate, metabolic functioning of Escherichia coli could be impaired by
preventing biosynthesis of methionine, leading to accumulation of toxic homocysteine
and growth inhibition. Growth inhibition was partly relieved by supplementing the
growth medium with methionine, showing that this metabolic dysfunction is one of the
factors by which SCFAs impair bacterial growth (9.

Bile acids

Bile acids, possessing antimicrobial properties, are produced by the liver and excreted in
the intestinal tract to aid in the digestion of dietary lipids. After production of primary bile
acids in the liver, they are subsequently conjugated with glycine or taurine, to increase
solubility @. These are then stored in the gallbladder, and upon food intake, are released
into the duodenum to increase solubilization of ingested lipids. A large part of conjugated
primary bile acids is reabsorbed in the distal ileum (50-90%), while the remainder can
be subjected to bacterial metabolism in the colon @?. Here, conjugated bile acids can
be deconjugated by bile salt hydrolases (BSH), which are abundantly present in the gut
microbiome ®". Deconjugated primary bile acids can subsequently be converted into the
two main secondary bile acids, deoxycholic acid and lithocholic acid, by few bacteria,
mostly Clostridium species, via 7a-dehydroxylation through a complex biochemical
pathway @'-»» (Fig. 1). A crucial step during the conversion is encoded by the baiCD
gene, which is found in several Clostridium strains, including Clostridium scindens ®*.
Deoxycholic acid is bactericidal to many bacteria, including Staphylococcus aureus,
Bacteroides thetaiotaomicron, Clostridioides difficile, bifidobacteria and lactobacilli by
membrane disruption and subsequent leakage of cellular content 529,

The importance of bacteria for conversion of primary bile acids was demonstrated by
investigating bile acid profiles in germ-free mice, where no secondary bile acids could
be measured ®. Very few colonic bacteria, less than 0.025% of total gut microbiota, are
capable of performing 7a-dehydroxylation ®*39, One of these bacteria, C. scindens, is
associated with colonization resistance against C. difficile through secondary bile acid
production @239, A follow-up in vivo study demonstrated that C. scindens provided CR
in the first day post infection (p.i), but protection and secondary bile acid production
was lost at 72 p.i®?. C. scindens on its own was also not sufficient to inhibit C. difficile
outgrowth in humans ¢¥. Together, these studies suggest that C. scindens either requires
cooperation with other secondary-bile acid producing bacteria or that other mechanisms
were involved in providing CR. The secondary bile acid lithocholic acid may exert its
antimicrobial effects, and potentially its effects on CR, in an indirect manner. Lithocholic
acid has been shown to enhance transcription for the antimicrobial peptide LL-37, in gut
epithelium using a HT-29 cell line ®Y. However, no increased mRNA transcription nor
protein translation of LL-37 was observed in another study using a Caco?2 cell line ¢,
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Bacteriocins

Bacteriocins are short, toxic peptides produced by specific bacterial species that can
inhibit colonization and growth of other species 9 (Fig. 1). Their mechanisms of action
are multifold and include disturbing RNA and DNA metabolism, and killing cells
through pore formation in the cell membrane ¢7#9. Bacteriocins can be divided into those
produced by Gram-positive bacteria, and those produced by Gram-negative bacteria.
Further classification of bacteriocins has been extensively discussed elsewhere @142,
Bacteriocins produced by Gram-positive bacteria are mostly produced by lactic acid
bacteria (e.g. Lactococcus and Lactobacillus) and some Streptococcus species, and
are further subdivided into three major classes on the basis of the molecular weight of
the bacteriocins and the presence of post-translational modifications “?. Bacteriocins
produced by Gram-negative bacteria, mostly by Enterobacteriaceae, can be broadly
divided into high molecular weight proteins (colicins) and lower molecular weight
peptides (microcins) @V,

The lantibiotic nisin is the best studied bacteriocin and is produced by Lactococcus
lactis strains. It has potent activity against many Gram-positive bacteria but has much
less intrinsic activity against Gram-negative organisms “-9. By itself, nisin does not
induce growth inhibition of Gram-negative bacteria, since binding to lipid II — the
main target — is prevented by the outer bacterial membrane “. Therefore, studies have
used different methods to overcome this problem by combining nisin with chelating
agents like EDTA, antibiotics and engineered nisin peptides 72, These compounds can
destabilize the outer membrane, allowing nisin to exert its damaging effect >34,

Several in vivo models have confirmed the potency of bacteriocins in providing CR.
Lactobacillus salivarius UCC 118, which produces the bacteriocin Abp118, was able
to significantly protect mice from infection by direct killing of Listeria monocytogenes,
while an UCC 118 mutant could not, confirming the protective role of Abp118 against
this food-borne pathogen .

Another example is Bacillus thuringiensis DPC 6431, which produces the bacteriocin
thuricin ©®. Thuricin targets several C. difficile strains, including the highly virulent
PCR ribotype 027. In vitro, its activity was more potent than metronidazole, the
common treatment for C. difficile infection ®®. In a colon model system, metronidazole,
vancomycin and thuricin all effectively reduced C. difficile levels. However, thuricin
has the advantage of conserving gut microbiota composition. This is highly relevant,
as a disturbed microbiota is associated with increased susceptibility to infection 759,

Enterobacteriaceae members can produce specific bacteriocins called colicins and
one example, colicin F,, is encoded by the Yersinia frederiksenii Y27601 plasmid.
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Recombinant E. coli strains, capable of producing colicin Fy were shown to be highly
effective against Yersinia enterocolitica in vitro®®. In vivo experiments were performed
by first administering the recombinant E. coli strains, after which mice were infected
with Y. enterocolitica. In mice with a normal gut microbiota the recombinant strains
did not inhibit Y. enterocolitica infection, while infection was effectively reduced in
mice pre-treated with streptomycin ©®. This was most probably the result of increased
colonization capacity of recombinant E. coli in the inflamed gut, while the normal gut
microbiota provided sufficient CR to prevent E. coli colonization %,

Microcins are also produced by Enterobacteriaceae, but differ from colicins in several
ways 9. For example, microcins are of much smaller size (<10 kDa) and microcin
production is not lethal to the producing bacterium, in contrast to colicin production ©?,
E. coli Nissle 1917, capable of producing microcin M and microcin H47, could
significantly inhibit Salmonella enterica serovar Typhimurium in vitro and in vivo Y.
This inhibition was however only seen during intestinal inflammation, during which
S. Typhimurium expresses siderophores to scavenge iron from an iron-depleted
environment. As microcins are able to conjugate to siderophores and S. Typhimurium
takes up the siderophore during iron scavenging, microcins are introduced into the
bacterial cell in a Trojan-horse like manner ¢2.

In silico identification of bacteriocin gene clusters shows that much remains to be
discovered in this area, as 74 clusters were identified in the gut microbiota ¥, Not
all of these clusters may be active in vivo, but it illustrates the potential relevance of
bacteriocin production by the gut microbiota to provide colonization resistance.

Nutrient competition

Bacteria have to compete for nutrients present in the gut. This is especially relevant
for bacterial strains belonging to the same species, as they will often require similar
nutrients. The importance of nutrient competition in providing CR has been shown in
multiple studies using multiple E. coli strains 7. Indigenous E. coli strains compete
with pathogenic E. coli O157:H7 for the amino acid proline ®. In fecal suspensions,
depletion of the proline pool by high-proline-utilizing E. coli strains inhibited growth of
pathogenic E. coli. This inhibition could be reversed by adding proline to the medium,
thereby confirming nutrient competition between the strains Y. In addition to amino
acids, different E. coli strains use distinct sugars present in the intestinal mucus ©%,
When two commensal E. coli strains were present in the mouse gut that together utilize
the same sugars as E. coli O157:H7, E. coli O157:H7 was unable to colonize after it was
administered to these mice. However, E. coli O157:H7 successfully colonized when
only one of these commensals was present. This indicated that the two commensals
complement each other to sufficiently deplete all sugars used by this pathogenic E.
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coli strain ©®. Nutrient competition is not limited to macronutrients, but can extend
to micronutrients such as iron. S. Typhimurium is known to take up large amounts of
iron from the inflamed gut during infection ©”. Upon a single administration of the
probiotic E. coli Nissle 1917, which was proposed to scavenge iron very efficiently,
S. Typhimurium levels were reduced more than two log-fold during infection via the
limitation of iron availability. Administration of E. coli Nissle 1917 prior to infection
with S. Typhimurium led to a 445-fold lower colonization 7.

Finally, genome-scale metabolic models have been used to reconstruct microbiome-
wide metabolic networks, which could partly predict which species utilize specific
compounds from their environment ©®. These models have been used to study nutrient
utilization by C. difficile, which will be described in the section on this organism below.
Together, these studies show that colonization resistance by nutrient competition is most
effective when microbiota take up key nutrients that are required by the pathogen (Fig.
1). Future strategies could therefore aim at administrating probiotic strains that are able
to outcompete pathogens for specific nutrients. This is especially relevant at times of gut
microbiota disturbances, e.g. during and following an antibiotic treatment, as this is the
time window where it is easiest for exogenous bacteria to colonize the GI tract.

Mucus layers

The gut barrier consists of the inner and outer mucus layer, the epithelial barrier and
its related immune barrier. It is out of the scope of this review to discuss the full
immunological characteristics of the epithelial barrier, the highly complex host-microbe
interactions occurring at the mucus layer and host-associated genetic polymorphisms
associated with mucus layer composition, as these have been extensively described
elsewhere (12: 13- €. 70 Ingtead, a general description with various examples of how the
mucus layer provides CR will be given.

The inner mucus layer is impenetrable and firmly attached to the epithelium, forming
a physical barrier for bacteria thereby preventing direct interaction with the epithelial
layer and a potential inflammatory response 72, Commensal gut microbes reside
and metabolize nutrients in the nonattached outer mucus layer. Thinning of the mucus
layer leads to an increased susceptibility for pathogen colonization, which can result
from a Western-style diet deficient in microbiota-accessible-carbohydrates (MACs) ©¥.
When MACs were scarce, mucus-degrading bacteria (dkkermansia muciniphila and
Bacteroides caccae) fed on the outer mucus layer in a gnotobiotic mouse model, resulting
in closer proximity of bacteria to the epithelial layer ©® The host adapts by increasing
muc?2 expression, the main producer of intestinal mucin glycans, but fails to sufficiently
do so. Inner mucus layer damage could however be reversed by administration of
Bifidobacterium longum, perhaps due to stimulation of mucus generation 7,
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The composition of the microbiota is thus a contributing factor to the integrity of the
mucus barrier. Genetically identical mice housed in different rooms at the same facility
showed a distinct microbiota composition, with one group of mice showing a more
penetrable barrier ™. When fecal-microbiota transplant (FMT) was performed on germ-
free mice, they displayed the same barrier function as their respective donor. No specific
microbes were identified to be responsible for the change in observed barrier function 7.

In conclusion, the mucus layers provide a first barrier of defense against colonization of
exogenous microorganisms. Diet has been shown to be an important factor for proper
functioning of this layer, suggesting that dietary intervention, or specific pro- and
prebiotics, may be a future therapeutic option.

Bacteriophages

Bacteriophages are the most abundant microorganisms on our planet and are also highly
present in the human gut”>7%. Bacteriophages have been proposed as potential alternatives
to antibiotics, as they are highly specific, only targeting a single or a few bacterial
strains thereby minimizing the impact on commensal members of the microbiota %7
(Fig. 1). Their complex interactions in the intestine with both host immunity and
bacterial inhabitants are starting to be explored, but much remains to be elucidated 7.
Here, we will focus on their relationship with bacterial enteropathogens.

Vibrio cholerae infection could be controlled using a prophylactic phage cocktail in
mice and rabbits 7®. This prophylactic cocktail killed V. cholerae in vitro, reduced
colonization of V. cholerae in the mouse gut and prevented cholera-like diarrhea in
rabbits. Importantly, the authors suggest that the concentration of phages in the gut is
an important criterion for successful prevention of infection, as timing between phage
cocktail administration and V. cholerae inoculation was associated with treatment
outcome 7®. Similar findings have been demonstrated for Campylobacter jejuni
colonization in chickens, where a phage cocktail reduced C. jejuni levels several orders
of magnitude 7.

Bacteriophages can also confer a competitive advantage for commensals. Enterococcus
faecalis V583 harbors phages that infect and kill other E. faecalis strains, thereby
creating a niche for E. faecalis V583 ®0.

Phages play an important role in excluding specific gut bacteria and can thereby
contribute to CR. Therapeutic use in humans is not yet performed at a wide scale in
the Western world, as sufficient evidence for their safety and efficacy is still lacking ®V.
However, recent case reports indicate that bacteriophage treatment has definite future
potential for treating multi-drug resistant bacteria >89,
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Effects of various non-antibiotic drugs on gut colonization
resistance

Antibiotics are long known for their deleterious effect on gut microbiota. Recently,
various other drugs have come to attention for their impact on our microbial ecosystem.
As effects of antibiotics have been extensively reviewed elsewhere ®+89, the focus in the
current review will be on non-antibiotic drugs, namely proton-pump inhibitors (PPIs),
antidiabetics and antipsychotics.

Proton-pump inhibitors

PPIs inhibit gastric acid production and are among the most prescribed drugs in Western
countries ®9. A significant association between long-term use of PPIs and the risk
on several bacterial enteric infections has been demonstrated in multiple systematic

reviews 790

Several studies have associated PPI use with microbiota alterations that may specifically
predispose to C. difficile infection and to small intestinal bacterial outgrowth ©'.
Especially taxa prevalent in oral microbiota (e.g. Streptococcus) were associated
with PPI use, likely resulting from increased gastric pH and thereby allowing for
colonization of these bacteria further down the gastrointestinal tract ®-*Y. Administering
PPIs to twelve healthy volunteers for four weeks did not result in changes in diversity
or changes in overall microbiota composition. However, abundance of specific taxa
associated with C. difficile infection and gastrointestinal bacterial overgrowth increased,
thereby potentially lowering colonization resistance against C. difficile ©V.

Results of two mouse studies suggest that the reduced bactericidal effect, due to increased
stomach pH, may be the most important factor for increased enteric infection risk.
Mice received PPIs seven days prior to infection with the murine pathogen Citrobacter
rodentium, which resulted in increased numbers of C. rodentium in the cecum one
hour post inoculation as compared to control mice ©®. Similar results were observed
in another study where treatment of mice with PPIs led to increased colonization of
vancomycin-resistant enterococci and Klebsiella pneumoniae 7. In spite of its general
acceptance as a model for gut disturbances, it is important to note that mice were pre-
treated with clindamycin, which may limit generalizability ©”. This is an important
issue when studying effects of PPIs, as the combined use of medication in the human
population complicates the study of the effects of PPIs on microbiota and CR. Even
though large-scale studies have adjusted for cofounders to filter out the effect of PPIs on
the gut microbiota, this does not represent a mechanistic study where only PPIs would
be administered ©*°%.
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Therefore, more mechanistic studies investigating how PPIs increase the risk for enteric
infection are required. These studies should then exclusively administer PPIs to healthy
human volunteers or animals.

Antidiabetics

Metformin is the primary prescribed drug for treatment of type Il diabetes mellitus
(T2DM) and mainly acts by reducing hepatic glucose production, thereby lowering
blood glucose levels ®. The current increase in the number of T2DM patients is
unprecedented and it is therefore crucial to evaluate metformin’s effect on gut microbiota
and colonization resistance %0,

The microbiota of T2DM patients is, amongst other changes, characterized by a depletion
in butyrate-producing bacteria (' 19 Metformin administration increased both the
abundance of butyrate and other SCFA-producing bacteria, as well as fecal SCFA levels
and may thus contribute to colonization resistance. The underlying mechanisms remain
unknown (°1-103),

Another effect of metformin has been studied in an in vitro model, where it was found to
reduce tight junction dysfunction of the gut barrier by preventing TNF-o induced damage
to tight junctions “°. Similar findings for improvement of tight junction dysfunction
were demonstrated using two in vivo models, one using interleukin-10 deficient mice
and one using a colitis mouse model 1% 199 Ag tight junctions are a critical part of
epithelial barrier integrity, alleviating their impaired functioning likely improves CR.
In conclusion, metformin may have beneficial effects on CR, as its ability to raise SCFA
concentrations and improved tight junction function suggests. The effects of metformin
on gut microbiota and CR in healthy organisms needs further evaluation.

Antipsychotics

The interest in whether antipsychotics affect gut microbiota composition and colonization
resistance may surge after a recent publication demonstrating that antipsychotics target
microbes based on their structural composition !°?. This led to the suggestion that
antibacterial activity may not simply be a side effect of antipsychotics, but can be part
of their mechanism of action 1?7, Various antipsychotics have been investigated for their
antibacterial effects, of which several will be highlighted here.

In an in vitro model, olanzapine has been demonstrated to completely inhibit growth
of two potentially pathogenic bacteria, E. coli and E. faecalis . Pimozide has been
shown to inhibit internalization of several bacteria, including L. monocytogenes .
An in vitro screening test evaluated effects of fluphenazine on 482 bacterial strains,
belonging to ten different genera. Growth inhibition was demonstrated in multiple
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species, including five out of six Bacillus spp., 95 out of 164 staphylococci, 138 out of
153 V. cholerae strains and Salmonella serovars Typhi and Typhimurium. Significant
protection by administering fluphenazine was shown in a mouse model infected with
S. Typhimurium, as viable cells in several organs was lower and overall survival was
higher as compared to controls 1'%,

Antipsychotics can also be used in combination with antibiotics, to exert a synergistic
antibacterial effect. Flupenthixol dihydrochloride (FD) was demonstrated to have
antibacterial activity, both in vitro and in vivo "', Co-administration of FD and penicillin
yielded extra protection against S. Typhimurium as compared to singular administration
of either drug!V. As antipsychotics have only recently been recognized for their
potential antimicrobial effects, studies have only looked at the effects on pathogens. It
is likely that gut commensals are also affected by these drugs, but future studies will
have to confirm this hypothesis.

Apart from their potential antibacterial effects, several antipsychotics were shown
to increase intestinal permeability in the distal ileum in rats, and therefore showing
a possibly detrimental effect on CR 2. Curiously enough, use of antidepressants
was associated with increased risk of C. difficile infection development, although no
underlying mechanism has been elucidated yet %,

In conclusion, antipsychotics have definite antibacterial effects, but, to our knowledge,
no studies have yet been performed regarding their effects on colonization resistance
and bacterial enteric infection in vivo.

Colonization resistance towards specific bacterial enteric
pathogens

Other than antibiotic resistance acquisition, enteric pathogens possess multiple virulence
factors to overcome CR and cause infection. Some of these factors are common and
apply to many bacterial species, others are organism-specific. Mechanisms implicated
in antibiotic resistance development include horizontal gene transfer, mutational
resistance and altering structure and thereby efficacy of the antibiotic molecule. Full
reviews describing these mechanisms in depth can be found elsewhere !4 19, Here,
the main focus will be on how several of the most prevalent and dangerous bacterial
enteropathogens overcome the mechanisms providing CR as described herein, namely
secretion of antimicrobial products, nutrient competition, mucus barrier integrity and
bacteriophage deployment. As insufficient knowledge is available on how each specific
enteropathogen overcomes CR by rendering bacteriophages ineffective, apart from the
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well-known and conserved CRISPR-Cas, an overview of the currently known bacterial
defense mechanisms will be given at the end of this review.

C. difficile

C. difficile-associated diarrhea is the most common hospital-acquired infection, causing
more than 450.000 diarrheal cases per year in the United States alone !'®., Clinical
symptoms can range from self-limiting diarrhea to bloody diarrhea, pseudomembranous
colitis and ultimately death '”. However, also in healthy individuals CR is not always
successful against this opportunistic pathogen, resulting in asymptomatic colonization
in 2-15% of the healthy population “'®. The reason why some asymptomatically
colonized patients do not develop infection, while others do, may well be found in
the gut microbiome, although no mechanisms have yet been elucidated. C. difficile
contains a pathogenicity locus with the information to produce its two major toxins,
TcdA and TedB. The significance of a third toxin, called binary toxin, is less clear. Toxin
production in the colon is facilitated by disruption of the native gut microbiota, for
instance through antibiotic use %,

Effects of SCFAs on C. difficile throughout its life cycle are currently unclear (120122,
In an antibiotic-treated mouse model, decreased SCFA levels were associated with
impaired CR against C. difficile "*. CR was subsequently restored six weeks after
ending antibiotic treatment with a concomitant increase in SCFAs, probably resulting
from restoration of the fermentative activity of the microbiota ?”, Restoration of SCFA
levels is also seen as an effect after fecal microbiota transplantations in humans %%,
However, SCFA supplementation could not induce a significant decrease in C. difficile
shedding levels up to six weeks post infection "?Y. No study has yet investigated whether
C. difficile possesses any mechanisms by which it becomes resistant against the effects
of SCFAs, which warrants further research.

Compared to the effects of SCFAs, there is more clarity on the effects of bile acids on
C. difficile. Secondary bile acids are toxic to both C. difficile spores and vegetative
cells, while primary bile acids generally stimulate growth and spore germination (12312,
During antibiotic treatment, conversion of primary into secondary bile acids is suppressed
and the reduction of secondary bile acids leads to a more favorable environment for
C. difficile "*. In addition, C. difficile isolates causing most severe disease in mice
were also the isolates that showed highest resistance against lithocholic acid in vitro 12,
A relationship between disease score and deoxycholic acid could not be shown 29,
Secondary bile acid resistance may be strain-dependent, but further research is warranted
to draw this conclusion with certainty.

Intrinsic anti-bacteriocin properties have been described for C. difficile '?"-*®. Nisin can
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inhibit growth of vegetative cells and prevent spore germination of C. difficile in vitro “¥.
However, this does not hold for all C. difficile strains, as the mutant strain MC119 had
normal growth in sub-lethal concentrations. It was demonstrated that this resistance
was at least partly due to export of nisin by an ABC-transporter ?”. Another identified
mechanism was a net positive charge on the bacterial cell surface resulting in lower
efficacy of nisin, since nisin is attracted to a low negative charge on the cell surface ?%,

Using genome-scale metabolic models in antibiotic-treated mice, it was demonstrated
that C. difficile does not necessarily compete for specific nutrients against specialized
bacteria, but that it adapts to utilize a wide array of nutrients. This allows for colonization
of diverse microbiomes, wherein C. difficile is not limited to a specific nutrient niche (2,
A follow-up study, also using a multi-omics approach, showed that C. difficile alters
transcriptional activity of especially low abundant taxa. The main genes showing
decreased transcription in these low abundant taxa during infection, as compared to
mock infected mice, were carbohydrate-acquisition and utilization genes. A possible
reason for this could be that C. difficile attempts to create its own nutrient niche to
facilitate colonization 130,

However, others have found specific nutrients that may be important for C. difficile
colonization and/or outgrowth. Three highly virulent ribotypes (RT), RT017, RT027 and
RTO078, have recently been demonstrated to utilize trehalose as a nutrient source 3% 132,
This was confirmed in a mouse model, where mice were challenged with spores of either
RT027 or a non-trehalose metabolizing ribotype. After trehalose administration, RT027
mice showed higher mortality in a dose-dependent manner 39,

C. difficile post-antibiotic outgrowth depends partly on the production of succinate
and sialic acid by commensals. B. thetaiotaomicron is capable of metabolizing
polysaccharides and thereby produces sialic acid. Upon inoculation with C. difficile,
monocolonized B. thetaiotaomicron mice had approximately a five times higher density
of C. difficile in feces as compared to germ-free mice *%. Expression levels of genes
involved in sialic acid metabolism were increased in the B. thetaiotaomicron model,
and, as expected, a sialidase-deficient B. thetaiotaomicron mutant led to highly reduced
production of sialic acid and C. difficile density was lower *¥, Density of C. difficile
was higher in B. thetaiotaomicron mice fed a polysaccharide-rich diet as compared to a
chow diet™¥. The succinate to butyrate pathway was crucial for C. difficile expansion in
B. thetaiotaomicron mice, as WT C. difficile was more effective in establishing infection
than a succinate-transporter deficient C. difficile *%.

Micronutrient availability can affect virulence of C. difficile. High zinc levels have been
demonstrated to exacerbate C. difficile infection in mouse models 9. Mice fed a high-
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zinc diet had higher toxin levels, higher pro-inflammatory cytokines levels and increased
loss of barrier function. Furthermore, it was shown that calprotectin, a zinc-binding
protein, was important for limiting zinc availability to C. difficile during infection 3.

Together, these studies demonstrate the importance of specific nutrients used by C.
difficile to establish colonization and infection.

Efficient colonization of the epithelial barrier is made possible by flagella and pili 3¢ 137,
When mice were inoculated with flagellated or non-flagellated C. difficile strains, higher
levels of flagellated C. difficile were found in mouse cecum 3%, The exact destination
of non-flagellated C. difficile remained unknown, as levels were not measured in feces
or in sections of the small intestine. Regarding pili, it has been shown that type IV pili
were not playing a role in initial colonization, but were crucial for epithelial adherence
and long-lasting infection 37,

S. Typhimurium

S. Typhimurium is a nontyphoidal Salmonella and an important cause of gastroenteritis
in humans. It was estimated that globally 3.4 million invasive nontyphoidal Salmonella
infections occur each year, of which 65.2% are attributable to serovar Typhimurium (3%,
It mostly causes self-limiting, non-bloody diarrhea in otherwise healthy individuals.
However, it can lead to bloodstream infections and metastatic spread with eventually
death in especially infants and immunocompromised individuals 3% 139 S, Typhimurium
contains two pathogenicity islands, SPI1 and SPI2. SPI1 mostly contains information
for causing intestinal disease and cell invasion, while SPI2 is necessary for intracellular
survival (49,

Effects of SCFAs on S. Typhimurium are not yet well defined. Butyrate and propionate
have been demonstrated to reduce expression of invasion genes, while acetate increased
their expression in S. Typhimurium ! 42 However, conflicting results exist. A S.
Typhimurium knockout mutant, unable to metabolize butyrate, caused less inflammation
than a WT S. Typhimurium, suggesting that butyrate is crucial for S. Typhimurium
virulence *». Furthermore, this study demonstrated that butyrate was necessary
for expression of invasion genes in mouse models. In contrast, propionate inhibited
S. Typhimurium in a dose-dependent manner in vitro, probably due to disturbance
of intracellular pH Y. In an in vivo setting, it was demonstrated that a cocktail of
propionate-producing Bacteroides species was sufficient to mediate CR against S.
Typhimurium "4,

S. Typhimurium has developed mechanisms to overcome bile acids encountered in the
gut. When exposed to individual bile acids at sub-lethal levels in vitro, it can become
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resistant to originally lethal levels by changing gene and protein expression of several
virulence regulators (%% 149 In addition, it has been demonstrated that a mixture of
cholate and deoxycholate confers a synergistic inhibition on invasion gene expression
in S. Typhimurium 447,

Innate resistance of S. Typhimurium against bacteriocins produced by Gram-positive
bacteria is naturally conferred through its Gram-negative outer membrane 4%,

Usage of nutrients produced by gut microbiota is believed to facilitate S. Typhimurium
outgrowth. By causing inflammation and thereby altering microbiota composition, S.
Typhimurium provides itself with a competitive advantage 14% 159,

Metabolic profiling in mice showed increased luminal lactate levels in the inflamed
gut during S. Typhimurium infection, which could result from a depletion in butyrate-
producing bacteria . When butyrate is scarce, enterocytes switch to glycolysis with
lactate as end product. Lactate is an important nutrient for S. Typhimurium, as indicated
by decreased colonization of cecal and colonic lumen by a S. Typhimurium mutant lacking
two lactate dehydrogenases ). As explained in the introduction, an anaerobic milieu
is maintained in the gut during homeostatic conditions. However, diffusion of oxygen
from the tissue to the lumen is enabled by inflammation caused by S. Typhimurium,
which alters enterocyte metabolism 3V, Oxygen can then be used by S. Typhimurium to
ferment several carbohydrates through respiration (3159, In conclusion, these findings
suggest that S. Typhimurium creates its own niche in the gut by causing inflammation,
subsequently shifting microbiota composition and thereby nutrient availability, so that
it can optimally colonize and expand.

An intact and well-functioning mucus layer is crucial for protection against S.
Typhimurium infection. WT mice infected with the attenuated AaroA strain, which
causes severe colitis, showed increased muc?2 gene expression and MUC2 production 39,
Mortality and morbidity was high in Amuc2 mice and higher numbers of the pathogen
were found in their liver, ceca and close to the epithelial layer 9.

S. Typhimurium may profit from mucin-degrading commensal microbiota. In a
gnotobiotic mouse model, complementation with mucin degrading A. muciniphila
during S. Typhimurium infection allowed S. Typhimurium to dominate the bacterial
community five days p.i"®?. This was not caused by an absolute increase in cell number,
but by a decrease in other microbiota members. In addition, the complementation with
A. muciniphila led to increased inflammation, as indicated by increased histopathology
scores and protein and mRNA levels of pro-inflammatory cytokines. Although generally
considered a beneficial bacterium, A. muciniphilia exacerbated S. Typhimurium
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infection by thinning the mucus layer, thereby promoting translocation of the pathogen
to the epithelial layer 157,

Enterohemorrhagic E. coli

Shiga-toxin producing E. coli (STEC) comprises a group of E. coli strains capable of
producing Shiga-toxins. Enterohemorrhagic E. coli (EHEC) is a subgroup of STEC
causing more severe disease, often with complications. Each year, approximately
100,000 people are infected by the most common EHEC serotype, O157:H7 1, Clinical
presentation includes abdominal pain and bloody diarrhea which can progress into toxin-
mediated hemolytic uremic syndrome *?. Virulence of EHEC strains is mostly encoded
by Shiga toxin genes, stx/ and stx2, and by locus of enterocyte effacement (/ee) genes,
which are imperative for initial attachment to epithelial cells (¢,

At present, outcomes regarding the effects of SCFAs on EHEC are mixed !9, LEE
protein and gene expression was already enhanced at 1.25mM of butyrate, while for
acetate and propionate, only minor changes were detected at 20mM, with acetate giving
a repressive effect. In a separate growth experiment, acetate was more efficient in
inhibiting growth of EHEC as compared to butyrate and propionate !*?. Acetate was
observed to have small repressive effects on EHEC in the study by Nakanishi et al., and
this was also found by Fukuda et al. 192199, Mice fed acetylated starch prior to infection
showed higher fecal acetate levels and improved survival rate compared to starch-fed
mice 199, Acetate also prevented gut barrier dysfunction as measured by transepithelial
electrical resistance and prevented translocation of the Shiga toxin to the basolateral
side of the epithelial cells '®. In Caco2 cells, EHEC epithelial adherence was 10-
fold higher when grown on butyrate than on acetate or propionate ®?. These results
indicate that butyrate may be less effective in inhibiting EHEC growth and potentially
colonization as compared to acetate and propionate, for which the exact pathways
and genes involved have been elucidated > 19, In contrast, butyrate was found to be
effective against EHEC in a pig model '*D, Piglets given sodium butyrate two days prior
to being infected with EHEC showed no symptoms 24 hours p.i, while the control group
developed multiple signs of disease, e.g. histopathological signs of kidney damage. The
sodium butyrate group did not show any signs of inflammation and shed less viable cells
compared to the control group within 48h (V. [n vitro assays demonstrated that butyrate
enhanced bacterial clearance, ultimately making the authors suggest that butyrate can be
developed as a new drug to treat EHEC (6D,

EHEC has multiple traits to fight against the potentially deleterious effects of bile
acids. Bile acid mixtures upregulated gene expression of the 4crAB efflux pump and
downregulated ompF, a gene encoding for an outer membrane porin1%®. In addition, other
genes responsible for limiting penetration of bile acids through the membrane (basR and
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basS), were upregulated, and this effect was concentration-dependent. Interestingly, the
bile acid mixtures did slightly downregulate stx2 subunit genes, encoding for Shiga
toxin production %%

EHEC possesses natural resistance against bacteriocins, especially nisin, through its
Gram-negative outer membrane, as described in the chapter on bacteriocins. Three
EHEC strains were screened for, amongst others, potential resistance against several
colicinogenic E. coli strains 7. In vitro, resistance against E. coli strains producing a
single colicin was observed, but resistance was rarely observed against multiple colicins
and could never be linked to acquiring a specific plasmid 67,

Nutrient competition for proline and several sugars between EHEC and commensal E.
coli strains is described in the introductory section. In addition, ethanolamine (EA),
a source of carbon, nitrogen and energy for EHEC, has been investigated. It was
demonstrated that EA could diffuse across the bacterial membrane and that the eut
genes were crucial for metabolizing EA. Eut sequences were absent in native bacterial
genomes in the bovine gut, apart from commensal E.coli, indicating that EA provides
a nutrient niche for E. coli. When the eutB gene was knocked out in EDL933, it was
outcompeted by commensal E. coli due to its inability of utilizing EA, indicating its
critical importance for colonization '*®. During further transcriptomic investigations of
EA utilization, it was noticed that genes involved in gluconeogenesis were upregulated
if no glucose was supplemented. A knockout of two genes within the gluconeogenesis
pathway led to a growth defect in a coculture with the wildtype 1%, This is in line
with a previous finding that optimal usage of gluconeogenic substrates by EDL933 is
important for colonization 7%, Since this effect was seen in a medium consisting of
bovine small intestinal contents, the relevance for the human gut remains unclear %,

Co-culturing of EHEC with B. thetaiotaomicron led to an upregulation of genes
involved in nutrient competition in EHEC as compared to culturing EHEC alone "V, In
addition, presence of B. thetaiotaomicron resulted in upregulation of multiple virulence
genes including lee, likely due to regulation of a transcription factor involved in sensing
carbon metabolite concentrations in the environment 7). Using a combination of in
vitro and in vivo methods, Pacheco et al. showed that fucose cleaved from mucins by B.
thetaiotaomicron could be an important nutrient for upregulating virulence and intestinal
colonization of EHEC (", Interestingly, fucose sensing and subsequent regulation of
virulence genes was more important for successful colonization than utilization of
fucose for energy. This example indicates that nutrients cannot only be utilized for
energy, but that they can be important environmental signals for properly regulating
timing of virulence 7.
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Human colonoid monolayers were used to study initial colonization mechanisms of
EHEC @7, This study showed that EHEC disturbs the tight junctions, preferentially
attaches to mucus producing cells and subsequently impairs the mucus layer 7. In
addition, by using various in vitro models, it was demonstrated that the metalloprotease
StcE, produced by EHEC, enables degradation of MUC?2 in the inner mucus layer which
may pave the way to the epithelial surface (7.

S. flexneri

Shigella infections mostly occur in developing countries, with S. flexneri as the most
frequently found species 17>. Annually, an estimated 164,000 people die of shigellosis
worldwide @79, Clinical presentation includes a wide variety of symptoms, including
severe diarrhea, possibly containing blood and mucus, and abdominal pain'®?. S. flexneri
contains a virulence plasmid (pINV) which is necessary for invasion of epithelial cells
and intracellular survival 169,

No studies seem to have investigated resistance mechanisms of S. flexneri against SCFAs
yet. Butyrate has been investigated as a potential therapeutic agent as it counteracts a
putative virulence mechanism of S. flexneri, namely decreasing LL-37 expression in the
gut 177178 By suppressing LL-37 expression S. flexneri is able to colonize deeper into
intestinal crypts '’®. Butyrate was able to increase rectal LL-37 expression in a subgroup
of patients, which was associated with lower inflammation in rectal mucosa and lower
levels of pro-inflammatory cytokines '7?. However, butyrate treatment did not seem to
impact clinical recovery 77,

The type three secretion system (T3SS) which is able to directly inject bacterial protein
into host cells and cause infection, is considered a key virulence factor. S. flexneri T3SS
can sense and bind secondary bile acid deoxycholate, which leads to co-localization of
protein translocators at the needle tip 17 180, In S. flexneri mutants lacking the needle
structure, the deoxycholate-associated adhesion and invasion of S. flexneri to host
epithelial cells was diminished "D, At physiological levels of bile salts, S. flexneri is
able to grow normally in vitro, but at increased concentrations growth is significantly
reduced 2. Transcriptomics showed that during exposure to physiological bile salt
levels, genes involved in drug resistance and virulence were upregulated, which was
subsequently confirmed using reverse transcription-quantitative PCR (RT-qPCR).
Deletion of a multidrug efflux pump led to sensitivity to bile salts and growth inability,
confirming the importance of this pump in bile salt resistance 32

Bacteriocin resistance has not been well studied in S. flexneri, but downregulating

antimicrobial peptide production in the gut is suggested to be an important virulence
mechanism '3, The downregulation of LL-37 early in infection was demonstrated both
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in gut biopsies of patients and in cell lines 139, Since protein and gene expression were
not downregulated to the same degree, the authors speculated that there is an interference
mechanism during active transcription of LL-37. Transcription of other antimicrobial
peptides was also downregulated, especially in the human B-defensin hBD family (178 183,
It was demonstrated that S. flexneri shows high sensitivity to LL-37 and hBD-3 peptides
in vitro ", This suggests that by downregulating expression of antimicrobial peptides,
S. flexneri creates an environment in which it can survive and ultimately cause severe
disease.

It is unknown how S. flexneri competes and utilizes nutrients in the luminal side of the
gut. Therefore, a short description will be given on how the bacterium rewires host
cell metabolism for supporting its survival after entering the host cells. These findings
might be translatable, and can at least provide insight in potential nutrient usage of
S. flexneri in the lumen. Using a combination of metabolomics and proteomics it was
demonstrated that S. flexneri does not alter host cell metabolism in HeLa cells, but that
it captures the majority of the pyruvate output '8, Pyruvate was demonstrated to be a
crucial carbon source for S. flexneri cultured on a HeLa derivative, using metabolomics,
transcriptomics and bacterial mutants 13%. S. flexneri converts pyruvate into acetate
via a very quick, but energy-inefficient pathway, allowing for rapid expansion of the
bacterium intracellularly without rapid destruction of the host cell 9.

S. flexneri possess special systems to alter mucus composition. Human colonoid
monolayers infected with S. flexneri showed increased extracellular release of mucins %9
The increased extracellular mucins were trapped at the cell surface which surprisingly
favored access of S. flexneri to the apical surface, subsequently promoting cell invasion
and cell-to-cell spread (%9, Furthermore, expression of several genes encoding for
production of mucins and mucin glycosylation patterns were altered *®. Together, these
results suggest that S. flexneri can alter the mucus environment such that it can promote
its own virulence.

C. jejuni

C. jejuni is associated with food-borne gastroenteritis and is estimated to cause more
than 800,000 infections annually in the USA alone 7. Major clinical symptoms include
diarrhea (both with and without blood), fever and abdominal cramping . In rare
cases, it can give rise to the Guillain-Barré syndrome and reactive arthritis 137, It is a
commensal bacterium in avian species and it is not yet well understood why it causes
disease in humans %%,

There is a distinct lack of research on the resistance mechanisms of C. jejuni against
SCFAs, but one study found that SCFAs are important for colonization in chickens %,
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Acetinogenesis, the conversion of pyruvate to acetate, is a crucial metabolic pathway
for optimal colonization of C. jejuni. Mutants unable to use this pathway show impaired
colonization and decreased expression of acetinogenesis genes. Upon encountering a
mixture of SCFAs at physiological levels, this mutant was surprisingly able to restore
acetinogenesis gene expression to WT levels. Therefore, it was investigated whether
expression of acetinogenic genes differs throughout the intestinal tract, as SCFAs are
most abundant in distal parts of the intestine. It was observed that both gene expression
and C. jejuni levels were highest in the cecum. The authors suggested that C. jejuni can
monitor SCFA levels in the gut, so that in response it can express colonization factors (18,
As this is the only study suggesting this hypothesis, further research is required for
validation.

Results regarding bile acid resistance in C. jejuni are mixed, which may stem from using
different animal models or bile acids. A specific multidrug efflux pump, CmeABC,
was important for bile resistance in chickens . AcmeABC mutants showed impaired
growth in vitro and unsuccessful colonization in chicken upon cholate administration,
while cholate did not affect growth and colonization of the WT *?. This suggests that
the efflux pump is critical for proper colonization of C. jejuni by mediating bile-acid
resistance. Another study elucidated the effects of secondary bile acids on C. jejuni V.
Upon administration of deoxycholate prior to, and during, infection, mice showed
decreased colitis. Unexpectedly, C. jejuniluminal colonization levels were notaffected V.
In conclusion, C. jejuni colonization seems not to be affected by bile acids, but may be
important in limiting disease progression.

Bacteriocin resistance is not common in C. jejuni. Multiple C. jejuni (n=137) isolates
were screened for resistance against two anti-Campylobacter bacteriocins, OR-7
and E-760, produced by the gut inhabitants L. salivarius and Enterococcus faecium.
However, no isolates were found to harbor resistance °?. In a follow-up study, chickens
were successfully colonized with a C. jejuni strain prior to bacteriocin treatment, with
the aim of studying bacteriocin resistance. Resistance developed in most chickens, but
was lost upon ending bacteriocin administration, suggesting resistance instability in

vivo 19,

In contrast to most other enteric pathogens, C. jejuni does not metabolize carbohydrates
as its main energy source. It is unable to oxidize glucose, fructose, galactose and several
disaccharides, including lactose, maltose and trehalose, resulting from the absence of
6-phosphofructokinase *+1°7. Fucose could be metabolized by some C. jejuni strains,
due to the occurrence of an extra genomic island ¥?. Main energy sources for C. jejuni
are organic acids, including acetate, and a limited number of amino acids %290, 1t is
currently unclear what these metabolic adaptations mean for its colonization potential,
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but it is possible that C. jejuni occupies a unique macronutrient niche.

Iron regulation systems are critical for colonization and persistence of C. jejuni. In
presence of sufficient iron, transporter and acquisition genes are downregulated °V.
Mutants lacking genes involved in either iron acquisition or transport were severely
impaired in colonizing the chick gut ®). Free iron concentrations are extremely low
in the gut, which forces C. jejuni to utilize other iron sources. It was demonstrated that
lactoferrin and transferrin can also be used for this purpose and molecular pathways
have been described ?*. In short, transferrin-bound iron can only be utilized if it is
in close proximity to the bacterial cell surface. Thereafter, it is most likely that iron is
freed from the bacterial cell surface proteins, transported across the outer membrane and
subsequently internalized by an ABC-transporter ?°?. Additionally, both in an in vitro
setting and in a controlled human infection model with C. jejuni the most upregulated
genes were involved in iron acquisition '%:-2°%, These results suggest that iron regulation
is maintained extremely well, and that C. jejuni can obtain sufficient iron even in a harsh
environment as the gut.

C. jejuni resides in the mucus layer prior to invading the epithelial cell. It can cross and
reside here because of its powerful flagellum, which can change in conformation or
rotation upon being challenged by higher viscosity ?299, C. jejuni can hereby cross the
mucus layer at speeds which cannot be met by other enteric pathogens, and the flagellum
can subsequently be used as an adhesin %209,

Another important characteristic for C. jejuni ’s success in crossing the mucus layer
is its helix-shape. In a mouse model, a WT strain or either of two rod shaped C. jejuni
bacteria, Apgp1 or Apgp2, were administered to cause infection ?°”. Rod-shaped mutants
were demonstrated to be mostly non-pathogenic, whereas the WT strain caused severe
inflammation. Mutants were to some extent able to colonize the mucus layer, but could
not cross it, explaining their non-pathogenicity ?°7.

V. cholerae

V. cholerae is one of the first bacterial pathogens where the microbiota has been
considered to play an important role against infection ®®. It is mainly prevalent in
contaminated brackish or salt water and can cause outbreaks, particularly during wars
and after natural disasters. In the first two years following the earthquake in Haiti, 2010,
more than 600,000 people were infected with V. cholerae serogroup O1, biotype Ogawa,
resulting in more than 7,000 deaths ?*. The clinical course is characterized by watery
diarrhea, which can be so severe that it can result in dehydration, hypovolemic shock and
death @9, V. cholerae colonizes the small intestine by employing the toxin-coregulated
pilus, after which it can cause severe infection and clinical symptoms through cholera
enterotoxin production *19,

52



CHAPTER 2

V. cholerae is able to utilize its acetate switch, the shift from elimination to assimilation of
acetate, to increase its own virulence ®'V. In a Drosophila model, it was demonstrated that
¢rbRS controlled the acetate switch, while acs/ was required for acetate assimilation @'V,
When either of these genes were knocked-out, mortality decreased. Competition
experiments demonstrated that WT V. cholerae had a growth advantage over strain
when the AcrbS strain and WT V. cholerae strains were administered together in a 9:1
ratio. This led the authors to suggest that acetate utilization may be important early in
infection, when low levels of V. cholerae cells are present @'V, Furthermore, acetate
consumption led to dysregulation of host insulin signaling pathways, ultimately leading
to intestinal steatosis and increased mortality. Dysregulation of host insulin signaling
was not observed in AcrbS or Aacs 1, further confirming the role of acetate in V. cholerae
virulence @'V,

V. cholerae has a master regulator, foxT, which can directly activate several virulence
factors including toxin production. Cholera toxin production was reduced by 97% when
V. cholerae was grown in presence of bile, which could be reversed after growing the
same cells in bile-free medium for a few hours ?'?. C¢x and #cpA, encoding for cholera
toxin and the major structural unit of the toxin-coregulated pilus and regulated by foxT,
were highly repressed during bile exposure ?!'?. Additionally, motility was increased
approximately 1.6-fold in presence of bile ?'?. To elucidate which exact components
of bile acids were responsible for the repression of these virulence genes, bile was
fractionated. It was found that several unsaturated fatty acids strongly repressed ctx and
tepA and that they upregulated expression of firA, leading to increased motility ?'3. The
reason for upregulation of fIr4 and downregulation of #cpA could be that the flagellum
increases the speed of passing through the mucus layer, while the pilus would only slow
it down. When lower concentrations of bile at the epithelial surface are encountered,
expression can be reversed ?'4.

Two outer membrane porins, OmpU and OmpT, are directly regulated by the master
regulator foxR. Upon encountering bile acids, ompU and ompT are regulated in such a
way that bile acid entrance is prevented ?!%2!9, Furthermore, AfoxR mutants are more
sensitive to bile acids due to changed outer membrane composition ?!9. Recently, it
was shown that toxR also regulates leuO @', LeuO was demonstrated to confer bile
resistance independent of the two porins, although its exact resistance mechanism is not
yet elucidated @'7.

Bacteriocin resistance in V. cholerae has, to our knowledge, not been studied and future
studies will have to reveal whether any resistance is present.

An important nutrient through which V. cholerae gains a competitive advantage is
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sialic acid, a component of the mucus layer. Using streptomycin pre-treated mice who
were given a mutant strain defective in sialic acid transport (AsiaM), it was shown that
sialic acid is not required for initial colonization, but that it is important for persistent
colonization ?'®, Competition assays of the two mutant strains in mouse intestine (small
intestine, cecum and large intestine) showed that AsiaM was less fit to compete in
each environment, further indicating the necessity of sialic acid utilization for niche
expansion of V. cholerae ?'®.

The El Tor strain may have a competitive advantage over ‘classical’ strains due to
its differential carbohydrate metabolism ?'”. When grown in a glucose-rich medium,
classical strains display a growth defect as compared to El Tor. It was observed that
this was due to production of organic acids through glucose metabolism, leading to
acidification of the medium. El Tor biotypes were found to produce acetoin, a neutral
compound, and decrease organic acid production. This prevented acidification of the
medium, leading to better growth. El Tor strains were also more successful in colonizing
mice, especially when extra glucose was administered. The classical types were shown
to be able to produce acetoin, but glucose only led to a minor increase in transcription
of genes necessary for acetoin production ??. These studies have shown that specific
metabolic pathways are used by V. cholerae to successfully colonize the gut.

One of the first studies on how the mucus layer can potentially be crossed by V. cholerae
was reported almost 50 years ago ?*”, Here, motile and non-motile strains were compared
for pathogenicity after administration to mice. It was observed that motile strains were
almost always deadly 36 hours p.i, while most non-motile strains had a mortality of
under 35% **°. One hypothesis offered by the authors was that together with mucinase,
the flagellum could effectively pass the mucus barrier ®2%. Specific mucin degradation
mechanisms employed by V. cholerae have been identified since, with hemagglutinin/
protease (Hap), and TagA being the major ones @222, Presence of mucins, limitation of
carbon sources and bile acids maximized production of Hap, while glucose could partly
reverse this effect @*). This may indicate that during conditions as encountered in the
gut, V. cholerae quickly aims to cross the mucus layer and be in close contact with the
epithelial cells. TagA, which is similar to StcE as described for EHEC, is also capable
of degrading mucin ?*?. In conclusion, V. cholerae has developed a way of sensing
environmental conditions, and in response to these, is able to upregulate virulence
factors which can degrade mucins. A simplified overview of V. cholerae virulence
factors opposing CR can be found in Fig. 2.
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Figure 2: Vibrio cholerae uses a wide array of mechanisms to overcome CR. First, it employs
its acetate switch to use acetate for upregulating its own virulence. Nothing about potential
bacteriocin resistance is presently known, and this subject remains to be studied. To protect itself
from bacteriophages, V. cholerae produces outer membrane vesicles (OMVs) which act as a
decoy binding site for the attacking phages (see section: Bacterial defense mechanisms against
bacteriophages). Regulation of outer membrane porins is such that they prevent entry of bile
acids when they are encountered. By employing specific mucin-degrading enzymes, V. cholerae
releases sialic acid and subsequently metabolizes it.

Y. enterocolitica

Yersiniosis is mostly contracted through contaminated food or water with Y.
enterocolitica, and its prevalence is much higher in developing countries than in high-
income nations (%220 [t is characterized by mild gastroenteritis, abdominal pain and
is usually self-limiting, though pseudo-appendicitis illnesses can occur 9, Virulence is
mostly conferred through presence of a 64-75 kb plasmid on which several virulence
genes are present, including yadA, which is crucial for epithelial adherence ?*".

Resistance of Y. enterocolitica against antibacterial compounds has not been much
studied. One study investigated effects of SCFAs, including acetic acid and propionic
acid, on Y. enterocolitica at 4°C. Y. enterocolitica was less sensitive to acetic acid
when cultured anaerobically than under aerobic culturing. Propionic acid was similarly
effective in inhibiting growth with both culture methods ?*®. Even though conditions
like 4°C are not representative for the intestinal environment, this study might provide
some initial clues on the effects of SCFAs on Y. enterocolitica. It is clear that more
research is required to further elucidate potential resistance mechanisms.

ompR, a transcriptional regulator in Y. enterocolitica, is probably able to upregulate

expression of the AcrAB-TolC efflux pump, which, in turn, is regulated by two
components of the efflux pump, acrR and acrAB ?*. A mixture of bile acids, but not
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the secondary bile acid deoxycholate, was found to be the strongest inducer of acR and
acrAB ?*), Whether the upregulation of these efflux pump components contributes to
bile acid resistance, remains to be elucidated.

Bacteriocin resistance is so far mostly unknown in Y. enterocolitica. WA-314 and 8081
are both 1B:0O8 strains that are highly infective in murine models **?. WA-314 possesses
a putative colicin cluster for colicin production, but no expression was observed in a
spot-on-lawn assay with 8081 and the colicin-sensitive E. coli K12 @9 1t is likely that
no specific resistance against colicin is present, as colicin has been shown to effectively
inhibit Y. enterocolitica infections in vivo ©?.

Like most other enteric pathogens, Y. enterocolitica has sophisticated systems to
acquire sufficient iron. Using these systems, Y. enterocolitica may be more efficient at
scavenging iron than commensal members, thereby providing itself with a competitive
advantage. Y. enterocolitica expresses yersiniabactin, ybt, a highly efficient siderophore
and a crucial component for lethality in mouse models ®*"-23?_ The exact mechanisms
for iron uptake and transport have been extensively reviewed elsewhere **¥. Proteomics
analysis revealed that Y. enterocolitica serovar 1A, whose pathogenic role is unclear,
uses different proteins to successfully scavenge iron, as it lacks the Ybt protein 3%,

Y. enterocolitica is the only pathogenic Yersinia species which can metabolize sucrose,
cellobiose, indole, sorbose and inositol 9. Additionally, it can degrade EA and 1,2-PD
by using tetrathionate as a terminal electron acceptor ?3,

Mucus layer invasion and adherence of Y. enterocolitica have been elucidated in great
detail several decades ago 2?9, The YadA protein is used for initial attachment to the
mucus ®9. The preferential binding side on mucins is their carbohydrate moiety, but
binding to mucin proteins is also possible under specific conditions **®. Y. enterocolitica
uses a plasmid, pYV, with mucin-degradation enzymes to thin the mucus layer,
facilitating crossing of the mucus layer @7 240, Y. enterocolitica containing the pYV
plasmid is not only able to successfully invade and degrade the mucus layer, but is also
highly efficient in multiplying in this environmen' ®*?, After interacting with the mucus
layer, its bacterial cell surface was altered so that Y. enterocolitica became less efficient
in colonizing the brush border . This may be a host response mechanism to prevent
Y. enterocolitica invasion in deeper tissues. In a rabbit infection model, persistent goblet
cell hyperplasia and increased mucin secretion was observed throughout the small
intestine over 14 days . The extent of hyperplasia was associated with severity of
mucosal damage, indicating a compensatory mechanism. Mucin composition changed
in infected rabbits, with a decrease in sialic acid and an increase in sulfate 239
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L. monocytogenes

L. monocytogenes causes listeriosis, a food-borne disease. Listeriosis is not highly
prevalent, with an estimated 23,150 people infected in 2010 worldwide, but has a high
mortality rate of 20-30% ©*D. The most common syndrome is febrile gastroenteritis, but
complications can develop, such as bacterial sepsis and meningitis ®*). This is especially
relevant for vulnerable patient groups, such as immunocompromised individuals,
neonates and fetuses *?. Virulence genes are present on an 8.2-kb pathogenicity island,
which includes internalin genes necessary for invading host cells @4,

Culturing L. monocytogenes in presence of high levels of butyrate leads to incorporation
of more straight-chain fatty acids in the membrane ®* 2% This is not a natural state
for L. monocytogenes, as normally its membrane consists for a very high percentage
of branched-chain fatty acids. When subsequently exposed to LL-37, it displays a
survival defect as compared to bacteria not grown in presence of butyrate @9, It was not
elucidated whether this survival defect was due to increased stress, altered membrane
composition or differentially regulated virulence factors. Effects of propionate on L.
monocytogenes growth, metabolism and virulence factor expression are dependent on
temperature, oxygen availability and pH @49, Therefore, it is not possible to ascribe a
general function to propionate in relation to L. monocytogenes.

L. monocytogenes possesses several bile acid resistance mechanisms, and in vitro
transcriptome and proteome analyses have provided insight into these. Transcriptomics
analysis revealed that in response to cholic acid, amongst others, two efflux pumps were
upregulated, mdrM and mdrT@*). BrtA was shown to regulate expression of the efflux
pumps, and to be able to sense bile acid levels. Bacterial abundance was determined in
multiple organs of mice infected with knockout strains of either efflux pump, but not in
the intestine @*?. Proteomic analyses found many changes in response to bile salts and
included proteins associated with efflux pumps, metabolism and DNA repair @49,

Bile salt hydrolases (BSH) are another way of combatting encountered bile acids.
It was demonstrated that all Listeria species which infect mammals showed BSH
enzyme activity. BSH was crucial during infection of guinea pigs, demonstrated by the
decreased ability of Absh to cause a persistent infection ®*. At decreased pH levels, e.g.
in the duodenum, bile salts are more acidic and show higher toxicity **”. However, this
toxicity seems to be strain-dependent @Y. The strain responsible for a 2011 outbreak
even displayed higher bile resistance at pH 5.5 than at 7.0, further indicating that bile
susceptibility may be strain-dependent 3V,

As discussed in the introductory section on bacteriocins, the Abp118 bacteriocin produced
by L. salivarius, protected mice from L. monocytogenes infection 9.
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However, several bacteriocins have been shown ineffective against L. monocytogenes
and responsible mechanisms have been partly elucidated. Innate nisin resistance has been
associated with multiple loci 2. One crucial gene was anrB, encoding for a permease
in an ABC transporter. Loss of this gene resulted in high sensitivity, not only to nisin,
but also to several other bacteriocins *?. The mannose phosphotransferase system (Man-
PTS), encoded by mptACD, is a main sugar uptake system and two of its outer membrane
proteins, IIC and IID, can serve as a class II bacteriocin receptor *%. In natural resistant and
spontaneous resistant strains, areduced expression of mp¢C and mptD was observed, although
this could not be linked to receptor mutations ®*¥. The mpt operon is partly regulated by
manR, and a manR mutant did not show any activation of the mpt operon . Development
of bacteriocin resistance was to some extent dependent on available carbohydrates ¢,
Several sugar sources impaired growth of L. monocytogenes when exposed to bacteriocin
leucocin A. Increased sensitivity to leucocin A was hypothesized to relate to sugar uptake
by Man-PTS. When specific sugars are present, cells may not downregulate this system
even in presence of bacteriocins, which possibly allows leucocin A to use the Man-PTS as
a docking molecule ®®. Not only does L. monocytogenes display bacteriocin resistance,
it also produces a bacteriocin, Lysteriolysin S, which modifies the gut microbiota such
that intestinal colonization is promoted ®*?. Allobaculum and Alloprevotella, genera known
to contain SCFA-producing strains, were significantly decreased in mice treated with
Lysteriolysin S. L. monocytogenes strains unable to produce Lysteriolysin S were impaired
in competing with native gut microbiota and colonized less efficiently 7.

Most reports about metabolic adaptations of L. monocytogenes have logically described
intracytosolic adaptations, as L. monocytogenes replicates intracellularly ®®. Limited
information is available on nutrient competition of L. monocytogenes inside the lumen.
Comparison of genome sequences between colonizing Listeria and non-colonizing
Listerialed to identification of, amongst others, a vitamin B12-dependent 1,2-propanediol
(1,2-PD) degradation pathway in colonizing Listeria, dependent on the pduD gene @,
Mice were co-infected with a ApduD strain and a WT strain. Within 3 hours after
feeding, a large amount of the ApduD was shed in feces and 21 hours later the number
of viable cells decreased significantly. At ten days p.i, the ApduD strain was completely
cleared, while the WT strain shed for up to four more days. This indicates that the ability
to degrade 1,2-PD offers L. monocytogenes a distinct competitive advantage ®>?).

Multiple adhesins and internalins have been characterized which facilitate L.
monocytogenes retention in the mucus layer ?¢-269 [nIB, InlC, InlL and InlJ were
demonstrated to bind to MUC2, but not to epithelial cell surface MUC1 @62 263,
Histopathological analysis of a listeriosis rat model revealed that L. monocytogenes was
present in the mucus layer after less than 3 hours p.i ®°D. At this time point, very few L.

monocytogenes were present on the epithelial cells %D,
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Bacterial defense mechanisms against bacteriophages

As research investigating how each enteric pathogen overcomes CR by rendering
bacteriophages ineffective is still in its infancy, this general section will describe the most
employed resistance mechanisms. The bacteriophage infectious cycle involves a lytic and
a lysogenic cycle. Phages have to bind to a receptor on the bacterial surface to be able to
insert their genomic material, usually DNA, into the bacterial cytoplasm and subsequently
circularize their DNA @9, Here, lysogenic and lytic bacteriophages’ mechanisms start to
branch (Fig. 3). Lytic phages start DNA replication, assemble their proteins and pack their
DNA into the typical bacteriophage shape with a capsid head and tail. After sufficient
replication, phages use lytic enzymes to form holes in the bacterial cell membrane,
eventually leading to lysis of the cell and phage spreading. Lysogenic phages integrate
their DNA in the bacterial chromosome and become prophages. Reproduction is then
ensured through vertical transmission, and upon induction, prophages can also enter the
lytic cycle @ (Fig. 3). In general, factors that induce the lytic phase are compounds or
conditions with bactericidal effects, e.g. a DNA damaging-agent 0,

f CRISPR-Cas —— | @

Induction factors

Lytic Lysogenic
cyde cy‘:le

T \
rtive infection 2
Abortive infectio 72\/\?/\;/-\/\//\\ @
_|_

BREX and restriction modification systems

Figure 3: Lytic and lysogenic bacteriophage infection cycle with bacterial defense mechanisms.
The first two steps (1 and 2) of infection are identical for the lytic and lysogenic cycle, namely
phage binding followed by DNA insertion and DNA circularization. The lysogenic cycle then
branches off by integrating its DNA into the bacterial chromosome and becoming prophage,
thereby ensuring its replication (3b). Only upon encountering induction factors will the prophage
leave the bacterial chromosome, after which it can enter the lytic cycle (4b and 5b). In the lytic
cycle, phage DNA and protein is replicated and subsequently assembled into full phages (3a
and 4a). The phages then lyse the bacterial cell, are released and can infect other bacteria (5a).

59



CHAPTER 2

Bacteria possess multiple mechanisms to prevent killing by bacteriophages, starting with blocking
attachment. This can be achieved through phase variation or production of OMVs. After phage
DNA entry, CRISPR-Cas can recognize this foreign DNA and degrade it. Phage DNA and protein
replication can be prevented by BREX and restriction modification systems, while full phage
assembly can be prevented by abortive infection.

The first step for preventing bacteriophage infection is to prevent surface receptor
recognition. Outer membrane vesicles are produced by Gram-negative bacteria and
have several functions, including interbacterial communication . They have highly
similar surface composition as the bacterium and may thereby serve as decoys for
attacking phages ®%® (Fig. 3). Indeed, V. cholerae outer membrane vesicles were shown
to neutralize a V. cholerae specific phage in a dose-dependent manner (Fig. 2) ?*®, This
effect was only seen when the O1 antigen, the bacteriophage target on V. cholerae, was
included in the outer membrane vesicle structure %,

V. cholerae possesses another mechanism to prevent O1 phage receptor recognition @%%
(Fig. 3). Two genes necessary for Ol biosynthesis were shown to use phase variation
to induce variation in the Ol antigen composition ?*), Mutants using phase variation
were resistant to the O1 antigen phage, but displayed impaired colonization in a mouse
model ®. As the O1 antigen is an important virulence factor, e.g. for immune evasion,
this demonstrates that enteric pathogens constantly have to deal with multiple CR
mechanisms @9,

The second step in phage infection is injection of its DNA, and this can be prevented
by superinfection exclusion systems which are mostly coded by prophages (Fig. 3). The
E. coli prophage HK97 encodes for gpl5, a probable inner transmembrane protein ¢70,
Remarkably, HK97 gp15 has putative homologues resembling the YebO protein family
in many Enterobacteriaceae ®. GP15 prevented DNA injection into the bacterial
cytoplasm by preventing proper formation of a complex consisting of an inner membrane
glucose transporter and part of the tape measure protein ?’*2"D, This example illustrates
how bacteria can incorporate phage DNA to prevent itself against future phage attacks.

DNA replication can be prevented by restriction-modification systems (Fig. 3). These
systems consist of a methyltransferase and a restriction endonuclease. Exogenous
DNA is not tagged by this methyltransferase, while ‘self” DNA does get tagged @727,
Subsequently, non-tagged DNA can be cleaved. This system is viewed as a primitive
innate bacterial defense system. However, it was found that this system is not perfect, as
these restriction-modification systems can also attack self-DNA @7,

Currently, many groups are actively investigating the adaptive bacterial immune system
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CRISPR-Cas and this has been extensively reviewed elsewhere 7> 279, CRISPR-Cas
is present in about 45% of sequenced bacterial genomes, although it is unknown if its
prevalence is similar in gut bacteria ?’”-?’®. In short, it consists of CRISPR arrays, sets
of short repetitive DNA elements with variable DNA sequences (spacers) separating
the repetitive DNA sets, and of an operon of CRISPR associated genes (Cas). Spacers
are pieces of foreign DNA, derived from bacteriophage DNA or other mobile genetic
elements such as plasmids. The defense mechanism consists of adaptation followed
by expression and interference. During adaptation, Cas proteins can recognize foreign
phage DNA and integrate a piece of this DNA as a new spacer into the CRISPR array.
This allows the bacterium to build an immunological memory of all phages it previously
encountered. The expression response entails transcription of the CRISPR array,
followed by processing into smaller RNA pieces (crRNAs). CrRNAs consist of two
outer parts of repeated DNA sequences, with a spacer in between. To form the eventual
Cas-crRNA complex, crRNAs are combined with at least one Cas protein. This complex
then travels through the bacterial cell and when it identifies a complementary DNA
sequence, representative for the previously encountered bacteriophage, it cleaves and
degrades this foreign DNA.

In 2015, anovel phage resistance system was discovered, called bacteriophage exclusion
(BREX) @™ . BREX is able to block DNA replication, but does not prevent bacteriophage
attachment to the bacterium (Fig. 3). It also uses methylation as guidance to identify self
and exogenous DNA, but is different from restriction-modification systems as it does
not cleave exogenous DNA @7, Almost 10% of all bacterial genomes sequenced were
found to have this BREX, suggesting that it is quite a conserved defense mechanism
against bacteriophages @’. In spite of this promising defense mechanism, no further
papers have been released regarding BREX functioning in e.g. pathogenic bacteria.

Bacterial cells can perform an apoptosis-like action called abortive infection, resulting
in death of the infected cell and hereby protecting surrounding bacterial cells % (Fig. 3).
These systems have not been much elucidated for enteric pathogens at a molecular level,
though, relevance of this system has been shown for the gut bacteria S. dysenteriae and
E. coli ®®-282_ The abortive infection systems are best studied in L. lactis, a bacterium
widely used in production of fermented foods @8

Concluding remarks
Currently, bacterial enteric infections still cause a heavy disease burden worldwide. For

many bacterial pathogens, the virulence factors involved in infection are understood, but
less is known concerning the failure of gut microbiota to provide colonization resistance
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against these enteropathogens. A more comprehensive understanding of why the
microbiota fail to confer sufficient CR could lead to development of specific therapies
aiming to restore CR. It is likely that not a single bacterium will be used as the ‘holy
grail’ to restore CR, but that bacterial consortia with complementary functions will be
used instead. This would be preferable over the currently often used FMT, where it is
not well known what exact components are transferred to the patient. One could imagine
that these consortia could not only be used to treat existing infections, but that they
could also be administered prophylactically in susceptible patient groups. In addition,
more attention has recently been given to several drugs that were previously not linked
to gut health for their potentially disturbing effect on gut microbiota and perhaps CR.
In conclusion, we reviewed many of the latest insights in the rapidly evolving fields of
gut microbiota, colonization resistance and bacterial enteric infection. We are looking
forward to the coming years, where undoubtedly more knowledge will be gained on gut
microbiota and CR, ultimately leading to more microbiota-based therapies.
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