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The human microbiome

Humans are colonized by microorganisms at different body sites, such as in the 
oral cavity, on the skin and in the gut. It is estimated that bacterial cells outnumber 
somatic cells (approximately by a factor of 1.3) and they certainly contain a much 
wider repertoire of genes than encoded by the human genome1. These numbers do not 
yet take into account other crucial, but understudied, components of the microbiome 
such as viruses, archaea, fungi and other eukaryotic microorganisms. Defining and 
distinguishing ‘microbiota’ and ‘microbiome’ remains a somewhat controversial topic 
and one for which extensive debate will likely remain for the coming years. A consensus 
statement from 2020 defined microbiota as “the assemblage of living microorganisms 
present in a defined environment” while microbiome was defined as not only including 
the community of microorganisms, but also their “theatre of activity”2. One of the first 
large-scale projects to characterize microbial communities at different human body 
sites was the Human Microbiome Project (HMP), officially launched in 20073, 4. The 
HMP contributed important biological discoveries such as the notion that functional 
capacity of the microbiome is very stable within a healthy adult over time, but also 
highly similar between adults, in contrast to taxonomic composition (Figure 1)4. 
While taxonomic composition varied between individuals, general patterns could still 
be noticed. Most individuals’ gut microbiome was dominated by either Firmicutes or 
Bacteroidetes, with three other phyla (Actinobacteria, Proteobacteria, Verrucomicrobia) 
being less abundant, but still prevalent. The notion of functional stability between 
individuals despite taxonomic differences was not only true for the gut microbiome, 
but also for all other investigated body sites, which included the buccal mucosa, tongue 
dorsum and anterior nares, amongst others (Figure 1)4. In addition, they also released 
several freely available computational tools (most notably MetaPhlAn for taxonomic 
profiling and HUManN for functional profiling) which are used by many researchers 
to this day3, 5, 6. Since the launch of the HMP, the HMP and many other research groups 
and consortia have uncovered that the microbial communities colonizing humans are 
crucial for maintaining health, and many diseases have been associated with changes in 
these communities. For example, the gut microbiome can contribute to human health by 
producing short-chain fatty acids, synthesis of several vitamins and providing resistance 
against colonization of incoming pathogens7, 8. While microbiome research is performed 
on different body sites, the gut remains the most intensely studied body site.
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Development of the gut microbiome research field

The gut microbiome research field has emerged as an independent research field over the 
last fifteen to twenty years, even though researchers have already hypothesized about the 
role of the gut microbiome for far longer. For example, Theodor Escherich (after whom 
Escherichia coli was named) stated that it was crucial to study the microorganisms in 
the gut to understand (patho)physiological processes in the intestine in a publication 
from 18859. The major breakthroughs in this field have been made possible by the 
advent of next-generation sequencing (NGS) technologies, which became more widely 
adopted in the first decade of this century due to the decreasing costs. NGS allows for 
characterization of entire microbial communities, which was not possible with traditional 
microbiological methods (e.g. culturing) or older sequencing methods such as Sanger 
sequencing. It should be noted that shotgun metagenomic sequencing (one variant of 
NGS) was already applied on environmental samples (by Craig Venter, amongst others) 
before it was widely adopted by the human microbiome field10. 

One of the early milestone papers in the gut microbiome field is a study by Turnbaugh 
et al. Here, the authors showed that obese mice had a gut microbiome with increased 
capability for energy harvest from the diet and causally linked the gut microbiome to 
the pathophysiology of obesity through a series of elegant experiments11. This included 
transplanting feces from obese mice into gnotobiotic mice, which led to a greater increase 
in body fat than when gnotobiotic mice received a fecal microbiota transplantation from 
lean mice. This study was one of the first to not only find a correlation between the 
gut microbiome and disease, but to causally link the two, and subsequently triggered a 
global interest in the role of the gut microbiome in human health and disease. 

Most studies in the early days of microbiome research were observational studies 
where 16S rRNA gene amplicon sequencing of hypervariable regions was performed 
to compare patient groups, and differences in gut microbiota composition would be 
associated with disease or health parameters. Using 16S rRNA as an evolutionary marker 
for classifying bacteria was proposed by Carl Woese and George Fox for the first time 
in 1977 and preceded the first efficient sequencing technique for the 16S rRNA gene by 
almost ten years12, 13. While 16S rRNA gene amplicon sequencing can be highly valuable 
for understanding differences in microbiota composition, sequencing of the 16S rRNA 
gene only provides accurate taxonomic classification up to the genus level and does not 
provide functional information. Deeper resolution, or application of different methods, 
is necessary to obtain a more systemic image of the composition and function of a 
microbial community14, 15. In recent years there has been an increase in the number of 
studies employing metagenomics (sequencing of all DNA in a sample), metabolomics 
(measuring the metabolites in a sample) and to a smaller extent metatranscriptomics 
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(sequencing all RNA in a sample) and metaproteomics (measuring all proteins in a 
sample). Metagenomics allows for accurate taxonomic classification at species level, 
and sometimes strain level, and for profiling functional potential. While presence of 
a gene can be detected using metagenomics, this does not necessarily mean that the 
gene is expressed. This is why metatranscriptomics and metaproteomics are becoming 
increasingly important, as these techniques directly measure transcripts and proteins15. 
In addition, the metabolome is viewed as a functional readout of microbial metabolism 
and provides an important link between composition and function (Figure 2)16. 

Figure 2: Multi-omics to investigate microbial communities. Each method provides specific 
information about the community and methods are generally complementary. The computational 
tools used in this thesis to process raw data are indicated, as well as the main tool used for 
statistical analysis (R). The reason for choosing these tools is further explained in the section 
below and in the respective chapters where they are employed. Logos of the tools are obtained 
from their respective publications and corresponding material17-26.

Application of -omics techniques (metagenomics, metabolomics, metatranscriptomics, 
metaproteomics) pose bioinformatic and computational challenges. Expert knowledge 
is generally necessary to process raw data obtained from these techniques and extensive 
computational infrastructure can be required. At the Leiden University Medical Center, 
researchers are fortunate enough to have the luxury of working on a high-performance 
computing cluster, which allows for processing of large amounts of (sequencing) data. 
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Shotgun metagenomics and 16S rRNA gene amplicon sequencing data have been 
processed in this thesis using a variety of techniques (Figure 2). For 16S rRNA gene 
amplicon data we have used and evaluated two different tools (QIIME 2 and NG-Tax)17, 

18 and concluded that both methods work very well in combination with the SILVA 
database, which is the most often used database for 16S rRNA gene amplicon data19, 

27. An enormous variety of tools exist for taxonomic profiling of shotgun metagenomic 
data28. In this thesis we opted for the mOTUs tool, as it uses single-copy marker genes 
for taxonomic profiling and thereby allows (as one of the very few, if not the only tool) 
for accurate estimation of bacterial cell numbers20. For functional profiling, we used the 
golden standard databases for metabolism (Kyoto Encyclopedia of Genes and Genomes, 
KEGG) and carbohydrate-active enzymes (CAZy)22, 23. Lastly, for resistome profiling we 
opted for the MEGARes 2.0 database, as it has manually curated hierarchical annotation 
from antimicrobial resistance genes to antimicrobial resistance mechanisms which 
greatly facilitate interpretation of results24.

After data pre-processing, when matrices of e.g. bacterial species or metabolites are 
obtained, these matrices generally contain hundreds to thousands of features. This 
requires the use of specialized statistical software such as R26 and advanced statistical 
techniques which can deal with the ‘curse of dimensionality’, whereby more features 
than samples are present. It needs to be emphasized however that integration of multiple 
-omics techniques should not be the endpoint of a microbiome study, but that findings 
should be taken back into the wet lab. Before taking findings back into the wet lab, it is 
important to be as confident as possible about computational findings, and ideally these 
would be confirmed by re-using data from previously conducted studies on a similar 
topic. This is currently often hampered by the use of different methods between research 
groups, which by itself can induce large variation in outcomes. 

Technical opportunities and challenges for the (gut) 
microbiome field

Standardization of sample processing methods 
Performing a clinical microbiome study typically involves multiple steps including 
sample collection, sample processing and choice of DNA extraction method and 
sequencing method27, 29. The use of different methods at each step in the workflow of 
a microbiome study complicates comparing results from different studies, as these 
technical factors affect the obtained profiles29. Research consortia have been set up to 
identify an optimal workflow for processing fecal samples, but this has not led to its 
widespread adoption across the research community29. This is unfortunate, as this would 
allow for more efficient re-use of (sequence) data from studies. Re-use of data becomes 
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crucial when researchers perform meta-analyses to identify robust disease-associated 
microbial signatures. While meta-analyses have been highly informative despite 
technical differences between studies30, such an approach may fail when the disease 
or variable of interest is associated with more subtle changes in the microbiome. In 
such cases, technical variation may overshadow the biological signal. Standardization 
of sample processing methods would facilitate meta-analyses to allow for identification 
of both prominent and subtle disease-associated microbial signatures.

Biological samples with low bacterial biomass: contamination versus biological 
signal
In recent years, the concept of contamination (the occurrence of sequence reads in a 
sample which belonged to a microbe not originally present in the sample) has gained 
recognition31. When conducting a microbiome study using biological samples with a low 
bacterial biomass, like tumor tissue or urine, contamination can pose huge challenges. 
Nowadays, an increasing number of researchers is including positive and negative 
controls into their microbiome studies, which is an encouraging trend. At the Center 
for Microbiome Analyses and Therapeutics, we always include positive controls in the 
form of mock communities (both cell-based and DNA-based) and negative controls 
in the form of blank DNA extractions and blank samples for sequencing. For low-
biomass samples, it may also be important to include negative controls during sample 
collection, although it should be noted that this is not always feasible. The inclusion of 
such controls in other studies has, amongst others, led to debunking of the claim of the 
existence of both a placental microbiome and a brain microbiome32, 33. In table 1 studies 
that investigated low-biomass samples but did not include appropriate controls are listed 
(which, importantly, does not necessarily mean that results are not valid)34. 

Table 1: An overview of ten studies which did not report the use of appropriate controls, thereby 
making it impossible to properly judge the reported results. As can be seen in the last column, a 
variety of low-bacterial biomass samples is studied for containing a potential microbiome.
Authors Year Journal Investigated location
Aagaard et al. 2014 Science Placenta
Schierwagen et al. 2019 Gut Blood
Al Alam et al. 2020 The American Journal of Respiratory and Critical Care Medicine Fetal lung tissue
Branton et al. 2013 PloS One Brain
Gosiewksi et al. 2017 European Journal of Clinical Microbiology & Infectious Diseases Blood
Willis et al. 2020 Scientific Reports Eye tears
Hieken et al. 2016 Scientific Reports Breast tissue
Borewicz et al. 2013 FEMS Microbiology Letters Bronchoalveolar 

lavage fluid
Cavarretta et al. 2017 European Urology Prostate tissue
Fouts et al. 2012 Journal of Translational Medicine Urine
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Another debated topic is the existence of a tumor microbiome and its function, which 
potentially has strong clinical relevance35. A recent and very extensive study has looked 
into the tumor microbiome at several locations in the human body36. While this paper took 
all possible precautions during sample collection, processing and data analysis to avoid 
and exclude contaminations, it is not unlikely that some contamination signal has ended 
up in their final data36. It must be noted here that it remains unclear for now what to do 
with information provided by positive and negative controls for potentially correcting 
microbiota profiles. Nevertheless, important conclusions can be drawn from these 
controls. For positive controls, it can be judged whether different steps in the workflow 
(e.g. DNA extraction and sequencing) can induce technical variation. Negative controls 
are especially valuable for interpretation of low-bacterial biomass samples, as negative 
control profiles can be compared with those of the low-biomass samples. In case these 
are highly similar, this suggests that the microbiota profile of the low-bacterial biomass 
sample is not reflecting a biological profile, but may rather be a result of contamination. 
Some methods have been developed to ‘clean’ potential contaminants from microbiome 
data based on control data, but no consensus has been reached in the scientific community 
on how to exactly deal with contamination in low-biomass samples37-39. Therefore, at 
this point, controls mainly serve to verify whether DNA extraction, sequencing and 
bioinformatic processing have been conducted successfully. In conclusion, it remains 
highly challenging to separate contamination signals from biological signals in samples 
with a low bacterial biomass and an important future challenge of the microbiome field 
is to discover what represents real biology in these cases.

State-of-the-art computational methods to profile microbiomes
Traditionally, the first step of a microbiome study after obtaining sequence data involves 
the accurate identification and estimation of relative abundance (taxonomic profiling) 
of the microorganisms in a sample. The most often applied technique for this purpose 
is 16S rRNA gene amplicon sequencing. This usually involves amplifying a short 
hypervariable region of the 16S rRNA gene and hereby profiles the bacterial fraction of 
the microbiota and provides accurate identification up to genus level. Advantages of this 
method are the relatively low costs and lower complexity as compared to metagenomic 
sequencing. Species level classification through 16S rRNA gene sequencing could 
possibly be achieved by the advent of long-read sequencing techniques, but this is not 
commonly implemented yet40. However, the most often used technique for obtaining 
species level resolution in a microbiome is metagenomic shotgun sequencing.

Metagenomics allows for deep resolution (accurate classification of bacterial species, 
and sometimes strains) and for insight into the functional potential of the microbiome. 
By sequencing all DNA in a sample, information is also obtained about other 
microorganisms than bacteria, although in feces, this is usually only a minor fraction of 
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reads as compared to bacteria. Therefore, tools for taxonomic profiling of metagenomes 
are currently largely focused on profiling the bacterial fraction of the microbiome.

Many different tools exist for taxonomic profiling of metagenomes, but they can broadly 
be divided into assembly-based methods (assembling short reads into larger contigs and 
classifying these larger contigs to a reference database) and read-based methods (assign 
reads to taxa by using e.g. specific marker genes)28. The selection of specific marker 
genes for taxonomic profiling is not trivial, but ideally they are universal single-copy 
markers and phylogenetically informative. A major advantage of single-copy markers is 
that no correction for genome size of each microbe is required and a closer value to the 
‘real’ relative abundance of (bacterial) cell counts can obtained. As for 16S rRNA gene 
sequencing, the advent of long-read sequencing techniques may become an important 
tool in metagenomics, as it may allow for achieving circular bacterial genomes using 
assembly-based methods41. Functional profiling of metagenomes is a more complex and 
computationally intensive task than taxonomic profiling, as one needs to take all reads 
into account and can only focus on a subset of genes when specific functionalities are 
searched for. One method for functional profiling is mapping reads to a specific gene 
catalog relevant for the sample under investigation, for example the Integrated Gene 
Catalog for the gut microbiome42, although other options exist6, 43. These genes can then 
be grouped into more informative functional groups, for example KEGG orthology 
(KO) groups or into carbohydrate-active enzyme (CAZymes) groups. In the context 
of colorectal cancer (CRC), functional profiling allowed for detecting a shift from 
carbohydrate degradation in a healthy microbiome towards amino acid degradation in 
CRC30. After obtaining taxonomic and functional profiles, statistics should be performed 
on the obtained matrices to answer the relevant research question and to link the 
microbiome to health or disease. 

Lack of golden standards for statistical analysis 
After having processed raw sequencing data, researchers are faced with the challenge 
of analyzing complex microbiome data. This usually involves, among others, testing 
differences in relative abundance of microbial taxa between groups or associating 
clinical variables with microbiota composition. However, there are no clear guidelines 
or golden standards for performing such analyses. For example, for a relatively common 
procedure such as differential abundance testing, many different tests are available and 
expert opinions differ about which tests are optimal44, 45. It is probably not possible to 
define one optimal test for differential abundance testing, as it is likely that the ideal 
test will depend on the dataset under study. To define an optimal test, one should have 
simulated data where a ground truth is known (is a taxon differentially abundant or 
not). However, the question here is how to define a ground truth, as in when is a taxon 
defined to be differentially abundant? While for standard differential abundance analysis 
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a wide variety of tools is available, this is not the case for all analyses that researchers 
wish to perform. Currently, microbiome studies are moving towards longitudinal data 
collection and towards causality instead of correlations. However, tools for longitudinal 
analysis specifically adapted to microbiome data (e.g. taking into account zero-inflation) 
are scarce and currently available ones are probably insufficient to capture the full 
complexity of the dynamics of e.g. the gut microbiome. Some tools (e.g. MetaLonDA 
and MetaDprof) are available which test for differences in microbial taxa over time 
between different groups46, 47, but there are no such tools available that also allow for 
incorporation of covariates, which would be an important next step in development of 
statistical methods for the microbiome field.

Microbiome-mediated colonization resistance

The gut microbiome has a myriad of functions which are important for maintaining 
human health, and among these functions is providing colonization resistance against 
incoming, potentially pathogenic, microorganisms8. The notion that the gut microbiota 
can defend against enteric bacterial pathogens is far from new. For example, a paper 
from 1962 described that when mice are given streptomycin prior to oral administration 
of Salmonella enteridis, the resistance against this pathogen became 100,000 fold lower, 
with less than 10 S. enteridis cells being able to cause an infection in 63% of mice. 
In contrast, when no prior antibiotics were administered, a dose of approximately one 
million S. enteridis cells was required to infect the same percentage of mice48. 

I have previously defined colonization resistance as the ability of the microbiome to 
prevent colonization by exogenous microorganisms8. While in literature this mostly refers 
to incoming bacterial pathogens49, 50, in my opinion colonization resistance to incoming 
commensal bacteria or other microorganisms such as viruses, fungi and even parasitic 
worms should also be considered. Gut microbiome-mediated colonization resistance can 
be conferred through several mechanisms, including nutrient competition and production 
of antimicrobial compounds8. However, the complete set of mechanisms through which 
microbiome-mediated colonization resistance is conferred is not completely clear yet 
and it is very likely that required mechanisms are different against different (pathogenic) 
microorganisms. It is critical to make a distinction between asymptomatic colonization 
by a potentially pathogenic microorganism and actual infection with enteropathogenic 
microorganisms whereby the pathogen causes intestinal disease. It has been shown that 
colonization of pathogenic bacteria often precedes overt infection51. Therefore, this stage 
might be the ideal period for intervention to prevent infection, especially in vulnerable 
populations such as hospitalized patients and nursing home residents. These vulnerable 
populations usually receive a wide array of medication, including antibiotics, which are 
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able to profoundly impact the gut microbiome and decrease colonization resistance8, 

52. This concept is especially well established in the case of Clostridioides difficile, as 
C. difficile infection (CDI) is often observed after an antibiotic treatment. The altered 
microbial environment through antibiotic administrations can allow C. difficile to 
outgrow and cause infection53. In a landmark paper from 2013 it was shown that restoring 
the gut microbiome through fecal microbiota transplantation (FMT) is highly effective 
for curing recurrent CDI, with cure rates up to 89%54, 55. This publication has paved the 
way for development of microbiome-based therapeutics. However, before development 
of such products can start, fundamental research is necessary for generating insight into 
which commensal microorganisms can provide protection against enteropathogens. 

Thesis aim

The research described in this thesis aims at identifying bacteria with potential 
antagonistic properties against pathogenic microorganisms and antibiotic resistant 
bacteria, and to address and contribute to technical challenges and opportunities in the 
microbiome research field. 

Research questions and thesis outline

The research described in this thesis can be divided into three parts. First, we aimed 
to summarize the current knowledge of microbiome-mediated colonization resistance 
against enteropathogens (Chapter 2) and to provide an overview of opportunities and 
challenges in development of microbiome therapeutics against such pathogens (Chapter 
3). In the second part, we focused on method optimization for microbiome research, both 
for wet-lab and dry-lab procedures (Chapter 4 and Chapter 5). The final part describes 
changes in the human gut microbiota during infection or asymptomatic colonization by 
potentially pathogenic enteropathogens, including hookworm (Chapter 6), C. difficile 
(Chapter 7) and multidrug-resistant bacteria (Chapters 8 and 9). We hypothesized 
that we could identify bacteria or bacterial metabolites that are involved in providing 
microbiome-mediated colonization resistance against these pathogens. Specific research 
questions that we aimed to answer in this thesis were the following:
1.	 What is the current knowledge on microbiome-mediated colonization resistance 

against enteropathogenic bacteria?
2.	 What are the current opportunities and challenges in development of microbiome 

therapeutics against enteropathogenic and antibiotic-resistant bacteria, and how can 
we translate these into well-designed studies?

3.	 What is the impact of different DNA extraction procedures and different 
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bioinformatic pipelines for the obtained microbiota profile? How do positive and 
negative controls affect interpretation of microbiota profiles for low-bacterial 
biomass samples?

4.	 How do we optimize detection of carbohydrate-active enzymes (CAZymes) 
from (meta)genomic data using Hidden Markov models? What is the difference 
in CAZyme repertoire in colorectal cancer patients and are these differences 
independent of the geographical area of the study?

5.	 How does an infection with the helminth Necator americanus affect temporal 
dynamics of the human gut microbiota?

6.	 Can we identify bacteria that are associated with protection from asymptomatic 
colonization by C. difficile? Is it possible to understand, based on gut microbiota 
composition, why some individuals develop C. difficile infection but others only 
remain asymptomatically colonized? 

7.	 Is there a role for microbiome-mediated colonization resistance against asymptomatic 
gut colonization of MDROs in nursing home residents? Is there spread of MDROs 
in this nursing home?

8.	 Is the gut microbiome involved in providing resistance against colonization by 
extended-spectrum beta-lactamase producing Escherichia coli in the general Dutch 
population?

In more detail:
Chapter 2 aimed to summarize the main mechanisms by which the gut microbiome 
can provide colonization resistance against enteric bacterial pathogens (nutrient 
competition, production of antibacterial compounds, maintenance of a healthy mucus 
layer and bacteriophage deployment). An important research field developing over the 
last few years is the effect of medication on gut microbiome function, and this chapter 
therefore also describes the effects of non-antibiotic medication on impacting the ability 
of the gut microbiome to provide colonization resistance. Lastly, it is explained how 
eight of the most common enteric bacterial pathogens have developed mechanisms to 
subvert microbiome-mediated defensive mechanisms, so that they are able to colonize 
the gut and cause infection. 

Chapter 3 was written with the purpose of reviewing the practical aspects for 
development of live biotherapeutic products (LBP)s to protect against and/or cure 
bacterial enteric infection or colonization by multi-drug resistant organisms (MDROs). 
This type of medication offers an excellent alternative to conventional antibiotic therapy, 
as it does not damage the native microbiota and does not contribute to development 
of antibiotic resistance. Emergence of highly antibiotic-resistant pathogens are of ever 
increasing clinical importance, and solutions are urgently required for this, with LBPs 
being a promising option. For this chapter, we collaborated with experts from Vedanta 
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Biosciences Inc., a biotech company that developed several LBPs for treatment of 
inflammatory bowel diseases and CDI that are currently tested in phase II and phase III 
clinical trials. 

Chapter 4 was designed with the rationale to investigate how variations in the 
workflow of a microbiome study can impact the obtained microbiota profiles. To this 
end, three different DNA extraction protocols were compared in combination with 
two bioinformatic pipelines. In addition, we included positive and negative controls 
in the workflow, an often overlooked matter in microbiome research. We hypothesized 
that different extraction methods and bioinformatic pipelines would lead to technical 
variation, but that the biological conclusions would remain the same.

Chapter 5 describes the development of a novel bioinformatic tool which profiles 
CAZymes in the human gut from shotgun metagenomic data. To this end, we aimed to 
extensively optimize settings of Hidden Markov models, annotate the Integrated Gene 
Catalog with CAZymes and design a novel annotation scheme for substrate specificity. 
The rationale for designing a novel annotation scheme was that it can be confusing to 
deal with a large list of different CAZymes, rather than informative functional annotation 
(e.g. dietary fiber metabolism). Lastly, we applied this tool in metagenomes of colorectal 
cancer cohorts to identify colorectal cancer-specific CAZyme signatures. With regard 
to these cohorts, we expected to see a decrease in fiber-degrading CAZymes in the 
colorectal cancer patients, as epidemiological studies strongly suggest a link between 
dietary fiber consumption and colorectal cancer development.

For Chapter 6 we aimed to investigate the effect of a helminth (Necator americanus) 
infection on the bacterial gut microbiota and vice-versa. This helminth is highly 
prevalent in third-world countries and resides in the duodenum. We used a controlled 
human infection model, in which human volunteers were infected with this helminth 
and followed longitudinally. This helminth is highly prevalent in third-world countries 
and resides in the duodenum. We hypothesized that colonization and infection rates of 
N. americanus would be associated with gut microbiota composition.

Chapter 7 describes a cross-sectional study in which the bacterial gut microbiota of three 
groups was compared, namely CDI patients, hospitalized patients asymptomatically 
colonized with C. difficile and a control group of hospitalized patients without C. 
difficile. The aim of this study was to investigate whether specific bacterial signatures 
were associated with resistance against asymptomatic C. difficile colonization and 
against development of CDI. We hypothesized that patients asymptomatically colonized 
with C. difficile would have a different microbiota as compared to patients who were 
not. 
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For Chapter 8 we conducted a point-prevalence study with four time points performed 
in a Dutch nursing home, where we analyzed microbiota-associated risk factors for 
asymptomatic MDRO colonization in a cross-sectional and longitudinal manner. In 
addition, we aimed to identify clinical risk factors for MDRO colonization, to investigate 
MDRO spread within the nursing home using whole-genome sequencing and we further 
investigated unexpected findings from 16S rRNA sequencing of the gut microbiota 
using metagenomic sequencing. 

Chapter 9 describes a study which aimed to elucidate whether the microbiome provides 
resistance against asymptomatic gut colonization by ESBL-producing E. coli in adults 
in the general Dutch population. To this end, we collected paired fecal metagenomics 
and metabolomics data from individuals, who were, or were not, colonized by this 
bacterium. This study is unique in the sense that we were able to select samples from 
a large Dutch population cohort (PIENTER-3). In this way, we could exclude many 
common confounding factors encountered in gut microbiome research and match 
colonized individuals to non-colonized individuals on several clinic variables (age, sex, 
travel history and ethnicity). 

Chapter 10 contains the general discussion of the research presented in this thesis, and 
describes future research directions which are crucial for advancing the microbiome 
field in the author’s opinion.
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