
BIAS: a toolbox for benchmarking structural bias in the continuous
domain
Vermetten, D.L.; Stein, B. van; Caraffini, F.; Minku, L.; Kononova, A.V.

Citation
Vermetten, D. L., Stein, B. van, Caraffini, F., Minku, L., & Kononova, A. V. (2021). BIAS: a
toolbox for benchmarking structural bias in the continuous domain.
doi:10.36227/techrxiv.16594880
 
Version: Publisher's Version
License: Creative Commons CC BY 4.0 license
Downloaded from: https://hdl.handle.net/1887/3279994
 
Note: To cite this publication please use the final published version (if applicable).

https://creativecommons.org/licenses/by/4.0/
https://hdl.handle.net/1887/3279994


BIAS: A Toolbox for Benchmarking Structural Bias in theBIAS: A Toolbox for Benchmarking Structural Bias in the
Continuous DomainContinuous Domain
This paper was downloaded from TechRxiv (https://www.techrxiv.org).

LICENSE

CC BY 4.0

SUBMISSION DATE / POSTED DATE

09-09-2021 / 11-09-2021

CITATION

Vermetten, Diederick; van Stein, Bas; Caraffini, Fabio; Minku, Leandro; Kononova, Anna V. (2021): BIAS: A
Toolbox for Benchmarking Structural Bias in the Continuous Domain. TechRxiv. Preprint.
https://doi.org/10.36227/techrxiv.16594880.v1

DOI

10.36227/techrxiv.16594880.v1

https://www.techrxiv.org
https://dx.doi.org/10.36227/techrxiv.16594880.v1


1

BIAS: A Toolbox for Benchmarking
Structural Bias in the Continuous Domain

Diederick Vermetten, Bas van Stein, Fabio Caraffini, Member, IEEE, Leandro L. Minku, Senior Member, IEEE
and Anna V. Kononova, IEEE Member

Abstract—Benchmarking heuristic algorithms is vital to un-
derstand under which conditions and on what kind of prob-
lems certain algorithms perform well. Most benchmarks are
performance-based, to test algorithm performance under a wide
set of conditions. There are also resource- and behaviour-based
benchmarks to test the resource consumption and the behaviour
of algorithms. In this article, we propose a novel behaviour-
based benchmark toolbox: BIAS (Bias in Algorithms, Structural).
This toolbox can detect structural bias per dimension and across
dimension based on 39 statistical tests. Moreover, it predicts the
type of structural bias using a Random Forest model. BIAS can
be used to better understand and improve existing algorithms
(removing bias) as well as to test novel algorithms for structural
bias in an early phase of development. Experiments with a
large set of generated structural bias scenarios show that BIAS
was successful in identifying bias. In addition we also provide
the results of BIAS on 432 existing state-of-the-art optimisation
algorithms showing that different kinds of structural bias are
present in these algorithms, mostly towards the centre of the ob-
jective space or showing discretization behaviour. The proposed
toolbox is made available open-source and recommendations are
provided for the sample size and hyper-parameters to be used
when applying the toolbox on other algorithms.

I. INTRODUCTION

The modern world has an ever growing need for good
heuristic optimisation algorithms due to the large amounts
of data and increasingly difficult problems to be optimised.
Since one overall best heuristic does not exist [1], we have
to benchmark heuristics to understand which one is better
under what conditions. Benchmarking can be performance-
based, resources-based or behaviour-based. Most benchmarks
for continuous optimisation are performance-based. An ex-
ample is the well-known Black-Box Optimisation Benchmark
(BBOB) [2]. Performance-based benchmarks aid in learning
about the performance of one algorithm and the comparison
between other algorithms in different situations. For example,
one algorithm could perform very well on separable func-
tions and another algorithm on uni-modal, high-conditioned
functions. Resource-based benchmarks show the amount of
resources (computation power / memory / energy) required
under certain conditions. However, these types of benchmarks
do not easily allow the analysis of the ‘behaviour’ of these
algorithms under different circumstances. Behaviour is, for

Manuscript received September 9, 2021 (Corresponding author: Diederick
Vermetten). Diederick Vermetten (d.l.vermetten@liacs.leidenuniv.nl), Bas van
Stein and Anna V. Kononova are with the Leiden Institute of Advanced
Computer Science, University Leiden, The Netherlands. Fabio Caraffini is
with the School of Computer Science and Informatics, De Montfort University,
Leicester, UK and Leandro L. Minku is with the School of Computer Science,
University of Birmingham, UK.

example, how a population of candidate solutions move in a
swarm optimisation algorithm either dependent or independent
of the function to optimise.

An example of a behaviour-based benchmark is Robust-
Bench [3], an adversarial attack benchmark designed to test
the robustness of image classification deep neural networks.
Behaviour-based benchmarks can be used to learn additional
information about the behaviour of an algorithm under differ-
ent conditions. Here, we concentrate on a particular kind of
behaviour-based performance estimate, Structural Bias (SB).
SB is a form of bias inherent to the iterative heuristic optimiser
in the objective space that also affects the performance of the
optimisation algorithm.

Detecting whether, when and what type of SB occurs in a
heuristic optimisation algorithm can provide guidance on what
needs to be improved in these algorithms, besides helping to
identify conditions under which such bias would not occur.
In many cases SB can be avoided by slightly redesigning an
algorithm component or by using different hyper-parameters.
However, SB is hard to detect when not specifically looking
for these kind of issues. Therefore, in this paper we propose a
toolbox to automatically benchmark continuous optimisation
algorithms to discover a portfolio of eleven different SB
scenarios. We aim to answer the following research questions:

RQ1 How to determine whether a heuristic continuous optimi-
sation algorithm suffers from SB?

RQ2 How to determine the type of SB suffered by a heuristic
continuous optimisation algorithm?

RQ3 Which heuristic continuous optimisation algorithms suf-
fer from what type of SB? Under what conditions?

To answer RQ1, we evaluate a large set of statistical tests
based on 1500 repetitions of 194 different artificially generated
parameterised distributions containing 11 different scenarios
of structural bias. The proposed toolbox can be used to detect
potential bias issues in newly developed algorithms as well
as benchmark already existing optimisation algorithms. To
answer RQ2, we propose a machine learning approach to
identify which SB scenarios are most likely occurring in a
given optimiser based on the resulting test statistics. The
complete SB benchmark statistical test suite (BIAS), data
generators for different SB scenarios and the machine learning
model for identifying different SB scenarios are provided
open-source [4]. To answer RQ3, we adopt the proposed
toolbox to detect SB in 432 different continuous optimisation
algorithms. We also discuss insights provided by the resulting
benchmarking of these algorithms and potential future research



2

directions.
The paper is structured as follows: in Section II, SB is

introduced and explained in detail. The main components of
our proposed BIAS toolbox are also briefly introduced. In
Section III, all considered statistical tests for uniformity are
introduced, including several newly proposed tests specifically
for SB. In Section IV, the SB scenarios and experiments are
explained in detail. In Section V, an analysis of the statistical
tests is conducted, answering RQ1. In Section VI, the machine
learning approach used to identify the type of SB is intro-
duced and evaluated, answering RQ2. In Section VII, existing
heuristic continuous optimisation algorithms are benchmarked,
answering RQ3. Finally, we end with recommendations and
conclusions in Section VIII.

II. STRUCTURAL BIAS

Put simply, algorithms are tools applied to particular prob-
lems. Just like a good hammer working well on many nails,
we would like algorithms to ideally deliver good solutions
for many problems. However, as postulated by the so-called
No-Free Lunch Theorem, no best optimiser exists over all
possible optimisation problems [1]. What is possible though
is algorithms specialising on certain kind of problems. Identi-
fying sets of such suitable problems for each algorithm is not
a trivial problem [5] and many landscape features have been
investigated to understand the success of some algorithms on
some kinds of functions [6]. However, what cannot practically
be a feature uniting such problems is the location of optima
in the domain – having an algorithm that consistently finds an
optima only located in the origin is of no use. Therefore, good
algorithms should not be biased towards specific locations of
the search space, e.g., towards solutions at the origin, centre,
or in the borders of the search space. Extrapolating such
reasoning, a good optimisation algorithm should be able to find
the optima regardless where exactly they are located within the
domain. Or, even stronger, a good algorithm should ideally
locate solutions anywhere in its domain with equal ‘effort’.

In case of iterative optimisation algorithms, points sampled
during the initialisation ‘move’ within the domain defined by
its boundaries under the influence of algorithm’s operators and
potentially bring improvement of the values of the objective
function during the optimisation run, following some kind of
‘survival-of-the-fittest’ logic. In effect, such movement of the
algorithm towards the optima gets steered by the differences
in the values of the objective function in the sampled points or
their derivates of some kind. Any feedback that is external to
the objective function or domain knowledge might hinder such
progression to the optima. Such external feedback stemming
from the iterative nature of the algorithm is referred to here
as structural bias.

Because of the high interdependence between the fitness
landscape and the information on the fitness obtained from
this cyclical application of the algorithm’s operators, the SB
contribution during the search for optima cannot be easily un-
veiled if not by means of a specific objective function capable
of nullifying such interaction over multiple optimisation runs.
The f0 function, first introduced in [7], serves this purpose and

can be used to decouple these effects, thus separating the SB
component, arising from algorithmic design choices, from the
main driving force represented by the sampled difference in
the fitness landscape. f0 is a ‘truly’ random problem, having
the simple analytical representation reported below1:

f0 : [0, 1]n → [0, 1], where ∀x, f0(x) ∼ U(0, 1). (1)

A. Existing methodology for measuring SB

As explained in Section II, a heuristic optimisation al-
gorithm that does not exhibit SB should be able to find
randomly placed uniformly distributed optima for the special
objective function f0 with equal difficulty/ease. Therefore,
the problem of determining whether a heuristic optimisation
algorithm suffers from SB can be reduced to the problem of
checking whether the best solutions found by multiple runs
of this algorithm to minimise2 f0 are uniformly distributed.
However, such uniformity check is not a trivial task due to
the many forms in which SB can manifest itself for different
algorithms (see Section II-B) and under different algorithmic
configurations. To complicate things further, challenges en-
countered while testing for SB depend on the experimental
setup used to execute optimisers, e.g., where the number of
performed runs might be adequate for classic performance-
based assessment but not for detecting SB. Moreover, testing
for SB also depends on the allowed computational budget
allocated to the algorithm and/or employed termination cri-
terion. Indeed, the study in [8] has shown that when SB
emerges during the evolutionary process (for several versions
of the Differential Evolution algorithm), it only grows stronger
during the remaining evaluations. This means that practitioners
using different experimental settings might end up looking at
biases of different strengths for the same algorithm, which
make direct comparisons unfair. These details can make it
difficult to generate a practical and robust procedure for the
SB detection.

Up until now, methods to check the uniformity of the
distribution of best solutions over multiple runs included visual
or statistical inspections, briefly discussed in Sections II-A1
and II-A2 respectively.

1) Visual test: Displaying locations of the best solutions
collected from multiple runs in the so-called ‘parallel coordi-
nates’ [9] appears to be the most effective way for visualising
SB over a multidimensional problem [7]. This approach is
easily reproducible, graphically valid and hence convenient.
However, when a large number of images is generated [10],
[11], [8], [12], visual inspection can become too laborious.
Such approach is also clearly subjective and therefore not
reliable for cases where graphical artefacts or unclear patterns
cannot be judged by the naked eye.

2) Statistical test: Let us consider a heuristic optimisation
algorithm that was run N times to solve the problem of

1Throughout this paper we refer to one-dimensional uniform sampling
within [a, b] as U(a, b) and to sampling from the Normal distribution with
mean µ and standard deviation σ as N (µ, σ).

2or maximise.



3

minimising f0. At the end of each run i, the best solu-
tion x(i) found by the algorithm by the end of the run
is recorded, where naturally x(i) ∈ [0, 1]n. The random
sample {x(1),x(2), · · · ,x(N)} represents the set of best so-
lutions retrieved by the N runs of the algorithm. Assume
that {x(1)j , x

(2)
j , · · · , x(N)

j }, j ∈ {1, 2, · · · , n} was drawn
from a probability distribution with a continuous cumula-
tive distribution function Fd. A goodness-of-fit test can be
used to test the null hypothesis H0 : Fd ∼ U(0, 1). The
Kolmogorov–Smirnov test [13] was first employed with a
sample of size N = 50 and significance level α = 0.01 in
[7]. Subsequently, following the ‘power analysis’ performed
in [14] across three common tests, namely Kolmogorov-
Smirnov, Cramér-Von Mises [15] and Anderson-Darling [16]
tests, the latter test was chosen and used in combination with
the Benjamini–Hochberg [17] correction method for multiple
comparisons to achieve higher statistical power. However, it
was noted that the original sample size was not adequate for
testing all the single-solution algorithms under investigation.
Hence, a higher number N = 100 of runs had to be used
for some algorithms in order to achieve a satisfactory level
of statistical power. Similar problems were encountered in a
further study on SB in a subclass of Estimation of Distribution
Algorithms [18], even when using an aggregated measure of
SB defined as the sum of the statistically significant (across
all dimensions) test statistics of the Anderson-Darling test.

It was concluded that the described statistical approaches
can effectively detect most cases of ‘strong’ SB but are
deficient on other scenarios, including clear ‘mild’ SB that
can be dealt with the visual approach. Reasons for these
discrepancies between the two methodologies might be a
conservative nature of the employed tests combined with the
relatively low sample size. Indeed, more accurate SB detection
results could be obtained with N = 600, as used in [8], instead
of N = 100.

Using a large sample size (N = 600) indeed seems to
catch bias more often, but still gives no guarantee to detect all
different kinds of SB, at any significance level [8]. Even larger
sample sizes are necessary for smaller levels of significance,
higher desired power and smaller sizes of the deviations to
be identified [19]. However, given the limited computational
resources to run heuristic optimisation algorithms, it is not
always possible to obtain (very) large sample sizes. Therefore,
tests better able to detect significant deviations from unifor-
mity given limited sample sizes are desirable for detecting SB.
We study this in more detail in Section V-B.

Regardless of the above, there is a clear need for a better
automated statistical testing procedure to detect SB readily
available to the community as a software package.

B. Known deviations from uniformity due to SB

Formulating a good statistical measure of SB has turned
out to be difficult (see Section II-A2) due to a wide range
of potential deficiencies of distributions of locations of final
points – i.e., in what aspect samples from such distributions
deviate from uniformity.

The following deviations have been observed for different
kinds of iterative heuristic optimisation algorithms [7], [10],
[14], [18], [20], [8]
• in terms of proportion of occupied continuous domain:
◦ sample values do not span the whole domain – the

sample is uniform on an interval smaller than [0, 1]
(‘centre-bias’);

◦ values in a sample cover discrete set of values (reg-
ularly spaced) within [0, 1] (‘discretization-bias’);

• in terms of locations of points, sample points exhibit:
◦ local clustering within the domain (‘cluster-bias’);
◦ clustering around several clusters within the domain

(‘cluster-bias’);
◦ clustering in certain parts of each dimension: on

the bounds, in one or both sides of each dimension
(‘bound-bias’);

◦ one or more large empty gaps consistently identified
in all dimensions (‘gap-bias’);

• in terms of correlations between different dimensions of
the sample points: present or not.

C. BIAS toolbox

Our proposed BIAS (Bias in Algorithms, Structural) toolbox
fills in the gap in the literature in terms of the need for a better
automated procedure to detect SB and identify its type. In
this paper, we will discuss the different components which
constitute the proposed BIAS toolbox. These components
include 39 statistical tests and a procedure to aggregate them
for detecting SB (Section III), a Random Forest model to
identify the type of structural bias (Section VI), the code for
the used f0 (which was described in Section II) and the code
for the generation of the statistical bias decisions and plots (of
which an example is illustrated in Figure 3).

The BIAS toolbox is available as a python package at [4].
It provides a clear decision on whether or not structural bias
present in the sample of final positions provided by the user
and, in case some SB is found, an assessment on the possible
type of SB observed in the sample using random forest models.
In addition to the structural bias detection, the toolbox also
contains the needed functionality to sample data from the
scenarios in Table I, thus providing the means to benchmark
other statistical test for detecting structural bias.

III. TESTS

As explained in Section II-A2, the goodness-of-fit test
previously adopted for detecting SB (Anderson-Darling)
is deficient on several cases where SB is clearly visible even
with a sample size of 100. More powerful tests are therefore
desirable. This section introduces existing and newly proposed
goodness-of-fit tests evaluated in this paper for the purpose of
detecting SB in samples of limited size. This wide selection of
tests includes both classical statistical tests and other tests that
have demonstrated competitive power for testing uniformity in
the statistical literature [21], [22]. All of these tests are used
to test the null hypothesis H0 : Fd ∼ U(0, 1) introduced in
Section II-A2.



4

A. Tests per dimension

The following tests are designed to work on an individual
dimension. However, by aggregating all data we can run these
test on a sample size which is effectively n times larger.
If these tests are run on a per-dimension basis, correction
strategies need to be applied to deal with the multiple-
comparison problem. For this purpose, the Benjamini-Holberg
(BH) method was proposed originally, since it is less strin-
gent than the standard Bonferroni method. However, in this
work, we will also investigate the effects of other multiple
comparison correction methods, which will be discussed in
Section V-D.

1) 1-spacing (1-spacing): [23], [4] To detect cases
where the bias takes the form of large spacing differences
or clustering in each dimension, we can test the distribution
of distances between consecutive points (or points with m
neighbours between them, m ∈ {1, 2, 3} here and in two
subsequent tests). Such distribution can then be compared
to the distribution from a large sample of truly uniform
random samples using a 2-sample KS test. This and two
subsequent tests in the list belong to a wider class of tests
called m-spacing.

2) 2-spacing (2-spacing): [23], [4] See III-A1.
3) 3-spacing (3-spacing): [23], [4] See III-A1.
4) Sample Range (range): [4] The range taken up by the

samples in each dimension can be useful in detecting SB where
the points are far removed from the boundaries. The same can
be done using the sample extrema (next two items).

5) Sample Minimum (min): [4] See III-A4 for explanation.
6) Sample Maximum (max): [4] See III-A4 for explanation.
7) Anderson-Darling (AD): [16], [24] is the most com-

monly used test for checking uniformity, and as such the test
proposed to detect SB in [18].

8) Transformed Anderson-Darling (tAD): To boost the
power of the AD test in some of the most common cases of
SB, where the bias occurs near either the boundaries or the
centre of the space, a transformation can be applied to the
samples by taking their distance to the nearest boundary [20],
[24]. This can then be tested using an AD test with domain
[0, 12 ].

9) Shapiro (Shapiro): Instead of testing the samples for
uniformity directly, we can transform them to their normal
counterpart, and check for normality using tests like the
Shapiro test [25], [26].

10) Jarque–Bera (JB): This test, obtained through the use
of the Lagrange multiplier test on the Pearson family of
distributions [27], [28], is also applied to transformed samples
to test for their normality.

11) Minimum Linear Distance (LD-min): [4] The mini-
mum distance between a set of samples and a linearly uniform
distribution using the same range and sample size.

12) Maximum Linear Distance (LD-max): [4] The maxi-
mum distance between a set of samples and a linearly uniform
distribution using the same range and sample size.

13) Kurtosis (Kurt): This test measures how differently
the tails of a distribution are shaped, compared to the tails
of the normal distribution. Kurtosis is defined as the fourth
standardised central moment, of the random variable of the

probability distribution [29], [26]. Note that this test is applied
after transforming the data to its normal counterpart.

14) Minimal Minimum Pairwise Distance (MPD-min): [4]
The minimum pairwise distances between neighbours. If the
minimum distance between neighbours is too small, this can
indicate dense clusters.

15) Maxaximal Mininimum Pairwise Distance (MPD-max):
[4] Same as MPD-min but now comparing the maximum
instead. If the maximum distance between neighbours is too
large, this indicates uncovered areas of the objective space.

16) Wasserstein distance (Wasserstein): [4] Originally
proposed for optimal allocation problems [30] and rigorously
formulated by Kantorovitch in [31], this metric is used to
measure the distance between two probability distributions
defined on a metric space. This result is exploited in this study
to build the Wasserstein test for uniformity.

17) Neyman-Smooth test (NS): Neyman [32], [33] con-
structed his smooth tests specifically to test for the continuous
uniform distribution.

18) Kolmogorov-Smirnov (KS): [13], [24] is a nonparamet-
ric test based on the maximum distance between the empirical
cumulative distribution function (ECDF). While this test is
most commonly used to compare 2 samples, it can also be
used for goodness-of-fit testing.

19) Cramer-Von Mises (CvM): [34], [22] is similarly based
on the expected squared difference between the ECDF and
true CDF function of the null distribution.

20) Durbin (Durbin): To test for uniformity, the Durbin
Cn test [35] compares the cumulated periodogram graph
of the residuals from a least-squares regression with the
Kolmogorov-Smirnov limits. This is based on previous results
showing that when the employed test statistic is calculated with
a generic number 2m+ 1 of samples then it is distributed as
the mean of m− 1 independent uniform variables [36], [22].

21) Kuiper (Kuiper): This is an extension of the standard
Kuiper test obtained by replacing the original distribution
with the Pyke’s modified empirical distribution function as
proposed in [37] and implemented in [22]. This makes the
test suitable for showing that a population has a prescribed
continuous distribution function, including uniform.

22) 1st Hegazy-Green (HG1): This test refers to the variant
of the Hegazy-Green tests for uniformity proposed in [38] and
implemented in [22] employing the T1 test statistic defined as
the average of the absolute differences between samples and
their expected value.

23) 2nd Hegazy-Green (HG2): This is the second variant
of the Hegazy-Green test in [38], [22] employing the T2 test
statistic defined as the average of the squared differences
between samples ans their expected value.

24) Greenwood (Greenwood): This test is based on a
spacing statistic that can be used to evaluate events in time
or locations in space by testing how the intervals between
them are distributed [39], [22].

25) Quesenberry-Miller (QM): This test [40], [22] is a
modification of the Greenwood test [39] which additionally
considers the co-occurrence of extreme squared spacing dis-
tances.



5

TABLE I
OVERVIEW OF PARAMETERISED DATA SAMPLING SCENARIOS IN [0, 1],

THE TOTAL OF 194 / 249 SCENARIO SETTINGS (PER DIMENSION / ACROSS DIMENSIONS), PER CONSIDERED SAMPLE SIZE.

scenario name how sampled parameter 1 parameter 2 settings diagnosis3

Uniform4 sample full sample size via U(0, 1) – – 1 no bias

Cut Uniform5 subscenario 1: sample full sam-
ple size via U(zc, 1), subscenario
2: sample full sample size via
U( zc

2
, 1− zc

2
)

fraction cut zc ∈ {0.01,
0.025, 0.05, 0.1, 0.2}

10/10 centre-bias

Cut Normal6 sample full sample size via
N (µ, σ), remove all points
outside [0, 1] and repeat until full
sample size

σ ∈ {0.1, 0.2, 0.3, 0.4,
0.5}

µ ∈ {0.5, 0.6, 0.7} 15/15 centre-bias

Inverse Cut Normal same as above, but transform to
have most mass at bounds

same as above same as above 15/15 bound-bias

Cut Cauchy similar to Cut Normal but for
Cauchy distribution

same as above same as above 15/15 centre-bias

Inverse Cut Cauchy same as above, but transform to
have most mass at bounds

same as above same as above 15/15 bound-bias

Clusters sample nc cluster centre points
ci via U(0, 1), sample remaining
points around them via N (ci, σ)

7

number of clusters nc ∈
{1, 2, 3, 4, 5}

σ ∈ {0.01, 0.025, 0.05,
0.1, 0.2, 0.3}

30/30 cluster-bias

Consistent Clusters8 same as above σ ∈ {0.01, 0.025, 0.05,
0.1, 0.2, 0.3}

0/30 cluster-bias

Loose Clusters sample zu portion of sample size
via U(0, 1). For each remaining
point, select an existing point xi
and sample N (xi, σ)

fraction of uniform
samples zu ∈ {0.1,
0.25, 0.5}

σ ∈ {0.01, 0.02, 0.05,
0.1}

12/12 cluster-bias

Gaps sample full sample size via
U(0, 1), select nc sampled points
xi, remove all sampled points
in [xi − rg , xi + rg ], resample
missing points outside gaps via
U(0, 1) until full sample size9

number of centres nc ∈
{1, 2, 3, 4, 5}

gap radius rg ∈ {0.01,
0.02, 0.03, 0.04, 0.05}

25/25 gap-bias

Consistent Gaps10 same as above same as above 0/25 gap-bias

Spikes randomly sample integers in
[1, ns], rescale as uniformly
placed spikes in [0, 1]

number of spikes ns ∈
{25, 50, 100, 150, 200,
250, 500, 1000}

– 8/8 discretization-
bias

Noisy Spikes same as above, but spike locations
are independently shifted accord-
ing to N (0, σ)

same as above σ ∈ {0.005, 0.01, 0.02,
0.03, 0.04, 0.05}

48/48 discretization-
bias

3 See Section II-B
4 Sanity check, excluded from the tests
5 Two subscenarios: 1. modify only min (equivalent to varying only max, so don’t do both to save time); 2. modify both min and max at the same time,

with the same parameter setting (half cut on both sides)
6 Vary µ only to one side since it is equivalent to the other side
7 For across-dimension tests, need to differentiate between same cluster-centres in each dimension (Consistent Clusters) vs. different gaps

(Clusters)
8 Only used in across-dimension tests, as it is equivalent to Clusters per-dimension
9 For across-dimension tests, need to differentiate between same gaps in each dimension (Consistent Gaps) vs. different gaps (Gaps)
10 Only in across-dimension tests, as it is equivalent to Gaps per-dimension

26) Read-Cressie (RC): This test [41], [22] belongs to a
family of goodness-of-fit tests based on the power divergence
statistic.

27) Moran (Moran): This test [42], [22] operates via the
distribution of the sum of squares of intervals into which the
domain is divided, using a homogeneity of variances test.

28) 1st Cressie (Cressie1): This test [43], [22] is based
on the logarithm of m-spacing gaps.

29) 2nd Cressie (Cressie2): This test [44], [22] operates
via the family of statistics based on m-spacing gaps, obtained
by summing a suitably regular function of each spacing gap.

30) Vasicek (Vasicek): As entropy can be used to charac-
terise distributions, this test uses an estimate of entropy based
on higher order (m > 1) m-spacings to test for uniformity

[22]. Entropy had been originally adopted by Vasicek [45] for
testing the hypothesis of normality.

31) Swartz (Swartz): Instead of using entropy, Swartz
[46], [22] uses the Kullback-Leibler information to derive a
statistic to test for uniformity. This statistic is also based on
m-spacings.

32) Morales (Morales): This test [47], [22] compares an
empirical and a hypothetical distribution based on the limit
laws for a statistic based on φ-disparity [48], [49] of m-
spacings.

33) Pardo (Pardo): Informational Energy is a measure
of certainty, related to the Shannon Entropy, which is a
measure of uncertainty. This test uses m-spacings to estimate



6

Informational Energy as a test statistic for the hypothesis of
uniformity [50], [22].

34) Marhuenda (Marhuenda): This test [21], [22] uses
a quantile-based divergence statistic based on Cressie and
Read’s power divergence statistics [51].

35) 1st Zhang (Zhang1): Zhang [52] proposed a general
parametrized test statistic that can be used to derive both clas-
sical goodness-of-fit test statistics such as Anderson-Darling
[16] and Kolmogorov-Smirnov [13] and other new goodness-
of-fit test statistics that were demonstrated to be more powerful
[52]. Zhang1 is derived based on this parametrized test
statistic using likelihood ratio statistics [52], [22].

36) 2nd Zhang (Zhang2): This test statistics [52], [22]
is derived in a similar way to Zhang1, but is based on an
approximation.

B. Tests across dimensions

In addition to the tests which work on a per-dimension basis,
we can also perform tests on the full set of 30-dimensional data
at once. This can be done by grouping together the samples or
distances and performing the same test as the per-dimension
testing on the aggregated data. For this purpose, we use all
tests discussed above, with the exception of the sample limits-
based tests, LD, MPD and Wasserstein tests. It can also
be done by using across-dimension tests. In this work, we use
the following across-dimension tests:

1) The mutual information (MI): The mutual informa-
tion [53], [54] between variables of a random distribution
should be close to zero. If the MI between two variables
is higher, this suggests bias towards specific values in the
domain shared by these two variables (dimensions). The
median mutual information is the median over all dimensions.

The mutual information between two Random Variables U
and V is defined as:

MI(U, V ) =

|U |∑
i=1

|V |∑
j=1

|Ui ∩ Vj |
N

log
N |Ui ∩ Vj |
|Ui||Vj |

2) Maximum Minimum Pair-wise Distance (MMPD): [4]
This test is the maximum distance between two neighbouring
points in a (multi) dimensional space. This distance should not
be significantly different from the same distance metric over a
random uniform sampling. A significant higher distance means
that there is a region in the search space where the algorithm is
more attracted to (and subsequently a region that is avoided).
In another words, bias.

3) Maximum Difference per Dimension between a linear
uniform distribution (MDDLUD): [4] This test is the multi-
dimensional equivalent of the LD-max test, where we ag-
gregate either using the maximum or median across all 30
dimensions.

C. Critical values for all tests

To determine rejection based on the test statistic, we need to
either calculate the corresponding p-values, or check if the test
statistic exceeds the corresponding critical value. Several of
the test we include calculate the p-value by default, but for the

0.0 0.2 0.4 0.6 0.8 1.0
X

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

De
ns
ity

Sigma
0.1
0.2
0.3
0.4
0.5

Fig. 1. Empirical Density Distribution for the Cut Cauchy scenario, with
varying σ, and µ = 0.7 (based on 1000000 samples each). The dotted line
shows the theoretical density of the uniform distribution.

others we will use the critical values. To get accurate estimates
of these values, we use a 100000 samples Monte Carlo simu-
lation of the test statistic under the uniform distribution, from
which we determine the α-quantiles for α ∈ {0.01, 0.05}. The
Monte Carlo test is a well known procedure for implementing
hypothesis tests [55]. It enables calculating the critical values
when the true (sampling) distribution of the test statistic is
unknown. The resulting critical values calculated using this
procedure are available at [56].

IV. METHODOLOGY

To effectively judge the performance of the proposed tests
for different types of SB, we have defined a large portfolio of
scenarios according to which we can generate arbitrary number
of samples. This set of scenarios is chosen in such a way
that all common types of SB discussed in Section II-B are
represented. Additionally, these scenarios are parameterised to
control the level of bias, which enables us to better judge the
robustness of tests.

A. Portfolio of scenarios

We choose the scenarios to include based on the most
common types of structural bias (see Section II-B) as observed
in previous papers:
• bias towards the centre of the search space,
• bias towards the bounds of the search space,
• bias towards certain parts of the search space forming

clusters,
• bias towards avoiding certain parts of the search space,

creating gaps and
• poor discretization.
In total, this gives us 11 distinct scenarios (13 for the across-

dimension case) – the full list these scenario definitions and
their parameters used in this paper is shown in Table I. An
example of the density of several parameterizations of scenario
Cut Normal is shown in Figure 1.

In Figure 2, we show that there exists minimal overlap
between the densities of the different parameterizations of
these scenarios by collecting 10000 samples and performing



7

Norm
+Cau

chy

Clus
ter

s
Gap

s

Loo
se 

Clus
ter

s
Sp

ike
s

Tru
nc 

UnifUnif

Norm
+Cau

chy

Clus
ter

s

Gap
s

Loo
se 

Clus
ter

s

Sp
ike

s

Tru
nc 

Unif

Unif

Fig. 2. Confusion matrix via the KS-test between all scenarios. Blue indicating combinations which are not distinguishable based on the 2-sample KS-test
for α = 0.01. Used sample size is 100, with 1000 sets of samples generated for each scenario, aggregated into a 1D sample. The white lines divide the types
of scenario. Norm+Cauchy group contains all Cut and Inverse scenarios based on Normal and Cauchy distributions.

pairwise KS tests. Note that these samples are aggregations
of multiple independent dimensions, so for Gaps this means
that each set of 100 samples has its own gap-centres, which
explains why it is seen as similar to Uniform.

In total, this gives us 194 scenarios to consider in the per-
dimension case, and 249 scenarios in the across-dimension
case. For each of these scenarios, we generate data with sample
sizes {30, 50, 100, 600}. In the per-dimension case, we collect
1500 independent sets of samples for each use-case, while
the across dimension cases all use 100 sets of 30-dimensional
samples.

For each of the generated sets of samples, we apply
the corresponding test-battery from Section III with α ∈
{0.05, 0.01}: 36 tests for per-dimension case and 32 for
the across-dimension case. Using this setup, we thus collect
194 · 1500 · 4 · 36 = 4.19× 107 test statistics / p-values for the
per-dimension tests, and 249 · 100 · 4 · 32 = 3.19× 106 for the
across-dimension tests.

We show an example of the set of statistical tests applied to
an instance of the Cut Normal scenario in Figure 3. This
figure shows the rejections for each dimension individually,
as well as the corresponding sample on which this decision is
based. This visualisation is available as part of the toolbox as
described in Section II-C, and provides a visual way to inspect
the structural bias present in the scenario.

For the analysis on the per-dimension test, we do not

directly apply multiple correction methods. However, in sec-
tion V-D, we will analyse the effect of different correction
methods on the overall false positive rate and select which
method to use in practice.

V. ANALYSIS OF STATISTICAL TESTS APPLIED TO
SCENARIOS

This section analyses the statistical tests presented in Sec-
tion III in terms of their suitability to be included in the BIAS
toolbox for the purpose of detecting structural bias.

A. Robustness of tests to scenario parameters

To analyse the effect of different parameterizations of the
selected scenarios on the difficulty of detecting bias, we can
consider the overall number of rejections for a single test
across all parameter settings. An example for the Inverse
Cauchy scenario is shown in Figure 4. In this figure, we see
clearly that extreme parameter settings (highly shifted mean
and low variance) are always detectable by the AD test, while
the tAD test performs much better when the distribution is
centred.

While this granular view of results can give important in-
sights, it is impractical to use this low-level view to investigate
the different impacts of our experiment settings on the final
rejections. For the sake of completeness, the figures for all



8

0

0.2

0.4

0.6

0.8

1
Va

lu
e

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Dimension

1-spacing
2-spacing
3-spacing

range
min
max
AD
tAD

Shapiro
JB

LD-min
LD-max

Kurt
MPD-max
MPD-min

Wasserstein
NS
KS

CvM
Durbin
Kuiper
HG1
HG2

Greenwood
QM
RC

Moran
Cressie1
Cressie2
Vasicek
Swartz
Morales
Pardo

Marhuenda
Zhang1
Zhang2

Fig. 3. Example of an instantiation of the Normal Cut scenario with µ = 0.5 and σ = 0.2, with 100 samples in each of 30 dimensions. The top figure
shows the assumed distribution of the final positions in each dimension. Jitter is applied to vertically overlapping points. The colour scheme is used to highlight
different dimensions. The binary heatmap in the bottom shows in green which tests reject the null-hypothesis of uniformity per dimension with α = 0.01 (no
multiple comparison correction applied).

0.5 0.6 0.7
Mu

0.
1

0.
2

0.
3

0.
4

0.
5

Si
gm

a

0.0

0.2

0.4

0.6

0.8

1.0

0.5 0.6 0.7
Mu

0.
1

0.
2

0.
3

0.
4

0.
5

Si
gm

a

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 4. Fraction of rejected cases for the AD (left) and tAD (right) tests on
the Cut Cauchy scenario, based on its parameterizations. The used sample
size is 100, with α = 0.01 and no multiple comparison correction applied.

scenarios and all experimental settings have been uploaded
at [57].

B. Sample size

To study the impact of the available sample size on the
overall performance of different statistical tests, we can ag-
gregate the number of rejections over all parameterizations
of each scenario. This allows us to show the fraction of
cases of a scenario which are rejected by each test given a
certain sample size. Figure 5 shows this for the Cut Normal
scenario. From this figure, we can see that the effect of sample

size is not the same across all tests. As an example, the AD
test has a relatively high number of rejections at 30 samples,
but doesn’t reach the same precision as other tests when
increasing sample size to 600. This indicates that analysis
of the performance of the tests should take the number of
available samples into account, as this will influence which
tests are more distinguishing.

From Figure 5, we can also see that the Moran test
significantly outperforms any others on this scenario, but even
this test does not reject all cases when the sample size is
small. This reinforces the notion that if possible, increasing
the sample size is beneficial to the ability to detect less clear
cases of structural bias. However, we also note that for most
scenarios, a sample size of 50 seems to be sufficient to detect
the presence of structural bias. While increasing the sample
size would increase the ability to detect less obvious cases
of SB, N = 50 should be able to correctly identify the most
blatant ones.

C. Overall analysis

With the rejection data, we can investigate the interplay
between statistical tests and the scenarios, in order to find



9

M
or

an

Cr
es

sie
1

1-
sp

ac
in

g

Pa
rd

o

M
or

al
es

Va
sic

ek

Zh
an

g1 RC

Gr
ee

nw
oo

d

Zh
an

g2 tA
D

2-
sp

ac
in

g AD QM

Cr
es

sie
2

Test

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 re

je
ct

io
ns

n_samples
30
50
100
600

Fig. 5. Fraction of rejections for each test on the Shifted Spikes
scenario, with α = 0.01 and no multiple comparison correction method
applied. Data is aggregated over all parameterizations of the scenario, as
described in Table I. This figure shows 15 tests with the most rejections (when
aggregated over the different sample sizes). Note that the negative space over
each bar (1− x) is equivalent to the false negative rate of the test.

what set of tests is more suitable to each kind of structural
bias. For this analysis, we make use of the concept of Shapley
values [58] to assess the contribution of each test to a portfolio
of tests for finding bias in each type of scenario. In particular,
we define the marginal contribution of a test t to a portfolio
of tests T ′ ⊂ T on scenario S as follows:

c(t, T ′, S, n, α) =
∑
s∈S

∑n
i=0 maxt′∈(T ′ ⋃{t}) 1t′(si)<α −∑

s∈S
∑n
i=0 maxt′∈T ′ 1t′(si)<α (2)

where n is the number of realizations si of scenario s. The
indicator function 1 corresponds to the test t rejecting the null
hypothesis with significance α on the data from realization si.

Based on this definition of marginal contribution, we can
compute approximate Shapley values by sampling random
permutations calculating the marginal contribution for each
test at each position within this permutation [59], [60]. This
can be formulated as follows:

S(t, S, n, α) =
∑
r

m∑
i=0

c(t, T ′, S, n, α) : T ′ ⊂ T, |T ′| = i

(3)
where r is the number of repetitions used, and m is the
maximum size of these permutations, which is introduced
to ease with computations and because the impact of larger
permutations on the total sum is relatively minor – in this
paper, we set m = 10.

Since the used definition of marginal contribution is com-
mutative, we can sum the individual Shapley values for each
scenario to get the overall Shapley values across scenarios.
These values are then shown in Figure 6, where we can see
that most tests have a very comparable contribution to the
overall rejections, with relatively few outliers in both positive
(e.g. Moran) and negative (e.g. MPD-min) sense. Because of
this, we consider all test to have their uses in the portfolio,
and refrain from removing any tests from consideration.

Additionally, we can also consider the per-scenario Shapley
values to find a relation between the statistical tests and the
scenarios which it can most effectively distinguish. This is

M
or

an
Cr

es
sie

1
tA

D
M

or
al

es
1-

sp
ac

in
g

Va
sic

ek
Gr

ee
nw

oo
d

Zh
an

g1 RC
Sw

ar
tz

Ku
ip

er QM AD
Cr

es
sie

2
Zh

an
g2

M
ar

hu
en

da NS
Pa

rd
o

3-
sp

ac
in

g
2-

sp
ac

in
g

Du
rb

in KS
LD

-m
ax

Sh
ap

iro
HG

2
Cv

M
HG

1
W

as
se

rs
te

in JB
ra

ng
e

M
PD

-m
ax m
in

Ku
rt

m
ax

LD
-m

in
M

PD
-m

in

Test

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

va
lu

e

variable
Feature Importance
Shapley Value

Fig. 6. Approximated Shapley values for all 36 per-dimension tests, based
on marginal contribution to the total number of rejections across all scenarios
(sample size 100, α = 0.01). Additionally, the feature importance of these
tests in the random forest model discussed in Section VI is also shown.

1-
sp
ac
in
g

2-
sp
ac
in
g

3-
sp
ac
in
g

ra
ng

e
m
in

m
ax AD tA
D

Sh
ap

iro JB
M
DD

-m
in

M
DD

-m
ax Ku
rt

M
M
PD

-m
ax

M
M
PD

-m
in

W
as
se
rs
te
in NS KS

Cv
M

Du
rb
in

Ku
ip
er

HG
1

HG
2

Gr
ee

nw
oo

d
QM RC

M
or
an

Cr
es
sie

1
Cr
es
sie

2
Va

sic
ek

Sw
ar
tz

M
or
al
es

Pa
rd
o

M
ar
hu

en
da

Zh
an

g1
Zh

an
g2

cauchy

clusters

gaps

inv_cauchy

inv_norm

norm

part_unif

shifted_spikes

spikes

trunc_unif

0.1

0.2

0.3

0.4

0.5

Fig. 7. Approximated Shapley values of all per-dimension tests, based on
marginal contribution to the total number of rejections across all parameteriza-
tion of the used scenarios, with sample size of 100, α = 0.01 and no multiple
comparison correction applied. These Shapley values are approximated based
on 3600 random permutations.

visualized in Figure 7. There are some clear patterns visible
in this figure, namely for the scenarios which mimic poor
discretization, where the Moran and Cressie1 tests have
a very high contribution, while their impact on the other
scenarios seems to be relatively minor. This highlights the
benefit of having a large portfolio of different statistical test
to identify SB.

Overall, we have seen that no single test is clearly preferable
over all others. Moreover, an analysis of the Kendall-Tau [61]
correlations between the rejections of tests across all scenarios
shows that very few tests are highly correlated. Figure 8 shows
the correlation heatmaps for two representative settings of
sample size and α. We can observe relatively higher correla-
tions among some of the tests listed from NS to Greenwood,
and among some of the tests listed from QM to Pardo, in
all settings. However, these higher correlations involve very
few of the tests, and overall these correlations tend to get
slightly weaker as the sample sizes get smaller. Moreover, the
correlations among the other tests are very low for the largest
sample size of 600. Therefore, it is likely that different tests
are best suited to recognise different types of deviations from
uniformity. For this reason, we will include all considered tests
in the BIAS toolbox.



10

1-
sp
ac
in
g

2-
sp
ac
in
g

3-
sp
ac
in
g

ra
ng

e
m
in

m
ax AD tA
D

Sh
ap

iro JB
LD

-m
in

LD
-m

ax Ku
rt

M
PD

-m
ax

M
PD

-m
in

W
as
se
rs
te
in NS KS

Cv
M

Du
rb
in

Ku
ip
er

HG
1

HG
2

Gr
ee

nw
oo

d
QM RC

M
or
an

Cr
es
sie

1
Cr
es
sie

2
Va

sic
ek

Sw
ar
tz

M
or
al
es

Pa
rd
o

M
ar
hu

en
da

Zh
an

g1
Zh

an
g2

1-spacing
2-spacing
3-spacing

range
min
max
AD
tAD

Shapiro
JB

LD-min
LD-max

Kurt
MPD-max
MPD-min

Wasserstein
NS
KS

CvM
Durbin
Kuiper
HG1
HG2

Greenwood
QM
RC

Moran
Cressie1
Cressie2
Vasicek
Swartz
Morales
Pardo

Marhuenda
Zhang1
Zhang2

0.0

0.2

0.4

0.6

0.8

1.0

1-
sp
ac
in
g

2-
sp
ac
in
g

3-
sp
ac
in
g

ra
ng

e
m
in

m
ax AD tA
D

Sh
ap

iro JB
LD

-m
in

LD
-m

ax Ku
rt

M
PD

-m
ax

M
PD

-m
in

W
as
se
rs
te
in NS KS

Cv
M

Du
rb
in

Ku
ip
er

HG
1

HG
2

Gr
ee

nw
oo

d
QM RC

M
or
an

Cr
es
sie

1
Cr
es
sie

2
Va

sic
ek

Sw
ar
tz

M
or
al
es

Pa
rd
o

M
ar
hu

en
da

Zh
an

g1
Zh

an
g2

1-spacing
2-spacing
3-spacing

range
min
max
AD
tAD

Shapiro
JB

LD-min
LD-max

Kurt
MPD-max
MPD-min

Wasserstein
NS
KS

CvM
Durbin
Kuiper
HG1
HG2

Greenwood
QM
RC

Moran
Cressie1
Cressie2
Vasicek
Swartz
Morales
Pardo

Marhuenda
Zhang1
Zhang2

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 8. Cluster plot showing the Kendall-Tau correlations [61] between test rejections on all scenarios, with sample size 50 (left) and 600 (right), α = 0.01.

D. Multiple comparison correction methods

For the per-dimension tests, we should take into ac-
count the fact that multiple tests are being done, and thus
the p-values should be changed using a correction proce-
dure. For this purpose, we consider 3 methods: Benjamini-
Holberg (BH) [62], Benjamini-Yekutieli (BY) [63] and Holm-
Bonferroni (Holm) [64]. For each of these methods, we con-
sider their impact on 30-dimensional samples of the uniform
distribution to judge the false positive rate. In Figure 9 on
the left, we see the false positive relative the the used α
values (defined as at least 1 rejection in the 30D sample).
This figure clearly shows the need for a multiple comparison
correction method, given that the false positive rate is way
over α when using no correction methods. We also note
minor differences between the correction methods considered,
with BY leading to the lowest false positive rate. Similarly,
we can also consider the overall false negative rate as an
aggregation over all scenarios, as is done in the right part
of Figure 9. This figure shows that the impact of the choice of
multiple comparison correction method on the false negatives
is relatively minor. Because of this, we set the BY-method as
the default, since it is better able to produce false positive rate
lower than α.

E. Results on correlated samples

Within the set of scenarios, there are two sets which are
enabled only for the across-dimension tests. These scenarios
are the consistent version of existing scenarios Gaps and
Clusters. In Figure 10, we show the difference in test
rejections between these two versions of the scenario. It is
clear from the figure that aggregating samples from clusters
with different intiantiations on each dimension removes the

None fdr_bh fdr_by holm
Correction Method

10−2

10−1

Ra
te

False Positive Rate

None fdr_bh fdr_by holm
Correction Method

0.2

0.3

0.4

0.5

0.6

0.7

False Negative Rate
Alpha

0.01
0.05

Fig. 9. Evaluation of multiple comparison correction methods: fraction of
false positives in 30D samples with different correction methods (on the left)
and aggregated fraction of False Negatives across all scenarios of the 6 most
distinguishing tests based on Shapley values (on the right). On the left, values
above the relevant alpha-thresholds indicate too large false positive rates. On
both figures, markers identify the used sample size: ©, ♦, 4 and � are 30,
50, 100 and 600 respectively. BY method is chosen here.

ability of many tests to detect the bias, while the across-
dimension tests such as MDDLUD do not have this issue.
Additionally, since the spacing tests aggregate spacings per
dimension instead of samples, their effectiveness is not re-
duced when the clusters are inconsistent. For the sake of
brevity, the other results on the across-dimension tests have
are not discussed here, but the relevant figures and data is
made available at [56], [57], [65].

VI. ESTIMATION OF THE SB TYPE

Since we use the results of many statistical tests to find
bias in artificially generated samples and different tests may
be better at capturing different deviations from uniformity,
we can use these tests to not only check if structural bias is
present, but also to identify what the most likely form of bias



11

1-
sp

ac
in

g

2-
sp

ac
in

g

3-
sp

ac
in

g NS

M
DD

LU
D-

m
ed

Ku
ip

er

Gr
ee

nw
oo

d

QM RC

Cr
es

sie
1

Cr
es

sie
2

Va
sic

ek

Sw
ar

tz

M
or

al
es

M
ar

hu
en

da

Test

0.0

0.2

0.4

0.6

0.8

1.0
Fr

ac
tio

n 
of

 re
je

ct
io

ns

Scenario
Gaps
Consistent Gaps

Fig. 10. Overall fraction of rejections across all sample sizes and scenario
paramterization of the two versions of the Gaps scenario, using the across-
dimension version of the statistical tests with α = 0.01 (shown with faint
black vertical line). Selection of tests shown is done as the top 15 tests with
most total rejections when combining the two bars.

is. This provides an answer to RQ2. To achieve this, we build
a random forest (RF) model, which takes as input the test-
rejections from all per-dimension tests. This is done to allow
scaling to arbitrary dimensions while having one model for
all sample sizes. Specifically, if we use statistical test values
directly, we would need one model per sample size, and a way
to aggregate the resulting predictions. Instead, a random forest
based on rejections only needs to deal with the aggregation
problem.

The data used to train the random forest model consists of
the full set of scenario results on all tests, with the output being
the scenario-type it comes from. However, if for a specific
sample no test rejects the null-hypothesis, these samples are
discarded, since we have no evidence of structural bias. This
two-stage approach leaves us with 1158000 biased samples,
on which we train the RF model with 100 trees and balanced
class weights. A confusion matrix created from an 80-20 test
split is shown in Figure 11 (F1-score of 0.51). Similarly
to Figure 2, we see that the distinction between the Cut
Uniform and the other scenarios can be challenging to
accurately detect. However, this doesn’t have to be an issue for
practical detection of SB, since the scenarios misidentified as
Cut Uniform might show similar types of bias, even tough
their initial creation mechanism is different.

To provide a more practical estimation of SB in our toolbox,
we create an additional model to predict the type of bias, as
shown in the final column of Table I. These 5 categories are
more distinct from each other, removing overlap between some
similar classes, i.e. between Spikes and Noisy Spikes.
Overall, this model gives us an improved F1-score of 0.70 on
a similar 80-20 split.

To use these models in the BIAS toolbox to predict bias
of the multi-dimensional test, we need to perform some
aggregation across dimensions to transform it into a binary
vector. We do this by checking the number of false positive
tests in 30D uniform samples. We run 10000 simulations,
where we record the maximum number of test rejections by
each test. This gives us a total of 92 cases where a test gives 2
rejections, and 2 cases where a test gives 3 rejections. As such,

Cu
t C

au
ch

y

Cl
us

te
rs

Ga
ps

In
ve

rs
e 

Cu
t C

au
ch

y

In
ve

rs
e 

Cu
t N

or
m

al

Cu
t N

or
m

al

Lo
os

e 
Cl

us
te

rs

No
isy

 S
pi

ke
s

Sp
ik

es

Cu
t U

ni
fo

rm

Cut Cauchy
Clusters

Gaps
Inverse Cut Cauchy
Inverse Cut Normal

Cut Normal
Loose Clusters

Noisy Spikes
Spikes

Cut Uniform

0.2

0.4

0.6

0.8

Fig. 11. Confusion matrix for the random forest model trained on test
rejections, aggregated over all sample sizes.

we set the threshold for the aggregation of multi-dimensional
data to 0.1 · D. If no test is rejected in this aggregation, we
consider the samples to be non-biased.

VII. BENCHMARKING SB OF REAL ALGORITHMIC DATA

This section benchmarks a range of different heuristic opti-
misation algorithms by applying the BIAS toolbox, answering
RQ3.

A. Data collection setup

We use data from a heterogeneous pool of heuristics ex-
ecuted over f0 at n = 30 for a maximum of 10000 · n
fitness functional calls. In total, we consider 409 optimisation
heuristics, which fall into the following categories:
• Variants of Differential Evolution (195 configurations,

run with N = 100)
• Compact optimisation algorithms (81 configurations, run

with N = 100)
• Single-solution algorithms (60 configurations, run with
N = 100)

• Variants of Genetic Algorithms (96 configurations, run
with N = 50)

The exact composition of the first three of these categories
are described fully in [20]. For the remaining category, the
GAs, we make use of a modular structure which gives us a
total of 96 configurations obtained by running 8 GA operator
combinations with 3 population sizes (i.e. 5, 20 and 100) and
4 strategies for dealing with infeasible solutions (SDIS). Code
for the algorithms and the real algorithmic data generation
phase can be found in the repository [66] of the employed
platform [67]. To create this set of 8 operator combination, we
consider combinations of the following options (following the
design choices of [7]; further details on the operators available
in [68], [69]):
• Selection operators:
◦ Roulette wheel selection;
◦ Tournament selection with tournament size 2

• Crossover operators:



12

◦ Full arithmetic crossover with α ∼ U(−0.25, 1.25)
◦ Discrete crossover with crossover rate Cr = 0.5

• Mutation operators:
◦ Gaussian mutation: N (0, 0.01)
◦ Cauchy mutation: C (0, 0.01)

In addition to these operators, we use the following set of
SDIS selected amongst those described in [10], [70], [20]11:
• Complete One-sided Truncated Normal strategy (c);
• Dismiss strategy (d);
• Mirror strategy (m)12;
• Saturation strategy (s);
• Toroidal strategy (t);
• Uniform strategy (u)12 .

B. Results

For each of the considered algorithms, we collect their
final positions and feed these into the BIAS toolbox. In
Figure 12 (left side), we show the outcome from the RF
predicting the type of structural bias present in the different
GA configurations (only the biased ones are shown). This
shows that there are quite some differences in the detected
bias, even within this limited algorithm design space. It is
also interesting to note that the population size seems to have
a relatively small impact on the type of predicted bias, which
seems to be mostly impacted by the operator configuration.

For the single-solution algorithms, we see in the right part of
Figure 12 that the strategy of dealing with infeasible solution
seems to drastically change the type of detected bias. For
example, the Powell algorithm is classified as ‘discretization’
bias when using mirrored correction, while the classification
changes completely with a COTN correction strategy. These
differences can give us useful insight into the effect of these
SDIS methods on the optimisation behaviour of these algo-
rithms.

VIII. CONCLUSION

Behaviour-based benchmarking is a great way to better
understand heuristic algorithms. We have proposed a new
behaviour-based benchmark, BIAS, in order to detect different
scenarios of structural bias in optimisation algorithms. The
BIAS toolbox consists of 36 per-dimension tests and 32
across-dimension tests to detect SB (RQ1). These statistical
tests are selected based on elaborate literature research, and
some of these tests are specifically designed for this toolbox
by the authors. The tests are compared and analysed using dif-
ferent sample sizes and hyper-parameters to detect 11 different
scenarios of SB. In addition to the tests, a generator of SB
scenarios is provided as well as two machine learning models
to predict the scenario of SB using the 11 scenarios mentioned
above as well as a more simple grouping of these scenarios
since some of these scenarios overlap (RQ2). From the results
of the analysis, it is clear that the toolbox performs very
well in detecting structural bias in the generated distributions.

11SDIS methods are applied to newly generated solutions right before their
evaluation

12not used in GAs, only for algorithms from [20]

Bo
un

ds

Ce
nt
er

Cl
us
te
rs

Di
sc
re
tiz
at
io
n

Ga
ps

GAcarcP100
GAcarcP20
GAcarcP5

GAcarsP100
GAcarsP20
GAcarsP5

GAcartP100
GAcartP20
GAcartP5

GAcatcP100
GAcatcP20

GAcatsP100
GAcatsP20
GAcatsP5

GAcattP100
GAcattP20

GAcdrsP100
GAcdrsP20
GAcdrsP5

GAcdtsP100
GAcdtsP20
GAcdtsP5

GAgarcP100
GAgarcP20
GAgarcP5

GAgarsP100
GAgarsP20
GAgarsP5

GAgartP100
GAgartP20
GAgartP5

GAgatcP100
GAgatcP20

GAgatsP100
GAgatsP20
GAgatsP5

GAgattP100
GAgattP20

GAgdrsP100
GAgdrsP20
GAgdrsP5

GAgdtsP100
GAgdtsP20
GAgdtsP5 0.0

0.2

0.4

0.6

0.8

1.0

Bo
un

ds

Ce
nt

er

Cl
us

te
rs

Di
sc

re
tiz

at
io

n

Ga
ps

NMA (t)
NMA (s)

(1+1)CMAES (s)
(1+1)CMAES (d)

RIS (s)
ISPO (d)
ISPO (s)

nuSA (d)
nuSA (s)
nuSA (t)

Rosenbrock (d)
Rosenbrock (s)
Solis-Wets (d)
Solis-Wets (s)

SPSA (d)
SPSA (s)

Powell (C)
Powell (m)
Powell (s)

(1+1)ESv1 (s)
(1+1)ESv2 (s)

SPSA (C)
SPSA (m)

RIS (C)
RIS (m)

nuSA (C)
nuSA (m)
NMA (m)

Powell (d)
(1+1)ESv1 (d)
(1+1)ESv2 (d)

NMA (d)
SPSAv2 (C)
SPSAv2 (d)
SPSAv2 (s) 0.0

0.2

0.4

0.6

0.8

1.0

Fig. 12. Predicted SB class probabilities of the biased GA configurations
(left, sorted alphabetically) and the biased single-solution algorithms (right),
using the random forest model. Names for the GA are structured as mutation–
crossover–selection–SDIS–population size. For the single-solution algorithms,
the character in brackets refers to the used SDIS.

The machine learning models show some confusion between
similar SB scenarios, such as Gaps - Loose clusters,
and Spikes - Noisy Spikes, but overall perform well
enough to provide suggestions of the type of SB.

In addition we provided the results of BIAS on a large set
of optimisation algorithms including variants of Genetic Algo-
rithm and Differential Evolution, compact and single-solution
algorithms (RQ3). The results show different kinds of SB in
existing heuristic optimisation algorithms. The BIAS toolbox,
including the f0 function, the statistical tests, the SB scenario
generator and the random forest models are provided open-
source [4]. We recommend to use the Benjamini-Yekutieli
correction method when using BIAS, as this correction method
is fast to compute and more conservative than Benjamini-
Holberg. We furthermore recommend a minimum sample size
of 50 as in most cases it is sufficient to detect SB for all
scenarios, as can also be seen from the Genetic Algorithm
results. However, some mild SB scenarios could still go
undetected. If time and computation power permits, a sample
size of 100 would be best.

For future research it would be interesting to explore
different machine learning models to see if the predictions
of the type of SB can be improved. Additionally, decreasing
the number of statistical tests could improve the execution
time required to run the benchmark, and may not necessarily
decrease accuracy of the BIAS toolbox.



13

REFERENCES

[1] D. Wolpert and W. Macready, “No free lunch theorems for optimization,”
IEEE Transactions on Evolutionary Computation, vol. 1, pp. 67–82,
1997.

[2] N. Hansen, A. Auger, R. Ros, O. Mersmann, T. Tušar, and D. Brockhoff,
“Coco: A platform for comparing continuous optimizers in a black-box
setting,” Optimization Methods and Software, vol. 36, no. 1, pp. 114–
144, 2021.

[3] F. Croce, M. Andriushchenko, V. Sehwag, E. Debenedetti, N. Flammar-
ion, M. Chiang, P. Mittal, and M. Hein, “Robustbench: a standardized
adversarial robustness benchmark,” arXiv preprint arXiv:2010.09670,
2020.

[4] D. Vermetten, B. v. Stein, F. Carafini, L. L. Minku, and A. V. Kononova,
“Bias tooblox,” https://github.com/Dvermetten/BIAS.

[5] K. Smith-Miles, D. Baatar, B. Wreford, and R. Lewis, “Towards
objective measures of algorithm performance across instance space,”
Computers & Operations Research, vol. 45, pp. 12–24, 2014.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0305054813003389

[6] O. Mersmann, B. Bischl, H. Trautmann, M. Preuss, C. Weihs, and
G. Rudolph, “Exploratory landscape analysis,” in Proceedings of the
13th annual conference on Genetic and evolutionary computation, 2011,
pp. 829–836.

[7] A. V. Kononova, D. W. Corne, P. D. Wilde, V. Shneer, and F. Caraffini,
“Structural bias in population-based algorithms,” Information Sciences,
vol. 298, pp. 468–490, 2015.

[8] B. van Stein, F. Caraffini, and A. V. Kononova, “Emergence of structural
bias in differential evolution,” in Proceedings of the 2021 Genetic
and Evolutionary Computation Conference Companion, ser. GECCO
’21 Companion. New York, NY, USA: Association for Computing
Machinery, July 2021.

[9] A. Inselberg, “The plane with parallel coordinates,” The visual computer,
vol. 1, no. 2, pp. 69–91, 1985.

[10] F. Caraffini, A. V. Kononova, and D. W. Corne, “Infeasibility and
structural bias in differential evolution,” Information Sciences, vol. 496,
pp. 161–179, 2019.

[11] F. Caraffini and A. V. Kononova, “Structural bias in optimisation
algorithms: Extended results,” 2021. [Online]. Available: http://dx.doi.
org/10.17632/zdh2phb3b4.4

[12] B. van Stein, F. Caraffini, and A. V. Kononova, “Emergence of
Structural Bias in Differential Evolution - Source code & extended
graphical results,” 2021. [Online]. Available: http://dx.doi.org/10.17632/
pb2bdp2gkp.1

[13] K. Kolmogorov, “Sulla determinazione empirica di una legge di dis-
tibuzione, g,” 1933.

[14] A. V. Kononova, F. Caraffini, H. Wang, and T. Bäck, “Can single solution
optimisation methods be structurally biased?” in 2020 IEEE Congress
on Evolutionary Computation (CEC). Glasgow: IEEE, 2020, pp. 1–9.

[15] S. Csorgo and J. J. Faraway, “The Exact and Asymptotic Distributions
of Cramer-von Mises Statistics,” Journal of the Royal Statistical Society.
Series B (Methodological), vol. 58, no. 1, pp. 221–234, 1996.

[16] T. W. Anderson and D. A. Darling, “Asymptotic theory of certain
“goodness of fit” criteria based on stochastic processes,” The annals
of mathematical statistics, pp. 193–212, 1952.

[17] Y. Benjamini, “Discovering the false discovery rate,” Journal of the
Royal Statistical Society: Series B (Statistical Methodology), vol. 72,
no. 4, pp. 405–416, 2010.

[18] A. V. Kononova, F. Caraffini, H. Wang, and T. Bäck, “Can compact
optimisation algorithms be structurally biased?” in Parallel Problem
Solving from Nature – PPSN XVI, T. Bäck, M. Preuss, A. Deutz,
H. Wang, C. Doerr, M. Emmerich, and H. Trautmann, Eds. Cham:
Springer International Publishing, 2020, pp. 229–242.

[19] S. S. Kar and A. Ramalingam, “Is 30 the magic number? issues in sample
size estimation,” National Journal of Community Medicine, vol. 4, no. 1,
pp. 175–179, 2013.

[20] D. Vermetten, A. V. Kononova, F. Caraffini, H. Wang, and T. Bäck, “Is
there anisotropy in structural bias?” in Proceedings of the Genetic and
Evolutionary Computation Conference Companion, ser. GECCO ’21.
New York, NY, USA: Association for Computing Machinery, 2021,
p. 1243–1250. [Online]. Available: https://doi.org/10.1145/3449726.
3463218

[21] M. A. Marhuenda, Y. Marhuenda, and D. Morales, “Uniformity tests
under quantile categorization,” Kybernetes, vol. 34, no. 6, p. 888–901,
2005.

[22] P. L. de Micheaux and V. A. Tran, “Power: A reproducible research tool
to ease monte carlo power simulation studies for goodness-of-fit tests
in r,” Journal of Statistical Software, Articles, vol. 69, no. 3, pp. 1–44,
2016.

[23] R. Pyke, “Spacings,” Journal of the Royal Statistical Society: Series B
(Methodological), vol. 27, no. 3, pp. 395–436, 1965.

[24] J. Faraway, G. Marsaglia, J. Marsaglia, and A. Baddeley, “goftest:
Classical goodness-of-fit tests for univariate distributions.” [Online].
Available: https://CRAN.R-project.org/package=goftest

[25] S. S. Shapiro and M. B. Wilk, “An analysis of variance test for normality
(complete samples),” Biometrika, vol. 52, no. 3/4, pp. 591–611, 1965.

[26] R Core Team, R: A Language and Environment for Statistical
Computing, R Foundation for Statistical Computing, Vienna, Austria,
2013, ISBN 3-900051-07-0. [Online]. Available: http://www.R-project.
org/

[27] C. M. Jarque and A. K. Bera, “A test for normality of observations
and regression residuals,” International Statistical Review/Revue Inter-
nationale de Statistique, vol. 55, no. 2, pp. 163–172, 1987.

[28] G. Sucarrat, “Autosearch: General-to-specific (gets) modelling.”
[Online]. Available: https://cran.r-project.org/package=AutoSEARCH

[29] K. Pearson, “Das Fehlergesetz und Seine Verallgemeinerungen Durch
Fechner und Pearson. A Rejoinder,” Biometrika, vol. 4, no. 1-2, pp.
169–212, 06 1905. [Online]. Available: https://doi.org/10.1093/biomet/
4.1-2.169

[30] L. V. Kantorovich, “The mathematical method of production planning
and organization,” Management Science, vol. 6, no. 4, pp. 363–422,
1939.

[31] L. Kantorovitch, “On the translocation of masses,” Management
Science, vol. 5, no. 1, pp. 1–4, 1958. [Online]. Available: http:
//www.jstor.org/stable/2626967

[32] J. Neyman, “Smooth test for goodness of fit,” Scandinavian Actuarial
Journal, vol. 1937, no. 3-4, pp. 149–199, 1937.

[33] P. Biecek and T. Ledwina, “ddst: Data driven smooth tests.” [Online].
Available: https://cran.r-project.org/package=ddst

[34] H. Cramér, “On the composition of elementary errors: First paper:
Mathematical deductions,” Scandinavian Actuarial Journal, vol. 1928,
no. 1, pp. 13–74, 1928.

[35] J. Durbin, “Tests for serial correlation in regression analysis based on
the periodogram of least-squares residuals,” Biometrika, vol. 56, no. 1,
pp. 1–15, 03 1969.

[36] J. Durbin and R. Brown, “Tests of serial independence based on
the cumulated periodogram,” Bulletin of the International Statistical
Institute, vol. 42, pp. 1039–1048, 1967.

[37] H. D. Brunk, “On the Range of the Difference between Hypothetical
Distribution Function and Pyke’s Modified Empirical Distribution Func-
tion,” The Annals of Mathematical Statistics, vol. 33, no. 2, pp. 525 –
532, 1962.

[38] Y. A. S. Hegazy and J. R. Green, “Some new goodness-of-fit tests
using order statistics,” Journal of the Royal Statistical Society: Series C
(Applied Statistics), vol. 24, no. 3, pp. 299–308, 1975.

[39] M. Greenwood, “The statistical study of infectious diseases,” Journal of
the Royal Statistical Society, vol. 109, no. 2, pp. 85–110, 1946.

[40] C. Quesenberry and F. M. Jr., “Power studies of some tests for unifor-
mity,” Journal of Statistical Computation and Simulation, vol. 5, no. 3,
pp. 169–191, 1977.

[41] N. Cressie and T. R. C. Read, “Multinomial goodness-of-fit tests,”
Journal of the Royal Statistical Society. Series B (Methodological),
vol. 46, no. 3, pp. 440–464, 1984.

[42] P. A. P. Moran, “The random division of an interval–part ii,” Journal of
the Royal Statistical Society. Series B (Methodological), vol. 13, no. 1,
pp. 147–150, 1951.

[43] N. Cressie, “Power results for tests based on high-order gaps,”
Biometrika, vol. 65, no. 1, pp. 214–218, 1978.

[44] ——, “An optimal statistic based on higher order gaps,” Biometrika,
vol. 66, no. 3, pp. 619–627, 12 1979.

[45] O. Vasicek, “A test for normality based on sample entropy,” Journal of
the Royal Statistical Society. Series B (Methodological), vol. 38, no. 1,
pp. 54–59, 1976.

[46] T. Swartz, “Goodness-of-fit tests using kullback-leibler information,”
Communications in Statistics: Theory and Methods, vol. 21, p. 711–729,
1992.

[47] D. Morales, L. Pardo, M. Pardo, and I. Vajda, “Limit laws for disparities
of spacings,” Journal of Nonparametric Statistics, vol. 15, no. 3, pp.
325–342, 2003.

[48] B. G. Lindsay, “Efficiency versus robutness: The case for minimum
hellinger distance and other methods,” Annals of Statistics, vol. 22, pp.
1081–1114, 1994.



14

[49] M. L. Menendez, D. Morales, L. Pardo, and I. Vajda, “Two approaches
to grouping of data and related disparity statistics,” Communications in
Statistics – Theory and Methods, vol. 27, p. 609–633, 1998.

[50] M. C. Pardo, “A test for uniformity based on informational energy,”
Statistical Papers, vol. 44, p. 521–534, 2003.

[51] N. Cressie and T. Read, “Multinomial goodness-of-fit tests,” Journal of
the Royal Statistic Society, vol. Series B, 46, pp. 440–464, 1984.

[52] J. Zhang, “Powerful goodness-of-fit tests based on the likelihood ratio,”
Journal of the Royal Statistical Society, vol. Series B, 64, p. 281–294,
2002.

[53] C. E. Shannon, “A mathematical theory of communication,” The Bell
system technical journal, vol. 27, no. 3, pp. 379–423, 1948.

[54] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[55] E. W. Noreen, Computer-Intensive Methods for Testing Hypotheses: An
Introduction. Wiley, 1989.

[56] D. Vermetten, A. V. Kononova, F. Caraffini, B. van Stein, and L. Minku,
“Bias: A toolbox for benchmarkingstructural bias in the continuous
domain – tests statistics and rejections,” Sep 2021. [Online]. Available:
https://figshare.com/articles/dataset/ /16546041/0

[57] D. Vermetten, F. Caraffini, A. V. Kononova, B. van Stein, and
L. Minku, “Bias: A toolbox for benchmarkingstructural bias in
the continuous domain – figures,” Sep 2021. [Online]. Available:
https://figshare.com/articles/figure/ /16546128/0

[58] L. Shapley, “A value for n-person games,” in Contributions to the Theory
of Games II, H. Kuhn and A. Tucker, Eds. Princeton University Press,
1953, pp. 307–317.

[59] T. van Campen, H. Hamers, B. Husslage, and R. Lindelauf, “A new
approximation method for the shapley value applied to the wtc 9/11

terrorist attack,” Social Network Analysis and Mining, vol. 8, no. 1, pp.
1–12, 2018.

[60] J. Castro, D. Gómez, and J. Tejada, “Polynomial calculation of the
shapley value based on sampling,” Computers & Operations Research,
vol. 36, no. 5, pp. 1726–1730, 2009.

[61] M. G. Kendall, “A new measure of rank correlation,” Biometrika, vol. 30,
no. 1/2, pp. 81–93, 1938.

[62] Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate:
a practical and powerful approach to multiple testing,” Journal of the
Royal statistical society: series B (Methodological), vol. 57, no. 1, pp.
289–300, 1995.

[63] Y. Benjamini and D. Yekutieli, “The Control of the False Discovery
Rate in Multiple Testing under Dependency,” The Annals of Statistics,
vol. 29, no. 4, pp. 1165–1188, 2001.

[64] S. Holm, “A simple sequentially rejective multiple test procedure,”
Scandinavian journal of statistics, pp. 65–70, 1979.

[65] D. Vermetten, A. V. Kononova, F. Caraffini, B. van Stein, and
L. Minku, “Bias: A toolbox for benchmarkingstructural bias in
the continuous domain – code,” Sep 2021. [Online]. Available:
https://figshare.com/articles/software/ /16546245/0

[66] F. Caraffini, “Population dynamics SOS (PD-SOS),” Apr. 2021.
[Online]. Available: https://doi.org/10.5281/zenodo.4678306

[67] F. Caraffini and G. Iacca, “The sos platform: Designing, tuning and sta-
tistically benchmarking optimisation algorithms,” Mathematics, vol. 8,
no. 5, p. 785, May 2020.

[68] D. E. Goldberg and J. H. Holland, “Genetic algorithms and machine
learning,” Machine Learning, pp. 95–99, 1988.

[69] A. E. Eiben, J. E. Smith et al., Introduction to evolutionary computing.
Springer, 2003, vol. 53.

[70] A. V. Kononova, F. Caraffini, and T. Bäck, “Differential evolution outside
the box,” https://arxiv.org/abs/2004.10489, 2020.


