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For many years, psychiatrists have tried to understand factors involved in response to medications or psychotherapies, in order to personalize their 
treatment choices. There is now a broad and growing interest in the idea that we can develop models to personalize treatment decisions using new 
statistical approaches from the field of machine learning and applying them to larger volumes of data. In this pursuit, there has been a paradigm 
shift away from experimental studies to confirm or refute specific hypotheses towards a focus on the overall explanatory power of a predictive model 
when tested on new, unseen datasets. In this paper, we review key studies using machine learning to predict treatment outcomes in psychiatry, 
ranging from medications and psychotherapies to digital interventions and neurobiological treatments. Next, we focus on some new sources of 
data that are being used for the development of predictive models based on machine learning, such as electronic health records, smartphone and 
social media data, and on the potential utility of data from genetics, electrophysiology, neuroimaging and cognitive testing. Finally, we discuss 
how far the field has come towards implementing prediction tools in real-world clinical practice. Relatively few retrospective studies to-date include 
appropriate external validation procedures, and there are even fewer prospective studies testing the clinical feasibility and effectiveness of predic-
tive models. Applications of machine learning in psychiatry face some of the same ethical challenges posed by these techniques in other areas of 
medicine or computer science, which we discuss here. In short, machine learning is a nascent but important approach to improve the effectiveness 
of mental health care, and several prospective clinical studies suggest that it may be working already.
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Treatment interventions in psychiatry are far from being ef­
fective in all cases in which they are indicated. In depression, for 
example, only 30-50% of individuals achieve remission after what­
ever initial treatment they receive, even in the context of a well-
conducted clinical trial1. Eventually, after trying some number 
or combination of treatments, most patients do attain remission. 
What if, rather than iterating through the available treatments that 
a patient might benefit from, we could predict the right treatment 
for each individual from the start?

Researchers have wanted this for decades. Historically, they 
have tried to understand specific factors involved in treatment 
response based on theoretical groundings, leading to many stud­
ies focusing on single variables such as early childhood stress, 
suicidality, major life events, or comorbid diagnoses. Since then, 
the ongoing search for one (or a few) true explanatory variables 
has included many levels of analysis, including: the patient (clini­
cal characteristics, blood marker levels), his/her brain (structural 
and functional neuroimaging, cerebral blood flow, scalp electri­
cal recordings), his/her genes (single nucleotide polymorphisms, 
mutations/rare genetic variants, copy number variations, gene 
expression), and intervention characteristics (the medication or 
psychotherapy selected, the way it was delivered, the provider, 
the therapeutic alliance). If one variable alone could accurately 
predict treatment response, our field would probably have found 
it by now. Instead, most characteristics identified so far have 

shown small explanatory power over treatment outcomes, and 
researchers’ attention naturally turned towards multivariable 
models that can incorporate many smaller effects.

Machine learning is a collection of statistical tools and ap­
proaches that are extremely well suited to this goal of detecting 
and aggregating small effects in order to predict an outcome of 
interest2. It allows researchers to go from evaluating a small num­
ber (~10) of predictor variables to many hundreds or thousands 
of variables or variable combinations. There are many potential 
pitfalls when applying these techniques, but, when implemented 
well, they afford many opportunities for psychiatric research3,4. 
They allow us to examine many variables, even correlated ones, 
simultaneously. They move away from exclusively additive mod­
els and allow us to identify more complex non-linear patterns in 
data. They more naturally bridge disparate data types, potentially 
incorporating clinical assessments, geospatial information, and 
biological findings into a single analysis. By unlocking powerful 
hypothesis-free approaches, they enable us to discover factors 
that are less intuitive but nonetheless predictive of outcomes.

The introduction of machine learning in psychiatry is more 
than just adding an analysis tool for combining and exploring big­
ger data sets – it marks a paradigm shift5. For years, we used classi­
cal statistical approaches to confirm or refute specific hypotheses. 
Now, machine learning studies shift the focus toward the overall 
predictive power of a model, particularly how accurately it predicts 
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the desired outcome in a new, unseen dataset. Studies in this field 
are evaluated primarily by their potential clinical impact: what our 
model can reliably tell us about the prognosis of new patients in 
the future, and what we can do with that information to improve 
clinical practice.

With this in mind, this paper explores the promise of machine 
learning in predicting treatment outcomes in psychiatry. There are 
many things that we do not focus on. This is not a primer on ma­
chine learning6, an explanation of how it works2, or a debate about 
what counts as machine learning versus traditional statistics or 
“non-machine-learning”. We do not explain how to build predic­
tive models7 or how to validate them. We are not formally com­
paring different algorithmic approaches, how each one works, or 
circumstances where one may be more appropriate than another. 
We also avoid a distinction between moderators versus mediators 
of treatment outcomes, or whether a model predicts outcomes 
specifically for a treatment versus others or predicts outcomes 
more generically for multiple treatments8. Finally, we do not aim 
to review the many sociodemographic and clinical variables that 
have been or can be used for prediction of treatment response in 
psychiatry, which generally have the most predictive power and 
are cheapest to collect9,10.

We begin by discussing machine learning methods, how they 
compare to traditional statistical approaches, and to what extent 
is machine learning specifically adding value. Next, we provide 
an overview of the interventions for which researchers have tried 
to use machine learning methods to predict outcomes, ranging 
from medications and psychotherapy to digital interventions and 
neurobiological treatments. In doing so, we highlight characteris­
tics that made them gold standard examples, and discuss the dif­
ferent goals that can be achieved in each context. Next, we focus 
on the potential utility of electronic health records, smartphone 
and social media data, and of data from genetics, electrophysiol­
ogy, neuroimaging and cognitive testing for the development of 
predictive models based on machine learning. Finally, we help 
the reader understand the broader context: how close have we 
come to implementing these prediction tools in real-world clini­
cal practice; and what are the ethical challenges that these tools 
carry. The intent of this paper is to review studies throughout psy­
chiatry; any emphasis on depression is not intentional, but it does 
reflect the fact that the majority of research in this field has been 
conducted in people with that mental disorder.

IS MACHINE LEARNING ADDING VALUE OVER 
TRADITIONAL STATISTICS?

Machine learning studies generally differ from traditional re­
search in two ways. The first is a focus on prediction (explanatory 
power of the model) rather than inference (hypothesis testing). 
The second is a shift towards model flexibility, with the ability to 
handle large numbers of predictors simultaneously.

Prediction can be performed without machine learning al­
gorithms, and many studies still use traditional statistical tech­
niques such as logistic regression. In fact, when assumptions 

and sample size requirements are reasonably met, the number 
of predictors is small (≤25), and non-linear effects are relative­
ly weak, traditional parametric models will likely predict well. 
Several studies found no benefit of machine learning over tra­
ditional logistic regression, for example in predicting treatment 
resistance in major depression11, brain injury outcomes12, or ma­
jor chronic diseases13.

One recent systematic review of clinical prediction models 
found no difference in performance between machine learning 
and logistic regression14, although the authors considered in the 
category of logistic regression some advanced frameworks that 
could be included within machine learning, such as penalization 
(e.g., lasso, ridge or elastic net) and splines (which capture non-
linearities). In areas of medicine such as diabetes and heart fail­
ure, simple logistic models have performed well and have been 
externally validated more than machine learning models15,16.

The added value of machine learning approaches emerges 
when the number of potential predictors is large and/or their 
effects are non-linear. Many machine learning algorithms are 
capable of handling large numbers of predictors, even in cases 
where there are more predictor variables than observations, due 
to built-in overfitting control. For example, ridge, lasso and elas­
tic net regression17 include penalization, which forces the regres­
sion coefficients to be closer to zero than in the traditional linear 
or logistic regression models. Machine learning approaches are 
also good at capturing complex, interactive, or non-linear effects. 
For example, tree-based models are able to evaluate many pos­
sible variables and variable combinations to identify subgroups 
that could not be captured by traditional linear models. Another 
common technique adopted by machine learning approaches 
is “ensembling”. Here, several models are fitted on random sam­
ples of the original dataset, and then an average is taken amongst 
the predictions from each model. This approach is a key element 
of many popular machine learning techniques today, especially 
gradient boosting machines and random forests18-20.

Several recent treatment outcome prediction studies in psy­
chiatry demonstrated the added value of machine learning. Ran­
dom forests and/or elastic net regression21-24, as well as support 
vector machines25, were found to outperform traditional regres­
sion methods. Large-scale comparisons on benchmark datasets 
consistently found machine learning to outperform traditional 
methods26-29. Overall, boosted trees (random forests and gradient 
boosting machines), regularized regression, support vector ma­
chines, and artificial neural networks can all perform well, but no 
one method will have the best performance across all situations.

While researchers typically aim to maximize predictive per­
formance, practical aspects such as explainability or the cost of 
including more variables should also be considered. In some 
cases, simpler models with slightly lower predictive accuracy or 
higher generalizability might be preferred, because they already 
capture most of the effects30,31. There is no silver bullet in statis­
tics, and all prediction algorithms face the so-called bias-var­
iance tradeoff2,32,33, where flexibility needs to be balanced with 
the risk of overfitting. For machine learning methods to capture 
increasingly complex effects, much larger sample sizes are still 
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needed. Although these methods can deal with large numbers 
of potential predictor variables, careful pre-selection of variables 
likely improves predictive accuracy.

While traditional research approaches focused on p values for 
specific coefficients in a model, prediction studies focus on the 
overall explanatory power of the model, often in terms of R2, bal­
anced accuracy, or area under the receiver operating characteristic 
curve (AUC). Predictive studies require a keen focus on validation 
approaches, to examine whether the model is learning patterns 
that are substantive and consistent from one dataset to another, or 
whether the model has simply learned idiosyncrasies of the initial 
training data. Table 1 discusses various kinds of validation that are 
conducted in predictive studies, from internal approaches that use 
just one dataset, to external validation approaches that use data 
from independent sites, studies, trials, countries, or consortia to 
test model generalizability. Validation frameworks, especially ex­
ternal validation, are critical for developing models that are reli­
able and useful, and understanding whether the fitted model is 
likely to generalize to unseen data in the future34-36.

PREDICTING TREATMENT OUTCOMES IN 
PSYCHIATRY BY USE OF MACHINE LEARNING

Medications

Predicting treatment outcomes for psychiatric medications is 
the most active area of research in the field, primarily because they 
were the easiest place to start. Machine learning studies require 
large volumes of data to build predictive models, ideally with clearly 
labelled outcomes, control over the intervention, and relevant data 

about the patients before treatment. Since this describes most large 
clinical trials, and most large clinical trials in psychiatry are con­
ducted to evaluate efficacy of a medication, most machine learning 
efforts began by investigating treatment responses to medications 
treating depression, schizophrenia or bipolar disorder.

These studies mostly used information from demographic in­
take forms and clinical symptom scales common in clinical trials, 
although more recently genetic and neuroimaging data have also 
been incorporated (discussed later in this paper). Despite being 
the most active area of research, most resulting models have not 
yet been validated in external samples. Relatively few prediction 
tools generated by mental health researchers so far have advanced 
through implementation studies and into clinical practice37-39. 
Here we focus on examples of studies that were adequately pow­
ered, underwent external validation, or are notable for other rea­
sons.

Most treatment prediction studies have focused on antide­
pressants commonly used in the acute phase of depression. For 
example, Chekroud et al40 determined a small group of 25 pre-
treatment variables that were most predictive of remission with 
citalopram in the Sequenced Alternative Treatments for Depres­
sion (STAR*D) trial. This model achieved an accuracy of 64.6%. 
The model was then applied to data from another clinical trial to 
examine whether it can generalize to patients from an entirely in­
dependent population. The model was able to predict response 
to two similar antidepressant regimens (escitalopram plus pla­
cebo, and escitalopram plus bupropion, each with an accuracy of 
around 60%), but the model did not predict remission better than 
chance for patients who took venlafaxine plus mirtazapine (51%).

The five most important variables identified by the model in 
predicting remission were baseline depression severity, employ­

Table 1  Common validation approaches used in clinical prediction studies

Generalizability test Description

None, p value testing The entire sample is used to predict an outcome, and a p value indicates the probability of  obtaining the result in the absence of  a true 
effect. The study cannot make any claims concerning translation or generalizability because they have not been tested.

Leave-one-out  
cross-validation

One subject is randomly chosen and left out. A model is trained on the remaining subjects and applied to the left-out subject to assess 
generalizability. This procedure is repeated for every subject in the dataset. This is the simplest form of  cross-validation. It produces 
optimistic biased results.

K-fold cross- 
validation

The sample is randomly divided into subsamples (called “folds”). One fold is left out and statistical models are trained on the remaining 
subjects. The models are applied to the subjects in the left-out fold to assess generalizability. This is a common technique to reduce 
overfitting. However, when the data are from one sample (even if  collected at multiple sites), generalizability claims need to be 
tempered.

Leave-one-site-out 
cross-validation

Instead of  randomly leaving out subjects, sites are now randomly left out. Models are fitted on the remaining sites, and applied to the 
left-out site. This assesses cross-site generalizability, and the same technique can be extended to any other group definition, such as 
blocks of  time, gender or ethnicity. Generalizability and translational claims still need to be tempered.

External validation A model is created in one study and applied to a completely separate sample. This approach reflects a high degree of  generalizability 
capacity. Demonstrations can be increasingly close to real-life circumstances, which strengthens the evidence of  generalizability 
and translational potential (but does not guarantee it). The approach may still be subject to poor sociodemographic representation, 
sampling biases, or study designs that do not reflect clinical reality.

Prospective  
validation

A previously-created model is evaluated in a prospective study that is ideally randomized and in conditions as close to clinical reality as 
possible, in order to test whether the tool is safe and effective in practice. Prospective validation studies are still susceptible to the same 
concerns around external validity as all other clinical trials (e.g., participant compensation and meaningful endpoints), and require 
large sample sizes, a broad and unbiased recruitment process, and good clinical practices. As with other clinical trials, a phased process  
may be necessary to first evaluate feasibility and safety in a smaller sample before proceeding to broad evaluation of  effectiveness.
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ment status, feeling restless during the past seven days (psycho­
motor agitation), reduced energy level during the past seven 
days, and Black or African American ethnicity. The study was 
later replicated by Nie et al41, who similarly trained a model to 
predict citalopram treatment outcomes using information easily 
obtainable at baseline. The team trained and tested the model 
in the STAR*D dataset and validated it in data from a different 
open-label citalopram trial, using 22 predictor variables that 
overlapped between the two trials. Despite minor differences de­
pending on the specific algorithm used, the balanced accuracy 
of the models was roughly 64-67%.

An earlier study by Perlis11 showed that eventual treatment 
resistance might also be predictable from the outset. The author 
developed a model using STAR*D data that was able to predict at 
baseline whether an individual would not reach remission after 
two antidepressant treatment trials, with an AUC of 0.71. Early 
proofs of concept like the Perlis study did not include external 
validation, at least partly due to the lack of independent datasets 
with similar trial designs that could be used for that validation.

The above antidepressant studies selected predictors in a 
purely data-driven way, including all data that could be extracted 
at baseline and then using machine learning methods that dis­
card irrelevant information or are amenable to including many 
variables at once. However, the choice of predictors is not always 
hypothesis-free, and a priori knowledge from scientific literature 
can also guide the choice of variables and yield useful results. In­
iesta et al42 aimed to predict remission of depression in patients 
treated with escitalopram or nortriptyline using only variables 
that had previously been confirmed as individual predictors or 
moderators of response to treatment. Their models predicted  
overall response to medication with an AUC of 0.74 and response 
to escitalopram with an AUC of 0.75, but prediction of nortrip­
tyline outcomes was not statistically significant. In subsequent 
work incorporating genetic data to the models43, these authors 
predicted response to escitalopram and nortriptyline with an 
AUC of 0.77.

A second use of machine learning to predict medication out­
comes is to better define subgroups of patients, symptoms, or 
symptom trajectories, and then use these subgroups to make 
more nuanced predictions. Drysdale et al44 used clustering to 
identify four “subtypes”, or groups, amongst 1,188 depressed 
patients based on patterns of dysfunctional connectivity in lim­
bic and frontostriatal networks. They developed classifiers for 
each depressive subtype using support vector machines and 
later tested these models on an independent dataset, accurately 
classifying 86.2% of the testing sample. As a next step, the team 
used the subtypes to predict response to transcranial magnetic 
stimulation, but did not validate these predictions in any inde­
pendent sample. Although the biotypes approach is interesting, 
subsequent methodological research has highlighted concerns 
and limitations45.

Chekroud et al46 used clustering to identify groups of symp­
toms and mixed-effects regression to determine if they had 
different response trajectories. Three symptom clusters (core 
emotional, sleep and atypical) emerged consistently from two in­

dependent medication trials – STAR*D and Combining Medica­
tions to Enhance Depression Outcomes (COMED) – across two 
commonly used symptom scales. The authors subsequently used 
data from STAR*D to train gradient boosting machines (one for 
each combination of cluster and medication arm), finding mod­
est improvements in the ability of clusters of symptoms to predict 
total severity outcomes. The same symptom clustering approach 
was also effective in a study of treatments for adolescents47.

Other researchers first used techniques like growth mixture 
modeling48 or finite mixture modeling49 to identify trajectories 
of symptom response such as “fast and stable remitter”, “sus­
tained response”, or “late relapse”. Machine learning models 
were then developed to try and predict the specific response tra­
jectory a patient will have for a given treatment. This approach 
is potentially more robust to the noise that is naturally present 
amongst individual patient trajectories and less affected by the 
way that outcomes are defined in trials – e.g., whether remission 
is defined as a score of 5 on the Patient Health Questionnaire-9 
(PHQ-9) or a score of 5 or 6 on the Quick Inventory of Depressive 
Symptomatology (QIDS)48,49. However, the approach relies on 
the availability of repeated measures.

Medication treatment outcomes have been most widely stud­
ied in depression, due to the prevalence of the condition and 
extant available data, but the approach has also been proven in 
other psychiatric conditions. For schizophrenia, Koutsouleris et 
al25 used data from the European First Episode Schizophrenia 
Trial (EUFEST, N=344) to predict good and bad outcomes based 
on global functioning scores over time using a support vector 
machine, and validated the ten most predictive features on an 
unseen sample of 108 patients with a balanced accuracy of 71.7%. 
The most valuable predictors identified were largely psychosocial 
variables, rather than symptom data: unemployment, poor edu­
cation, functional deficits, and unmet psychosocial needs.

Again in schizophrenia, Leighton et al50 were not only success­
ful in predicting response to medication treatment in first episode 
psychosis, but also in validating findings in two independent 
samples. They first identified predictors that were available across 
three studies – the Evaluating the Development and Impact of 
Early Intervention Services (EDEN) study in England, two cohorts 
recruited from the National Health Service (NHS) in Scotland, and 
the Danish clinical trial called OPUS. This allowed them to build 
and test harmonized models across the three studies to predict 
four outcomes capturing different aspects of recovery: symptom 
remission, social recovery, vocational recovery and quality of life. 
Next, they used logistic regression with elastic net regularization to 
identify the most relevant predictors in the EDEN study (N=1027) 
– much like Chekroud et al40 – to determine a smaller subset of 
variables that could still predict outcomes but require less effort 
for future data collection and improve clinical applicability. These 
regularized models trained in the EDEN sample reached internal 
validation AUCs of 0.70 to 0.74 (depending on the outcome meas­
ure). When tested in the second Scottish cohort, the AUC ranged 
from 0.68 to 0.87. In the OPUS trial, it ranged from 0.57 to 0.68.

Predicting medication response in other mental disorders 
is still in early stages. Two studies51,52 used baseline sociode­
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mographic, clinical and family history information to predict 
response to medications commonly used in bipolar disorder: 
lithium and quetiapine. Although both obtained models with 
performance above chance, neither was validated in independ­
ent samples, and one used 180 variables for prediction51, which 
limits its clinical applicability.

Psychotherapies

Historically, efforts to predict treatment outcomes in psycho­
therapies have focused on theoretically-motivated single vari­
ables that might moderate treatment outcomes. Only relatively 
recently have psychotherapy researchers applied machine learn­
ing approaches to predict treatment outcomes53. Even amongst 
these studies, the historical focus on moderators of psychothera­
peutic effects has persisted, leading researchers to distinguish 
between “prognostic” and “prescriptive” models. Prognostic 
models are those that predict whether a patient will recover with 
a given treatment. Prescriptive models instead predict which of 
two (or more) treatments is best suited for a particular patient54. 
Both kinds of model can clearly have clinical utility, even if they 
answer slightly different questions. The differences continue 
to blur further with more recent attempts to build prescriptive 
models by developing multiple prognostic models for different 
treatments and then comparing their outputs55.

In an early effort, Lutz et al53 used nearest neighbor modeling 
to predict rate of symptom change and session-by-session varia­
bility. Models were based on age, gender and baseline symptom 
scores. Compared to non-machine learning models, the nearest 
neighbor predictions were more highly correlated with actual 
values of rate of change, but not session-by-session variability.

Since then, other approaches to prediction in psychotherapy 
proliferated. DeRubeis et al56 developed a multivariable mod­
eling method, known as the “personalized advantage index” 
(PAI), that uses interaction effects between baseline variables 
and treatment condition, to predict whether a patient will re­
spond better to antidepressants versus cognitive behavioral 
therapy (CBT). Amongst their small sample of 154 individuals, 
a clinically meaningful advantage (PAI ≥3), favoring one of the 
treatments relative to the other, was predicted for 60% of the pa­
tients. When these patients were divided into those randomly as­
signed to their “optimal” treatment versus those assigned to their 
“non-optimal” treatment, outcomes in the former group were 
better (d = 0.58, 95% CI: 0.17-1.01). Similar approaches have been 
developed by other groups55,58, and more recently improved fur­
ther by the use of machine learning approaches59 to generate 
better predictions and incorporate more variables.

Several studies since then have tried to predict which evi­
dence-based psychotherapy is most likely to benefit a specific 
patient55,59, including efforts to identify which of two (or more) 
psychotherapies may be most effective60,61, and whether a given 
patient is predicted to respond better to psychotherapy or medi­
cations56. A recent scoping review62 identified a total of 44 studies 
that developed and tested a machine learning model in psycho­

therapy, but only seven of them reported on the feasibility of the 
tool. Since psychotherapy trials are often expensive and rarely 
have large sample sizes, some have argued that predictive mod­
els may need to be developed initially with large observational 
datasets63.

PAI-style approaches that calculate treatment by variable in­
teractions quickly lead to high-dimensionality prediction analy­
ses that are prone to overfitting (or require very large sample 
sizes). Using data from two Dutch randomized trials, van Bron­
swijk et al60 examined whether PAI models developed in one 
clinical trial dataset were able to successfully generalize to an 
independent dataset. Although the models performed statisti­
cally above chance in the trial used to train them, they did not 
generalize to the other clinical trial when predicting benefit for 
CBT versus interpersonal therapy (IPT) for depression.

The psychotherapy literature has generated several other pre­
diction models, potentially optimizing significant aspects of 
patient care. For example, models have been developed64,65 that 
would enable mental health providers to select low- or high-
intensity treatments for patients on the basis of their expected 
prognosis. Other studies have tried to deconstruct the content 
that is traditionally combined to form a course of psychothera­
py treatment, in order to predict which treatment components 
should be delivered within a given intervention, as well as the 
order in which the components should be implemented66-68. 
Other novel directions include using machine learning to match 
patients to specific therapists69, replicating human ratings and 
judgements70,71, and using natural language processing tech­
niques to discover patterns of therapist-patient interactions that 
predict treatment response72,73.

In general, many machine learning approaches to predict 
responses to psychotherapies are in the early stages of develop­
ment62. However, a notable exception is found in the well-devel­
oped literature on routine outcome monitoring and “progress 
feedback”. This involves tracking a patient’s response to treat­
ment in real time by entering his/her self-reported outcome/
symptom measures into a computerized system that compares 
his/her response to predicted trajectories of improvement de­
rived from clinical data using conventional statistical analyses 
(e.g., longitudinal multilevel/mixed models and growth curve 
modelling). There are now over 20 randomized controlled trials 
and several meta-analyses indicating that such clinical predic­
tion models can help to improve treatment outcomes74.

In addition to models investigating differential response to 
treatment and treatment optimization, the psychotherapy litera­
ture also includes adequately powered studies predicting overall 
response to treatment based on sociodemographic and clinical 
variables, much like the literature on response to medication. 
Buckman et al75 built nine different models, using depression 
and anxiety symptoms, social support, alcohol use, and life 
events to predict depressive symptom response after 3-4 months 
of treatment in primary care settings. Models were trained on 
data from three clinical trials (N=1,722) and tested on three in­
dependent trials (N=1,136). All models predicted remission bet­
ter than a null model using only one post-baseline depression 
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severity measurement. Green et al76 also predicted depressive 
symptom response to psychotherapy in 4,393 patients from com­
munity health services. They found that a model with only five 
pre-treatment variables (initial severity of anxiety and depres­
sion, ethnicity, deprivation and gender) predicted reduction of 
anxiety and depression symptoms with an accuracy of 74.9%. 
The number of sessions attended/missed was also an important 
factor affecting treatment response.

Digital CBT

In recent years, online delivery of mental health interventions 
has been seen as a promising approach to reducing barriers to 
care, with growing evidence for the effectiveness of both guided 
and unguided delivery77,78. Interventions such as internet-based 
CBT (iCBT) may be particularly amenable to the use of machine 
learning techniques, due to the possibility of longitudinal stand­
ardized collection of outcome data at scale, and the potential to 
directly incorporate machine learning outputs into online or app-
based interventions. For example, in guided treatments, machine 
learning tools could provide feedback to therapists or alerts re­
garding risk. They could also be used to drive just-in-time adaptive 
interventions79. Smartphone delivery also opens up the possibil­
ity of automated collection of sensor data to derive behavioral 
markers80, which would open up many possibilities for tailored 
interventions, while also raising a number of privacy and ethical 
concerns.

Machine learning-derived outcome predictions for iCBT may 
have advantages with regard to ease of deployment, for example 
by providing integrated decision support for case management. 
However, most existing work focused on predicting outcomes 
has been exploratory in nature and based on modest sample siz­
es. A key distinction is between approaches that use only base­
line pre-treatment data, and hence may be applied to direct the 
choice of treatment, and approaches which use data gathered 
during the course of treatment, such as regular outcome meas­
ures or ecological momentary assessment (EMA).

As an example of the former, Lenhard et al81 examined how 
clinical baseline variables can be used to predict post-treatment 
outcomes for 61 adolescents in a trial of iCBT for obsessive-
compulsive disorder. Whereas multivariable logistic regression 
detected no significant predictors, the four machine learning 
algorithms investigated were able to predict treatment response 
with a 75 to 83% accuracy.

In a study which included, in addition to demographic and 
clinical data, therapy-related predictors of treatment credibility 
and working alliance, assessed at week 2 of treatment, Flygare 
et al82 used a random forest algorithm to predict remission from 
body dysmorphic disorder after iCBT in a sample of 88 patients, 
comparing the results to logistic regression. Random forests 
achieved a prediction accuracy of 78% at post-treatment, with 
lower accuracy in subsequent follow-ups. The most important 
predictors were depressive symptoms, treatment credibility, 
working alliance, and initial severity of the disorder.

van Breda et al83 added EMA data to models using baseline mea­
sures in a study predicting outcomes for patients who were ran­
domized to blended therapy (face-to-face CBT and iCBT) or treat­
ment as usual. This approach did not improve prediction accuracy.

The effectiveness of digital CBT interventions is mediated by 
patient engagement84. Detailed patient engagement data can be 
gathered automatically in online or app-based interventions; this 
may include data such as content views, completion of exercises, 
and interactions with clinical supporters85. Engagement data may 
be used within predictive models, providing interpretable and ac­
tionable outputs (e.g., the need for more frequent therapist contact 
in order to motivate greater engagement). Chien et al86 analyzed 
engagement data from 54,604 patients using a supported online 
intervention for depression and anxiety. A hidden Markov model 
was used to identify five engagement subtypes, based on patient 
interactions with sections of the intervention. Interestingly, while 
in general patients who engaged more achieved better outcomes, 
the best outcomes were found in those who were more likely to 
complete content belonging to key components of CBT (i.e., cog­
nitive restructuring and behavioral activation) within the first two 
weeks on the program, despite not spending the highest amount 
of time using the intervention. This work demonstrates the feasi­
bility of gathering detailed engagement and outcome data at scale.

Interactions between patient and therapist, and the content 
of text in patient exercises, may also be analyzed using sentiment 
analysis techniques87. Analysis of patient texts might be embed­
ded in therapist feedback tools for guided interventions, or as 
features within predictive models. Ewbank et al73 conducted an 
analysis of 90,934 session transcripts (specifically, CBT via real-
time text messages). Deep learning was used to automatically 
categorize utterances from the transcripts into feature categories 
related to CBT competences, and then multivariable logistic re­
gression was applied to assess the association with treatment out­
comes. A number of session features, such as “therapeutic praise”, 
were associated with greater odds of improvement.

Chikersal et al88 analyzed 234,735 messages sent from clini­
cal supporters to clients within an iCBT platform, examining 
how support strategies correlate with clinical outcomes. They 
used k-means clustering to identify supporters whose messages 
were linked with “high”, “medium” or “low” improvements in cli­
ent outcomes, as measured by PHQ-9 and Generalized Anxiety 
Disorder-7 (GAD-7). The messages of more successful support­
ers were more positively phrased, more encouraging, more often 
used first person plural pronouns, were less abstract, and refer­
enced more social behaviors. Association rule mining was then 
applied to linguistic features in the messages in order to identify 
contexts in which particular support strategies were more effec­
tive. For less engaged patients, longer, more positive and more 
supportive messages were linked with better outcomes. For 
more engaged clients, messages with less negative words, less 
abstraction, and more references to social behaviors were asso­
ciated to better outcomes. Such results could ultimately be used 
in the design of supporter training materials.

One could also try to predict whether a patient engages or 
drops out of care. Wallert et al89 aimed to predict adherence to 
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an online intervention targeting symptoms of depression and 
anxiety in people who had experienced a myocardial infarction. 
The analysis included linguistic features of the homework texts 
as well as demographic and clinical characteristics. The strongest 
predictors of adherence were cardiac-related fear, gender, and 
the number of words in the first homework assignment.

Neurobiological treatments

Numerous neurobiological options have emerged as potential 
treatments for severe and treatment-resistant depression, such 
as transcranial magnetic stimulation (TMS) and electroconvul­
sive therapy (ECT). Given the potential risks and side effects of 
these treatments, as well as their higher financial costs, there is 
an especially strong interest in identifying for whom they are safe 
and effective90-92.

Recent reviews have examined predictors of treatment re­
sponse and relapse among depressed patients receiving TMS92-94. 
TMS studies with more female patients tend to have higher ef­
fect sizes, suggesting that gender may be a predictor of TMS out­
comes95. Although several studies have attempted to examine 
neurobiological predictors of response to TMS, the findings are 
currently inconsistent92. Small sample size generally means that 
machine learning study designs are likely to overfit and produce 
results that will not replicate later.

Efforts to predict treatment outcomes for ECT are still primar­
ily traditional association studies. Some of them identified a few 
variables that appear to replicate across studies. Better outcomes 
have been found for older patients, those with psychotic depres­
sion, those with high suicidal intent, and those who exhibit early 
symptom changes90,96. However, due to the small sample size 
in most ECT trials, and the typically non-randomized study de­
signs, this area has not seen much progress. These are also obsta­
cles to the application of machine learning techniques.

THE UTILITY OF ELECTRONIC HEALTH RECORDS, 
SMARTPHONE AND SOCIAL MEDIA DATA

Electronic health records (EHR) are increasingly widely adopt­
ed in health care systems. They comprise data routinely collected 
and maintained for individual patients over the course of their 
clinical care. As such, these data may be particularly useful for 
building predictive models in psychiatry that could be read­
ily integrated into points of care within clinical settings97. EHR 
data can be divided into two major types: coded structured data, 
including diagnostic codes, procedure codes, laboratory and 
medication prescription codes; and unstructured data, including 
clinical notes and other text-based documentation, which can be 
mined using natural language processing.

Recent studies have tested the potential of EHR data to predict 
treatment outcomes in psychiatry, with the bulk of efforts to date 
focused on depression, though examples exist for bipolar disor­
der98 and schizophrenia99. Machine learning-based efforts using 

EHR data have sought to identify those individuals who are likely 
to drop out after initiating antidepressants100, those who will show 
a stable treatment response to antidepressants101, and those who 
may transition to a bipolar diagnosis after starting antidepres­
sants for depression102. Such applications have shown promising, 
though still modest and not yet clinically actionable, results.

Applying logistic regression and random forest approaches, 
Pradier et al102 used demographic and structured EHR data (i.e., 
diagnostic, medication and procedure codes) available at the 
time of initial prescription to predict treatment dropout after 
initiating one of nine most common antidepressants. Although 
mean AUC was below 0.70, they found that incorporating EHR 
data significantly improved prediction of treatment dropout 
compared to demographic information alone, and that predic­
tive performance varied by type of antidepressant (AUC as high 
as 0.80 for escitalopram) and provider type (higher accuracy 
among psychiatrist-treated individuals).

Hughes et al101 applied logistic regression and extremely 
randomized trees with demographic and structured EHR data 
to predict general and drug-specific treatment continuity in 
patients receiving any of 11 antidepressants, observing a mean 
AUC of 0.63-0.66 and similar performance when evaluated at a 
separate site.

Where symptom score (e.g., PHQ-9) data have been avail­
able for smaller EHR cohorts (e.g., N<2,500)103, LASSO models 
incorporating demographic information, structured and un­
structured EHR data, and baseline symptom scores have shown 
modest-to-adequate performance in predicting improvements 
in depressive symptom severity, for both medication treatment 
(AUC=0.66) and psychotherapy (AUC=0.75). However, the most 
important predictor in these models was baseline symptom 
scores. Only when symptom scores are routinely integrated into 
EHR treatment workflows will such models be relevant for out­
come prediction in large-scale health systems.

When using EHR data for predicting treatment outcomes in 
psychiatry, a key challenge is how to operationalize the outcome 
of interest using available clinical information. This usually in­
volves establishing a set of rules around which relevant EHR fea­
tures are observed, or not observed, in a cohort of patients over 
a defined period. For example, treatment dropout was defined 
by Pradier et al100 as less than 90 days of prescription availability 
after index antidepressant initiation, with no evidence of alterna­
tive psychiatric treatment procedures. Antidepressant treatment 
stability, on the other hand, has been defined as two or more an­
tidepressant medication prescription codes at least 30 days apart 
over a period of at least 90 days, with additional rules about the 
maximum time gap between adjacent prescription codes, and 
other medication possession indicators101.

EHR data are also highly dimensional, with tens of thousands 
of possible diagnostic codes in addition to possible medication 
and procedure codes. Machine learning methods may be particu­
larly suitable for modeling complex signals across a diverse set of 
EHR-based predictors, but also for reducing their dimensions pri­
or to modeling. In their study of antidepressant treatment stabil­
ity, Hughes et al101 applied supervised topic modeling using latent 
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Dirichlet allocation to reduce 9,256 coded EHR features into 10 
interpretable empirically derived topics, finding that a classifier 
for continuous treatment based on this lower-dimensional set of 
predictors showed comparable performance to a logistic regres­
sion based on a higher-dimensional set of features. Simpler meth­
ods, such as selecting only diagnostic codes that meet a frequency 
threshold in the patient population, have also been used100.

Smartphones can provide various kinds of data that are diffi­
cult to acquire through other means. Their first and biggest fea­
ture is that they contain many sensors that can passively collect 
data across a variety of domains. Passive smartphone data include 
dynamic measures of sleep quality, exercise, heart rate, geospatial 
locations, language use, and communication patterns80,104. Ma­
chine learning methods are indispensable for dealing with com­
plex patterns in these sensor data105. Currently available studies 
applying machine learning to predict mental health outcomes us­
ing sensor data have generally employed modest samples of 7 to 
70 participants, yielding proofs-of-principle more than generaliz­
able results80,106-108. Mobile phones also facilitate the collection 
of EMA data, allowing investigators to perform measurements at 
frequent intervals (e.g., several times a day). Furthermore, smart­
phone-based neurocognitive assessments appear to be a promis­
ing way to scalably collect cognitive data109,110.

Few studies have used smartphone data to predict treatment 
outcomes. These include studies using text data from emails to 
predict treatment response in patients with social anxiety111, 
EMA data to predict changes in self-esteem from an online in­
tervention112, and EMA data to predict treatment response in 
patients with depression83. In the study predicting depression 
outcomes, a model including EMA data did not outperform a 
model using baseline characteristics83, showing that the former 
data do not always provide incremental value.

Social media allow investigators to access large amounts of 
data relating to language use and online activity. However, to our 
knowledge, these data have not yet been used to predict treat­
ment responses. One of the tradeoffs between incorporating dif­
ferent types of data is the cost and quantity versus quality of data: 
very often these data present with noise which may hinder the 
ability to identify meaningful patterns and signals. Novel meth­
ods of topological machine learning are robust to noise, and al­
low to extract descriptors of the shape and structure of data that 
can augment performance for the analysis of intensive time-
point measurements113. Such data with repeated measures may 
be useful for testing hypotheses, since sample size may compen­
sate for the increased noise of data114.

THE USE OF DATA FROM GENETICS, 
ELECTROPHYSIOLOGY, NEUROIMAGING AND 
COGNITIVE TESTING

Genetics

Machine learning methods are an appealing analytical ap­
proach for bridging genetic data with the prediction of treatment 

response in psychiatry. They put the focus on prediction rather 
than association, are able to detect interactions between loci, 
wisely handle correlation, and do not assume a pre-defined sta­
tistical model or additivity115.

Machine learning has been used with the objective to im­
prove prediction of treatment outcomes from genetics alone in 
many diseases, including cancer116,117 and hypertension118.

The question of whether an individual’s genetic background 
could affect how he/she responds to medication treatment has 
been investigated in pharmacogenomics. An earlier study apply­
ing genome-wide complex trait analysis in a sample of roughly 
3,000 depressed patients suggested that common genetic varia­
tion could explain up to 42% of observed individual differences 
in antidepressant treatment response119, suggesting that mod­
eling common genetic variation could be useful for prediction. 
However, results of pharmacogenomic studies have so far, in 
general, been underwhelming120.

Polygenic scores are a common method for quantifying the 
overall contribution of common genetic variation to particular 
traits121. Polygenic associations with treatment response have been 
investigated in relatively small patient cohorts (most N<1000) to 
date, with mixed findings122-125. For example, polygenic scores for 
major depression and schizophrenia did not significantly predict 
antidepressant efficacy (based on symptom improvement) in clas­
sic treatment studies such as Genome-Based Therapeutic Drugs 
for Depression (GENDEP) and STAR*D123. However, these scores 
were built on earlier genome wide association studies (GWAS) and 
were likely underpowered. Well-powered GWAS of antidepressant 
response have produced mixed results, with one study identify­
ing gene sets of relevance for bupropion response126 and another 
observing no significant findings for antidepressant resistance127. 
Larger-scale GWAS meta-analysis efforts are needed and ongoing. 
Even fewer studies have examined common genetic variation as­
sociated with responses to other treatment modalities such as psy­
chotherapy125 or ECT128.

DNA methylation and gene expression data have been ex­
plored in combination with phenotypic datasets of demograph­
ic and clinical variables on their ability to predict response to 
multiple medications. A recent review129 pointed out genetic 
prediction of therapeutic outcomes in depression as the most 
promising43,130-133, with an overall accuracy of 0.82 (95% CI: 0.77-
0.87)134. Models combining multiple data types, such as periph­
eral gene expression data, neuroimaging and clinical variables, 
achieved significantly higher accuracy134.

Tree-based approaches were the most popular machine learn­
ing methods, followed by penalized regression, support vector 
machines and deep learning129. Studies were quite heterogene­
ous in design, methods, implementation and validation, limiting 
our capacity to elucidate the extent to which machine learning in­
tegrated with genetics can predict antidepressant drug response.

Evidence for polygenic risk scores versus support vector ma­
chines for the prediction of treatment-resistant schizophrenia 
from GWAS data have been reviewed135. Although support vector 
machines might be more suitable to take into account complex 
genetic interactions, the traditional polygenic risk score approach 
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showed higher accuracy for classifying treatment-resistant indi­
viduals115.

Despite many efforts to use many kinds of genetic information 
in many different ways, results so far have not been sufficiently 
compelling or accurate to support the use of these approaches to 
guide clinical care136,137. In the future, until novel analytic tech­
niques become available to extract signal from the genome, or 
a better understanding of the genetic basis for mental illness 
emerges, the most promising avenue in this context is to inte­
grate genetic information into multivariable analyses to poten­
tially improve broader model performance133,137.

Electrophysiology and neuroimaging

Tailoring treatment decisions based on brain measures is 
intuitively appealing and empirically well-justified. Systematic 
reviews and meta-analyses indicate that therapeutic outcomes 
are often related to pre-treatment brain differences and that the 
brain changes as a result of therapy138-145. However, in previous 
research using traditional statistical methods, effect sizes were 
too low to make the jump from statistical significance to clini­
cal relevance, external validation was rare, sample sizes were 
small, methodological and site-related variance was high, and 
in many cases the techniques were not suited to an integration 
into clinical routine due to their cost-benefit ratio (e.g., positron 
emission tomography) or reliance on experimental protocols 
that are unavailable in most clinical settings138,139,143,145,146. Ma­
chine learning approaches offer hope in overcoming these bar­
riers to clinical implementation. Preliminary reviews comparing 
accuracies support this optimism by suggesting superiority for 
treatment prediction with respect to traditional statistical meth­
ods134.

Early studies in this area applied machine learning to detect 
outcomes such as response to clozapine in psychosis147 and 
to selective serotonin reuptake inhibitors (SSRIs) in depres­
sion148-150, but the majority of research has focused on predicting 
brain stimulation outcomes for depression148,151-155. For example, 
Corlier et al156 found that alpha spectral correlation could be used 
to measure EEG connectivity, which then predicted response to 
repetitive TMS (rTMS), using cross-validated logistic regression, 
with an accuracy of 77% in a subgroup of depressed individuals. 
This increased to 81% when adding clinical symptoms of depres­
sion. Most studies report predictive accuracies of >80% on the 
basis of pilot samples consisting of approximately 50 cases or 
less155, reflecting the strong likelihood of bias and overfitting that 
is also seen with magnetic resonance imaging (MRI)157.

Task-related functional MRI (fMRI) has been used for treat­
ment prediction158: for example, by modelling amygdala engage­
ment interactions with early life stress during an experimental 
task to predict antidepressant outcome159 or by using fear con­
ditioning responses to predict panic disorder treatment out­
come160,161. Similar task-related predictive models have been 
built in a number of studies of CBT162 or antidepressant re­
sponses162-164. In task-based fMRI, however, the translational po­

tential is limited due to the use of lengthy and methodologically 
complicated experimental paradigms. Resting-state fMRI is a 
popular alternative, because it measures behaviourally-relevant, 
synchronized brain network activity at rest, and the imaging pro­
tocols can be more easily harmonized across scanners165. Stud­
ies in this field have demonstrated similar accuracies for CBT166, 
trauma-focused psychotherapy167, antidepressant treatment168, 
and antipsychotic therapy169, while also showing predictive ac­
curacy for ECT165,170.

A challenge of functional imaging is reliability across scan­
ners, especially in non-experimental clinical settings. Structural 
neuroimaging may provide an opportunity for faster implemen­
tation into existing clinical routines. Most studies have involved 
grey matter measurements, and ECT treatment prediction has 
been a frequent focus, with studies using whole-brain approach­
es171, regional measurements172, and combinations of neuro­
imaging modalities173. White matter measurements (e.g., with 
diffusion tensor imaging) have been relatively less commonly 
considered.

Overall, the lack of multi-site studies and external validation 
reflects the pilot-study stage of research in this area, where re­
sults can be interpreted as promising but highly experimental. 
Whether the machine learning results will ultimately agree with 
the low effect sizes found with classical statistical approaches re­
mains an open question143,145.

Cognitive testing

Cognitive testing is a straightforward method to indirectly as­
sess brain functioning that has been historically linked to treat­
ment outcomes. Although such testing can be time-consuming 
and costly when performed by a trained neuropsychologist, 
more recent computerized methods can facilitate efficient digi­
tal assessments that lend themselves especially well to machine 
learning, including from passively collecting smartphone mea­
surements as described above80,114,174.

Etkin et al175 conducted an early study in this area, as part of 
the international Study to Predict Optimized Treatment in De­
pression (iSPOT-D), aimed to predict response to antidepressant 
treatment using a battery of computerized cognitive tasks as­
sessing attention, processing speed, memory, and executive and 
emotional functions. In order to obtain accurate predictive esti­
mates, they first classified depressed individuals into a subgroup 
with particularly poor cognition before training a supervised dis­
criminant function to predict remission. Results demonstrated 
that remission following escitalopram could be predicted with 
72% accuracy, but this was not confirmed with sertraline or ven­
lafaxine.

Subtyping or unsupervised learning approaches have also 
been helpful to identify response trajectories to cognitive train­
ing. A recent study found that self-organizing maps detecting 
multivariate relationships between cognitive functions associ­
ated with working memory task performance could identify in­
dividuals who differentially responded to the training176.
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HOW CLOSE WE HAVE COME TO REAL-WORLD 
IMPLEMENTATION

Not all prediction models will translate readily for use in clini­
cal or other real-world settings. In evaluating the readiness of 
predictive models for real-world implementation, key criteria 
include external validation, empirical support from implemen­
tation trials, and acceptability to users (e.g., clinicians).

External cross-validation remains the gold standard for evalu­
ating real-world performance, as it quantifies performance loss 
when a trained model is applied to a completely independ­
ent sample. In addition, it guards against increased researcher 
degrees-of-freedom that may result from the many tuning pa­
rameters of more complex machine learning methods. A review 
focusing on machine learning in psychotherapy research report­
ed that only 3 of 51 studies had performed external validation62.

Studies without external validation are at high risk of over­
confidence, as demonstrated by Van Bronswijk et al60, who de­
veloped and then tested a treatment selection model across 
two randomized controlled trials comparing CBT and IPT. They 
found that the estimated effect size for the benefit of receiving 
the model-recommended treatment (generated through internal 
cross-validation) shrunk by 77% when the model was tested us­
ing the second study’s data (external validation).

Some prediction efforts using large naturalistic samples have 
reported positive results following external validation65,177,178.

When a model undergoes external validation and successfully 
predicts outcomes, the next step towards real-world use is an im­
plementation trial. These trials provide the most compelling evi­
dence for the value of a decision support tool. Here, patients are 
usually allocated to algorithm-guided treatment (generally with­
in a shared decision-making framework) or treatment as usual.

Trial-based efforts to evaluate the efficacy of treatment per­
sonalization tools have begun to emerge. One example is a mul­
ti-service cluster randomized trial179, in which patients (N=951) 
were referred to either high- or low-intensity psychotherapy. In 
one arm, the choice of intensity was informed by an algorithm 
previously developed in a naturalistic dataset. In the other arm, 
most patients started on low-intensity psychotherapy and were 
later referred to high-intensity treatment in the case of non-re­
sponse, as per usual stepped care. The study found higher de­
pression remission rates in patients whose initial treatment was 
recommended by the algorithm compared to usual stepped care 
(52.3% vs. 45.1%, odds ratio, OR=1.40, p=0.025).

Another recent example comes from Lutz et al180, who used 
archival data from an outpatient CBT clinic to develop a pre­
dictive decision support system providing therapists with treat­
ment strategy recommendations and psychometric feedback 
enhanced with clinical problem-solving tools. They randomized 
therapist-patient dyads (N=538) to treatment as usual or to algo­
rithm-informed treatment. They reported that, overall, outcomes 
for those who were randomized to the intervention did not differ 
from those who received usual care. However, there was signifi­
cant variability in the extent to which therapists in the interven­
tion condition followed the recommendations provided by the 

decision support tool. When the authors analyzed outcomes for 
patients whose therapists had followed the recommendations, 
significant benefits emerged.

Browning et al181 conducted another trial randomizing de­
pressed patients to either algorithm-informed care or usual care 
for depression. Their algorithm, called PReDicT, used information 
from symptom scales and behavioral tests of affective cognition 
to predict non-response to treatment with citalopram. After eight 
weeks of treatment, the rate of depressive symptom response in the 
PReDicT arm was 55.9%, versus 51.8% in the usual care arm (not 
significant, OR=1.18, p=0.25). Of all instances where the algorithm 
predicted non-response, only 65% prompted a change in treat­
ment regimen, and most consisted of an increase in dosage only.

In combination, the above findings highlight that accurate 
algorithms are not enough to ensure the success of a decision 
support system for precision treatment39. When randomizing 
patients to algorithm-informed care or usual care, clinicians may 
override algorithm recommendations and choose alternative 
treatments. Patients may refuse the algorithm-recommended 
treatment, or have restrictions to its use that were not contem­
plated by the decision support tool (e.g., prohibitive cost of ther­
apy). In light of this, effect sizes for these interventions will often 
vary when applied in different settings.

The use of predictive models may be uniquely challenging in 
psychotherapy research and practice. One challenge is that a giv­
en therapist is only trained to provide a limited subset of psycho­
therapies. Whereas a psychiatrist may be qualified to prescribe a 
large number of different medications or medication combina­
tions, a psychotherapist is less likely to be able to competently 
provide many different psychotherapies. Another consideration 
is that predictions from a model may lead to self-fulfilling proph­
ecies, in which clinicians treat “easy” patients (those with good 
prognoses) differently than “difficult” patients182.

For both medications and psychotherapies, in real-world, 
treatment decisions are rarely going to be made solely based on 
model recommendations. Rather, these decisions will involve 
the preferences of patients, the recommendations of clinicians, 
the availability and costs of treatments, and several other con­
siderations183. As such, the development of data-driven decision 
tools should be informed by extensive consultation and co-pro­
duction with the intended users, in order to implement models 
that maximize acceptability and compatibility with other clinical 
guidelines (i.e., risk management procedures, norms about safe 
dosage or titration of medications).

Another crucial barrier to implementation is the interpretabil­
ity of machine learning models. As algorithms become increas­
ingly complex, sometimes called “black box” algorithms, they 
can become very difficult to interpret, and therefore unlikely to 
be acceptable to clinical users. Methods for explaining predic­
tions of complex models have therefore been developed184,185, 
but there is currently no agreed-upon measure for assessing the 
quality or accuracy of these explanations. In addition, black-box 
predictive models combined with (similarly complex) explana­
tory methods may yield complicated decision pathways that in­
crease the likelihood of human error186.
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In order to ensure that algorithm recommendations are used 
in trials, additional thought and effort must be devoted to issues 
of dissemination and implementation, with the goal of making 
the recommendations simple to generate, easy to understand, 
trustworthy, ethical, cost-effective, and compelling enough to 
influence the decision-maker(s)187.

A recent experiment was conducted with 220 antidepressant-
prescribing clinicians to assess the impact of providing machine 
learning recommendations and accompanying explanations188. 
It was found that recommendations did not improve accurate se­
lection of antidepressants in hypothetical patient scenarios, and 
that accuracy was even lower when incorrect recommendations 
were presented than when standard information was available. 
Prospective field-tests181,189 are one method for identifying the 
myriad institutional, cultural and contextual factors that could af­
fect the uptake and sustained use of a precision psychiatry tool, 
aiming to co-produce acceptable and interpretable decision tools 
with the intended users.

ETHICAL CHALLENGES

From the development of machine learning tools to their po­
tential deployment into clinical care, we can identify several ethi­
cal challenges190-193.

The first challenge concerns responsibility. With the imple­
mentation of machine learning programs into clinical practice, 
physicians and machine learning-based tools would become 
“teammates” that collaborate in selecting an optimal treat­
ment194,195. In such a scenario, who will hold authority and 
ethical responsibility over the decision made? We believe that a 
competent human agent should check and take final responsi­
bility on the machine learning-based suggestions196, as only he/
she is equipped with empathy, a good understanding of the con­
textual environment and, most uniquely, consciousness.

The second challenge is to avoid dehumanization197. Ma­
chine learning can incorporate a great variety of psychological, 
environmental and social variables, and there is some progress 
towards including subjective patient experience into machine 
learning models198. However, giving a patient the space to articu­
late his/her concerns is essential to ensure accurate diagnosis, 
health outcomes, and humane care199.

Third, making decisions is an intricate part of physicians’ ac­
tivity. The non-expert tends to act as a “technician” and more 
likely relies on protocols, whilst the expert, after the observation 
of many cases, is more prone to making decisions based on tacit 
knowledge200-202. The ethical mandate is that practitioners use 
all of their capabilities, including those based on self-experience 
and observation, even if this is in discordance with a statistical 
model. Disagreements between physicians and machine learn­
ing-based decisions may lead to consultations with other clini­
cians193. However, in the context of modern health care systems, 
respecting clinicians’ judgement is vital193,203, and they should 
not be forced to act against their own criteria (freedom of ac­
tion)204.

Practitioners (especially those with less expertise) might be in 
danger of not developing/losing their own clinical judgement and 
become dependent on automatically deployed machine learning 
outcomes205, particularly for those complex cases that they fear 
they are not competent enough to solve. This would risk disem­
powerment of clinicians. On the other hand, it is a physicians’ 
duty to train themselves in the use, understanding and interpre­
tation of machine learning applications, so that they can trust the 
system and its outputs, and contribute to patients’ acceptance206.

Machine learning tools need to be transparent to the human 
teammates to facilitate understanding194,207. The idea of trans­
parency is opposite to that of “black-box” machine learning al­
gorithms, in which the patterns the algorithm follows to make a 
decision for a given patient are opaque to the person and even 
to the developer, making very challenging (if not impossible) for 
the affected person to understand how the system worked out an 
output for him/her190. This risks not only increasing clinicians’ 
resistance to use the tool, but also disempowering patients and 
disrespecting their autonomy. Developers should consider sim­
pler algorithms that balance interpretability with accuracy191.

Furthermore, a central issue in fair machine learning develop­
ment arises when the training dataset is not a good representa­
tion of the phenomenon being studied192,208. A model trained in 
such data will predict erroneous outcomes for groups that were 
underrepresented209. For example, a widely used machine learn­
ing algorithm assigned the same level of disease risk to Black 
and White patients, even if Black patients were sicker than White 
patients210. As a consequence, the system was actively causing 
harm to Black patients by leading to allocation of fewer resourc­
es to them. Potentially discriminatory predictors should be left 
out of the model, but developers should be aware that surrogate 
variables correlated with the excluded set might still become rel­
evant for prediction. Objective unbiased applications might help 
reduce discrimination in machine learning211,212.

Finally, the risk of misuse of personal and sensitive data ex­
changed in machine learning is high213. For this reason, machine 
learning tools can be only used when data security and privacy 
are guaranteed.

CONCLUSIONS

This paper reviews several studies suggesting that it is possible 
to predict outcomes and personalize psychiatric treatment by 
using machine learning. Several gold standard prediction studies 
have shown that we can predict whether a depressed patient will 
respond to specific antidepressants40,41, to specific psychothera­
peutic techniques177, and whether patients with first episode 
psychosis will have good prognosis after one year with certain 
antipsychotic medications25,50. At least three predictive models 
have even been tested in prospective clinical trials.

Despite this progress, the potential for machine learning in 
psychiatry has just begun to be explored. Predicting treatment 
response is just one relatively narrow use case where machine 
learning can add value and improve mental health care. Predic­
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tion can help with so many more clinical decisions and clinical 
processes. We could predict barriers that prevent an individual 
from engaging in care initially, or non-adherence or dropout from 
care after initiation. We could streamline patients to the appro­
priate level of care, such as self-guided programs vs. outpatient 
care, or intensive outpatient versus inpatient care, to maximize 
scarce health care resources. In selecting a specific treatment ap­
proach, we could optimize dosing or predict side effect profiles 
in order to improve symptoms but minimize impact on patient 
quality of life. Some psychiatric treatments carry high cost (e.g., 
ketamine, ECT) or unwanted side effects (e.g., metabolic disrup­
tion and weight gain for antipsychotics). Doing no harm is argu­
ably more important than improving the probability of recovery, 
and so precision mental health efforts could be especially impor­
tant in identifying which treatments are safest and most tolerable.

Machine learning could even help sequence treatments over 
time, or design specific treatment protocols for an individual. For 
example, modular psychological interventions can be personal­
ized66,68, or tailored health behavior change interventions can be 
customized for an individual. This form of personalization and 
customization has proven effective in contexts like smoking ces­
sation, breast cancer screening, and physical activity214,215.

Techniques like natural language processing, often using ma­
chine learning algorithms, give us the ability to draw insights 
from text-based data – e.g., social media posts, peer-support 
conversations, or conversation transcriptions – that might in­
form the content that is offered to an individual as part of his/her 
treatment to maximize future outcomes. In addition, the same 
analytic techniques may form the basis of interventions, such 
as chatbots, that could provide scalable support for loneliness, 
stress, or other subclinical psychological issues when human 
support is unavailable or not clinically warranted. This person­
alization of iCBT treatment may be particularly necessary for un­
guided interventions, where non-adherence is widespread and 
undermines the potential for symptom relief.

Machine learning is a powerful tool that can help sift through 
multi-modal predictors and model their complex/non-linear 
contributions. And it can identify specific subtypes of patients, 
e.g., through clustering, for more nuanced prediction of treat­
ment outcomes. Machine learning techniques are allowing us to 
extract more knowledge from bigger datasets in a more efficient 
way – which is a good and promising thing.

However, the ultimate goal of psychiatry is to better treat men­
tal illness. The path toward machine learning improving psychi­
atric care in real-life settings is not only governed by statistical, 
but also by implementation considerations. Recent seminal 
findings180,181 highlight that accurate algorithms alone are not 
enough to ensure the success of a decision support system for 
precision treatment. This is because many things change in 
the transition from a research setting into real patient care39. In  
practice, clinicians may override algorithm recommendations 
and choose alternative treatments. Patients may refuse the 
algorithm-recommended treatment, or have restrictions to its 
use that were not contemplated by the decision support tool. 
Recommendations may be provided in a poorly-designed user 

interface, and thus may go unseen or be actively ignored. All of 
these factors contribute to a general phenomenon of reduced ef­
fect sizes when an algorithm is implemented in clinical practice.

In our own personal experience, patient concerns around 
privacy are a very real problem. Because mental health is par­
ticularly sensitive, capturing personal data can be challenging 
and we need to innovate ways of collecting these data so that we 
do not have a biased perspective of the landscape due to a poor 
sampling within certain groups. Data needs to be collected in 
such a way that participants are aware of how and for what pur­
poses those data will be used216.

Technology systems must implement careful logging process­
es to examine concept or data drift, where the underlying distri­
bution of a predictor or an outcome changes over time, and to 
ensure that the inputs and outputs of the system are auditable. 
This is a collective exercise of building trust in predictive mod­
els and how these will be potentially used to enhance patient 
outcomes, and can avoid the introduction of harm or biases in 
decision-making processes.

This paper reviews many kinds of data that have been used to 
predict treatment outcomes in psychiatry. Ultimately, treatment 
responses emerge from multiple interacting biological, psycho­
logical and social factors. Therefore, in theory, multi-modal ap­
proaches using demographic, clinical and brain variables should 
result in the most accurate predictions217. However, to this date, it 
is clear that certain kinds of data – specifically sociodemograph­
ic, self-report, psychosocial and clinical data – consistently offer 
more meaningful and generalizable predictions. Other types of 
data that might be more scientifically appealing – such as neuro­
imaging and genetic data – have not yet shown compelling results 
in a large external sample, let alone in prospective implementa­
tion studies.

Ultimately, data types that can be easily integrated into clini­
cal care in a cost-effective and ethical way, which is appropriate 
for the prevalence and invasiveness of the therapy, are most like­
ly to show favorable return on investment for ultimate decision 
makers in health systems and health payers.
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