
Can compact optimisation algorithms be structurally
biased?
Kononova, A.V.; Caraffini, F.; Wang, H.; Bäck, T.H.W.; Preuss, M.;
Deutz, A.; ... ; Trautmann, H.

Citation
Kononova, A. V., Caraffini, F., Wang, H., & Bäck, T. H. W. (2020).
Can compact optimisation algorithms be structurally biased? Parallel
Problem Solving From Nature – Ppsn Xvi, 229-242.
doi:10.1007/978-3-030-58112-1_16

Version: Publisher's Version

License: Licensed under Article 25fa Copyright
Act/Law (Amendment Taverne)

Downloaded from: https://hdl.handle.net/1887/3279964

Note: To cite this publication please use the final published version
(if applicable).

https://hdl.handle.net/1887/license:4
https://hdl.handle.net/1887/license:4
https://hdl.handle.net/1887/3279964

Can Compact Optimisation Algorithms
Be Structurally Biased?

Anna V. Kononova1 , Fabio Caraffini2(B) , Hao Wang3 ,
and Thomas Bäck1

1 Leiden Institute of Advanced Computer Science (LIACS),
Leiden University, Leiden, The Netherlands

{a.kononova,t.h.w.baeck}@liacs.leidenuniv.nl
2 Institute of Artificial Intelligence, De Montfort University, Leicester, UK

fabio.caraffini@dmu.ac.uk
3 LIP6, Sorbonne Université Paris, Paris, France

hao.wang@lip6.fr

Abstract. In the field of stochastic optimisation, the so-called structural
bias constitutes an undesired behaviour of an algorithm that is unable
to explore the search space to a uniform extent. In this paper, we inves-
tigate whether algorithms from a subclass of estimation of distribution
algorithms, the compact algorithms, exhibit structural bias. Our approach,
justified in our earlier publications, is based on conducting experiments
on a test function whose values are uniformly distributed in its domain.
For the experiment, 81 combinations of compact algorithms and strate-
gies of dealing with infeasible solutions have been selected as test cases.
We have applied two approaches for determining the presence and severity
of structural bias, namely an (existing) visual and an (updated) statisti-
cal (Anderson-Darling) test. Our results suggest that compact algorithms
are more immune to structural bias than their counterparts maintain-
ing explicit populations. Both tests indicate that strong structural bias
is found only in the cBFO algorithm, regardless of the choice of strategy
of dealing with infeasible solutions, and cPSO with mirror strategy. For
other test cases, statistical and visual tests disagree on some cases classi-
fied as having mild or strong structural bias: the former one tends to make
harsher decisions, thus needing further investigation.

Keywords: Structural bias · Compact algorithm · Continuous
optimisation · Estimation of distribution algorithm · Infeasible solution

1 Introduction

Evolutionary algorithms (EAs) [1,9] are based on a biological metaphor which cre-
ates an ontological link between a set of solutions of the optimisation problem,
which iteratively approximate its optimum, and a population of biological indi-
viduals, which adapt to their environment through evolution. An essential part
of this metaphor is an individual, an atomic part of the population, that has been
c© Springer Nature Switzerland AG 2020
T. Bäck et al. (Eds.): PPSN 2020, LNCS 12269, pp. 229–242, 2020.
https://doi.org/10.1007/978-3-030-58112-1_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58112-1_16&domain=pdf
http://orcid.org/0000-0002-4138-7024
http://orcid.org/0000-0001-9199-7368
http://orcid.org/0000-0002-4933-5181
http://orcid.org/0000-0001-6768-1478
https://doi.org/10.1007/978-3-030-58112-1_16

230 A. V. Kononova et al.

created by some combination of one or more of its parent individuals in an attempt
to build upon previously successful approximations of the optimum. Both biologi-
cal and (most) computational populations typically do not explicitly ‘record’ their
history, thus, potentially loosing the already exploited information regarding the
‘successes’ in the past generations. Following the biological metaphor, a ‘success’
in some generation is directly translated into the individual’s reproductive advan-
tage and, therefore, an opportunity to pass on its ‘achievements’.

Striving to exploit the historical information contained in the sequential pop-
ulations of an evolutionary algorithm, a special class of algorithms has been been
proposed in the 1990s [18,19] which attempts to build explicit probabilistic mod-
els of promising solutions as the optimisation process progresses and steer the
subsequent simulated evolutionary progress towards such solutions. These new
algorithms, just like other heuristics [7,15,20], are probabilistic, iterative, and
thus can suffer from undesirable algorithmic behaviours such as premature con-
vergence, stagnation and presence of structural bias (SB) [7,15]. The latter is
the focus of this paper.

The aforementioned class of algorithms, referred to as estimation of distri-
bution algorithms (EDAs) [10], do not maintain explicit populations but rather
have virtual sampling populations. They work through updating their models
incrementally, starting from some uninformed prior and, ideally, leading up to
the model producing only the optimum solution. Clearly, the problem of con-
structing such a model in itself is by far not trivial and can only be solved with
some simplifications. It is the scope and extent of such simplifications that define
the sub-classes of EDAs.

This paper addresses the question of whether a subclass of algorithms with
virtual populations exhibit such algorithmic deficiency as structural bias – the
tendency of an algorithm to ‘prefer’ some parts of the domain irrespective of
the objective function. This paper continues the effort of the authors to inves-
tigate a wide range of heuristic optimisation algorithms for possible structural
bias deficiencies [5,7,14,15]. The paper is organised as follows: Sect. 2 discusses
compact algorithms in general and the particular instances investigated in this
study, Sect. 3 describes the experimental methodology and methods for assessing
SB, Sect. 4 discusses results concerning SB in compact algorithms, and Sect. 5
provides the conclusions.

2 Compact Algorithms

The term ‘compact algorithm’ refers to a subclass of EDAs that mimic the
behaviour of established population-based algorithms [11] through a ‘memory-
saving’ probabilistic model where design variables are assumed to be fully uncor-
related. This minimalist model is fully described with a 2×n matrix (n is problem
dimensionality) that defines the generating distribution1 Dθ, where θ = [μ,σ],
1 It is called ‘probability vector’ in the original publications [11]; a terminology which

we find somewhat misleading in case of a continuous search space and a Gaussian
generating distribution.

Can Compact Optimisation Algorithms Be Structurally Biased? 231

μ ∈ R
n,σ ∈ (R+)n are the vectors containing the chosen mean and the standard

deviation values for a truncated Gaussian distribution (the optimisation process
takes places in the re-normalised domain [−1, 1]n).

All ‘elitist’ real-valued compact algorithms share the structure outlined in
Algorithm 1 and only differ by the logic used to generate a new solution x.

Algorithm 1. Skeleton of a generic elitist compact algorithm
given: objective function f , generating distribution Dθ with parameters θ = [μ, σ]
initialise μ, σ with μi = 0 and σi � 1 � e.g. σi = 10 as in [11]
draw initial solution xelite from Dθ and evaluate its fitness felite = f(xelite)
while budget condition is not met do

draw i.i.d. samples P = {x1,x2, . . .} from Dθ � |P| depends on the specific
generate a new candidate solution x from P operator (Section 2.1)
evaluate f(x);
if f(x) �� felite then � �� ∈ {≤, ≥} for minimisation/maximisation

l ← xelite; w ← x; xelite ← x; � w is the winner, l loser
else

l ← x; w ← xelite;
end if
μold ← μ
μ ← μ + 1

Vps
(w − l) � user defined virtual population size Vps [11]

σ ←
√

σ ◦ σ + μold ◦ μold − μ ◦ μ + 1
Vps

(w ◦ w − l ◦ l)

end while � ◦ is the Hadamard product
Output: xelite

2.1 Compact Algorithms Employed in This Study

All compact algorithms employed in this study follow the logic described in
Algorithm 1. Details on these algorithms, including their suggested and adopted
parameters setting, are available in [11]. A brief description of each algorithm
is given below. These algorithms are equipped with various strategies of dealing
with infeasible solutions (SDIS) generated, see Sect. 3.4.

Configurable compact differential evolution (cDE/x/y/z): similar to non-
compact variants of differential evolution (DE) [21], a variety of compact con-
figurations can be obtained with the combinations x/y/z, where z is either the
binary bin or the exponential exp crossover [6,21], while the x/y component is
taken from these options2: (i) rand/1 (ii) rand/2 (iii) best/1 (iv) best/2 (v)
current-to-best/1 (vi) rand-to-best/2 (vii) current-to-rand/1 (does not
require a crossover). It must be highlighted that in a DE algorithm, the x/y/z
operators require a number of randomly selected individuals from the population
to produce x. Due to the absence of a stored population, these individuals are
drawn from the generating distribution Dθ in the compact representation. This
implies that logically current-to-best/1 ≡ rand-to-best/1.
2 This list clearly does not exhaust all possibilities.

232 A. V. Kononova et al.

Compact differential evolution light: cDE-Light is a DE-inspired compact
algorithm that requires a smaller number of computationally expensive opera-
tions with respect to its predecessor algorithm cDE, thus being faster and lighter
in terms of memory consumption. This algorithm employs a specific mutation
referred to as mutation-light, which mimics the behaviour of the rand/1 muta-
tion, and specific crossover operator referred to as crossover-light, which
emulates the exp crossover without the need of looping through the solutions to
exchange their variables.

Compact particle swarm optimisation (cPSO): generates novel candidate
solutions x through the simple PSO perturbation logic based on a weighted
sum of the currently available solution and the so-called ‘velocity’ vector v,
i.e. x ← γ1x + γ2v. Before perturbing the position of x in the search space
with the previous formula, v must be updated through the standard method
v ← φ1v + φ2u1 ◦ (xlb − x) + φ3u2 ◦ (xgb − x), in which u1 and u2 are two
n-dimensional vectors containing uniformly drawn random numbers; xlb is the
‘local best’ solution, which is not present in the compact representation and
therefore has to be drawn from Dθ and evaluated; xgb is the ‘global best’ solu-
tion, i.e., xgb ← xelite. It must be pointed out that Dθ is updated with w and
l obtained by comparing the objective function values xlb and x while the xelite

solution is subsequently updated.

Compact bacterial foraging optimisation (cBFO) reproduces the same
search logic of the original BFO algorithm [8] with the difference that, at each
iteration, a candidate solution x is drawn from Dθ rather than being taken from
a population. Such solution undergoes a series of perturbations to perform the
so called ‘chemotaxis’, ‘tumble’ and ‘swim’ moves in the search space by means
of the operator x ← x + c◦Δ√

ΔT Δ
, where c is an n-dimensional vector whose

components are the so-called ‘run-length’ unit parameters [8], which control the
step-size, and Δ is an n-dimensional vector whose components are uniformly
sampled in the interval [−1, 1] as indicated in [8] for each one of the three moves.

Compact genetic algorithm: the real-valued compact genetic algorithm rcGA
[11], or cGA here, is the simplest example of compact algorithm as it only draws
a new solution from Dθ (i.e. P = {x}) to produce a new candidate solution.

3 Methodology

3.1 Structural Bias

The field of EAs is saturated with a multitude of nature inspired algorithms [2,4].
For practical reasons, these algorithms need to be compared and characterised.
Amongst dimensions over which the quality of an optimisation algorithm can
be measured are: (i) values of the best or average improvement of the objective
function attained over a series of independent runs on some function or class of
functions; (ii) best or average ranking of the algorithm among other algorithms
on some function or class of functions; (iii) the distance from the found solution

Can Compact Optimisation Algorithms Be Structurally Biased? 233

to the known optima; (iv) whether the algorithm has stagnated or converged
prematurely; (v) typical or peak memory consumption required by the algorithm
to solve the problem; (vi) scalability of the algorithm; (viii) proportion of the
previously-non-visited solutions; etc.

In the EA/EC community, variations of the first two of the aforementioned
dimensions are traditionally used. However, most performance measures come
with a difficulty: dependence on the objective function [23]. Moreover, in practice,
classes of objective functions are typically hard to be defined exhaustively and
extensively and benchmarking over a set of diverse functions strongly depends
on the choice of such functions.

In an attempt to characterise the performance of optimisation algorithms from
a different angle, an additional fitness-free comparison ‘dimension’ has been sug-
gested in [15]: the so-called structural bias (SB) has been defined as an intrinsic
deficiency of a probabilistic iterative algorithm dictated solely by its structure.
An algorithm is said to possess SB when it is unable to explore all areas of the
search space to a uniform extent, irrespective of the objective function.

In other words, characterising the algorithm in terms of SB allows one to
judge how much general-purpose the algorithm is, since a fully general-purpose
optimisation algorithm is expected to be able to locate the optima regardless
of where they are located in the search space. It has been established [15] that
for a general objective function, the movement of solutions in the populations
evolving over time is dictated by the superposition of two forces: the gradient
formed by the values of objective function in the current population and the force
originating from the structure of algorithm. These two forces are not necessarily
in agreement in terms of direction and strength. The problem with the existence
of the second force is that it can potentially pull the search away from some areas
of the domain, thus limiting the algorithm’s ability to find the optima therein.

It must be remarked that due to the stochastic nature of the utilised test func-
tion f0 (see Sect. 3.2), there is no sense in tracking objective function improve-
ments over time. The goal of tests on f0 is only to establish deficiencies in
movements of the populations during the optimisation process and not to rank
the methods according to their ‘objective-function-improvement’ on f0.

3.2 Structural Bias via Visual Tests

The procedure for testing for presence of SB is based on a theoretical result [15]
that true minima/maxima of

f0 : [0, 1]n → [0, 1] | ∀x f0(x) ∼ U(0, 1) (1)

are distributed uniformly in its domain (where U(0, 1) denotes a scalar ran-
dom value sampled independently from the uniform distribution on [0, 1]). Thus,
through examination of the distribution of locations of the optima of f0 identified
by the algorithm and its subsequent comparison to the true uniform distribu-
tion across the domain, one can establish whether the algorithm exhibits any SB
[15]. To date, such comparison has been done visually due to the lack of a good

234 A. V. Kononova et al.

‘all-encompassing’ measure, see Sect. 3.3 for more discussion. Plotting locations
of final best solutions in a series of independent runs in parallel coordinates [12]
is an established technique that facilitates the analysis.

3.3 Structural Bias via Statistical Tests

To identify SB, we build on the previous studies [14,15] where Kolmogorov-
Smirnov test has been used for hypothesis testing. Here, we propose a different
statistical approach which tests the uniformity of final points per dimension via a
non-parametric goodness-of-fit test – the Anderson-Darling (AD) test is chosen
given its high statistical power [22]. The motivation behind this approach is
two-fold: first, testing the multivariate uniformity is known to be a challenging
task [13]; second, it is methodologically erroneous to merge samples from all
dimensions to perform one univariate good-of-fit test as the design variables
could be correlated and not identically distributed, thus resulting in a potential
loss of information on each dimension.

Hence, for each dimension i ∈ [1..n] the AD test is applied to the ith compo-
nent of final points {x

(1)
i , . . . , x

(Nr)
i } obtained over Nr independent runs (Nr = 50

here). When testing the uniformity of the sample distribution along each dimen-
sion, the AD test-statistic is formulated as: A2 =

∫ 1

0
(F̂Nr

(t)−t)2/t(1−t)dt, where
F̂Nr

(t) =
∑Nr

k=1 1(x(k)
i ≤ t) is the empirical cumulative distribution function

(ECDF) of the ith component. Intuitively, A2 quantifies the proximity between
the ECDF and the theoretical distribution function of the uniform distribution.
We shall denote the resulting test statistics and p-values as {A2

i }n
i=1 and {pi}n

i=1

respectively. The significance level α = 0.01 is used to reject the null hypotheses
H0. Whenever H0 is rejected we conclude that the ECDF differs from the uni-
form distribution by an amount of A2, with an error rate of α. The SB ‘degree’
is then determined by counting the rejected dimensions.

Moreover, we propose an aggregated measure of SB over results from all
dimensions, defined as the sum of A2

i test statistics that are associated with a
statistical significance over all dimensions: SB = 1

n

∑n
i=1 A2

i1(pi ≤ α), where 1

stands for the indicator function. We shall contrast this new measure of SB with
the visual test shown in Sect. 4.2. Note that methods to combine p-values (e.g.,
Kost’s method [16]), which performs a test on the results from several tests, is
not suitable here since we also interested in combining the statistical effect from
several dimensions.

3.4 Strategy of Dealing with Infeasible Solutions as Operator

Practical optimisation problems to be solved via computer simulations are
defined in bounded domains whose most typical shape is hyperrectangular.
Research into the algorithmic design of optimisation methods from the field
of computational intelligence [7] has shown that the chosen strategy of dealing
with the solutions generated outside such domain – the infeasible solutions (ISs)
– is an essential part of the algorithm that to a large extent decides the success

Can Compact Optimisation Algorithms Be Structurally Biased? 235

of the optimisation method. Unfortunately, in the majority of papers in the field,
the choice of such strategy is overlooked or omitted from the publications, thus
limiting the reproducibility of the results and lowering the overall impact of such
studies.

To highlight the importance of this algorithmic operator, we employ five
different strategies of dealing with ISs (SDIS):

1. Complete One-tailed normal correction strategy (COTN) [7] – only in infeasi-
ble dimensions, moves an infeasible solution inside the domain to a position
resampled from the rescaled one-sided Normal distribution centred on the
boundary;

2. dismiss[6] – dismisses an infeasible solution and replaces it with one of the
parent/generating points);

3. mirror [7] – mirrors the position of an infeasible solution in infeasible dimen-
sions only inwards off the closest boundary;

4. saturation [5,7] – moves an infeasible solution onto the closets boundary
only in infeasible dimensions;

5. toroidal [5,7] – reflects an infeasible solution inwards off the opposite bound-
ary.

3.5 Experimental Setup

This experimentation involves 13 cDE/x/y/z variants and the 4 other algorithms
described in Sect. 3.4. All of them but cGA (which generates only feasible solu-
tions) are considered with 5 SDIS – the total of 16 × 5 + 1 = 81 configurations
considered.

Results on the SB presented in this paper are based on experiments: (i)
minimising the test function f0 (see Sect. 3.2) for n = 30 (ii) by 81 algorithmic
configurations described in Sects. 2.1 and 3.4; (iii) each configuration is run 50
times; (iv) each run has independently seeded Java random.utils pseudorandom
generator – seed is initialised with the current time since January 1, 1970 in
milliseconds via Java’s System.currentTimeMillis; (v) each run is budgeted
in terms of the number of objective function evaluations as 10000n.

All algorithms refer to their persistent elitist variants. All experiments are
executed on a standard desktop using the SOS platform [4] implemented in Java
(algorithms’ source code is available online [3]). It is worth mentioning that
the aforementioned pseudorandom generator used here for all experiments is
considered on the better side of the scale for linear congruential generators [17].

4 Discussion of Results

Using the approaches described in Sects. 3.2 and 3.3, all 81 configurations have
been investigated. Results in these figures are shown in parallel coordinates [12]
and should be read as follows: final positions attained in a series of 50 independent
runs of each configuration are shown with 50 ‘+’ markers on each of the n =
30 parallel vertical ‘axes’. Positions of these ‘axes’ identify dimensions and are

236 A. V. Kononova et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

finpos cPSOmD30f0

 0

 5x10-6

 1x10-5

 1.5x10-5

 2x10-5

 2.5x10-5

 3x10-5

 3.5x10-5

(a) cPSO mirror

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

finpos cBFOcD30f0

 0

 5x10-6

 1x10-5

 1.5x10-5

 2x10-5

 2.5x10-5

 3x10-5

 3.5x10-5

(b) cBFO COTN

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

finpos cDEboetD30f0

 0

 5x10-6

 1x10-5

 1.5x10-5

 2x10-5

 2.5x10-5

 3x10-5

 3.5x10-5

(c) cDE/best/1/exp toroidal

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

finpos cDEctboemD30f0

 0

 5x10-6

 1x10-5

 1.5x10-5

 2x10-5

 2.5x10-5

 3x10-5

 3.5x10-5

(d) cDE/current-to-best/1/exp mirror

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

finpos cDErobtD30f0

 0

 5x10-6

 1x10-5

 1.5x10-5

 2x10-5

 2.5x10-5

 3x10-5

 3.5x10-5

(e) cDE/rand/1/bin toroidal

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

finpos cPSOdD30f0

 0

 5x10-6

 1x10-5

 1.5x10-5

 2x10-5

 2.5x10-5

 3x10-5

 3.5x10-5

(f) cPSO dismiss

Fig. 1. Distribution of locations of final best solutions: example configurations that
exhibit strong SB in (a), (b), mild SB with: local clustering in (c), clustering across
domain in (d), clustering on boundaries domain in (e) and large gaps in (f). See Sect. 4
for explanation on how to read this figure.

shown on the traditional horizontal axis; meanwhile, the traditional vertical axis
shows the range of the dimension ([0, 1] here). Values of f0 attained by the final
solutions are shown in colour (a recap: this is a minimisation problem). Due to
the page limit in this publication, only a few figures are shown in Fig. 1. All
results can be obtained from [6].

Can Compact Optimisation Algorithms Be Structurally Biased? 237

4.1 Visual Tests

Following the methodology of visual testing described in Sect. 3.2, out of 81 con-
figurations considered in this paper, only 6 configurations have been found to be
strongly structurally biased (e.g. Figs. 1(a), 1(b)), meanwhile 40 configurations
exhibit only mild SB. It is worth highlighting that decisions in visual tests on
whether mild SB is present are highly subjective and should be contrasted with
results from statistical testing in Sect. 4.2.

The summary of results discussed in this Section can be found in Table 1
in the columns marked as ‘visual SB test’ for all basic compact configurations
(rows) and all strategies of dealing with IS (smaller columns)3.

Based on the visual tests only, overall, compact configurations appear to
be more ‘immune’ to the strong SB than their equivalents maintaining explicit
populations [6,7,15]. SB, if at all present, is more subtle across all configurations
of compact algorithms considered. The resulting distributions of locations of final
best solutions differ from the true uniform distribution in clustering of points
and not in the span of the domain (with exception of all cBFO configurations
as discussed below). It means that, on the whole, compact configurations of
algorithms considered in this study should have more exploratory potential and
be more successful in finding optima wherever they are situated in the domain.
The latter one, however, is not guaranteed without the use of good exploitative
operators (such investigation is out of the scope of this paper).

One of the exceptions to the above statement is all the cBFO configurations
that have turned out to be badly biased towards the middle of the domain
regardless of the choice of correction strategy, e.g. Fig. 1(b). More precisely, cBFO
appears to be unable to find optima on f0 outside the region [0.4, 0.6]30 (with
only a handful of exceptions per configuration).

Another exception to the above statement is the cPSO mirror configuration
which exhibits strong SB towards all corners of the domain (see Fig. 1(a)) – inter-
estingly enough, such situation resembles the case of SB found in non-compact
PSO with a small population size [15].

When talking about mild SB, resulting distributions of the locations of final
best solutions appear to marginally deviate from the uniform distribution in the
following non-exclusive aspects:

1. ‘higher-than-expected’ clustering of points within the domain (e.g. Fig. 1(c));
2. ‘higher-than-expected’ clustering of points across the domain (e.g. Fig. 1(d);
3. ‘higher-than-expected’ clustering of points on the boundaries4 (e.g. Fig. 1(e));
4. large empty gaps consistently identified in all 30 dimensions (e.g. Fig. 1(f)).

When analysing results for cDE/x/y/z only, out of 30 bin and 30 exp con-
sidered configurations, 16 and 13, respectively, appear to be mildly biased. Out

3 To avoid complicating Table 1 further, results for cGA that requires no SDIS are
shown as dismiss – it is the closest to how cGA deals with infeasible solutions.

4 This is easily explained if saturation is used but is not trivial if toroidal is used.

238 A. V. Kononova et al.

Table 1. Comparison of results on the presence and strength of structural bias based
on visual and statistical tests across all 81 configurations (see [6]). For both tests,
cells with background in black mark configurations exhibiting strong SB, in grey -
configurations with mild SB and in white - configuration with no SB identified based
on the corresponding tests (i.e. colour marks the corresponding decision of the test).
Cells containing ‘×’ mark configurations that are not possible by design. Symbols mark
results of comparing the two tests: symbol ‘=’ stands for cells where results of the
visual and statistical tests coincide (colour of the symbol has no meaning) and ‘•’ - for
the differences in results from visual and statistical tests (colour of the symbol has no
meaning). Values shown in columns for statistical test are the corresponding values of
the statistic. Thresholds for decisions based on these values are given in Sect. 4.2.

Kind of SB test: visual statistical

Configuration: C
O
T
N

d
i
s
m
i
s
s

m
i
r
r
o
r

s
a
t
u
r
a
t
i
o
n

t
o
r
o
i
d
a
l

C
O
T
N

d
i
s
m
i
s
s

m
i
r
r
o
r

s
a
t
u
r
a
t
i
o
n

t
o
r
o
i
d
a
l

cDE/rand/1/bin = = • • = 0.00 0.00 0.02 ∞ 0.13

cDE/rand/1/exp = • = • = 0.00 0.00 0.00 ∞ 0.02

cDE/rand/2/bin • = • • • 0.02 0.00 0.02 ∞ 0.21

cDE/rand/2/exp = = = • = 0.00 0.00 0.00 ∞ 0.06

cDE/current-to-rand/1 = = = • • 0.00 0.02 0.00 ∞ 0.00

cDE/best/1/bin = • • • = 0.01 0.00 0.00 ∞ 0.00

cDE/best/1/exp • = = • • 0.00 0.00 0.00 ∞ 0.00

cDE/best/2/bin = = = • • 0.01 0.00 0.00 ∞ 0.01

cDE/best/2/exp = = = • • 0.00 0.00 0.00 ∞ 0.01

cDE/current-to-best/1/bin • = = • • 0.00 0.00 0.01 ∞ 0.02

cDE/current-to-best/1/exp • = = • • 0.00 0.00 0.00 1.00 0.01

cDE/rand-to-best/2/bin • = = • = 0.00 0.00 0.00 ∞ 0.01

cDE/rand-to-best/2/exp • • • • • 0.02 0.00 0.00 ∞ 0.02

cDE-Light • • • • • 0.00 0.00 0.00 0.01 0.00

cPSO = • = • = 0.03 0.00 0.44 ∞ 0.01

cBFO = = = = = 1.00 0.92 1.00 0.96 0.93

cGA (no SDIS, shown as dismiss) × • × × × × 0.01 × × ×
Found strong SB/total cases: 1/16 1/17 2/16 1/16 1/16 1/16 1/17 2/16 15/16 2/16

Found mild SB/total cases: 8/16 6/17 4/16 13/16 9/16 5/16 2/17 3/16 1/16 10/16

Strong/mild/no SB cases: 6/40/35 21/26/59

Agreement between 56 65 69 6 44 all cases
visual and statistical 100 100 100 100 100 cases with strong SB only∗

tests (in %, calculated 38 17 25 0 55 cases with mild SB only
’post factum’): 71 90 80 0 17 cases with no SB only

5 cDE/current-to-rand/1 configurations that require no crossover, 3 appear
to be mildly biased. To some extent, it is fair to say that simpler cDE/x/y/z
configurations with y> 1 appear to be freer of mild SB.

Can Compact Optimisation Algorithms Be Structurally Biased? 239

4.2 Statistical Tests

Here, we present the calculated values of the statistical measure of structural bias
(defined in Sect. 3.3) in the ‘statistical SB test’ column of Table 1 (the meaning
of symbols and colour scales are explained in the table caption). We use the 20-
(0.00) and 90-quantiles (0.158)5 of the statistical values over all combinations as
thresholds to determine the level of SB. More specifically, zero values of statistic
shall be classified as having no SB; ranges for mild and strong SB are (0, 0.158]
and (0.158, 1] ∪ {+∞}, respectively.

From results presented in the table, it is obvious that cBFO is exceptionally
biased regardless of the SDIS. Also, the saturation SDIS seems to yield strong
SB for all the algorithms except cDE-Light. For the remaining combinations,
we observe either no or mild SB.

Comparing to the visual test on the same combinations, it seems that cases
classified as strongly biased by the visual tests are always indicated as strongly
biased as well from the statistical side – see the third line from the bottom in
Table 1, marked with a ∗. However, since there are at most two discoveries of
the strong bias from both tests, the reliability of this agreement is questionable.
In contrast, cases with mild SB in the visual test are largely mis-classified as
possessing no SB in the statistical approach. Also, most of the algorithms with
the saturation SDIS are indicated as strongly biased by the statistical measure
while those cases are considered mildly biased in the visual test. We conjecture
the observed mismatches between those two approaches as follows: (i) the SB
measure is calculated from a multiple testing procedure, where the p-value is
corrected, thus the SB measure can suffer from a reduction of its statistical
power (i.e., more false-negative decisions are made). This leads to a scenario
that the Anderson-Darling test is rejected on all dimensions for those cases with
mild SB in the visual test and hence the statistical measure classifies them as
not biased; (ii) the SB measure is not scale-invariant and can be less informative
after the performed normalisation. In this light, when no bias is displayed, we
shall conclude that some SB degree is exhibited but negligible if compared to
the bias shown by the most biased algorithm (i.e., cBFO). Such relativity in the
statistical approach might be different from that in the visual test, which leads
to the observed discrepancy.

5 Conclusions

The extensive experimentation presented in this piece of research has unveiled
the presence of mild structural biases for most compact algorithms except cBFO
and cPSO – the former one especially carries a so strong SB that can be categor-
ically detected via the visual inspection of the generated graphs. More precisely,
in cBFO, regardless of the employed SDISs, only the middle section of the search
domain is populated with the found best solutions, while its peripheral areas are

5 The quantiles are chosen ad hoc, based on the distribution of statistical measure over
all combinations of algorithms and SDISs.

240 A. V. Kononova et al.

left completely out. This undesired algorithmic behaviour suggests that cBFO is
not suitable for general-purpose optimisation, since it displays design flaws that
limit its applicability to problems whose optimum/optima is/are at the centre
of the search space. Similarly, also cPSO mirror displays a visible strong bias.
However, it is interesting to observe that in this case, the solutions obtained over
multiple runs accumulate towards the corners of the search space. This behaviour
is in line with the one of the standard PSO algorithm – when employed with a
small population size [15].

In a similar way, also the mild SB individuated in the remaining algorithms
under study mainly reveals itself in the form of ‘higher-than-expected’ clustering
of final solution located either across the domain or on the boundaries. However,
in a few cases, uniformly distributed large empty gaps are also visible on each
dimension of the generated graphs. Such gaps clearly flag the presence of SB, but
final solutions do not accumulate in specific areas of the search space and thus do
not seem to cause deleterious effect in terms of coverage of the whole domain. It is
interesting to point out that amongst the cDE/x/y/z variants tested in this study,
a mild SB is mainly visible only for those cases equipped with mutation operators
using one difference vector – e.g. this is evident for the best/1 mutation, in
particular when used in combination with binomial crossover bin. cDE variants
equipped with mutation operators using two difference vectors, on the other
hands, seem to be freer from SB – e.g. the case of rand/2, in particular when
followed by exponential crossover exp.

To summarise, it can be stated that the compact algorithms under investi-
gations appeared to be more ‘immune’ to the SB than their population-based
equivalents according to the proposed visual test. However, it is important to con-
clude this study by observing that the proposed statistical SB detection method
agrees with the visual test on strong SB cases while disagrees on most of the
visually detected mild SB cases. We speculate that this discrepancy is caused
by the insufficient sample size as well as the conservative nature of this testing
procedure and we commit to investigating this aspect further in our future stud-
ies. We plan to increase the sample-size in future experimentation and, most
importantly, improve upon the sensitivity of the proposed statistical measure
with respect to the number of independent runs.

Acknowledgments. The work of Hao Wang was supported by the Paris Ile-de-France
Region.

References

1. Bäck, T.: Evolutionary Algorithms in Theory and Practice. Oxford University
Press, New York (1996)

2. Campelo, F., Aranha, C.: EC bestiary: a bestiary of evolutionary, swarm and other
metaphor-based algorithms, June 2018. https://doi.org/10.5281/zenodo.1293352

3. Caraffini, F.: The stochastic optimisation software (SOS) platform, June 2019.
https://doi.org/10.5281/zenodo.3237023

https://doi.org/10.5281/zenodo.1293352
https://doi.org/10.5281/zenodo.3237023

Can Compact Optimisation Algorithms Be Structurally Biased? 241

4. Caraffini, F., Iacca, G.: The SOS platform: designing, tuning and statistically
benchmarking optimisation algorithms. Mathematics 8(5), 785 (2020). https://
doi.org/10.3390/math8050785

5. Caraffini, F., Kononova, A.V.: Structural bias in differential evolution: a prelimi-
nary study. In: 14th International Workshop on Global Optimization, LeGO 2018,
vol. 2070, p. 020005. AIP, Leiden (2018)

6. Caraffini, F., Kononova, A.V.: Structural Bias in Optimisation Algorithms:
Extended Results (2020). https://doi.org/10.17632/zdh2phb3b4.2. Mendeley Data

7. Caraffini, F., Kononova, A.V., Corne, D.W.: Infeasibility and structural bias in
differential evolution. Inf. Sci. 496, 161–179 (2019). https://doi.org/10.1016/j.ins.
2019.05.019

8. Das, S., Biswas, A., Dasgupta, S., Abraham, A.: Bacterial foraging optimization
algorithm: theoretical foundations, analysis, and applications. In: Abraham, A.,
Hassanien, A.E., Siarry, P., Engelbrecht, A. (eds.) Foundations of Computational
Intelligence. SCI, vol. 203, pp. 23–55. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-01085-9 2

9. De Jong, K.A.: An analysis of the behavior of a class of genetic adaptive systems.
Ph.D. thesis, University of Michigan, USA (1975)

10. Hauschild, M., Pelikan, M.: An introduction and survey of estimation of distribu-
tion algorithms. Swarm Evol. Comput. 1(3), 111–128 (2011). https://doi.org/10.
1016/j.swevo.2011.08.003

11. Iacca, G., Caraffini, F.: Compact optimization algorithms with re-sampled inher-
itance. In: Kaufmann, P., Castillo, P.A. (eds.) EvoApplications 2019. LNCS, vol.
11454, pp. 523–534. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
16692-2 35

12. Inselberg, A.: The plane with parallel coordinates. Vis. Comput. 1(2), 69–91 (1985).
https://doi.org/10.1007/BF01898350

13. Justel, A., Peña, D., Zamar, R.: A multivariate Kolmogorov-Smirnov test of good-
ness of fit. Stat. Probab. Lett. 35(3), 251–259 (1997)

14. Kononova, A.V., Caraffini, F., Wang, H., Bäck, T.: Can single solution optimisa-
tion methods be structurally biased? MDPI Preprints (2020). https://doi.org/10.
20944/preprints202002.0277.v1

15. Kononova, A.V., Corne, D.W., Wilde, P.D., Shneer, V., Caraffini, F.: Structural
bias in population-based algorithms. Inf. Sci. 298, 468–490 (2015). https://doi.
org/10.1016/j.ins.2014.11.035

16. Kost, J.T., McDermott, M.P.: Combining dependent p-values. Stat. Probab. Lett.
60(2), 183–190 (2002)

17. L’Ecuyer, P., Simard, R.: TestU01: a C library for empirical testing of random
number generators. ACM Trans. Math. Softw. 33(4) (2007). https://doi.org/10.
1145/1268776.1268777

18. Mühlenbein, H., Paaß, G.: From recombination of genes to the estimation of dis-
tributions I. Binary parameters. In: Voigt, H.-M., Ebeling, W., Rechenberg, I.,
Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 178–187. Springer, Heidel-
berg (1996). https://doi.org/10.1007/3-540-61723-X 982

19. Pelikan, M., Goldberg, D., Lobo, F.: A survey of optimization by building and using
probabilistic models. In: Proceedings of the 2000 American Control Conference, vol.
5, pp. 3289–3293 (2000)

20. Piotrowski, A.P., Napiorkowski, J.J.: Searching for structural bias in particle swarm
optimization and differential evolution algorithms. Swarm Intell. 10(4), 307–353
(2016). https://doi.org/10.1007/s11721-016-0129-y

https://doi.org/10.3390/math8050785
https://doi.org/10.3390/math8050785
https://doi.org/10.17632/zdh2phb3b4.2
https://doi.org/10.1016/j.ins.2019.05.019
https://doi.org/10.1016/j.ins.2019.05.019
https://doi.org/10.1007/978-3-642-01085-9_2
https://doi.org/10.1007/978-3-642-01085-9_2
https://doi.org/10.1016/j.swevo.2011.08.003
https://doi.org/10.1016/j.swevo.2011.08.003
https://doi.org/10.1007/978-3-030-16692-2_35
https://doi.org/10.1007/978-3-030-16692-2_35
https://doi.org/10.1007/BF01898350
https://doi.org/10.20944/preprints202002.0277.v1
https://doi.org/10.20944/preprints202002.0277.v1
https://doi.org/10.1016/j.ins.2014.11.035
https://doi.org/10.1016/j.ins.2014.11.035
https://doi.org/10.1145/1268776.1268777
https://doi.org/10.1145/1268776.1268777
https://doi.org/10.1007/3-540-61723-X_982
https://doi.org/10.1007/s11721-016-0129-y

242 A. V. Kononova et al.

21. Price, K.V., Storn, R., Lampinen, J.: Differential Evolution: A Practical Approach
to Global Optimization. Springer, Heidelberg (2005). https://doi.org/10.1007/3-
540-31306-0

22. Razali, N.M., Wah, Y.B.: Power comparisons of Shapiro-Wilk, Kolmogorov-
Smirnov, Lilliefors and Anderson-Darling tests. J. Stat. Model. Anal. 2(1), 21–33
(2011)

23. Wolpert, D., Macready, W.: No free lunch theorems for optimization. IEEE Trans.
Evol. Comput. 1, 67–82 (1997). https://doi.org/10.1109/4235.585893

https://doi.org/10.1007/3-540-31306-0
https://doi.org/10.1007/3-540-31306-0
https://doi.org/10.1109/4235.585893

	Can Compact Optimisation Algorithms Be Structurally Biased?
	1 Introduction
	2 Compact Algorithms
	2.1 Compact Algorithms Employed in This Study

	3 Methodology
	3.1 Structural Bias
	3.2 Structural Bias via Visual Tests
	3.3 Structural Bias via Statistical Tests
	3.4 Strategy of Dealing with Infeasible Solutions as Operator
	3.5 Experimental Setup

	4 Discussion of Results
	4.1 Visual Tests
	4.2 Statistical Tests

	5 Conclusions
	References

