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Appendix A

Extended Results for Chapter 7

Table A.1: Summary for the ECG-25 data (mean ± σmean of 10 runs, except for the deterministic
NuPic algorithm). The results shown here are for the sum of TP, FN and FP over all 25 time series. For
each algorithm and time series, the anomaly threshold was tuned on 10 % of the data, as described in
Section 7.4.2.2.

TP FN FP Prec Rec F1 p
Algorithm

NuPIC 354.7± 5.4 366.3± 5.4 2214.5± 35.3 0.140± 0.003 0.492± 0.008 0.217± 0.004 1.948e-18
SORAD 566.6± 3.8 154.4± 3.8 743.2± 15.4 0.438± 0.006 0.786± 0.005 0.561± 0.005 1.948e-18
DNN-AE 551.3± 3.4 169.7± 3.4 672.5± 8.4 0.452± 0.004 0.765± 0.005 0.568± 0.004 1.948e-18
LSTM-ED 578.8± 3.2 142.2± 3.2 652.3± 17.6 0.480± 0.007 0.803± 0.004 0.597± 0.005 1.948e-18
TCN-AE (baseline) 640.4± 1.9 80.6± 1.9 630.9± 24.1 0.518± 0.008 0.888± 0.003 0.650± 0.006 2.480e-18
LSTM-AD 569.3± 1.9 151.7± 1.9 411.8± 8.7 0.585± 0.005 0.790± 0.003 0.671± 0.004 9.517e-18
TCN-AE (final) 691.3± 0.7 29.7± 0.7 352.8± 10.2 0.668± 0.006 0.959± 0.001 0.786± 0.004 –
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Table A.2: F1-scores (mean± σmean) of TCN-AE and the other algorithms (highest values in boldface).
Same as Table 7.9, except that we permit the algorithms to determine an anomaly threshold from only 10%
of the anomaly labels. In all cases in which we fail to reject the null hypothesis at the 5%-confidence level,
we add a gray background to the corresponding field.

NuPIC LSTM-ED DNN-AE LSTM-AD TCN-AE
F1 p F1 p F1 p F1 p F1

1 0.077±0.012 1.94e-18 0.475±0.012 2.07e-18 0.809±0.016 0.00108 0.801±0.017 0.000857 0.831±0.014
2 0.164±0.038 8.63e-15 0.254±0.014 2.37e-10 0.276±0.012 4.85e-10 0.561±0.014 1.0 0.467±0.024
3 0.082±0.016 1.95e-18 0.77 ±0.01 4.6e-09 0.729±0.017 9.57e-08 0.345±0.014 1.95e-18 0.845±0.011
4 0.106±0.035 6.3e-06 0.112±0.018 1.94e-18 0.144±0.018 1.29e-17 0.420±0.015 1.0 0.278±0.031
8 0.294±0.041 1.95e-18 0.861±0.009 8.61e-06 0.538±0.013 7.07e-18 0.789±0.009 1.22e-11 0.903±0.010
9 0.108±0.027 2.01e-18 0.471±0.009 6.23e-13 0.544±0.013 0.0103 0.397±0.021 6.39e-11 0.573±0.011
10 0.509±0.064 3.79e-15 0.691±0.012 5.3e-06 0.644±0.024 9.3e-13 0.796±0.011 0.955 0.785±0.014
11 0.043±0.018 1.17e-18 0.515±0.034 0.0807 0.285±0.028 7.4e-15 0.640±0.039 0.967 0.556±0.023
12 0.09 ±0.06 1.8e-18 0.351±0.019 1.27e-15 0.343±0.027 1.25e-14 0.578±0.028 0.381 0.593±0.022
13 0.010±0.007 1.33e-18 0.718±0.022 4.99e-08 0.588±0.028 2.25e-15 0.624±0.029 9.26e-14 0.817±0.022
14 0.372±0.080 2e-18 0.793±0.015 4.31e-08 0.614±0.011 9.52e-18 0.684±0.019 1.42e-15 0.869±0.010
15 0.006±0.003 1.78e-18 0.574±0.018 4.46e-10 0.702±0.023 0.791 0.781±0.008 1.0 0.692±0.015
16 0.264±0.019 1.93e-18 0.816±0.010 1.1e-06 0.612±0.008 3.78e-17 0.873±0.010 0.00805 0.883±0.013
17 0.001±0.001 1.97e-19 0.097±0.029 4.66e-16 0.10 ±0.03 9.66e-16 0.10 ±0.03 9.66e-16 0.791±0.029
18 0.251±0.004 1.95e-18 0.482±0.007 1.95e-18 0.660±0.017 3.06e-18 0.837±0.006 4.07e-14 0.917±0.005
20 0.007±0.007 3.74e-18 0.368±0.032 0.000163 0.288±0.032 1.1e-07 0.329±0.036 0.00217 0.436±0.032
21 0.004±0.004 1.47e-18 0.361±0.033 2.1e-11 0.230±0.021 2.88e-12 0.391±0.021 0.000737 0.558±0.038
22 0.337±0.067 1.75e-17 0.500±0.024 1.1e-07 0.538±0.026 1.81e-05 0.621±0.022 0.212 0.629±0.018
23 0.281±0.032 1.94e-18 0.504±0.022 2.74e-17 0.769±0.017 0.000898 0.740±0.016 2.52e-05 0.830±0.012
26 0.135±0.023 1.95e-18 0.561±0.024 7.71e-11 0.460±0.019 5.74e-18 0.381±0.013 5.01e-14 0.665±0.015
28 0.426±0.038 1.94e-18 0.704±0.019 2.45e-06 0.723±0.020 0.00418 0.775±0.012 0.00466 0.801±0.010
33 0.0 1.34e-05 0.092±0.014 1.0 0.062±0.007 0.999 0.002±0.001 1.34e-05 0.033±0.007
39 0.150±0.019 1.95e-18 0.719±0.010 1.77e-17 0.781±0.019 2.93e-06 0.823±0.011 6.18e-08 0.898±0.007
42 0.468±0.021 1.95e-18 0.738±0.014 3.59e-13 0.736±0.023 6.34e-07 0.714±0.012 6.9e-16 0.844±0.008
48 0.008±0.004 1.8e-18 0.544±0.024 1.39e-08 0.498±0.032 2.97e-05 0.703±0.024 0.925 0.667±0.022
Σ 0.217±0.012 1.95e-18 0.597±0.005 1.95e-18 0.568±0.004 1.95e-18 0.671±0.004 9.52e-18 0.786±0.004
mean 0.168±0.009 1.95e-18 0.523±0.004 1.95e-18 0.507±0.004 1.95e-18 0.588±0.003 3.78e-18 0.686±0.005
median 0.120±0.015 1.95e-18 0.544±0.006 1.95e-18 0.531±0.008 1.95e-18 0.650±0.007 1.22e-17 0.747±0.007

Table A.3: Impact of the individual TCN-AE components for the ECG-25 Data (mean ± σmean of 10
runs). The results shown here are for the sum of TP, FN and FP over all 25 time series. For each algorithm
variant and time series the anomaly threshold was tuned on 10 different segments containing only 10 % of
the data.

TP FN FP Prec Rec F1 p
Algorithm

noAnomScoreCorr 588.9± 2.6 132.1± 2.6 527.7± 14.0 0.536± 0.007 0.817± 0.004 0.645± 0.006 2.008078e-18
baseline 640.4± 1.9 80.6± 1.9 630.9± 24.1 0.518± 0.008 0.888± 0.003 0.650± 0.006 2.480521e-18
noSkip 655.6± 1.8 65.4± 1.8 537.3± 19.2 0.563± 0.008 0.909± 0.002 0.691± 0.006 8.453158e-18
noLatent 651.9± 1.8 69.1± 1.8 522.8± 19.5 0.570± 0.009 0.904± 0.002 0.695± 0.007 5.052100e-17
noRecon 678.0± 1.3 43.0± 1.3 414.2± 12.7 0.628± 0.007 0.940± 0.002 0.751± 0.005 1.226155e-10
noInvDil 680.2± 1.2 40.8± 1.2 417.1± 13.7 0.630± 0.008 0.943± 0.002 0.752± 0.005 8.187313e-13
noMapReduc 687.1± 0.8 33.9± 0.8 381.2± 11.1 0.650± 0.007 0.953± 0.001 0.771± 0.005 2.041980e-04
final 691.3± 0.7 29.7± 0.7 352.8± 10.2 0.668± 0.006 0.959± 0.001 0.786± 0.004 0.000000e+00
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Figure A.1: Results when tuning various algorithmic variants of TCN-AE on different subsets of the
ECG-25 data (mean and standard deviation of 10 runs).
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Figure A.2: Results when tuning various algorithms on different subsets of the ECG-25 data (mean and
standard deviation of 10 runs).
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Figure A.3: Histogram of the reconstruction error (in blue) for one dimension of the error matrix E′.
We found that the reconstruction errors are bell-shaped (elliptic in higher dimensions). Although the
reconstruction errors are not Gaussian, they closely follow a t-distribution with a mean µ̂, a standard
deviation σ̂, and ν degrees of freedom, as indicated by the estimated distribution (red line).
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Appendix B

Derivations

B.1 Batch Incremental Weighted Least Squares Esti-

mator for multivariate Regression Tasks

In practice, the well-known recursive least squares (RLS) filter is often used to learn a linear
function in a fully online setting. The RLS filter uses exponentially decaying weights in
order to be able to adapt to new concepts. In this section, we derive a similar, however,
slightly more complex, incremental version of the weighted least squares estimator which
can be used for the SORAD algorithm introduced in Chapter 4. Specifically, we will derive
a multivariate variant for batches (having a batch size µ ≥ 1) with exponentially decaying
weights. This is beneficial in setups which do not have to be fully-online (batch processing
usually allows to reduce the computation time if parallelization is supported) or in situations
where the amount of data is too large to be processed in a single batch. For example, we
use this approach to speed up SORAD for the experiments in Chapter 7.

We start with the original closed-form formulation of the weighted least squares estima-
tor:

θ =
(
XTWX + βI

)−1
XTWy. (B.1)

where X is a matrix containing n inputs of length k as row-vectors, W is a diagonal
weight matrix, carrying a weight for each of the n observations, y is a n-dimensional target
vector with one value for each input vector (as we will see later, we can easily extend our
explications to multi-dimensional outputs, where we would instead use a matrix Y). The
term βI (regularization factor and identity matrix) is the so-called regularizer, which is used
to prevent overfitting.

Since we have n observations we can also slightly modify our above equation, to later
indicate the current iteration:

θn =
( =An︷ ︸︸ ︷
XT

nWn︸ ︷︷ ︸
=Gn

Xn + βI
)−1

=bn︷ ︸︸ ︷
XT

nWn︸ ︷︷ ︸
=Gn

yn =
( =An︷ ︸︸ ︷
GnXn + βI

)−1

=bn︷ ︸︸ ︷
Gnyn = A−1

n bn, (B.2)

θn ∈ Rk, Xn ∈ Rn×k, Wn ∈ Rn×n, I ∈ Rk×k, β ∈ R, yn ∈ Rn
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B.1. BATCH INCREMENTAL WEIGHTED LEAST SQUARES ESTIMATOR FOR
MULTIVARIATE REGRESSION TASKS

Gn ∈ Rk×n, An ∈ Rk×k, bn ∈ Rk.

If now a new batch of µ observation pairs Xµ ∈ Rµ×k, yµ ∈ Rµ arrives, some of the above
matrices and vectors change as follows (the others remain unchanged):

Xn+µ =

[
Xn

Xµ

]
, Wn+µ =

[
λWn 0
0T Wµ

]
, yn+µ =

[
yn

yµ

]
, (B.3)

where Xn+µ ∈ R(n+µ)×k, Wn+µ ∈ R(n+µ)×(n+µ), λ ∈ R, Wµ ∈ Rµ×µ, yn+µ ∈ Rn+µ. λ is a
constant with which we can retroactively modify the old weights Wn. Now let us insert the
definitions in Eq. (B.3) into Eq. (B.2):

θn+µ =

( =An+µ︷ ︸︸ ︷[
Xn

Xµ

]T [
λWn 0
0T Wµ

]
︸ ︷︷ ︸

=Gn+µ

[
Xn

Xµ

]
+ βI

)−1

=bn+µ︷ ︸︸ ︷[
Xn

Xµ

]T [
λWn 0
0T Wµ

]
︸ ︷︷ ︸

=Gn+µ

[
yn

yµ

]

=

( =An+µ︷ ︸︸ ︷
Gn+µ

[
Xn

Xµ

]
+ βI

)−1

=bn+µ︷ ︸︸ ︷
Gn+µ

[
yn

yµ

]
= A−1

n+µbn+µ, (B.4)

where we identify:

Gn+µ =

[
Xn

Xµ

]T [
λWn 0
0T Wµ

]
∈ Rk×(n+µ), (B.5)

An+µ = Gn+µ

[
Xn

Xµ

]
+ βI ∈ Rk×k, (B.6)

bn+µ = Gn+µ

[
yn

yµ

]
∈ Rk. (B.7)

Now let us expand equation (B.5):

Gn+µ =


n×k︷︸︸︷
Xn

Xµ︸︷︷︸
µ×k


T 

n×n︷ ︸︸ ︷
λWn

n×µ︷︸︸︷
0

0T︸︷︷︸
µ×n

Wµ︸︷︷︸
µ×µ

 =

[
k×n︷︸︸︷
XT

n

k×µ︷︸︸︷
XT

µ

]
n×n︷ ︸︸ ︷
λWn

n×µ︷︸︸︷
0

0T︸︷︷︸
µ×n

Wµ︸︷︷︸
µ×µ


=
[
λXT

nWn + XT
µ0

T XT
n0 + XT

µWµ

]
=
[
λXT

nWn XT
µWµ

]
=

[
λGn︸︷︷︸
k×n

XT
µWµ︸ ︷︷ ︸
k×µ

]
∈ Rk×(n+µ).
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In the next step, let us evaluate An+1 from Eq. (B.6):

An+µ = Gn+µ

[
Xn

Xµ

]
+ βI =

[
λGn︸︷︷︸
k×n

XT
µWµ︸ ︷︷ ︸
k×µ

]
n×k︷︸︸︷
Xn

Xµ︸︷︷︸
µ×k

+ βI (B.8)

= λGnXn + XT
µWµXµ + βI = λGnXn + βI︸ ︷︷ ︸

=An

+XT
µWµXµ (B.9)

= λ An︸︷︷︸
k×k

+XT
µWµXµ︸ ︷︷ ︸
k×k

, with A0 = βI, λ0 = 1. (B.10)

Since we have to compute the inverse of An+µ, it might be helpful to find an incremental
formulation, since the inverse is costly to compute. In this case, the Woodbury matrix
identity [179] helps:

(A + UCV)−1 = A−1 −A−1U(C−1 + VA−1 + U)−1VA−1. (B.11)

This gives us:

A−1
n+µ = (λAn)−1 −

=∆µ︷ ︸︸ ︷
(λAn)−1XT

µ

(
W−1

µ + Xµ(λAn)−1XT
µ

)−1
Xµ(λAn)−1

= (λAn)−1 −∆µXµ(λAn)−1, (B.12)

with:

∆µ = (λAn)−1XT
µ

(
W−1

µ + Xµ(λAn)−1XT
µ

)−1 ∈ Rk×µ (B.13)

= A−1
n XT

µ

(
λW−1

µ + XµA
−1
n XT

µ

)−1
(B.14)

Then, we expand Eq. (B.7):

bn+µ = Gn+µ

[
yn

yµ

]
=

[
λGn︸︷︷︸
k×n

WµXµ︸ ︷︷ ︸
k×1

]
n×1︷︸︸︷
yn

yµ︸︷︷︸
µ×1

 (B.15)

= λGnyn + XT
µWµyµ = λ bn︸︷︷︸

k×1

+XT
µWµyµ︸ ︷︷ ︸
k×1

(B.16)

Now let us insert the results of (B.12) and (B.16) into Eq. (B.4) and then simplify the
expression:
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θn+µ = A−1
n+1bn+1 (B.17)

=
[
(λAn)−1 −∆µXµ(λAn)−1

][
λbn + XT

µWµyµ

]
(B.18)

= A−1
n bn︸ ︷︷ ︸
θn

+(λAn)−1XT
µWµyµ −∆µXµA

−1
n bn︸ ︷︷ ︸
θn

−∆µXµ(λAn)−1XT
µWµyµ (B.19)

= θn +
[
(λAn)−1 −∆µXµ(λAn)−1

]
XT

µWµyµ −∆µXµθn (B.20)

Although we did a few rearrangements, it seems like Eq. (B.20) cannot be simplified
further. However, we can find a more compact solution if we look closer at Eq. (B.13):

∆µ = (λAn)−1XT
µ

(
W−1

µ + Xµ(λAn)−1XT
µ

)−1
(B.21)

∆µ

(
W−1

µ + Xµ(λAn)−1XT
µ

)
= (λAn)−1XT

µ (B.22)

∆µW
−1
µ + ∆µXµ(λAn)−1XT

µ = (λAn)−1XT
µ (B.23)

∆µW
−1
µ =

[
(λAn)−1 −∆µXµ(λAn)−1

]
XT

µ (B.24)

Interestingly, we can find the RHS of Eq. (B.24) also in Eq. (B.20). If we use above relation,
we can therefore simplify (B.20) significantly:

θn+µ = θn + ∆µW
−1
µ Wµyµ −∆µXµθn (B.25)

= θn + ∆µyµ −∆µXµθn (B.26)

= θn + ∆µ

(
yµ −Xµθn

)
(B.27)

= θn + ∆µe, (B.28)

where e is the prediction error:

eµ = yµ −Xµθn. (B.29)

We can summarize our findings for the univariate case with arbritrary weight matrix Wµ as
follows:

eµ = yµ −Xµθn (B.30)

∆µ = A−1
n XT

µ

(
λW−1

µ + XµA
−1
n XT

µ

)−1
(B.31)

θn+µ = θn + ∆µeµ (B.32)

A−1
n+µ = (λAn)−1 −∆µXµ(λAn)−1 (B.33)
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where

λ ∈ R, eµ,yµ,θn,θn+µ ∈ Rµ, Xµ ∈ Rµ×k, ∆µ ∈ Rk×µ, An,An+µ ∈ Rk×k, Wµ ∈ Rn×n,

A0 = βI, λ0 = 1, θ0 = 0.

Multivariate Batch Recursive Least Squares Algorithm Extending the above equa-
tions to the multivariate case with m dimensions is straightforward. We simply have to
replace some vectors with matrices. Furthermore, for a simple setup with exponentially
decaying weights we set λ ∈ [0, 1] and Wµ = I. Hence, the final multivariate batch RLS
algorithm can be described as follows:

Eµ = Yµ −XµΘn (B.34)

∆µ = A−1
n XT

µ

(
λI + XµA

−1
n XT

µ

)−1
(B.35)

Θn+µ = Θn + ∆µEµ (B.36)

A−1
n+µ =

1

λ
A−1

n −
1

λ
∆µXµA

−1
n (B.37)

where

λ ∈ [0, 1], Eµ,Yµ,Θn,Θn+µ ∈ Rµ×m, Xµ ∈ Rµ×k, ∆µ ∈ Rk×µ, A−1
n ,A−1

n+µ ∈ Rk×k,

A−1
0 =

λ

β
I, Θ0 = 0.

B.2 Online Estimation of the Sample Mean and Co-

variance

This section derives several formulas to incrementally compute the weighted mean and the
weighted covariance matrix for a multivariate data set. This property is especially useful in
online settings, where an algorithm constantly has to update its estimates and in situations
where one expects the mean and the covariance matrix to drift over time. We present a
fully online procedure and a procedure that can process mini-batches. The derived formulas
are used in Chapter 5 for the DWT-MLEAD algorithm and in Chapter 7, for the SORAD
algorithm, which was introduced earlier in Chapter 4.

B.2.1 The Weighted Mean and Covariance Matrix

In some cases, one might want to compute the weighted arithmetic mean and a weighted
sample covariance (matrix) where particular sample points should contribute more to the
final mean (covariances) than others. For example, it could be reasonable to give larger
weight to more recent data points if the statistics (e.g., mean) of the underlying distribution
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change over time (concept drifts). In such cases, we would want the estimator to track the
data generating distribution changes and forget about older knowledge. But also other
scenarios are possible, in which a weighting of the data points might be useful. In this
section, we define the weighted arithmetic mean and weighted sample covariance, explore
a few properties related to these weighted statistics, and then design an estimator for the
sample mean and covariance exhibiting some forgetting.

In general, the weighted arithmetic mean is defined quite straightforward as:

x̄n =

∑n
i=1w

′
ixi∑n

i=1w
′
i

, (B.38)

where xi is the i-th data point (vector) and w′
i is the (unnormalized) weight assigned to the

corresponding data point. If the weights are normalized to sum 1, then we get:

x̄n =
n∑

i=1

wixi, (B.39)

where the normalized weights are defined as:

wi =
w′

i

Wn

=
w′

i∑n
i=1w

′
i

, (B.40)

with the normalization factor

Wn =
n∑

i=1

w′
i.

The special case with wi = 1
n

results in the formulation of the conventional mean. According
to [137], the biased weighted covariance matrix can be written similarly as:

Σ̄ =
M̄

(n)

Wn

=

∑n
i=1w

′
i(xi − x̄)(xi − x̄)T∑n

i=1 w
′
i

, (B.41)

where M̄
(n)

is the so called weighted scatter matrix, with

M̄
(n)

=
n∑

i=1

w′
i(xi − x̄)(xi − x̄)T.

If the weights are frequency weights (each weight represents the count of a data point), then
an unbiased estimator is found to be [137]:

Σ̄ =
M̄

(n)

Wn − 1
. (B.42)
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Otherwise, the following unbiased estimator can be used [137]:

Σ̄ =
M̄

(n)

Wn −W
(2)
n /Wn

, (B.43)

where

W (2)
n =

n∑
i=1

(w′
i)
2. (B.44)

B.2.1.1 Incremental (Batch) Estimation of the Weighted Mean and Covariance

It might become necessary to estimate the mean and covariance matrix of a distribution
incrementally in practice. This could be the case if one operates on streaming data or has
to process large amounts of data, which cannot be handled in one pass. In the general case,
we want to handle batch sizes of µ ∈ N+. For a fully online algorithm, we have the extreme
case µ = 1. If a new batch of size µ arrives, we have update our old estimates x̄n−µ and
Σ̄n−µ. For this purpose we have to process the new examples from k = n − µ + 1 until n.
We first note a recursive update rule for x̄n:

x̄n =

Wn−µx̄n−µ +
n∑

i=k

w′
ixi

Wn

(B.45)

=

(
Wn −

n∑
i=k

w′
i

)
x̄n−µ +

n∑
i=k

w′
ixi

Wn

= x̄n−µ +

−
n∑

i=k

w′
ix̄n−µ +

n∑
i=k

w′
ixi

Wn

= x̄n−µ +

n∑
i=k

w′
i(xi − x̄n−µ)

Wn

,

= x̄n−µ +
n∑

i=k

w′
i

Wn

∆i (B.46)

with

k = n− µ + 1 (B.47)

∆i = xi − x̄n−µ (B.48)
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Then, we derive an batch update rule for the estimator for the weighted covariance matrix
Σ̄n. We start with the weighted scatter matrix:

M̄
(n)

=
n∑

i=1

w′
i(xi − x̄n)(xi − x̄n)T

=
n∑

i=1

w′
i

[
xix

T
i − xix̄

T
n − x̄nx

T
i + x̄nx̄

T
n

]
=

n∑
i=1

w′
i

[
xix

T
i − 2xix̄

T
n + x̄nx̄

T
n

]
=

n∑
i=1

w′
ixix

T
i − 2

(
n∑

i=1

w′
ixi

)
x̄T
n +

n∑
i=1

w′
ix̄nx̄

T
n

=
n∑

i=1

w′
ixix

T
i − 2Wnx̄nx̄

T
n + Wnx̄nx̄

T
n

=
n∑

i=1

w′
ixix

T
i −Wnx̄nx̄

T
n

The increment of the weighted scatter matrix from index k = n−µ+1 to n can be computed
as follows:

∆M̄
(n)

= M̄
(n) − M̄

(n−µ)

=
n∑

i=1

w′
ixix

T
i −Wnx̄nx̄

T
n −

n−µ∑
i=1

w′
ixix

T
i + Wn−µx̄n−µx̄

T
n−µ

=
n∑

i=k

w′
ixix

T
i −Wnx̄nx̄

T
n + Wn−µx̄n−µx̄

T
n−µ (B.49)

With the already known expression from Eq. (B.45) and with a rearranged formulation of
Eq. (B.45)

x̄n−µ =

Wnx̄n −
n∑

i=k

w′
ixi

Wn−µ

(B.50)

we can start simplifying Eq. (B.49). We insert Eq. (B.45) and Eq. (B.50) into Eq. (B.49):

∆M̄
(n)

=
n∑

i=k

w′
ixix

T
i −Wn

Wn−µx̄n−µ +
n∑

i=k

w′
ixi

Wn

x̄T
n + Wn−µx̄n−µ

(Wnx̄n −
n∑

i=k

w′
ixi

Wn−µ

)T
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=
n∑

i=k

w′
ixix

T
i −

(
n∑

i=k

w′
ixi

)
x̄T
n −Wn−µx̄n−µx̄

T
n + Wnx̄n−µx̄

T
n − x̄n−µ

(
n∑

i=k

w′
ixi

)T

=
n∑

i=k

w′
ixix

T
i −

n∑
i=k

w′
ixix̄

T
n +

(
Wn −Wn−µ

)
x̄n−µx̄

T
n − x̄n−µ

n∑
i=k

w′
ix

T
i

=
n∑

i=k

w′
ixix

T
i −

n∑
i=k

w′
ixix̄

T
n +

(
n∑

i=k

w′
i

)
x̄n−µx̄

T
n − x̄n−µ

n∑
i=k

w′
ix

T
i

=
n∑

i=k

(
w′

ixix
T
i − w′

ixix̄
T
n + w′

ix̄n−µx̄
T
n − w′

ix̄n−µx
T
i

)

=
n∑

i=k

(
w′

ixi

(
xT
i − x̄T

n

)
− w′

ix̄n−µ

(
xT
i − x̄T

n

))

=
n∑

i=k

w′
i

(
xi − x̄n−µ

)(
xi − x̄n

)T
=

n∑
i=k

w′
i∆i

(
xi − x̄n

)T
(B.51)

In summary, with equations (B.40), (B.44), (B.48), (B.46), (B.51), and (B.41) we can
update our estimates for a new batch (samples from k = n− µ + 1 to n) with:

Wn = Wn−µ +
n∑

i=k

w′
i (B.52)

W (2)
n = W

(2)
n−µ +

n∑
i=k

(w′
i)
2 (B.53)

∆i = xi − x̄n−µ (B.54)

x̄n = x̄n−µ +
n∑

i=k

w′
i

Wn

∆i (B.55)

M̄
(n)

= M̄
(n−µ)

+
n∑

i=k

w′
i∆i

(
xi − x̄n

)T
(B.56)

Σ̄n =
M̄

(n)

Wn

. (B.57)

Note that Eq. (B.57) is a biased estimate of the covariance matrix. For an unbiased estimate
one can use either Eq. (B.42) or Eq. (B.43). If all weights are set to w′

i = 1, we obtain the
update rules for the unweighted case.
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B.2.2 Incremental Estimation with Exponentially Decaying
Weights

If we use constant batch sizes µ and also keep the weights w′
i among a batch constant, an

useful incremental algorithm can be retrieved for a particular set of weights, where each
weight is

w′
i = λ⌊n−i

µ
⌋ = λM−j,

where λ ∈ (0, 1] is the decay rate, M = n/µ (µ | n) represents the number of batches for
n examples, and j = ⌈i/µ⌉ is the index of the batch for the i-th example. With such a
weighting, each example in the most recent batch will be weighted with w′

k = · · · = w′
n−1 =

w′
n = 1, the penultimate batch will have the weights w′

n−2µ+1 = · · · = w′
n−µ−1 = w′

n−µ = λ
and so forth. Ultimately, the older batches will fade away exponentially, for λ < 1. The
advantage of this approach is that we can usually prevent numerical overflows in Wn and

the weighted scatter matrix M̄
(n)

and that we can adapt our estimates to new concepts in
non-stationary environments.

The normalization factor Wn can be computed with:

Wn =
n∑

i=1

w′
i =

M∑
j=1

µλM−j = µ
1− λM

1− λ
.

Note that the weightings w′
n−µ, w

′
n−µ−1, . . . , w

′
1 of all previous examples xn−µ,xn−µ−1, . . . ,x1,

as well as the normalization factor Wn, have to be adjusted if a new example xn arrives. In
this case, each weight {w′

i | i ≤ n − µ} has to be multiplied with λ and the weights of the
new examples are set to w′

k = · · · = w′
n = 1. How does this change the estimation of the

mean and the covariance matrix? Typically, if all weights are changed, one would have to
re-compute both statistics from scratch. However, we can show that in this particular case,
this is not necessary, as described in the following explications: First let us find an update
rule for the normalization factor Wn. We can see that Wn−µ is given by:

Wn−µ = µ
M−1∑
j=1

λM−1−j. (B.58)

Then we re-write Wn:

Wn = µ

M∑
j=1

λM−j

= µ
M−1∑
j=1

λM−j + µλ0 = λ · µ
M−1∑
j=1

λM−1−j + µ
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= λ ·Wn−µ + µ (B.59)

Accordingly, for W
(2)
n we obtain:

W (2)
n = λ2 ·W (2)

n−µ + µ.

Then, we find an recursive formulation of the estimated mean x̄n. According to Eq. (B.38),
we find:

x̄n =

∑M
j=1 λ

M−j
∑nj

i=kj
xi

µ
∑M

j=1 λ
M−j

=

∑M
j=1 λ

M−jΣj

Wn

, (B.60)

where

nj = jµ , kj = nj − µ + 1 = µ(j − 1) + 1,

Σj =

nj∑
i=kj

xi.

Then, with

x̄n−µ =

∑M−1
j=1 λM−1−jΣj

Wn−µ

, and Wn−µ =
Wn − µ

λ
,

we can obtain a recursive formulation of Eq. (B.60):

x̄n =

∑M
j=1 λ

M−jΣj

Wn

=

∑M−1
j=1 λM−jΣj + λ0Σj

Wn

=
λ
∑M−1

j=1 λM−1−jΣj

Wn

+
ΣM

Wn

= λ
Wn − µ

λ

1

Wn

x̄n−µ +
ΣM

Wn

= x̄n−µ −
µx̄n−µ

Wn

+
ΣM

Wn

= x̄n−µ +

∑n
i=k xi −

∑n
i=k x̄n−µ

Wn

= x̄n−µ +

∑n
i=k

(
xi − x̄n−µ

)
Wn

= x̄n−µ +

∑n
i=k ∆i

Wn

(B.61)
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Finally, we only need a to find a recursive form for the weighted scatter matrix M̄
(n)

. By
expanding the recursion in (B.56) we get (with k = n− µ + 1):

M̄
(n)

=
M∑
j=1

λM−j

nj∑
i=kj

∆i

(
xi − x̄n

)T
, nj = jµ , kj = µ(j − 1) + 1

=
M−1∑
j=1

λM−j

nj∑
i=kj

∆i

(
xi − x̄n

)T
+ λ0

n∑
i=k

∆i

(
xi − x̄n

)T
= λ

M−1∑
j=1

λM−1−j

nj∑
i=kj

∆i

(
xi − x̄n

)T
+

n∑
i=k

∆i

(
xi − x̄n

)T
= λM̄

(n−µ)
+

n∑
i=k

∆i

(
xi − x̄n

)T
, (B.62)

since

M̄
(n−µ)

=
M−1∑
j=1

λM−1−j

nj∑
i=kj

∆i

(
xi − x̄n

)T
.

B.2.2.1 Batch and Online Estimation of the Inverse Covariance Matrix

In practice, it is often required to estimate the inverse of the covariance matrix of a sample,
for example, when a Mahalanobis distance between points has to be computed. In a fully
online setting it can be quite expensive to compute the inverse of the covariance matrix
again for each new point arriving, since the complexity of the inverse of a m × m matrix
is about O(m3) (slightly less in some highly optimized algorithms). As we will see in the
following, it is not necessary to estimate the covariance matrix, if only its inverse is needed
and furthermore, the inverse can be adapted incrementally in an efficient manner. The
results are shown for the general case with a weighted exponentially decaying estimator.

For a batch-setup (µ > 1), one can use the Woodbury matrix identity [179] to find a
recursive definition of the inverse of the scatter matrix M̄ and covariance matrix Σ̄. The
Woodbury matrix identity is given as:

(A + UCV)−1 = A−1 −A−1U(C−1 + VA−1 + U)−1VA−1. (B.63)

First, we write Eq. (B.62) in vectorized form (to be consistent in the notation later, we
move the superscript in M̄ to the index):

M̄n = λM̄n−µ +
n∑

i=k

∆i

(
xi − x̄n

)T
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= λM̄n−µ + DT
nIX n, (B.64)

where k = n− µ + 1 and

Dn =
(
∆k ∆k+1 · · · ∆n

)T
X n =

(
xk − x̄n xk+1 − x̄n · · · xn − x̄n

)T
.

Then we identify:

A = λM̄n−µ, U = DT
n , C = I, V = X n,

and find:

M̄
−1
n =

1

λ
M̄

−1
n−µ −

1

λ2
M̄

−1
n−µD

T
n

(
I−1 +

1

λ
X nM̄

−1
n−µD

T
n

)−1

X nM̄
−1
n−µ

=
1

λ
M̄

−1
n−µ −

1

λ
M̄

−1
n−µD

T
n

(
λI + X nM̄

−1
n−µD

T
n

)−1

X nM̄
−1
n−µ.

Since we also have to compute an inverse here, it only makes sense to use the Woodbury
matrix identity if the batch size µ is significantly smaller than the dimension of the examples
xi. Similarly, in order to compute the inverse fully online (µ = 1), we simply apply the
Sherman-Morrison formula [150] – a special case of the Woodbury matrix identity [179] –

to incrementally update M̄
−1
n . The formula is given by

(A + uvT)−1 = A−1 − A−1uvTA−1

1 + vTA−1u
. (B.65)

If we look at Eq. (B.62), we can identify:

A = λM̄
(n−1)

, u = ∆n, v = xn − x̄n

This then leads to:

M̄
−1
n =

1

λ
M̄

−1
n−1 −

1
λ
M̄

−1
n−1∆n(xn − x̄n)TM̄

−1
n−1

λ + (xn − x̄n)TM̄
−1
n−1∆n

. (B.66)

With Eq. (B.83), we can finally compute the inverse of the covariance matrix with

Σ̄
−1
n = WnM̄

−1
n . (B.67)

In summary, we can write down the following rules for the recursive (iterative) estimation
of the mean vector and the covariance matrix, which should be processed in the given order:

Wn = λ ·Wn−µ + µ (B.68)
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W (2)
n = λ2 ·W (2)

n−µ + µ (B.69)

∆i = xi − x̄n−µ (B.70)

x̄n = x̄n−µ +

∑n
i=k ∆i

Wn

(B.71)

Dn =
(
∆k ∆k+1 · · · ∆n

)T
(B.72)

X n =
(
xk − x̄n xk+1 − x̄n · · · xn − x̄n

)T
(B.73)

M̄n = λM̄n−µ + DT
nX n (B.74)

M̄
−1
n =

1

λ
M̄

−1
n−µ −

1

λ
M̄

−1
n−µD

T
n

(
λI + X nM̄

−1
n−µD

T
n

)−1

X nM̄
−1
n−µ (B.75)

Σ̄n =
M̄n

Wn

, Σ̄
−1
n = WnM̄

−1
n . (B.76)

where µ is the batch size and k = n− µ + 1 is the first index in the new batch. Again, for
an unbiased estimate of Σ̄ one should either use Eq. (B.42) or Eq. (B.43).

For a fully online estimation (batch size µ = 1, k = n), above update rules simplify to:

Wn = λWn−1 + 1 (B.77)

W (2)
n = λ2Wn−1 + 1 (B.78)

∆n = xn − x̄n−1 (B.79)

x̄n = x̄n−1 +
∆n

Wn

(B.80)

M̄n = λM̄n−1 + ∆n(xn − x̄n)T (B.81)

M̄
−1
n =

1

λ
M̄

−1
n−1 −

1
λ
M̄

−1
n−1∆n(xn − x̄n)TM̄

−1
n−1

λ + (xn − x̄n)TM̄
−1
n−1∆n

(B.82)

Σ̄n =
1

Wn

M̄n, Σ̄
−1
n = WnM̄

−1
n . (B.83)

In Sec. B.2.4, we show that the memory of the fully online estimator is approximately:

nmem ≈
1 + λ

1− λ
.

B.2.3 The Covariance of Weighted Sample Means

In this section, we will derive a formula to compute the covariance of the weighted sample
means. This formula will be important in the following section to roughly approximate the
memory of the estimator for the sample mean and covariance matrix with exponentially
decaying weights.
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Typically, when one computes the conventional sample mean, the covariances of the
sample mean vector x̄n (note: here we are talking about the covariance matrix for the
sample mean x̄n and not the estimated covariance matrix of the sample itself. This is
somewhat similar to the computation of the standard error of the mean.) will tend to zero
as the sample size n grows larger. Similarly to the standard error of the mean, which can
be expressed as

σ2
X̄ =

σ2

n
, (B.84)

the expected covariance matrix ΣX̄ is

ΣX̄ =
1

n
Σ, (B.85)

which indicates, that for a sufficiently large sample n, the estimated mean x̄n will most
likely be relatively close (under the typical conditions) to the real mean µX of the underlying
distribution.

However, if the weighted sample means and covariances are computed, this is no longer
necessarily the case. As we will see later, in the weighted case, the elements in the covariance
matrix of the sample mean will not converge towards zero in certain situations, implying
that the sample mean will not converge to the real mean. Some variance will remain in
the estimation, and increasing the sample size will not change this. In such cases, we can
say that the estimator has a ”limited memory”. This may be undesirable when estimating
stationary distributions on the one hand. On the other hand, a limited memory can make
sense if certain statistics of the underlying distribution (e.g., the means or variances) change
over time (often called concept drift or concept change), since the estimator can then forget
about the past and learn to adapt its parameters to the drifting distribution. To understand
the effects that weighted sample statistics generate, we investigate in this section how the
covariance of weighted means behave in different settings.

Let us first derive a formulation for the covariance of two weighted means X̄n and
Ȳn, which are computed for the two jointly distributed random variables X and Y. The
covariance of two jointly distributed random variables is defined as:

cov(X, Y ) = IE[(X − IE[X])(Y − IE[Y ])]

= IE[XY ]− IE[X]IE[Y ].

Then, the covariance of the two sample means X̄n and Ȳn is:

cov(X̄n, Ȳn) = cov

(∑n
i=1w

′
iXi∑n

i=1w
′
i

,

∑n
i=1w

′
iYi∑n

i=1w
′
i

)
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= cov

(
1

Wn

n∑
i=1

w′
iXi,

1

Wn

n∑
i=1

w′
iYi

)
(B.86)

with random variables Xi and Yi and where

Wn =
n∑

i=1

w′
i.

Let us assume that all weights are already normalized so that

wi =
w′

i

Wn

=
w′

i∑n
i=1w

′
i

.

Then, Eq. (B.86), simplifies to:

cov(X̄n, Ȳn) = cov

(
n∑

i=1

wiXi,
n∑

i=1

wiYi

)

= IE

[
n∑

i=1

wiXi ·
n∑

j=1

wjYj

]
− IE[X̄n]IE[Ȳn] (B.87)

Let the expected values µX̄n
= IE[X̄n] and µȲn

= IE[Ȳn] be the real means of the two jointly
distributed random variables, so that Eq. (B.87) can be written as:

cov(X̄n, Ȳn) = IE

[
n∑

i=1

wiXi ·
n∑

j=1

wjYj

]
− µX̄n

µȲn

= IE

[
n∑

i=1

n∑
j=1

wiwjXiYj

]
− µX̄n

µȲn

= IE

[
n∑

i=1

w2
iXiYj +

n∑
i=1

n∑
j=1
j ̸=i

wiwjXiYj

]
− µX̄n

µȲn
(B.88)

Note that in above Eq. (B.88), the original sum was split into two, so that the paired
(mutually dependent) data points (Xi, Yi) share the same sum. All other pairs {(Xi, Yj) | i ̸=
j} are statistically independent and can be treated differently in the following. With the
relation

IE[XY ] = IE[X]IE[Y ],
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for independent random variables X and Y, we get for Eq. (B.88):

cov(X̄n, Ȳn) = IE

[
n∑

i=1

w2
iXiYj +

n∑
i=1

n∑
j=1
j ̸=i

wiwjXiYj

]
− µX̄n

µȲn

= IE

[
n∑

i=1

w2
iXiYj

]
+ IE

[
n∑

i=1

n∑
j=1
j ̸=i

wiwjXiYj

]
− µX̄n

µȲn

=
n∑

i=1

w2
i IE[XiYj] +

n∑
i=1

n∑
j=1
j ̸=i

wiwjIE[XiYj]− µX̄n
µȲn

=
n∑

i=1

w2
i IE[XiYj] +

n∑
i=1

n∑
j=1
j ̸=i

wiwjIE[Xi]IE[Yj]− µX̄n
µȲn

. (B.89)

Since IE[Xi] = µXi
= µX̄n

and IE[Yi] = µYi
= µȲn

(the expected value of the sample mean is
the same as the expected value of each element of the sample), we can continue with

cov(X̄n, Ȳn) =
n∑

i=1

w2
i IE[XiYj] +

n∑
i=1

n∑
j=1
j ̸=i

wiwjIE[Xi]IE[Yj]− µX̄n
µȲn

=
n∑

i=1

w2
i IE[XiYj] + µX̄n

µȲn

n∑
i=1

n∑
j=1
j ̸=i

wiwj − µX̄n
µȲn

=
n∑

i=1

w2
i

[
cov(Xi, Yi) + µX̄i

µȲi

]
+ µX̄n

µȲn

n∑
i=1

n∑
j=1
j ̸=i

wiwj − µX̄n
µȲn

=
n∑

i=1

w2
i

[
cov(Xi, Yi) + µX̄n

µȲn

]
+ µX̄n

µȲn

n∑
i=1

n∑
j=1
j ̸=i

wiwj − µX̄n
µȲn

=
n∑

i=1

w2
i cov(Xi, Yi) +

n∑
i=1

w2
i µX̄n

µȲn
+ µX̄n

µȲn

n∑
i=1

n∑
j=1
j ̸=i

wiwj − µX̄n
µȲn

=
n∑

i=1

w2
i cov(Xi, Yi) + µX̄n

µȲn

n∑
i=1

w2
i + µX̄n

µȲn

n∑
i=1

n∑
j=1
j ̸=i

wiwj

︸ ︷︷ ︸
both sums can be merged again

−µX̄n
µȲn
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=
n∑

i=1

w2
i cov(Xi, Yi) + µX̄n

µȲn

n∑
i=1

n∑
j=1

wiwj − µX̄n
µȲn

=
n∑

i=1

w2
i cov(Xi, Yi) + µX̄n

µȲn

n∑
i=1

wi

n∑
j=1

wj︸ ︷︷ ︸
=1

−µX̄n
µȲn

=
n∑

i=1

w2
i cov(Xi, Yi) + µX̄n

µȲn

n∑
i=1

wi︸ ︷︷ ︸
=1

−µX̄n
µȲn

=
n∑

i=1

w2
i cov(Xi, Yi) + µX̄n

µȲn
− µX̄n

µȲn

=
n∑

i=1

w2
i cov(Xi, Yi) (B.90)

Finally, since all pairs (Xi, Yi) are independent and identically distributed (IID), we can
write:

cov(X̄n, Ȳn) =
n∑

i=1

w2
i cov(Xi, Yi)

= cov(X, Y )
n∑

i=1

w2
i . (B.91)

This simple relation that we finally derived in Eq. (B.91) will help us later to determine
the ”memory” of exponentially decaying weighted estimators.

B.2.4 Memory of the Exponentially Decaying Estimator

Due to the exponentially decaying weights, the estimator described in Sec. B.2.2 has a
limited historical memory since older observations fade out more and more with every new
data point. With such an approach, it is possible to adapt the parameters to drifting
(changing) distributions, however, at the cost of less accuracy when the data generating
process is a stationary distribution. For example, this means that for forgetting factors
λ < 1, the (co-) variances of the mean vector do not converge to zero for large sample sizes
n. There will always be some fixed amount of noise left in the estimation, depending on
the ”rate” of forgetting (specified by λ). In this section, we attempt to answer the following
question:
What is the memory nmem of an estimator with exponentially decaying weights? Hence: For
which sample size nmem, when computing the ordinary mean (without forgetting) instead,
can we obtain the same distribution parameters µX̄ and ΣX̄? In other words, we are looking
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for a corresponding ordinary estimator that only considers the last nmem data points to
compute the mean.
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Figure B.1: Comparison of the distributions of the sample means (104 samples, sampled from a uniform
distribution) for the unweighted and weighted case. The forgetting factor for the weighted estimator is set to
λ = 0.99. The unweighted estimator computes the mean for samples of size nmem = 199. Both distributions
match closely, confirming our finding regarding the memory of the exponentially decaying estimator.

Intuitively, one might assume for the second question that the sample size n for the
ordinary mean corresponds to the value of the normalization factor Wn since for large n,
Wn converges – according to

Wn =
n∑

i=1

w′
i =

n∑
i=1

λn−i =
1− λn

1− λ

– towards a fixed value (for λ < 1):

lim
n→∞

Wn = lim
n→∞

1− λn

1− λ
=

1

1− λ
.

For example, for a forgetting factor of λ = 0.99, Wn converges towards Wn = 100.
Hence, one would be tempted to assume that nmem = Wn = 100. However, if we test this
hypothesis in a small simulation, we find that memory must be larger. Hence, we have to
find another way to estimate the memory nmem. We can do this by actually computing
the covariance matrix for the weighted mean. The derivations are shown in the previous
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section, in which the following resulting equation is found:

cov(X̄n, Ȳn) =
n∑

i=1

w2
i cov(Xi, Yi)

= cov(X, Y )
n∑

i=1

w2
i .

If we extend the above equation to the setting with exponentially decaying weights, we
obtain:

n∑
i=1

w2
i =

n∑
i=1

(λn−i

Wn

)2
=

n∑
i=1

(λn−i)2

W 2
n

=
n∑

i=1

λ2(n−i)(∑n
i=1 λ

n−i
)2

=
n∑

i=1

λ2(n−i)(
1−λn

1−λ

)2 =
( 1− λ

1− λn

)2 n∑
i=1

λ2(n−i)

=
( 1− λ

1− λn

)21− λ2n

1− λ2
.

For 0 < λ < 1 and large n, the above expression converges towards

lim
n→∞

n∑
i=1

w2
i = lim

n→∞

( 1− λ

1− λn

)21− λ2n

1− λ2
=

(1− λ)2

1− λ2
.

Due to the central limit theorem (CLT), we know that the ordinary mean vector X̄n is
distributed as

X̄n ∼ N
(
µX ,

1

n
Σ
)
,

so that we have to solve the following correspondence for nmem:

Σ
1

nmem

= Σ ·
n∑

i=1

w2
i

nmem =
1∑n

i=1w
2
i

=
(1− λn

1− λ

)2 1− λ2

1− λ2n
,
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For large sample sizes n, nmem converges to:

lim
n→∞

nmem =
1− λ2

(1− λ)2
=

1− λ2

(1− λ)2
· 1 + λ

1 + λ

=
1 + λ

1− λ
· 1− λ2

(1 + λ)(1− λ)
=

1 + λ

1− λ
· 1− λ2

1− λ2

=
1 + λ

1− λ
.

For our previous example with λ = .99, this would mean that the memory of the estimator
is approx. nmem ≈ 199. The distributions of the sample means for the weighted and
unweighted estimator are visualized in Fig. B.1.

In this section, we found that the memory of the exponentially decaying estimator of
the sample mean and sample covariance has a memory of approximately:

nmem ≈
1 + λ

1− λ
. (B.92)

B.3 Relationship of the Mahalanobis Distance and the

Chi-Square Distribution

In practice, sometimes (multivariate) Gaussian distributions are used for anomaly detec-
tion tasks (assuming that the considered data is approximately normally distributed): the
parameters of the Gaussian can be estimated using maximum likelihood estimation (MLE)
where the maximum likelihood estimate is the sample mean and sample covariance matrix.
After estimating the distribution parameters, one has to specify a critical value (anomaly
threshold) that separates the normal data from the anomalous data. One possibility is, to
determine the critical value based on the probability density function (PDF). A new data
point can then be classified as anomalous if the value of the PDF for this new point is below
the critical value. In the univariate case, the boundary separates the lower and upper tails
of the Gaussian from its center (mean). For a 2-dimensional distribution, the boundary
is an ellipse around the center, and in higher dimensions, the boundary can be described
by an ellipsoid. All points on the surface of such an ellipsoid have the same Mahalanobis
distance to the center of the distribution. Hence, one can also specify a Mahalanobis dis-
tance as an anomaly threshold and separate normal and anomalous data points according
to this distance metric. Generally, the Mahalanobis distance is parameter-free and does not
require any particular assumptions about the data distribution (such as a normal distribu-
tion). However, as we will show in the following, for (roughly) Gaussian-distributed data,
the squared Mahalanobis distance follows a Chi-square distribution. This relationship can
also be verified empirically with a quantile-quantile plot.
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B.3. RELATIONSHIP OF THE MAHALANOBIS DISTANCE AND THE
CHI-SQUARE DISTRIBUTION

B.3.1 Prerequisites

B.3.1.1 Matrix Algebra

Generally, the product of a n× ℓ matrix A and a ℓ× p matrix B is defined as:

(AB)ij =
m∑
k=1

AikBkj

Then, the multiplication of a matrix A with its transpose AT can be written as:

(AAT)ij =
ℓ∑

k=1

AikA
T
kj =

ℓ∑
k=1

AikAjk,

AAT =
ℓ∑

k=1

aka
T
k , (B.93)

where ak is the kth column vector of matrix A.

B.3.1.2 Eigenvalues and Eigenvectors

When the eigenvectors of n× n matrix A are arranged in a squared n× n matrix U, where
the i-th column represents the i-th eigenvector u(i), we have:

AU = UΛ

A = UΛU−1, (B.94)

commonly referred to as eigenvalue decomposition, where Λ is a diagonal matrix containing
the eigenvalues λi of the corresponding eigenvectors. If A is a symmetric matrix, the
eigenvectors are orthogonal (orthonormal) and the matrix U is orthogonal as well (the
product with its transpose is the identity matrix). In this case U−1 = UT, and equation

(B.94) can be written as A = UΛUT. The square root of A (written here as A
1
2 ) – such

that A
1
2A

1
2 = A – can be written as:

A
1
2 = UΛ

1
2UT, (B.95)

A
1
2 ·A 1

2 = UΛ
1
2UTUΛ

1
2UT = UΛ

1
2 IΛ

1
2UT = UΛUT

= A.
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The eigenvalue decomposition of the inverse of a matrix A can be computed as follows,
using the associative property of the matrix product:

A−1 =
(
UΛU−1

)−1
=
(
U−1

)−1
Λ−1U−1 = UΛ−1U−1

= UΛ−1UT (B.96)

Note that Λ−1 is again a diagonal matrix containing the reciprocal eigenvalues of A.

B.3.1.3 Linear Affine Transform of a Normally Distributed Random Variable

If we apply a linear affine transform to a normal random variable X ∼ N (µx,Σx) with a
mean vector µx and a covariance matrix Σx, we obtain a new random variable Y :

Y = AX + b. (B.97)

One can compute the new mean µy and covariance matrix Σy for Y :

µy = IE{Y } = IE{AX + b} = AIE{X}+ b

= Aµx + b, (B.98)

Σy = IE{(Y − µy)(Y − µy)
T}

= IE{
[
(AX + b)− (Aµx + b)

][
(AX + b)− (Aµx + b)

]T}
= IE{

[
A(X − µx)

][
A(X − µx)

]T}
= IE{A(X − µx)(X − µx)TAT}
= AIE{(X − µx)(X − µx)T}AT

= AΣxA
T (B.99)

B.3.2 The Squared Mahalanobis Distance follows a Chi-Square
Distribution

In this section we prove the conjecture: ”The squared Mahalanobis distance of a Gaussian-
distributed random vector X and the center µ of this Gaussian distribution follows a Chi-
square distribution.”

B.3.2.1 Derivation Based on the Eigenvalue Decomposition

The Mahalanobis distance between two points x and y is defined as

d(x,y) =

√
(x− y)TΣ−1(x− y). (B.100)
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B.3. RELATIONSHIP OF THE MAHALANOBIS DISTANCE AND THE
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Thus, the squared Mahalanobis distance of a random vector X and the center µ of a
multivariate Gaussian distribution is defined as:

D = d(X,µ)2 = (X− µ)TΣ−1(X− µ), (B.101)

where Σ is a ℓ × ℓ covariance matrix and µ ∈ Rℓ is the mean vector. In order to achieve
a different representation of D one can first perform an eigenvalue decomposition on Σ−1

which is (with Eq. (B.96) and assuming orthonormal eigenvectors):

Σ−1 = UΛ−1U−1 = UΛ−1UT (B.102)

With Eq. (B.93) we obtain (cf. [15, p. 80]):

Σ−1 =
ℓ∑

k=1

λ−1
k uku

T
k (B.103)

where uk is the k-th eigenvector of the corresponding eigenvalue λk. Plugging (B.103) back
into (B.101) results in:

D = (X− µ)TΣ−1(X− µ) = (X− µ)T

(
ℓ∑

k=1

λ−1
k uku

T
k

)
(X− µ)

=
ℓ∑

k=1

λ−1
k (X− µ)Tuku

T
k (X− µ)

=
ℓ∑

k=1

λ−1
k

[
uT
k (X− µ)

]2
=

ℓ∑
k=1

[
λ
− 1

2
k uT

k (X− µ)
]2

=
ℓ∑

k=1

Y 2
k

where Yk is a new random variable based on an affine linear transform of the random vector

X. According to Eq. (B.98) , we have Z = (X − µ) ∼ N(0,Σ). If we set aT
k = λ

− 1
2

k uT
k

then we get Yk = aT
kZ = λ

− 1
2

k uT
kZ. Note that Yk is now a random variable drawn from a

univariate normal distribution Yk ∼ N(0, σ2
k), where, according to (B.99):

σ2
k = aT

k Σak = λ
− 1

2
k uT

k Σλ
− 1

2
k uk (B.104)

= λ−1
k uT

k Σuk (B.105)
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If we insert Σ =
∑ℓ

j=1 λjuju
T
j into Eq. (B.105), we get:

σ2
k = λ−1

k uT
k Σuk = λ−1

k uT
k

(
ℓ∑

j=1

λjuju
T
j

)
uk =

ℓ∑
j=1

λ−1
k uT

kλjuju
T
j uk

=
ℓ∑

j=1

λ−1
k λju

T
kuju

T
j uk

Since all eigenvectors ui are pairwise orthonormal the dotted products uT
kuj and uT

j uk will
be zero for j ̸= k. Only for the case j = k we get:

σ2
k = λ−1

k λku
T
kuku

T
kuk = λ−1

k λk||uk||2||uk||2 = λ−1
k λk||uk||2||uk||2

= 1,

since the the norm ||uk|| of a orthonormal eigenvector is equal to 1. Thus, the squared
Mahalanobis distance can be expressed as: D =

∑ℓ
k=1 Y

2
k , where Yk ∼ N(0, 1). Now the

Chi-square distribution with ℓ degrees of freedom is exactly defined as being the distribution
of a variable which is the sum of the squares of ℓ random variables being standard normally
distributed. Hence, D is Chi-square distributed with ℓ degrees of freedom.

B.3.2.2 Alternative Derivation Based on the Whitening Property of the Ma-
halanobis Distance

Since the inverse Σ−1 of the covariance matrix Σ is also a symmetric matrix, its square root
can be found – based on Eq. (B.95) – to be a symmetric matrix. In this case we can write
the squared Mahalanobis distance as

D = (X− µ)TΣ−1(X− µ) = (X− µ)TΣ− 1
2Σ− 1

2 (X− µ)

=
(
Σ− 1

2 (X− µ)
)T(

Σ− 1
2 (X− µ)

)
= YTY = ||Y||2

=
ℓ∑

k=1

Y 2
k

The multiplication Y = WZ, with W = Σ− 1
2 and Z = X − µ is typically referred to as a

whitening transform, where in this case W = Σ− 1
2 is the so called Mahalanobis (or ZCA)

whitening matrix. Y has zero mean, since (X−µ) ∼ N(0,Σ). Due to the (linear) whitening
transform the new covariance matrix Σy is the identity matrix I, as shown in the following
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(using the property in Eq. (B.99)):

Σy = WΣWT = Σ− 1
2Σ
(
Σ− 1

2

)T
= Σ− 1

2

(
Σ

1
2Σ

1
2

)(
Σ− 1

2

)T
= Σ− 1

2

(
Σ

1
2Σ

1
2

)
Σ− 1

2 =
(
Σ− 1

2Σ
1
2

)(
Σ

1
2Σ− 1

2

)
= I.

Hence, all elements Yk in the random vector Y are random variables drawn from independent
normal distributions Yk ∼ N(0, 1), which leads us to the same conclusion as before, that D
is Chi-square distributed with ℓ degrees of freedom.
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