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Chapter 8

Conclusion and Outlook

Time series anomaly detection is an intriguing and also challenging topic that will likely not
lose any of its relevance in the future. Today, accurate anomaly detection algorithms are
already critical in system health monitoring or predictive maintenance (PdM) applications or
in detecting intrusions into organizational networks. The need for reliable anomaly detection
methods is expected to increase in the coming years. Particularly in the industrial context,
in the course of ongoing digitization, it will become necessary to analyze growing volumes
of data in an automated manner using sophisticated and efficient algorithms.

During the work on this thesis, we had the opportunity to look into the broad domain of
time series analysis and anomaly detection and add several contributions to this field. Our
focus was on so-called unsupervised machine learning (ML) approaches, and we could intro-
duce several novel algorithms with state-of-the-art performance. In unsupervised anomaly
detection problems, a model attempts to learn the normal underlying behavior of a system
without an external supervisor. The model’s understanding of normality is then used to
detect abnormal (anomalous) events. Unsupervised learning tasks are usually considered
harder than their supervised counterparts since no target function exists, which defines the
notion of normal. Instead, the algorithm has to learn to separate normal from anomalous
behavior. The reason why unsupervised learning methods are used for anomaly detection
is that labeled data are usually rather sparse. In the following, we will conclude this thesis
with a short summary, by answering the research questions formulated at the beginning of
the thesis and by discussing open questions, and giving an outlook on possible future work.

8.1 Discussion

We have presented four different unsupervised anomaly detection algorithms (some of them
in several variants) in the course of this work: SORAD, DWT-MLEAD, LSTM-AD and,
TCN-AE. SORAD learns a simple regression model to predict future values of a time series
and simultaneously estimate the prediction errors’ mean and variance. It operates fully
online (or using small batches, or completely offline) and is up-and-running after a very
short transient phase. Overall, due to its capabilities to adapt to new concepts, SORAD
could outperform other state-of-the-art algorithms on Yahoo’s Webscope S5 benchmark,
which contains many non-stationary time series. Also, DWT-MLEAD can be either used in
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8.1. DISCUSSION

online or offline settings. The main idea behind DWT-MLEAD is to examine a time series at
different time scales using the discrete wavelet transform (DWT) to detect short-range and
longer-range anomalies. For long-range anomalies, DWT-MLEAD performs better than
SORAD. While SORAD and DWT-MLEAD were mostly tested on relatively short time
series with less than 10 000 points, our deep learning approaches LSTM-AD and TCN-
AE were applied to time series with length 100 000 or more. LSTM-AD uses a stack of
recurrent long short-term memory (LSTM) neural networks. Similarly to SORAD, it is
trained to predict normal time series behavior. However, LSTM-AD is extended in many
aspects, which allows it to learn complex temporal patterns (such as in ECG data). For
complex quasi-periodic time series, we found that the window-based error correction method
introduced in Chapter 6 is crucial to improving the overall detection accuracy of LSTM-
AD. While we did not test it yet, this method might also be beneficial for some of the other
algorithms. It could also be integrated into the actual learning procedure (currently, it is an
extra module applied after computing the prediction errors). LSTM-AD is trained offline
and cannot adapt to new concepts in non-stationary time series. However, we found that it
can be used for time series with weak non-stationary behavior, such as baseline wandering
or signal quality changes.

For TCN-AE, we revisited the idea of analyzing time series at different time scales.
This is achieved with a convolutional neural network architecture based on so-called dilated
convolutions (which have their origin in DWT). TCN-AE is a reconstruction-based algorithm
with a novel autoencoder architecture that can also be applied to unpredictable time series.
It is possible to increase TCN-AE’s receptive field exponentially with only a linear increase
in the number of trainable weights. Due to the exponentially increasing receptive field in
TCN-AE, it is the only algorithm that can learn long-term correlations in time series. Like
LSTM-AD, TCN-AE can also work with time series that exhibit some baseline wandering
or changes in the signal quality/noise. It significantly outperforms other state-of-the-art DL
architectures in terms of precision & recall, computation time, and the number of trainable
weights on the challenging ECG benchmark and MGAB (both introduced in Section 2.3).

Not surprisingly, our DL models LSTM-AD and TCN-AE require more training data
than the other approaches, mainly due to the large number of trainable parameters. Hence,
they are more likely to perform well when trained on longer time series with several ten-
thousand points but not when trained on small data sets with less than a few thousand
points. On the other hand, all algorithms can deal with very long time series and have no
restrictions in this regard.

The main ingredient for DWT-MLEAD and TCN-AE to reliably detect short- and long-
range anomalies simultaneously are their hierarchical temporal architecture and their ca-
pability to analyze time series at different time resolutions. The general idea in both ap-
proaches is that anomalies might become more apparent on some time scales than others.
DWT-MLEAD realizes this with a decimating DWT. In practice, the DWT of a signal is
computed by passing it through a series of filters and subsampling layers. The parameters
of the filters are not trainable and depend on the choice of the mother wavelet. Similarly,
TCN-AE uses dilated convolutional layers (which have their origin in DWTs), however, with
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trainable filters. In both approaches, the temporal receptive field can easily be doubled by
adding a new layer.

Theoretically, all our algorithms can process multivariate time series. However, in this
work, DWT-MLEAD was only tested on univariate time series and would require some
minor modifications for higher dimensions.
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ADVec [173]
√ √ √

DNN-AE [46, 58]
√ √ √

DWT-MLEAD (Ch. 5)
√

(
√

)
√ √ √ √

LSTM-AD (Ch. 6)
√

(
√

) (
√

)
√

LSTM-ED [108]
√

(
√

)
√ √

NuPIC [160]
√ √ √ √

SORAD (Ch. 4)
√ √ √ √

TCN-AE (Ch. 7)
√ √ √ √ √

Table 8.1: This table summarizes the suitability of various time series anomaly detection algorithms,
given different time series characteristics. A checkmark (in parentheses) indicates that an algorithm can
(partially) handle time series with the specified characteristic.

Based on the time series characteristics described in Section 2.4, we tried to indicate
in Table 8.1 for all algorithms used in this work, which ones might be suited for which
characteristics. For example, we expect that DL algorithms are generally less well suited
for data sets that are relatively small (less than a few thousand points). Most algorithms
investigated in this work should be applicable to multivariate time series or to time series
with weak non-stationary behavior. Algorithms that can run entirely online, such as SO-
RAD, generally tend to perform better than offline algorithms on time series with strong
non-stationary behavior.
In order to learn long-term correlations, a long temporal memory is required. Algorithms,
such as LSTM-ED or DNN-AE, designed to encode and reconstruct short sub-sequences,
do not scale well for increasing sub-sequence lengths and usually cannot learn long-term
correlations very well. On the other hand, TCN-AE exhibits a much longer memory than
recurrent architectures (e.g., LSTM or GRU) with the same capacity (network size) and
does not suffer from vanishing/exploding gradients. Hence, TCN-AE could be a reasonable
choice if long-term correlations in time series have to be learned. As described before, SO-
RAD, NuPIC, and LSTM-AD will likely not perform well on unpredictable (in the sense of
forecastable) time series since all three approaches rely on single-step or multi-step ahead
prediction.
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8.2. CONCLUSIONS

8.2 Conclusions

In Sec. 1.1.3, we posed research questions that motivated our work in the following. At this
point, we would like to revisit these questions and highlight the contributions that emerged
in their context.
Q1: Is it possible to successfully train and apply novel unsupervised machine learning
models for anomaly detection and do they advance the state of the art?
A1: Although it is challenging to analyze time series in an unsupervised fashion, especially
when considering the data’s temporal nature, we can answer this question mostly positively.
Overall, we introduced four different anomaly detection algorithms for time series, which
can be used in different contexts and show competitive performance when benchmarked
against other state-of-the-art algorithms: The online SORAD could significantly outper-
form other algorithms [173, 160] on non-stationary time series with short-term anomalies.
Our second online algorithm, DWT-MLEAD, is able to analyze time series on different time
scales and detect short-term and longer-term anomalies. It is better than other algorithms
[173, 160] when applied to benchmarks with anomalies being diverse in their time scales.
LSTM-AD is a DL model with several enhancements that obtains state-of-the-art results on
quasi-periodic time series such as ECG signals or the Mackey-Glass Anomaly Benchmark
(MGAB). TCN-AE is a novel reconstruction-based DL approach that analyzes time series at
different time scales and can learn long-term relationships. For a real-world anomaly detec-
tion task for ECG time series, TCN-AE outperforms other strong (DL) anomaly detection
algorithms [160, 46, 108] with respect to detection accuracy, model size, and computation
time, significantly improving the state of the art. All algorithms presented in this work are
unsupervised and do not require any ground truth labels for the training process. Only for
evaluation purposes, the anomaly labels are partly required, for example, to configure the
anomaly threshold of all algorithms in a way that allows a fair comparison (e.g., by achiev-
ing equal accuracy, EAC). Furthermore, none of the algorithms requires solely normal data
in order to learn the regular behavior of a time series (up to 5% of the data was anomalous
in the examples used in our experiments), demonstrating the algorithms noise resilience.
Contrary to other state-of-the-art algorithms, all of our algorithms are applicable to time
series with two or more dimensions. However, due to the lack of suitable benchmarking
data, we did not experiment with high-dimensional time series.

Q2: Given certain characteristics of the time series data, can we advise which algorithm is
most suited for detecting anomalies?
A2: To answer this research question, we investigated two aspects: (1) What are general
characteristics/properties of time series which are important in the context of anomaly de-
tection and for choosing suitable algorithms? (2) How do existing state-of-the-art algorithms
deal with these properties and can we find better approaches to analyze time series with
different characteristics? Based on the different problems that we studied, we found several
answers to both questions in the individual chapters, which are discussed on a higher level
considering the overall context in Section 8.1.
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In summary, we identified several recurring characteristics appearing in time series. Each
proposed algorithm addresses one or more of these characteristics. However, there is no uni-
versally applicable algorithm. All algorithms have their justification for different problems.
An important decision criterion for the choice of the algorithm is the data size. Deep learning
approaches (TCN-AE, LSTM-AD) tend to be less well suited for small data sets. Another
factor for many problems is to analyze a time series and to detect anomalies across different
frequency scales. The capability to learn long-term dependencies is necessary for many types
of problems and requires that the model has a large temporal receptive field (TCN-AE) or
an efficient temporal memory (LSTM-AD). Online and offline algorithms should be able to
process time series with weak forms of non-stationarity (e.g. baseline wandering, changes
in signal quality) which are ubiquitous in real-world problems. For strong non-stationary
behavior, algorithms with online adaptability (DWT-MLEAD, SORAD) are needed that
are stable on the one side and, on the other side, can learn new concepts in the data. Fi-
nally, the dimension of a time series plays an important role in the choice of the algorithm.
Some algorithms are better suited for multivariate time series than others. Although al-
ready mentioned (and although not directly related to the nature of a time series), we want
to emphasize that the available time series data usually does not permit to train super-
vised learning models in practice, due to the sparse amount of labeled data. Hence, all our
algorithms are trained in an unsupervised fashion.

Q3: How can online learning methods be successfully used for anomaly detection in time
series or data streams?

A3: We investigated this research question mainly in Chapter 4 and Chapter 5. Note that
while all our models can be run online on new data after training, only SORAD and DWT-
MLEAD are online adaptable; hence, we do not have to train them offline. Instead, they
only require a very short transient phase to be ready for use, and they can continually adapt
to new concepts in the data. SORAD uses the recursive least squares (RLS) algorithm to
learn its prediction model and estimates the mean and (co-) variance of the prediction errors
online. Additionally, it is possible to add a certain amount of forgetting to the RLS model
and to the estimation of the error distribution, which enables the online adaptability of the
algorithm. Although the regression model is linear, it can be augmented with non-linear
features, such as polynomials or radial basis functions (RBFs). DWT-MLEAD algorithm
can compute the (causal and decimating) discrete wavelet transform entirely online. For
individual frequency scales of the current DWT, the algorithm estimates a mean vector
and covariance matrix in an online fashion. It is also possible to add forgetting to DWT-
MLEAD so that the algorithm can adapt itself in non-stationary environments. The online
adaptability of SORAD and DWT-MLEAD appears to be beneficial for time series with
concept changes or drifts, as our experiments showed. Furthermore, both algorithms did
not show any signs of numerical instabilities or other diverging behavior.

LSTM-AD and TCN-AE are not online-adaptable in the sense that they continue ad-
justing their weights after the (offline) training. However, both algorithms are capable of
dealing with non-stationary artifacts such as baseline wandering.
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So far it is an open question to us whether DL models can be trained online. Today, most
online learning algorithms are designed to learn shallow models with convex optimization
(e.g., linear least squares) techniques. In this work we did not investigate to which extent
DL models, with highly non-convex objective functions, can be trained in an online fashion.
Hence, this research question cannot yet be answered conclusively and has much potential
for future investigations.

8.3 Future Work

Although we explored some challenges mentioned in the introduction and present novel
approaches to time series anomaly detection, many challenges beyond this work remain
that research could address in future work. Apart from the more detailed discussions in
the previous chapters on possible further work on individual problems and improvements
to particular algorithms, we see some more general points which are worth investigating in
the future:

Need for Better Benchmarks Although several benchmarks for time series anomaly
detection are publicly available and we could also design a challenging synthetic bench-
mark based on Mackey-Glass time series and construct a complex benchmark based on
ECG data, we have the impression that many of the current data sets do not adequately
reflect the reality that will prevail in the future. It will become increasingly difficult to
assess algorithms’ performance regarding their practicability for real-world problems based
on the current benchmarks. Many currently popular benchmarks contain only relatively
short (several thousand points) and only one-dimensional time series. However, applica-
tions today collect thousands of high-dimensional data points in a short time. Especially
for benchmarking DL approaches, many current benchmarks are insufficient due to their
somewhat limited size. Other issues are triviality (i.e., simple thresholding methods can de-
tect some anomalies), insertion of unrealistic synthetic anomalies into normal data, or the
translation of traditional classification problems into anomaly detection problems by sim-
ply re-labeling minority classes as anomalies. Another common problem is that not always
guidelines exist on how to measure an algorithm’s performance. For the same benchmark,
researchers assess algorithms’ performance in very different ways and report performance
metrics that are incomparable to other works. For these reasons, we believe there is a need
for better benchmarks in time series anomaly detection, which are relevant to practice and
widely accepted among the research community and allow a fair and thorough evaluation of
different approaches. These new benchmarks also require standardized rule sets that clearly
state how to assess the performance of an algorithm.

Interpretability Another issue that will likely get more relevant in the context of (time
series) anomaly detection is the interpretability of models. Interpretability is concerned with
the problem of getting some explanation or understanding for the decisions made by our
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models. In the context of anomaly detection, interpretability is linked to the question of
whether an algorithm can also identify the underlying cause of a detected anomaly. Usually,
an anomaly is associated with a problem in the monitored system or process. Hence, in
many real-world applications, it is not sufficient to solely detect anomalous behavior. To fix
the problem and possibly prevent further harm, it is also critical to identify the actual
source of the problem and find a way to handle this problem. In some cases, human
experts might be able to analyze the anomalous pattern and recognize the cause. However,
especially in high-dimensional & high-frequency time series, where anomalies might occur
only in a small subset of the high-dimensional space, this becomes increasingly difficult.
In other cases, it might be of interest to understand an algorithm’s decision to reduce
algorithmic bias (e.g., caused by biased training data) or to justify individual decisions.
While researchers have invested much effort in developing anomaly detection algorithms in
recent years, interpretable approaches have not received as much attention yet. Overall, we
see much potential in this area.

Integrating Expert Feedback All the anomaly detection algorithms presented in this
work and many approaches described in the literature are trained in an unsupervised fash-
ion. The main reason for this is that the available labeled data is sparse, and the few
labeled instances are needed for tuning and validation purposes. Unsurprisingly, many
anomaly detection models have a relatively low performance when initially deployed. That
is, the models produce many false alarms or overlook real anomalous behavior. One idea
to improve the overall prediction quality could be to integrate expert feedback into the
model during operation since human experts (such as machine operators) are commonly
involved in anomaly detection tasks and have to check and acknowledge alarms. With such
a human-in-the-loop (HITL) approach, the model could gradually adapt itself and improve
its predictions. However, one has to keep in mind that also expert feedback will mostly
be sparse and has to be handled efficiently so that the improvement will become apparent
in a reasonable time. Although some work exists on how to incorporate expert feedback
into anomaly detection [32, 138, 136], it is a mostly open research question how such addi-
tional information can be utilized efficiently, apart from simple adjustments of the anomaly
threshold.
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