
Machine learning and deep learning approaches for multivariate time
series prediction and anomaly detection
Thill, M.

Citation
Thill, M. (2022, March 17). Machine learning and deep learning approaches for multivariate
time series prediction and anomaly detection. Retrieved from
https://hdl.handle.net/1887/3279161
 
Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3279161
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3279161


Chapter 7

The Temporal Convolutional
Autoencoder TCN-AE

7.1 Introduction

In this chapter, we present TCN-AE, a temporal convolutional network autoencoder based
on dilated convolutions. Similar to the other anomaly detection algorithms discussed in this
thesis, TCN-AE trains completely unsupervised. In contrast to SORAD and LSTM-AD,
TCN-AE is a reconstruction-based algorithm instead of a prediction-based one.

In the first part of the chapter, we describe a relatively simple baseline version of the
algorithm (baseline TCN-AE) and demonstrate its capabilities by comparing it to other
state-of-the-art algorithms on a Mackey-Glass (MG) anomaly benchmark (MGAB). Fur-
thermore, we will see that our autoencoder is capable of learning interesting representations
in latent space.

In the second part of this chapter, we analyze the architecture of the baseline TCN-AE,
and we propose several enhancements that lead to TCN-AE in its current form. The final
algorithm shows its efficacy on the real-world MIT-BIH [52, 112, 113] data of patients with
cardiac arrhythmia, which we previously used in Chapter 6. Contrary to Chapter 6, we
now consider the data of 25 patients (ECG-25) instead of 13 (ECG-13), almost doubling
the amount of the benchmark data. TCN-AE also significantly outperforms several other
unsupervised state-of-the-art anomaly detection algorithms on this comprehensive anomaly
benchmark. Moreover, we investigate the contribution of the individual enhancements and
show that each new ingredient improves the overall performance on the investigated bench-
mark.

As we have already seen in the previous chapter, it is rather challenging to learn the
underlying structure of a system’s normal behavior, especially if one has to deal with pe-
riodic or quasi-periodic signals with complex temporal patterns. In such environments,
anomalies may be hard-to-detect deviations from the regular recurring pattern. Especially,
for prediction-based algorithms it is challenging to predict small, but random variations
in frequency/periodicity in quasi-periodic time series. ECG signals are a good example
for such time series. Due to the heart rate variability (HRV), which is the variance in
time between two heartbeats, it is rather difficult for a prediction-based algorithm to accu-

85



7.1. INTRODUCTION

rately predict the exact position (in time) of, for example, the next R-peak (typically, the
most characteristic peak in the signal). Even small shifts in predicted and actual R-peak
cause large prediction errors which might falsely be interpreted as anomalous. To account
for this variability in ECG signals, we introduced the window-based error correction for
LSTM-AD in the previous chapter. Another way to approach this problem could be to use
reconstruction-based (using an encoder and decoder architecture) anomaly detection algo-
rithms instead of prediction-based ones. The advantage of reconstruction-based algorithms
is that they do not require a time series to be predictable (in the sense of forecastable).
Instead, they have a bottleneck which forces them to learn the underlying patterns of (nom-
inal) time series. Most approaches found in the literature (see Chapter 3) are based on
(temporal) autoencoders which take short sub-sequences from a time series, encode them
into a latent-space vector, and attempt to reconstruct the sub-sequence based on the latent
vector. However, these kind of reconstruction-based algorithms have the disadvantage that
they are commonly limited to detecting anomalies in relatively short sub-sequences.

In this chapter, we propose a novel autoencoder architecture for sequences (time series),
called TCN-AE, which is inspired by temporal convolutional networks [13] and shows its
efficacy in unsupervised learning tasks. Contrary to other approaches, it does not encode
and reconstruct short sub-sequences. Instead, it can compress a whole time series into a
significantly shorter one, before reconstructing the original time series again. TCN-AE uses
so-called dilated convolutional layers to naturally create a large receptive field and process a
time series signal at different time scales. It consists of two parts, an encoder, and a decoder,
which are both trained simultaneously and learn to find a compressed representation of the
input time series (encoder) and reconstruct the original input again (decoder). Initially, we
study a baseline version of TCN-AE. Our experiments show that the baseline architecture
can learn interesting representations of sequences in latent space. When trained on (mostly)
normal data, the approach can also be used for anomaly detection tasks by using recon-
struction errors to predict anomaly scores. Only a small fraction of labeled data is needed
to find a suitable threshold for the anomaly score. This can also be fine-tuned in operation
with an already trained model.

For the initial benchmarking and comparison of our baseline algorithm, we use a syn-
thetic benchmark based on Mackey-Glass (MG) time series [106]. In its current form, the
Mackey-Glass Anomaly Benchmark (MGAB) consists of 10 MG time series in which anoma-
lies were inserted using a clearly defined procedure. Although the anomalies are inserted
synthetically, spotting them is rather difficult for the human eye. Due to the structured in-
sertion process and the clear labeling of nominal and anomalous data, no domain knowledge
is required to label the data correctly.

In the second part of the chapter we propose several enhancements for the baseline
TCN-AE architecture. Then, we test our model on the more challenging ECG-25 dataset
(introduced in Section 2.3.3), an anomaly benchmark consisting of 25 electrocardiogram
time series with a length of half an hour.

We formulate the following research questions for this chapter:

86



� Can unsupervised deep learning models learn to detect anomalies?
� Which models are best to process the complex and long-range temporal patterns ob-

served in periodic or quasiperiodic time series data?

The key findings of the research described in this chapter can be formulated as follows:

� Under certain (mild) assumptions, it is possible to train unsupervised Deep Learning
(DL) models for anomaly detection. The novel autoencoder approach is essential for
achieving this.

� It is essential to process the data on different time scales (like TCN and wavelets) and
utilize the information from different time scales in the anomaly detection process.

� TCN-AE outperforms all other considered state-of-the-art algorithms by more than
10% on the ECG-25 benchmark (Table 7.6).

Several earlier works inspired the TCN-AE architecture that is presented in this
chapter: While Holschneider et al. applied dilated convolutions in their ”algorithme à
trous” algorithm in the field of wavelet decomposition already in 1990 [65], more recently,
they have also been applied to deep learning architectures, where the parallels to the
non-decimating/stationary discrete wavelet transform (DWT) are still apparent: van der
Oord et al. [124] introduced the WaveNet architecture, which uses dilated convolutions for
the generation of raw audio. Yu & Koltun [182] successfully employed dilated convolutions
to the task of semantic image segmentation. Later, Bai et al. [13] proposed a more general
temporal architecture for sequence modeling, which they named temporal convolutional
network (TCN). Our work is built upon the work of Bai et al. To the best of our knowledge,
there is no earlier work that employs TCNs in an autoencoder-like architecture. We only
found one approach for time series anomaly detection that is based on TCNs [61]. However,
it does not use autoencoders. Its general idea is more similar to [107] and [161], which use
forecasting errors as an indication for anomalous behavior. Further related work concerened
with electrocardiography and anomaly detection in ECG signals is described in the previous
Chapter 6.

The rest of this Chapter is organized as follows: Section 7.2 introduces the dilated
convolution operation while Section 7.3 presents the baseline TCN-AE architecture and
describes several experiments with Mackey-Glass time series. Section 7.4 proposes several
enhancements for TCN-AE and discusses the results for extensive experiments on the ECG-
25 dataset. Finally, we conclude this work in Section 7.5.

7.2 Methods

In the following, we introduce the Temporal Convolutional Network Autoencoder (TCN-
AE), describe its main components, and discuss a few of its properties and application areas
for time series analysis. We will start with a baseline architecture and then later successively

87



7.2. METHODS

add several enhancements to this architecture. As the name suggests, TCN-AE is a convolu-
tional neural network architecture. Convolutional neural networks (CNNs) are broadly and
with great success used in computer vision applications, where other fully connected/dense
architectures commonly suffer from the curse of dimensionality. Convolutional nets have
several useful properties such as translation invariance, weight (parameter) sharing, and
computational efficiency, making them especially beneficial for computer vision tasks such
as image recognition, segmentation, or object detection. Their properties are also helpful
for time series processing, where typically 1D-convolutions are employed. Several architec-
tures, such as WaveNet [124], or temporal convolutional networks [13] take advantage of the
convolutional approaches developed for computer vision and adopt some ideas into the time
domain.

7.2.1 Intuition

TCN-AE is designed to learn how to encode or compress a sequence into a significantly
shorter sequence (using an encoder network) and subsequently reconstruct the original se-
quence from the compressed representation (using a decoder network).

The central idea is to create a bottleneck in the architecture that forces the network to
identify and capture the most useful (temporal) patterns in the raw input data and translate
them into efficient encodings. The encoded data should contain all the essential information,
allowing an accurate reconstruction of the original input. Ideally, the autoencoder learns to
ignore signal noise, redundancies, and other irrelevant information.

Conceptually, TCN-AE is similar to other classical (deep) autoencoder architectures.
The most common autoencoder architectures encode fixed-sized inputs into a latent space
representation and then use the latent variables to reconstruct the original input. Similarly,
the TCN-AE encodes sequences along the temporal axis into representation and then at-
tempts to reconstruct the original sequence. However, it differs from regular autoencoders
in so far in that it replaces the fully connected/dense layers with dilated 1D-convolutional
layers. Thus, the network can consider temporal relationships in the data more naturally
and flexibly regarding variable-size inputs. Furthermore, the temporal receptive field of
TCN-AE can be easily scaled and grows exponentially with an only linear increase in the
number of weights, which is especially important for time series containing long intricate
temporal patterns. Another advantage over other autoencoders is that TCN-AE (due to
the shared weights) potentially has fewer weights than dense AE architectures.

This idea can be used for several applications. The applications of (temporal) autoen-
coders are very diverse. In this work, we will focus on anomaly detection in time series.
Other applications could be time series (sequence) compression or representation learn-
ing [166], as we will investigate in Section 7.3.2.2.

88



7.2.2 Dilated Convolutions

Convolutional layers in neural networks comprise digital filters, which remove or amplify
individual components (frequencies) in a presented signal (for example, an image or a time
series). Formally, the filtering process can be described by the convolution operation. For
a one-dimensional signal x[n] (x[n] being the n-th element in the signal), x : T → R,
where T = {0, 1, . . . , T − 1}, the convolution with a (finite impulse response) filter h[n],
h : {0, 1, . . . , k − 1} → R is usually defined as:

y[n] = (x ∗ h)[n] =
k−1∑
i=0

h[i] · x[n− i], (7.1)

where y[n] ∈ R is the output of the filter, h[i] ∈ R is the i-th filter weight and k specifies
the length of the filter. The convolution operation can be thought of as sliding a window of
length k, which contains the filter weights h[i], over the input sequence x[n] and computing
a weighted average of x[n] with the weights h[i] in each time step. The resulting output
signal is one-dimensional and of length T − k + 1. In order to obtain an output signal
of the same length, the input sequence is usually padded with zeros before applying the
filter. Since the filter is only slid along the time axis, the operation is usually referred to as
one-dimensional convolution. The behavior of the filter is determined by h[n] (e.g., low-pass
or high-pass characteristics), and the central idea of convolutional neural networks is not to
pre-determine h[n] but rather to learn suitable filter weights based on the learning task.

Convolutional layers in neural networks usually deal with multivariate input signals x[n]
of dimension d, with x : T→ Rd. In this case, each dimension xj[n] is convolved separately
with its own sub-filter hj[n], h : {0, 1, . . . , k−1} → Rd, and y[n] (remaining one-dimensional)
is a dot product:

y[n] = (x ∗ h)[n] =
k−1∑
i=0

h[i]⊺ · x[n− i]. (7.2)

In contrast to the regular convolution operation (as specified above), the dilated convo-
lution [182] has an additional parameter, the so called dilation rate q ∈ N. It defines how
many elements in the input signal x[n] are skipped between filter tap h[i] and filter tap
h[i + 1]. The dilated convolution is written as:

y[n] = (x ∗q h)[n] =
k−1∑
i=0

h[i]⊺ · x[n− q · i]. (7.3)

For q = 1 the original convolution operation is obtained.

89



7.2. METHODS

In many applications also acausal convolutions are used. In this case, future values of a
sequence x[n] will be processed to generate output y[n]:

y[n] = (x ∗q h)[n] =
k−1∑
i=0

h[i]⊺ · x
[
n− q · ⌊i− k/2⌋

]
(7.4)

In this work, we experimented with causal and acausal convolutions for TCN-AE and
found acausal convolutions to produce slightly better results for the investigated anomaly
detection tasks (MGAB & ECG-25). Note that this comes at the cost of slight delays in
online settings.

When using dilated convolutions, one has to consider that a few properties of the fre-
quency response of the system also change: the system function of a regular convolution
(q = 1) for a one-dimensional input signal is given as

H(z) =
k−1∑
m=0

h[m] · z−m.

If we evaluate the system function H(z) on the unit circle described by z = ejω̂, we get
the frequency response of the system. The parameter ω̂ = ω

fs
is the so-called normalized

radian frequency, which is obtained by dividing the radian frequency ω by the sampling
frequency fs. In this case, the Nyquist frequency is π. For the dilated convolution, the
system function becomes:

H(zq) =
k−1∑
m=0

h[m] · z−q·m. (7.5)

This means that a dilation rate q > 1 implicitly increases the filter order and adds extra
poles and zeroes to the system. For example, if q = 2, then the filter order is doubled from
M = k − 1 to M = 2(k − 1) and at the same time 2(k − 1) zeroes/poles are added to the
system. For q = 4, the filter order is multiplied by a factor of 4 and so on. Effectively, the
frequency response becomes ”sharper” for larger q and the filter is more sensitive to small
changes in the frequency. In fact, the frequency response of the filter has a periodicity of
2π
q

. This can be easily verified if we insert z = ej(ω̂+
2π
q
) into Eq. (7.5):

H(zq)
∣∣∣
z=ej(ω̂+2π

q )
=

k−1∑
m=0

h[m] ·
(

ej(ω̂+
2π
q
)
)−q·m

=
k−1∑
m=0

h[m] · e−jω̂qme−j(2π)m

90



=
k−1∑
m=0

h[m] · e−jω̂qm

= H(zq)
∣∣∣
z=ejω̂

Figure 7.1 illustrates the discussed properties of dilated convolutions for several filters that
TCN-AE (described below) learned during its training. One can clearly see how the fre-
quency response evolves for increasing q. Note that the periodicity of the frequency re-
sponses, as shown in Figure 7.1, are solely defined by the dilation rate q. For example, this
means that for q = 8 we will – independently from the filter length and the filter weights –
always have a periodicity of π

4
for the frequency response, resulting in a ”rougher” landscape

than for q = 1. This realization was one of the reasons for introducing skip connections in
the architecture in order to reuse the outputs of different dilated convolutional layers (as
discussed in more detail in Section 7.4.1.1).

0 2

30

25

20

15

10

Am
pl

itu
de

 [d
B]

q=1

4

3

2

0

0 2

20

15

10

q=2

4

2

0

An
gl

e 
[ra

d]

0 2
 [rad]

27.5

25.0

22.5

20.0

17.5

15.0

12.5

Am
pl

itu
de

 [d
B]

q=4

16

12

8

4

0

0 2
 [rad]

35

30

25

20

15

q=8

24

16

8

0

An
gl

e 
[ra

d]

Figure 7.1: Illustration of the frequency responses of several filters taken from the first four dilated
convolutional layers of TCN-AE (which is described in more detail below). Several properties, mentioned in
Section 7.2.2, can be observed: For example, with increasing dilation rate q, the amplitude of the frequency
response becomes ”sharper” and the filter is more sensitive to small changes in the frequency of the input
signal. This is because dilation rates larger than q > 1 implicitly increase the order of the filter, and
additional zeros/poles are introduced in the complex frequency-domain representation of the filter. Also,
the phase (angle) of the displayed filters is as expected not linear since the symmetry of the filter weights
is generally not given in a dilated convolutional layer.

91



7.2. METHODS

7.2.3 Dilated Convolutional Layers in Neural Networks

The previous section described how a one-dimensional output signal y[n] is computed using
a filter. In practice, a convolutional layer is typically comprised of many discrete filters, and
the individual outputs y[n] are stacked into a so-called feature map. If a signal x[n] of length
Ttrain is passed through a convolutional layer with nfilters filters, the resulting feature map
has the dimension Ttrain × nfilters (for a padded signal). The weights h[i] of each filter are
considered learnable parameters, commonly trained using variants of the back-propagation
algorithm.

Many neural network architectures for sequence modeling (e.g., [13, 124]) utilize dilated
convolutions to create a hierarchical temporal model with a large receptive field, capable of
learning long-term temporal patterns in the input data. The main idea is to build a stack
of dilated convolutional layers, where the dilation rate increases with each added layer. A
common choice is to start with a dilation rate of q = 1 for the first layer of the network and
double q with every new layer. With this approach, we can increase the receptive field of
the model exponentially. In general, the receptive field r for the causal and acausal case is
given by:

rcausal = k · 2L−1, (7.6)

racausal = ⌊k/2⌋ · (2L+1 − 2) + 1, (7.7)

where L > 0 is the number of layers. If, for example, we build a stack of L = 5 dilated
convolutional layers with a kernel size of k = 3, the receptive field’s size will be 3 · 24 = 48
for the causal case and 26 − 1 = 63 for the acausal setting. The size of the receptive field
should be considered when choosing the length of the training sequences. For example, the
receptive field should not be larger than the length of the training sequences.

In summary, a convolutional layer can be mainly described by three parameters: The
dilation rate q, the number of filters nfilters, and the kernel size (filter length) k. A convo-
lutional layer maps an input sequence x : T → Rd to an output sequence y : T → Rnfilters .
Note, that the shape of the output does not depend on k.

Relation between Dilated Convolutions and the DWT The non-decimating dis-
crete wavelet transform (DWT) is, in some sense, related to dilated convolutional neural
network architectures. The regular DWT decomposes a time series into so-called approxi-
mation and detail coefficients. By repeated filtering of the input with low-pass and high-pass
filters, one obtains a hierarchical representation of the original signal on different frequency
scales.

While the regular DWT downsamples (decimates) the signal after every low-pass filter
by a factor of two, the non-decimating DWT removes all downsampling units. In turn, the
filters have to be dilated. The dilation rate (which is a power of two) specifies the gaps
between the filter taps. The non-decimating DWT is usually used in applications where one
wants to achieve translation invariance (at the cost of redundancy). Holschneider et al. [65]

92



proposed an efficient algorithm for computing the non-decimating DWT using dilated con-
volutions. Current deep learning architectures [124, 182, 13] based on dilated convolutional
layers are inspired by the earlier work of Holschneider et al. Dilated convolutional nets also
repeatedly filter a signal (e.g., time series or image) in a stack of convolutional layers. The
dilation rate q is usually doubled with every further layer.

There are also apparent differences: (a) The DWT filter weights depend on the mother-
wavelet choice and are fixed, while the weights of convolutional layers are learnable para-
meters. (b) The DWT does not use non-linear activation functions such as rectified linear
units (ReLU).

The baseline TCN-AE consists of two temporal convolutional neural networks
(TCNs) [13], one for encoding and one for decoding. Additionally, a downsampling
and upsampling layer are used in the encoder and decoder, respectively. The individual
components will be described in more detail in the following.

7.2.4 Temporal Convolutional Networks

The temporal convolutional network (TCN) [13] is inspired by several convolutional archi-
tectures [36, 48, 73, 124], but differs from these approaches insofar as it combines simplicity,
auto-regressive prediction, residual blocks, and very long memory. Essentially, a TCN is a
stack of n residual blocks. Each block consists of two serial sub-blocks, and each sub-block
is comprised of the following layers: a dilated convolutional layer, followed by a weight nor-
malization layer [145], a ReLu activation function [116], and a spatial dropout layer [152].
Furthermore, a skip (residual) connection [60] bypasses the residual block and is added to
the residual block’s output. A TCN is mainly described by three parameters: a list of dila-
tion rates (q1, q2, . . . , qL), the number of filters nfilters, and the kernel size k. The output of
each residual block and the final output is a sequence y : T→ Rnfilters . A full description of
TCN would be out of scope for this chapter. The reader is referred to [13] for the details.

7.2.5 Unsupervised Anomaly Detection with TCN-AE

A natural application of TCN-AE is the anomaly detection in time series. Although we
have not yet discussed the architecture of TCN-AE in detail, we can already describe how
its reconstruction errors are used to detect anomalous patterns. Due to the bottleneck in
the architecture, the training procedure forces TCN-AE to learn compressed encodings of
the input sequences, which capture the underlying structure of the data and allow accurate
reconstruction. Intuitively, we expect that TCN-AE reconstructs recurring nominal patterns
in a time series with only small errors. It focuses on minimizing the reconstruction error
of the nominal data that are in the vast majority during training. On the other hand,
when TCN-AE observes patterns that significantly differ from the norm, we expect higher
reconstruction errors.

To discover abnormal behavior, we slide a window of length ℓ over the reconstruction
error and collect the ℓ-dimensional vectors in an error matrix E. The purpose of the sliding

93



7.3. A BASELINE VERSION OF TCN-AE

window is to smoothen noisy events that might occasionally appear. The error matrix
E is passed to the outlier detection algorithm, which identifies unusual points in the ℓ-
dimensional space. The outlier detection algorithm outputs an anomaly score, which is
later thresholded. We experimented with different outlier detection algorithms and found
that a simple approach based on the Mahalanobis distance (line 15 in Algorithm 8) delivers
the best results. An advantage of the Mahalanobis distance is that it is parameter-free and
does not require any particular assumptions about the data distribution (such as normality).
The Mahalanobis distance only requires the invertibility of the covariance matrix. However,
in practice, there are rarely situations where the covariance matrix is non-invertible. We
summarize the anomaly detection algorithm for TCN-AE in Algorithm 8.

Note that although we train TCN-AE with the complete time series, the overall anomaly
detection algorithm consisting of TCN-AE and Mahalanobis distance calculation is entirely
unsupervised. The training procedure does not pass anomaly labels to the algorithm at any
time. Only for selecting an appropriate anomaly threshold on the Mahalanobis distance, we
permit all algorithms to use 10% of the anomaly labels, as described later in Sec. 7.4.2.2.

7.3 A Baseline Version of TCN-AE

7.3.1 The Baseline TCN-AE Architecture

For our initial experiments, we use TCN as a building block for a baseline temporal au-
toencoder, referred to as baseline TCN-AE. In later sections, we will modify the baseline
TCN-AE, add further enhancements to the architecture, and analyze their contribution to
the final TCN-AE architecture. The baseline TCN-AE consists of an encoder network enc(·)
and a decoder network dec(·).

The encoder enc(·), shown in Fig. 7.2, left, attempts to generate a compact representation
that captures the main characteristics of the input sequences and allows a reasonably good
reconstruction in later steps. In order to learn the important features in a sequence, it is
necessary to identify short-term as well as long-term patterns. The encoder takes an input
sequence, passes it through a TCN network, reduces the dimension of the feature map by
applying a 1× 1 convolutional layer1 [96, 156] and finally down-samples the series along the
time axis by a specified factor using an average-pooling layer. It does so by averaging groups
of size s along the time axis. The number of filters c in the 1× 1 convolution layer specifies
the dimension of the encoded representation and the sample rate s determines the factor, by
which the length T of the series is reduced. Hence, the original input x[n] will be compressed
into an encoded representation H[n] = enc(x[n]), where H : {0, 1, . . . , T/s− 1} → Rc.

The decoder dec(·), shown in Fig. 7.2, right, attempts to reconstruct the original input
sequence, using the output of the encoder as input. First, the length of the original series
has to be restored. We use a simple sample-and-hold interpolation for this purpose, which

1A 1× 1 convolution is a weighted average over all feature maps, taken at every time point. The weights
are learnable parameters.

94



Algorithm 8 General anomaly detection algorithm using the TCN-AE architecture. The
estimation of x̄ and Σ might also have to be computed in batches according to the method
described in Sec. B.2.1.

1 Adjustable parameters:

2 Mτ : anomaly threshold (see Sec. 7.4.2.1), ℓ: error window length

3 Ttrain: length of training sub-sequences, B: batch size

4

5 function anomalyDetect(x[n]) ▷ x : T→ Rd, T = {0, 1, . . . , T − 1}
6 Construct model tcnae() and Initialize the trainable parameters

7 Xtrain ← { Sub-sequences of length Ttrain taken from x[n] }
8 for {1 . . . nepochs} do
9 train(tcnae,Xtrain) ▷ Train with random mini-batches of size B

10 x̂[n]← tcnae(x[n]) ▷ Encode and reconstruct x[n]

11 e[n]← x[n]− x̂[n] ▷ reconstr. error e : T→ Rd

12 E[n]← slidingWindow(e[n], ℓ) ▷ E : T→ Rℓ×d

13 E′[n]← reshape(E[n]) ▷ E′ : T→ Rℓ·d

14 µ,Σ← estimate(E′[n]) ▷ Mean µ ∈ Rℓ·d, Cov. Mat. Σ ∈ Rℓ·d×ℓ·d

15 M [n]← (E′[n]− µ)⊺Σ−1(E′[n]− µ) ▷ Mahalanobis distance

16 a[n]←
{

0 if M [n] <Mτ
1 else

▷ Binary anomaly flags

17 return a[n] ▷ Return anomaly flag for each time series point

duplicates each point in the series s times. Subsequently, the upsampled sequence is passed
through a second TCN block, which has the same structure as the TCN block in the encoder
(but untied/independent weights). Finally, to restore the original dimension d, another
1 × 1-convolutional layer with d filters is used to obtain the reconstruction (the output)
x̂[n] = dec(H[n]), x̂ : T → Rd. The architecture of the baseline TCN-AE is depicted in
Figure 7.2. Once TCN-AE is trained, the input sequence and its reconstruction will be used
for detecting anomalies, as described in the next section.

7.3.2 Initial Experiments

7.3.2.1 Experimental Setup

Anomaly Detection Algorithms As before, all training algorithms are unsupervised,
i. e. they do not need the true anomaly labels during the training process. Only in order

95



7.3. A BASELINE VERSION OF TCN-AE

d
T

input

nfilters
T

TCN1

c
T

conv

c T/
s

pool

c
T

upsamp

nfilters
T

TCN2

d
T

output

enc(·) dec(·)

Figure 7.2: Architecture of the baseline TCN-AE as described in Section 7.3.1. The input of TCN-AE is
a sequence x[n] with length T and dimensionality d. The layers ”conv” and ”output” are 1×1 convolutions
with c and d filters, respectively. The TCNs have the dilation rates q . The layer ”pool” downsamples the
sequence by a factor s. Configuration for MGAB: d = 1, c = 8, nfilters = 20, and s = 42. Configuration for
ECG-25 benchmark: d = 2, c = 4, nfilters = 32, and s = 32.

to find a suitable anomaly threshold, a small fraction of labels is used, as described below.
Otherwise, the anomaly labels are only used at test time to evaluate the performance of
the individual algorithms. In one run, each algorithm is trained for ten rounds: in the i-th
round, the algorithms are trained on the i-th time series and evaluated on the time series
{1, . . . , 10} \ {i}. In total, we perform ten runs with different random seeds. In order to
find suitable hyper-parameters for each algorithm, we use the hyperopt library [14] and
optimize the F1-score on a separate MG time series. For all neural networks, we use the
Adam optimizer [82] to train the weights by minimizing the MSE loss. Additionally, all
time series (having a dimension of d = 1) are standardized to zero mean and unit variance.

DNN-AE [46]: we use a PyTorch [130] implementation for the anomaly detection algo-
rithm based on a deep autoencoder [58]. The algorithm requires several parameters, which
we choose as follows: batch size B = 100, number of training epochs nepochs = 40, sequence
length Ttrain = 150 and a hidden size of h = 10 for the bottle neck (which results in a com-
pression factor of Ttrain/h = 15 for each sequence). Finally, we set %Gaussian = 1%, which
specifies that 99% of the data is used to estimate a Gaussian distribution for the anomaly
detection task.

LSTM-ED [108] is also implemented using PyTorch and uses the following parameter
setting: batch size B = 100, number of training epochs nepochs = 20, sequence length

96



Ttrain = 300, hidden size h = 100 and %Gaussian = 1%. Both, encoder and decoder use a
stacked LSTM network with two layers.

NuPIC [160]: Numenta’s anomaly detection algorithm has a large range of hyper-
parameters which have to be set. We use the parameters recommended by the authors
in [89]. It is possible to tune the parameters with an internal swarming tool [3]. However,
this is a time-expensive process which is not feasible for the large MGAB dataset.

LSTM-AD [161]: here we select the following parameters: batch size B = 1024, number
of training epochs nepochs = 30, and sequence length Ttrain = 128. A 2-layer LSTM network
with 256 units in the first layer and 128 units in the second layer is used. The target horizons
are chosen to be H = (1, 3, . . . , 51).

TCN-AE (baseline): The main TCN-AE parameters are given in Fig. 7.2. Additionally
we use the sequence length Ttrain = 1050, batch size B = 32 and nepochs = 40. For baseline
TCN-AE, we use an existing TCN implementation in Keras [140]. The dilation rates are
q = (1, 2, . . . , 16) and the kernel size of the TCNs is set to k = 20.

We determine this threshold for all algorithms as follows: A sub-sequence containing
10% of the data is taken, and the anomaly threshold is optimized on this short sequence,
such that the F1-score is maximized. The optimal threshold is then fixed for the complete
time series, and the overall results are obtained. Since the results can vary depending on
which sub-sequence is used for the threshold adjustment, we repeat the above procedure,
similarly to k-fold cross validation, for ten different 10% sub-sequences of the considered
time series and record the results for the ten different sub-sequences.

7.3.2.2 Learning Time Series Representations

In our first experiment, we want to assess the capabilities of the TCN-AE architecture to
learn representations of time series. For this purpose, we train a TCN-AE model using many
different MG time series with a varying time delay parameter τ . Ideally, TCN-AE should
learn the main characteristics of the individual time series and find suitable compressed
representations. In our experiment, we use TCN-AE on 105 different Mackey-Glass time
series (104 for each τ in the range of τ = 11 . . . 20). Each time series of length 256 is
encoded into a 2-dimensional compressed representation. The algorithm is trained in an
unsupervised manner. Hence, τ is not passed to the algorithm at any time. Surprisingly,
even with this large compression rate of 128, TCN-AE can find an interesting embedding
for the MG time series, as depicted in Fig. 7.3 (top). For a certain τ , all samples are placed
in only one connected cluster (except for a few satellites), and these clusters are mostly –
with a few small exceptions – non-overlapping.

For comparison, we repeated the same experiment with the popular t-SNE [105] cluster-
ing algorithm. We executed t-SNE on a GPU with the help of a certain CUDA implemen-
tation [25]. We tried different parameter settings and finally fixed the perplexity parameter
to 200, the learning rate to 10, and the number of iterations to 104. The results for t-SNE
in Fig. 7.3 (bottom) indicate that it is not a trivial task to find suitable representations

97



7.3. A BASELINE VERSION OF TCN-AE

Figure 7.3: Top: 2d-representation of 105 (104 for each τ) different Mackey-Glass time series using TCN-
AE (baseline). The (unsupervised) algorithm is capable of learning an encoding which separates the MG
time series fairly well according to their τ value.
Bottom: 2d-representation of the same MG time series, but now using t-SNE [105] to find suitable encod-
ings.

98



Figure 7.4: Similar to Fig. 7.3 (top). But now we encode each MG time series into a 3d-vector.

for MG time series. t-SNE has more difficulties in comparison to TCN-AE to cluster all
sequences with a particular time delay parameter τ in only one connected region.

7.3.2.3 Anomaly Detection on the Mackey-Glass Anomaly Benchmark

In a second experiment, we compare TCN-AE to several state-of-the-art anomaly detection
algorithms on the Mackey-Glass Anomaly Benchmark. For each algorithm, except NuPIC,
ten runs were performed. Hence, for each algorithm and time series, ten different models
are trained, and each model is evaluated on the other nine time series. NuPIC is entirely
deterministic and does not require several runs. Additionally, as described in Section 7.3.2.1,
the anomaly threshold for each algorithm and time series is tuned on ten different sub-
sequences. We add up the TP, FN, and FP over all ten time series and summarize the
results in Tab. 7.1. Up to 100 anomalies can be detected in total. We can see that the
(deep) DNN-AE detects most of the anomalies (approx. 92), missing only about eight on
average. However, this result is achieved at the expense of producing many false-positives.
Overall, DNN-AE produces more than 60 false positives on average, while TCN-AE produces

99



7.3. A BASELINE VERSION OF TCN-AE

less than one. Hence, DNN-AE achieves the highest recall among all algorithms but ranks
only 3rd in F1-score, due to its low precision. TCN-AE scores best in F1-score and precision.
NuPIC has the poorest performance in all measures.

Table 7.1: Results for MGAB. The results shown here (mean and standard deviation of 10 runs and ten
sub-sequences, are for the sum of TP, FN, and FP over all ten time series. For each algorithm and time
series, the anomaly threshold was tuned on 10% of the data using a cross-validation approach: the threshold
is tuned on ten different 10%-sequences of the data.

TP FN FP Precision Recall F1-score
Algorithm

NuPIC [160] 3.00 97.00 132.00 0.02 0.03 0.03
LSTM-ED [108] 14.60± 5.86 85.40± 5.86 57.00± 20.43 0.21± 0.08 0.15± 0.06 0.17± 0.06
DNN-AE [58] 91.79± 1.22 8.21± 1.22 62.58± 13.65 0.60± 0.06 0.92± 0.01 0.72± 0.04
LSTM-AD [161] 88.80± 2.59 11.20± 2.59 0.62± 0.61 0.99± 0.01 0.89± 0.03 0.94± 0.01
TCN-AE 90.54± 1.72 9.46± 1.72 0.20± 0.47 1.00± 0.01 0.91± 0.02 0.95± 0.01
[this work]

7.3.3 Discussion

The initial results that we obtained with our new TCN-AE architecture are promising. The
learned representations (Fig. 7.3) on different MG time series appear to be useful and may
reveal interesting insights. For anomaly detection, we achieve with TCN-AE and LSTM-
AD the highest F1-score on the non-trivial MG benchmark. Remarkably, all algorithms
except NuPIC require many trainable weights. TCN-AE had 164 451 parameters, DNN-AE
241 526, LSTM-ED 244 101 and LSTM-AD 464 537. That is, the other high-performing
algorithms require 50%–300% more trainable weights than TCN-AE.

Generally, we would expect TCN-AE to perform better than, for example, DNN-AE on
tasks where a larger receptive field (memory) is required in order to detect anomalies since
its hierarchical architecture allows to exponentially increase the receptive field while the
number of parameters scales linearly.

Although the initial results of TCN-AE on MGAB look promising and although we could
observe that the algorithm is capable of learning representations of MG time series, there
are several limitations of the algorithm, which leave room for improvement and which we
are planning to address in the future work: (1) Many parameters (approximately 160 000)
are required for satisfactory MGAB results. TCN-AE’s performance significantly drops
if the number of filters nfilters and/or the kernel size k is reduced. (2) Baseline TCN-
AE is somewhat sensitive towards the maximum dilation rate qmax. For example, if we
add a dilated convolutional layer with qmax = 32 to both TCNs in the architecture, the
performance significantly drops. (3) The net requires relatively many epochs until it learns
the subtle differences between nominal and abnormal MG time-series patterns. TCN-AE
requires ≥ 40 training epochs to learn to detect anomalies on the MG time series. It has to

100



be investigated if this holds for other (real-world) applications as well and if optimizations
of the training-configuration might reduce the required epochs.

7.3.4 Summary

In this section, we proposed with TCN-AE an autoencoder architecture for multivariate time
series. We evaluated it on various Mackey-Glass (MG) time series for two relevant tasks:
representation learning and anomaly detection. The initial results on various Mackey-Glass
(MG) time series are promising. TCN-AE could learn a very interesting representation in
only two dimensions, which accurately distinguishes MG time series differing in their time
delay values τ (Section 7.3.2.2). On the Mackey-Glass Anomaly Benchmark (MGAB), TCN-
AE achieved better anomaly detection results than other state-of-the-art anomaly detectors
(Section 7.3.2.3).

In the following section, we will address the limitations of baseline TCN-AE mentioned
before and propose several extensions to improve the overall performance of TCN-AE.

7.4 An Improved TCN-AE Architecture

The goal of this section is to improve the baseline TCN-AE architecture based on the limi-
tations discussed in the previous section. Overall, we suggest six modifications. We analyze,
discuss, and compare the capabilities of the improved TCN-AE architecture on a challeng-
ing real-world HMS application, namely the detection of arrhythmias in electrocardiogram
(ECG) signals of heart patients.

7.4.1 Enhancements of the Baseline TCN-AE

7.4.1.1 Skip Connections

While experimenting with the encoder and decoder’s dilation rates, we noticed that the
performance of the baseline TCN-AE is somewhat sensitive to the choice of the maximum
dilation rate qmax. We believe that this problem occurs because only the TCN’s final dilated
convolutional layer is passed on to the following layer, i.e., the original TCN does not provide
any mechanisms for feature reuse. However, especially for TCNs, which process a time
series signal at different time scales, it might be detrimental to solely use the last dilated
convolutional layer’s output, since other time scales might also carry essential information.
Instead, it should be possible to access the features at all time scales.

To provide for the possibility of feature reuse in TCN-AE, we add so-called skip con-
nections to our architecture. A skip connection copies the output of a particular layer and
concatenates it to the input of a subsequent layer of the network. In our setup, we use
a concatenation layer in the end of encoder and decoder, which collects the outputs of all
previous dilated convolutional layers.

101



7.4. AN IMPROVED TCN-AE ARCHITECTURE

In the encoder shown in Fig. 7.5, we add skip connections from every dilated convolu-
tional layer to the encoder’s bottleneck (after reducing the number of channels to 16), where
the outputs of the individual layers are concatenated along the channel axis. The bottleneck
reduces the number of channels of the concatenated outputs with a 1 × 1-convolution and
downsamples the resulting signal to obtain a compressed encoding.

In the decoder shown in Fig. 7.6 we also place skip connections from each dilated con-
volutional layer to the output, where lastly, a 1× 1 convolution reconstructs the time series
with the original dimension d.

Relation to other Architectures Many modern DL architectures adopt skip connec-
tions. In ResNets [60], for example, shortcut connections perform an identity mapping,
skipping one or more layers. Their outputs are then added to the skipped layers’ outputs
(not concatenated as in our approach). ResNets were among the first architectures that
address the so-called degradation problem [60] (a problem observed in practice, where very
deep neural networks surprisingly produce higher training errors than shallow nets) and
have shown to improve the results on many problems.

In a DenseNet [66], each layer uses the output of all preceding layers as input and passes
on its output to all subsequent layers. Due to this structure, many direct connections are
necessary (in a network with L layers, there are L(L+1)/2 direct connections). Nonetheless,
the authors could significantly reduce the number of required parameters in the overall
network, since the number of filters in all layers could be decreased. DenseNets address
similar problems as ResNets and are insofar more similar to our TCN-AE in that they also
concatenate the feature maps of previous layers and do not add them (as in ResNets).

7.4.1.2 Dilation Rate Ordering

In the setup of the baseline TCN-AE, we use the identical TCN architecture for the encoder
and decoder, with the same number of filters nfilters, filter lengths k and dilation rates qi.
In the decoder of the baseline TCN-AE, right after the upsampling layer, the first dilated
convolutional layer has a dilation rate of q = 1. However, if we keep in mind that the
upsampling layer uses sample-and-hold interpolation, which repeats each sample s = 32
times, a dilation rate of q = 1 might be ineffective. Due to the upsampled signal’s coarse
structure, the filters are mostly moved over ranges of identical values. A straightforward
yet beneficial enhancement is to reverse the dilation rates in the decoder. Hence, now the
last dilated convolutional layer before the output layer will have a dilation rate q = 1, the
penultimate layer q = 2, and the first layer (after the upsampling layer) a dilation rate of
2L−1. With this approach, larger dilation rates are used on coarser levels. In our architecture
with L = 7 dilated convolutional layers, we use the dilation rates (1, 2, 4, . . . , 64) for the
encoder, and the dilation rates (64, 32, 16, . . . , 1) for the decoder (see the green sticks in
Fig. 7.5 and 7.6).

102



2
T

input

64 16
T

dConv1
(q=1)

64 16
T

dConv2
(q=2)

64 16
T

dConv7
(q=64)

7 · 16
T

concat1

4
T

4
T/

32

encoded

Figure 7.5: The architecture of TCN-AE’s encoder. The two-dimensional input ECG-signal (purple)
of length T , is passed through a stack of dilated convolutional layers (light orange, dConv1 – dConv7).
The light green boxes represent the filters of the dilated convolutions. Each dilated convolutional layer is
followed by a 1 × 1 convolution, which reduces the number of channels to 16. The outputs of the 1 × 1
convolutions are also concatenated in the block concat1 (blue). The dark blue blocks are identity mappings,
not altering the tensors. Overall, seven tensors are concatenated, resulting in 7 · 16 = 112 channels.
Finally, the concatenated tensor is compressed into the final encoded representation (red). The compressed
representation of the original input is then passed to the decoder (Figure 7.6).

7.4.1.3 Utilizing Hidden Representations for the Anomaly Detection Task

While studying the relation of dilated convolutions to the DWT (Section 7.2.3), we noticed
some similarities to our prior work [164]: In that work, we used the DWT to analyze a time
series signal on different frequency scales to detect anomalous behavior. Each frequency
scale was analyzed independently, and the aggregated results then led to an anomaly score
for each data point of the time series. Similarly, transferred to the TCN-AE architecture,
one could imagine that each dilated convolutional layer’s output corresponds to an indi-
vidual frequency/time scale, which already might carry useful information for the anomaly
detection task. Hence, it could be sensible to look at the reconstruction error signal of
TCN-AE and also individual hidden representations of the network to identify anomalies.

We take the output of each map-reduction layer (see section 7.4.1.4) in the encoder and
reduce the feature map channels with a 1 × 1-convolution to size one. This is like taking
each blue bar from Fig. 7.5 and reducing it to one output channel. We then stack each of the
reduced outputs onto the reconstruction error signal. If there are seven dilated convolutional
layers in the encoder (q = 1 . . . 64) and the reconstruction error signal is two-dimensional,
seven additional hidden representations will be stacked onto the reconstruction error signal.
We end up with a 9-dimensional signal to which we apply Algorithm 8. With this approach,

103



7.4. AN IMPROVED TCN-AE ARCHITECTURE

4 T/
32

input

4
T

upsamp

64 16
T

dConv8
(q=64)

64 16
T

dConv9
(q=2)

64 16
T

dConv14
(q=1)

7 · 16
T

concat3

2
T

decoded

Figure 7.6: The architecture of TCN-AE’s decoder. A compressed representation is given as input (purple)
and then upsampled (red layer) to the original length T . Similar to Figure 7.5, a stack of dilated convolu-
tional layers operates on the upsampled signal and the outputs of the 1×1 convolutions are concatenated in
the concat3 block. Finally, the output layer (convolution with linear activation), reconstructs the original
two-dimensional ECG sequence.

we can not only search for anomalies in the reconstruction error but also find irregularities
in various hidden feature representations of the input time series.

Note that this enhancement is not shown in Figs. 7.5 and 7.6 to keep the complexity of
the figures manageable.

7.4.1.4 Feature Map Reduction

A more technical enhancement of TCN-AE is the introduction of convolutional map re-
duction layers (commonly referred to as 1 × 1 convolutional layers) [96, 156], which are
regularly used in practice to reduce the dimensionality (the number of channels) of feature
maps and effectively reduce the number of trainable parameters in the overall architecture.
We experimented with 1 × 1 convolutional layers and found that they allow reducing the
overall number of parameters in the network, without sacrificing performance. Additionally,
we could observe a slight improvement in the training time. We place 1 × 1 convolutions
after each dilated convolutional layer, which reduces the number of channels from 64 to 16.

7.4.1.5 Anomaly Score Baseline Correction

While visualizing the anomaly score of the TCN-AE model for a few time series, we noticed
that the anomaly score did not always have a constant baseline, as one would expect. We
observed slight drifts in the baseline, which made it hard in some cases to find a suitable

104



threshold value. One reason for this phenomenon could be that certain statistical properties
of the signal (such as the random noise) change over time. Since these drifts correspond to
low-frequency components in the anomaly score, a simple way to remove them is to filter the
anomaly score. We decided to use a second-order Butterworth filter with a cutoff frequency
of 1Hz to remove the baseline wandering.

7.4.2 Experimental Setup

In this chapter, we compare all considered algorithms on the ECG-25 benchmark, described
in Section 2.3. If not stated otherwise, we sum TP, FN, and FP over all 25 ECG time
series. From these three quantities, the well-known metrics precision (Prec), recall (Rec),
and F1-score are derived.

7.4.2.1 Algorithmic Setup

We compare our unsupervised TCN-AE algorithm to four other unsupervised anomaly de-
tection algorithms: DNN-AE [46], LSTM-ED [108], LSTM-AD [161], and NuPIC [160].
They are based on deep autoencoders (DNN-AE), LSTM networks (LSTM-ED and LSTM-
AD), and hierarchical temporal memory, HTM (NuPIC).

All anomaly detection algorithms are trained in an unsupervised fashion. The actual
anomaly labels are only used at test time. The training process passes the complete time
series to the anomaly detection algorithm, and the algorithm learns a model for the provided
data and returns an anomaly score for each data point of the time series. We trained all
algorithms, except NuPIC (which does not support GPU capabilities), on a Tesla P100 GPU.
All algorithms require a set of hyperparameters, which we will describe in the following.
Parameters common to all algorithms are summarized in Tab. 7.2. We tuned the parameters
(except for TCN-AE and NuPIC) using the hyperopt library [14]. For TCN-AE, we
manually investigated different parameter settings, and for NuPIC, we use the recommended
parameter settings [89].

To obtain statistically sound results, we run each anomaly detection algorithm ten times
on all 25 ECG time series.

DNN-AE [46]: We use a PyTorch [130] implementation for the anomaly detection algo-
rithm based on a deep autoencoder [58]. The algorithm requires several parameters, which
we choose as follows: hidden size of h = 6 for the bottle neck (which results in a compression
factor of Ttrain/h = 25 for each sequence). Finally, we set %Gaussian = 1%, which specifies
that 99% of the data is used to estimate a Gaussian distribution for the anomaly detection
task.

LSTM-ED [108] is also implemented using PyTorch and has the following parameter
setting: %Gaussian = 3%. Both, encoder and decoder use a stacked LSTM network with two
layers, each having LSTM layer having 50 units.

NuPIC [160]: Numenta’s anomaly detection algorithm has a broad range of hyper-
parameters that have to be set. We use the parameters recommended by the authors

105



7.4. AN IMPROVED TCN-AE ARCHITECTURE

in [89]. It is possible to tune the parameters with an internal swarming tool [3]. However,
this is a time-expensive process which is not feasible for the large benchmark.

LSTM-AD (Chapter 6, [161]): A 2-layer LSTM network with 256 units in the first
layer and 128 units in the second layer is used. The target horizons are chosen to be
H = (1, 3, . . . , 49).

SORAD (Chapter 4, [163]) We use SORAD with mini-batch RLS – using small batches
to update the model instead of single examples (see Appendix B.1) – as a simple baseline
method. The batch size is set to µ = 256. The target horizons H = (1, 3, . . . , 49) are the
same as for LSTM-AD. The forgetting factor is set to λ = 0.98. The window length for
the sliding window is w = 128. Hence, the number of trainable weights of the model is 129
(including one bias weight). The regularization parameter was set to β = 10−5.

TCN-AE (baseline): The settings of the baseline TCN-AE model (Figure 7.2) mostly
correspond to the settings of the final variant. Only the maximum dilation rate is chosen
smaller so that q = (1, 2, . . . , 32) and the number of filters for each dilated convolutional
layer is reduced to nfilters = 32. Nonetheless, the number of trainable parameters of the
baseline TCN-AE is larger due to the two consecutive layers which are created for each
individual dilation rate. For baseline TCN-AE, we use an existing TCN implementation in
Keras [140].

TCN-AE (final): We implemented TCN-AE using the Keras [30] & TensorFlow frame-
work [1]. An overview of the architecture with its parameters is given in Figures 7.5 and 7.6.
In both encoder and decoder we use 7 dilated convolutional layers each, with the dilation
rates q = (1, 2, . . . , 64) (encoder) and q = (64, 32, . . . , 1) (decoder), nfilters = 64 filters with a
kernel size of k = 8, and a ReLU activation. Each dilated convolutional layer is followed by
a 1× 1 convolutional layer with nfilters = 16 filters, which reduces the feature maps from 64
to 16. The sample rate of the average pooling layer is s = 32 and the error window length
for the anomaly detection in Algorithm 8 is ℓ = 128. For MGAB, we use q = (1, 2, . . . , 16),
nfilters = 32, k = 25, B = 64, nepochs = 10, Ttrain = 1050, nfilters = 16 filters for the skip
connections, s = 6, and ℓ = 128.

Table 7.2: Summary of the common parameters of the neural-network-based anomaly detection algorithms
used in this work.

Algorithm B nepochs Ttrain Loss Optimizer Initializer
TCN-AE 64 10 1024 logcosh Adam Glorot Normal [50]

DNN-AE 100 25 150 MSE Adam U(−
√
k,
√
k), k = 1

fanin

LSTM-ED 100 10 30 MSE Adam U(−
√
k,
√
k), k = 1

fanin

LSTM-AD 512 25 256 MAE Adam Glorot Uniform [50]

106



7.4.2.2 Evaluation

For most results presented in this section, we use the EAC criterion to determine precision,
recall and F1-score. To evaluate the performance of the algorithms over a wide range of
anomaly thresholds, we also generate a precision-recall curve. In the other cases, we select
an optimal threshold in a supervised manner for a small fraction of the time series data
and then apply this threshold to the overall time series. If not stated otherwise, we select
a segment containing 10% of a time series and find the threshold which maximizes the F1-
score on this small subset. Since the results may vary, depending on which 10%-segment
is used, we repeat the whole evaluation procedure 10 times and average the results: adjust
the threshold on 10% of the data, evaluate on the remaining 90% of the data. We assess
the significance of the results with the non-parametric Wilcoxon signed-rank test [178] and
report the p-values.

7.4.3 Evaluation of TCN-AE on MGAB

Before performing the experiments on the ECG-25 benchmark, we first run our enhanced
TCN-AE algorithm on MGAB and compare the results with the results reported in the
previous section. The anomaly threshold is determined by using 10% of the anomaly labels
supervisedly, as described in the experimental setup (Sec. 7.3.2.1) of the previous section.
The results for the final TCN-AE model are summarized in Table 7.3 and compared to the
three other best models. The results for TCN-AE (baseline), LSTM-AD and DNN-AE are
copied from Table 7.1. We can see that the performance of TCN-AE (final) is similar to
TCN-AE (baseline) and LSTM-AD. However, instead of originally 164 451 trainable weights,
TCN-AE (final) now only has 38 423 weights. Also the computation time could be drastically
reduced from an aaverage time of 65 seconds (baseline) to about 17 seconds / time series.

Table 7.3: Similar to Table 7.1. Here, we also list the results for TCN-AE (final). Additionally, we also
list the p-values, indicating the significance of the results.

TP FN FP Precision Recall F1

Algorithm

DNN-AE [58] 91.8± 1.2 8.2± 1.2 62.6± 13.6 0.600± 0.058 0.918± 0.012 0.724± 0.043
LSTM-AD (Ch. 6,[161]) 88.8± 2.6 11.2± 2.6 0.6± 0.6 0.993± 0.007 0.888± 0.026 0.937± 0.014
TCN-AE (final) 90.6± 1.9 9.4± 1.9 0.4± 0.7 0.995± 0.008 0.906± 0.019 0.948± 0.010
TCN-AE (baseline) 90.5± 1.7 9.5± 1.7 0.2± 0.5 0.997± 0.011 0.905± 0.021 0.949± 0.010

7.4.4 Experiments, Results & Discussion for the ECG-25 Bench-
mark

We started our experiments with the baseline TCN-AE model (Section 7.3.1). The initial
results on the ECG-25 benchmark were already promising, but the algorithm still performed

107



7.4. AN IMPROVED TCN-AE ARCHITECTURE

M
LI

I
V5

original reconstruction error

Figure 7.7: Excerpt showing how the final TCN-AE model reconstructs the modified limb lead II (MLII)
and the modified lead V1 of ECG signal #1. TCN-AE has difficulties in reconstructing actual anomalous
behavior (highlighted with the red shaded area). Due to the resulting large error, the algorithm later
correctly detects an anomaly (true positive).

similar to LSTM-AD and DNN-AE concerning the F1-score (Table 7.6), leaving room for
improvements. While analyzing the baseline TCN-AE, we developed several ideas for im-
provements, which we introduced in Section 7.4.1. The resulting (final) TCN-AE showed
significantly improved performance, achieving a higher precision and recall on 15 out of 25
time series of the benchmark. We perform a more detailed analysis of the contribution of
the individual enhancements in the following Section.

Figure 7.7 depicts an example for ECG signal #1, where the TCN-AE algorithm has
difficulties reconstructing the original time series due to an actual anomaly present. In this
case, the large construction error is correctly interpreted as anomalous behavior. For the
same example, we visualize selected activations of several layers inside the trained TCN-AE
in Figure 7.8. While the ECG’s general patterns are still visible in the initial layers of
the encoder, these disappear in later layers, and the activations do not seem to carry any
information appearing useful to the human eye. After being passed through the bottleneck
and upsampled again, only a 4-channel (from which one is depicted in the graph) step-
shaped signal remains. However, remarkably, the decoder can almost accurately restore the
original input sequence solely from this coarse representation (sixth row in the plot). Only

108



the anomalous pattern is incorrectly reconstructed, which results in a large reconstruction
error that can easily be detected.

7.4.4.1 Contribution of the Individual TCN-AE Components

In the following, we describe the impact of individual enhancements on the final TCN-AE,
which we introduced in Sec. 7.4.1.

Variant Section Comment
baseline 7.3.1 Baseline algorithm based on TCNs without any enhancements
noSkip 7.4.1.1 Skip-Connections removed from the architecture

noInvDil 7.4.1.2 Use same dil. rate ordering for encoder & decoder
noLatent 7.4.1.3 Do not use hidden represenations for anomaly detection
noRecon 7.4.1.3 Only use hidden representations of encoder for anomaly detection

noMapReduc 7.4.1.4 Do not use the Map reduction layers
noAnomScoreCorr 7.4.1.5 Do not correct the baseline of the anomaly score

final 7.4.1 Final TCN-AE with all enhancements

Table 7.4: Summary of all TCN-AE variants

Although it is challenging to accurately measure each element’s effect on the final result
(since there might be some interaction effects between elements2), we can approximately
quantify the improvements with the following approach: In order to measure the contri-
bution of component C on the final result, we run TCN-AE on the benchmark with this
specific component turned off. If the component has a positive impact on the model, we
expect a poorer result, and the differences in precision, recall, and F1-score serve as a rough
indicator for the contribution of the component. Additionally, the p-value of the one-sided
Wilcoxon test signalizes the significance of the result. In Table 7.5, we summarize the
different variants of the TCN-AE algorithm. Further results are listed in Appendix A.

Overall, all the individual enhancements significantly improve the performance of TCN-
AE on the ECG-25 benchmark. As summarized in Table 7.5, the precision, recall and
F1-score all improve by around 10%. All enhancements have a significant impact on the
increase in performance, as indicated by the corresponding p-values. The p-values are also
illustrated graphically in a heat map in Figure 7.9 for all 25 time series of the benchmark.
We can see that the algorithm achieved an improvement for most time series. The exact
F1-scores for each TCN-AE variant and time series can be found in Table A.4. This table
also highlights the time series for which the p-values are above the significance level of 0.05.

Skip Connections The skip connections in TCN-AE allow the last layers of the encoder
and decoder to access all prior layers (having different dilation rates) directly. As shown

2We assume that the overall contribution of the individual components is larger than our estimations
due to the interaction effects which we cannot measure.

109



7.4. AN IMPROVED TCN-AE ARCHITECTURE

Input

dConv1 (q=1)

dConv3 (q=4)

dConv5 (q=16)

dConv7 (q=64)

Input Decoder

dConv8 (q=64)

dConv10 (q=16)

dConv12 (q=4)

dConv14 (q=1)

Output

Figure 7.8: Activations inside the trained final TCN-AE model for several layers of the network. For each
dilated convolutional layer, we plot the channel (signal) with the largest mean absolute activation. If we
compute and plot the mean over all channels, we get structurally relatively similar results. The rows dConv1
– dConv7 refer to the activations of the dilated convolutions inside the encoder, while dConv8 – dConv14
are dilated convolutional layers inside the decoder. The input signal contains an anomaly (atrial premature
beat), highlighted with the red-shaded vertical bar. The decoder fails in reconstructing this segment of the
time series, which results in a significant deviation between the original and reconstructed signal.

110



1 2 3 4 8 9 10 11 12 13 14 15 16 17 18 20 21 22 23 26 28 33 39 42 48Sum
mean

median

LSTM-AD
DNN-AE

LSTM-ED
SORAD
NuPIC

TCN-AE baseline
noSkip

noLatent
noAnomScoreCorr

noInvDil
noRecon

noMapReduc

0.05

0.50

1.00

p-value

Figure 7.9: Heatmap, showing the p-values for the comparison of our final TCN-AE model to various
algorithms and other variants of TCN-AE for all 25 ECG signals of our benchmark. We use a one-sided
Wilcoxon signed-rank test for the F1-scores of ten runs each. The test has the null hypothesis that the
median F1-score of our final TCN-AE is smaller (than the compared algorithm) against the alternative
that the median F1-score is larger. The first four rows represent anomaly detection algorithms from the
literature, while the remaining rows are for different variants of the TCN-AE algorithm. In the cases where
the p-value is below the significance level of α = 0.05, the tiles are colored black (indicating a significantly
higher performance of TCN-AE). White tiles indicate that the F1-scores of TCN-AE and the compared
algorithm are exactly the same. The exact F1-scores are given in Table A.4 and Table 7.9.

Table 7.5: Impact of the individual TCN-AE components for the ECG-25 data (mean and standard
deviation of 10 runs). The results shown here are for the sum of TP, FN and FP over all 25 time series and
were obtained such that an approximate (difference of less than 1% in precision and recall) equal accuracy
(EAC) is achieved for each algorithm and time series.

TP FN FP Prec Rec F1 p
Algorithm

baseline 597.5± 5.1 123.5± 5.1 129.0± 5.2 0.822± 0.007 0.829± 0.007 0.826± 0.007 2.531e-3
noSkip 622.4± 5.7 98.6± 5.7 102.9± 5.7 0.858± 0.008 0.863± 0.008 0.861± 0.008 2.531e-3
noLatent 629.5± 5.2 91.5± 5.2 95.3± 5.4 0.869± 0.007 0.873± 0.007 0.871± 0.007 2.531e-3
noAnomScoreCorr 644.2± 3.6 76.8± 3.6 83.2± 3.7 0.886± 0.005 0.893± 0.005 0.890± 0.005 2.531e-3
noInvDil 653.6± 1.9 67.4± 1.9 72.2± 1.9 0.901± 0.003 0.907± 0.003 0.904± 0.003 2.531e-3
noRecon 656.9± 2.9 64.1± 2.9 69.9± 2.9 0.904± 0.004 0.911± 0.004 0.907± 0.004 2.531e-3
noMapReduc 660.7± 1.3 60.3± 1.3 65.1± 1.4 0.910± 0.002 0.916± 0.002 0.913± 0.002 8.302e-3
final 670.2± 2.4 50.8± 2.4 55.8± 2.4 0.923± 0.003 0.930± 0.003 0.926± 0.003 –

in Table 7.5 and Figure 7.9, this improvement has the highest impact on the performance
of TCN-AE: Without skip connections, the F1-score drops from F1 ≈ 0.93 to F1 ≈ 0.86.
However, for the model without the skip-connections, we had to decrease the number of
filters from nfilters = 64 to nfilters = 32; otherwise the results would be even worse.

111



7.4. AN IMPROVED TCN-AE ARCHITECTURE

We also experimented with different variants of a dense TCN-AE similar to a
DenseNet [66] (connecting all dilated convolutional layers with the preceding ones).
However, we decided to no longer pursue this approach, since the dense connections
increased the number of parameters and the computation time significantly without
considerably improving the results.

Although our primary purpose for the introduction of skip connections is to reduce the
sensitivity towards the maximum dilation rate and to enable the encoder/decoder to reuse
the features at different time scales, as a side effect, our TCN-AE architecture might also
benefit from other advantages associated with ResNets [60] or DenseNets [66]. Some of the
observed improvements might be due to a smoother curvature of the loss landscape [93],
alleviation the vanishing/exploding gradient problem & degradation problem due to gradient
shortcuts through the identity mappings of the skip connections, reduction of parameters,
and others.

We also tested higher dilation rates up to qmax = 1024 and found (apart from the higher
computation time and memory requirements3) that the results remained almost the same.
Only for qmax = 1024 we could observe a slight drop in the overall F1-score, from F1 ≈ 0.93
to F1 ≈ 0.91. Since the results do not change significantly with a larger stack of dilated
convolutional layers, this might imply that the TCN-AE model is capable of learning to
select the suitable features from the important time scales and to ignore the remaining
time scales which do not carry directly relevant features. In the baseline version, where no
skip connections were employed, the results significantly deteriorated for inappropriate (too
large/small) choices of qmax.

Dilation Rate Ordering In Figure 7.9, we can see that this reversed dilation rate scheme
improves the results on most of the considered 25 time series. While the reason for the
improvement is not entirely apparent yet, we assume that a larger dilation rate is beneficial
for the coarse step-shaped signal we have in the first layers of the decoder, and a lower
dilation rate is essential when we attempt to reconstruct the details of the original signal.

Detecting Anomalies in Hidden Representations of Time Series As discussed in
Section 7.4.1.3, we noticed that there are some similarities between the (stationary) discrete
wavelet transform (DWT) and DL architectures, which use stacks of dilated convolutional
layers. In [164], we used the DWT to decompose a time series and look for anomalous
behavior on different frequency scales. Similarly, we can also utilize the outputs of the
individual dilated convolutional layers, which process the time series on different time scales.
The general idea is that anomalies might become more apparent on some time scales than on
others and that one can already detect anomalous behavior on these hidden representations
rather than relying solely on the reconstruction error. In our first experiment, we used the

3Since the receptive field of the model increases with larger dilation rates, also longer training sequences
are required. (We assume that this is also partially due to the artifacts induced when the filters move within
the zero-padded areas.)

112



encoder’s outputs of the dilated convolutional layers, reduced their number of channels to
one (with a 1 × 1 convolution), and stacked them on top of the reconstruction error e[n]
(line 11 in Algorithm 8). Although we observe a drop in the F1-score for 3 ECG signals
(#1, #16, #48) in Figure 7.9 (Table A.4), the overall results suggest that this approach
generally improves the results (Table 7.5). The overall F1-score increases from F1 = 0.89 to
F1 = 0.93 and the mean (median) F1-score is significantly higher (Figure 7.9 & Table A.4).

Similarly, in our next experiment, we tried also to utilize the decoder’s hidden represen-
tations. However, this did not have any further effect on the algorithm’s performance, and
we discarded this approach again.

We made another interesting observation: If we entirely remove the decoder after training
TCN-AE and solely use the outputs of the encoder’s dilated convolutional layers to detect
anomalies in the time series, still decent results can be obtained. In Table 7.5, we can
see that the F1-score only drops by about 0.02, although the size of the model (and the
computational cost for inference) is effectively halved. This observation might be interesting
for practical applications, where memory and computational resources are constrained.

Map Reduction Layers Although the primary purpose for the map reduction layers
(Section 7.4.1.4) was to reduce the number of parameters in the overall model, as a side
effect, we could observe a slight improvement in the overall performance, when considering
the sum over all TP, FP, and FN. However, the improvement is smaller than for the other
previously discussed enhancements. The mean (median) F1-score does not increase, as
shown in Figure 7.9 (Table A.4).

Anomaly Score Baseline Correction Also, the correction of the anomaly score baseline
using a Butterworth filter, as described in Section 7.4.1.5, has a notable impact on the
final results. Although there is only a significant improvement for 7 out of 25 time series
(Figure 7.9), the overall F1 drops by around 4% if we turn off the baseline correction of the
anomaly score, as reported in Table 7.5. Instead of using a filter, we also tested the more
advanced baseline correction algorithm by Zhang et al. [185], and obtained results which
did not significantly differ (F1-score of 0.920± 0.003).

7.4.4.2 Comparison to other Algorithms

In Table 7.6, we summarize the results for all algorithms. The table is sorted according to the
F1-score and shows the p-values for comparing the F1-scores of the individual algorithms
with TCN-AE. The first observation we can make is that TCN-AE (baseline and final
variant) outperforms the other five algorithms significantly (p-value < 0.05). On average,
TCN-AE detects 81 anomalies more than the second-ranked algorithm, LSTM-AD, while
at the same time also producing 80 fewer FPs. The overall F1-score of TCN-AE is around
15% higher than of DNN-AE and even 20% higher than of LSTM-ED.

113



7.4. AN IMPROVED TCN-AE ARCHITECTURE

Table 7.6: Summary for the ECG-25 data (mean± σmean of 10 runs, except for the deterministic NuPIC
algorithm). The results shown here are for the sum of TP, FN and FP over all 25 time series and were
obtained such that an approximate (difference of less than 1% in precision and recall) equal accuracy (EAC)
is achieved for each algorithm.

TP FN FP Prec Rec F1 p
Algorithm

NuPIC 224.0 497.0 497.0 0.311 0.311 0.311 2.531e-3
SORAD 519.0 202.0 206.0 0.716 0.72 0.718 2.531e-3
LSTM-ED 557.3± 2.9 163.7± 2.9 168.9± 2.9 0.767± 0.004 0.773± 0.004 0.770± 0.004 2.531e-3
DNN-AE 583.7± 1.1 137.3± 1.1 142.9± 1.3 0.803± 0.002 0.810± 0.002 0.806± 0.002 2.531e-3
LSTM-AD 589.3± 0.8 131.7± 0.8 136.4± 0.5 0.812± 0.001 0.817± 0.001 0.815± 0.001 2.531e-3
TCN-AE (baseline) 597.5± 5.1 123.5± 5.1 129.0± 5.2 0.822± 0.007 0.829± 0.007 0.826± 0.007 2.531e-3
TCN-AE (final) 670.2± 2.4 50.8± 2.4 55.8± 2.4 0.923± 0.003 0.930± 0.003 0.926± 0.003 –

Precision-Recall Curves Since the anomaly threshold trades off FNs (recall) and FPs
(precision), another way of showing the performance of an anomaly detection algorithm is to
vary the threshold over a wide range of values and plot the precision and recall for different
settings in a graph. In Figure 7.10, we generated such a precision-recall plot for all the
compared algorithms. The precision-recall plot can be seen as a bi-objective optimization
problem where one attempts to maximize both precision and recall. Each point in the graph
is obtained for a specific threshold value. We fit one curve as a rough approximation to the
points of the 10 runs. It can be seen that TCN-AE outperforms the other algorithms over a
wide range of anomaly thresholds. Especially along the identity line (precision=recall), the
difference of TCN-AE to the other algorithms becomes apparent.

Performance for individual Anomaly Types The ECG-25 benchmark contains nine
different anomaly types, as summarized in Table 2.2. Since the anomaly types take very
different shapes, we were interested in knowing how well TCN-AE can detect the individual
types and how it compares to the other anomaly detection algorithms. Table 7.7 shows how
many of the individual anomaly types were detected by the respective algorithms for an EAC
setting. Although TCN-AE has the most detections for only five out of nine anomaly types,
it is among the top three algorithms in each case. Furthermore, it produces significantly
less FPs in the EAC setting (if we would permit TCN-AE to also have more FPs, similar
to the other algorithms, it would detect even more anomalies). However, we still see room
for improvement. A more thorough investigation of the anomaly types that appear to be
hard for TCN-AE could lead to new insights and possible new enhancements.

Computing Anomaly Score with little Labled Data While we used EAC to deter-
mine all anomaly thresholds for the results presented in Table 7.6, we also investigated how
the results change when all algorithms may use only a small fraction of each time series’
labels to find a suitable threshold. This approach is more realistic for practical applications

114



0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

TCN-AE (final)
DNN-AE
LSTM-AD
LSTM-ED
NuPIC

Figure 7.10: Precision-recall curves for the individual algorithms on the ECG-25 data. Shown are the fits
through around 100 points which were generated by evaluating precision & recall for different thresholds.
For each algorithm, except NuPIC, 10 runs were performed.

since, usually, only little labeled data is available. In our specific experiment the algorithms
were only allowed to use 10% of the anomaly labels The detailed results are listed in the
appendix in Table A.2. We observe that the F1-score for all algorithms deteriorates com-
pared to Table 7.6, where the EAC was used. Nevertheless, TCN-AE (F1 = 0.79) still has
the highest performance (having the highest F1-score on 18 out of 25 time series), followed
by LSTM-AD (F1 = 0.67), LSTM-ED (F1 = 0.6), and DNN-AE (F1 = 0.57), while NuPIC
performs the worst (F1 = 0.22).

One interesting observation is that the recall of all algorithms is significantly higher than
the precision. A possible explanation for this is that for many 10% intervals, on which the
algorithms optimize their threshold, a threshold value can be found that results in a high
recall and high precision. However, this threshold is then too low for the remaining time
series, and many FPs are created as a consequence. This problem demonstrates that in
practice, more sophisticated methods are necessary to determine a suitable threshold. We
are planning to work on this issue in future work.

Finally, we compare in Table 7.8 the runtimes of all algorithms and the number of
trainable parameters. All TCN-AE variants are considerably faster than the remaining

115



7.4. AN IMPROVED TCN-AE ARCHITECTURE

Table 7.7: Number of detected anomalies for the individual algorithms, broken down by anomaly type (in
total 9 types, see Table 2.2). We count the true detections when an EAC is used. The last two columns (FN
& FP) are the false negatives and false positives summed up over all anomaly types.The last row depicts
optimal results for each type.

a A e f F J V x | FN FP
Algorithm

NuPIC 2.0 32.0 1.0 1.0 5.0 2.0 172.0 3.0 6.0 497.0 497.0
SORAD 9.0 108.0 5.0 17.0 17.0 2.0 337.0 6.0 11.0 207.0 210.0

LSTM-ED 10.1 150.5 7.2 18.6 20.0 2.0 328.1 9.1 11.7 163.7 168.9
DNN-AE 9.9 212.4 7.4 21.5 21.8 1.0 290.9 8.9 9.9 137.3 142.9

LSTM-AD 6.4 213.4 4.2 5.8 18.4 2.0 316.9 12.4 9.8 131.7 136.4
TCN-AE (baseline) 9.6 176.9 5.5 18.8 18.9 1.8 345.0 9.0 12.0 123.5 129.0

TCN-AE (final) 10.4 213.7 6.3 20.2 19.5 2.4 369.8 16.5 11.4 50.8 55.8
Ideal 11 235 10 22 25 3 374 19 22 0 0

algorithms. TCN-AE final, the fastest algorithm is 5× faster than the fastest non-TCN-
AE algorithm (DNN-AE). LSTM-AD, ranked 2nd according to the F1-score, is by far the
slowest algorithm and required more than four days to complete ten runs. Furthermore,
LSTM-AD has the most trainable parameters. Also, NuPIC is relatively slow (around 750s
per time series) since no GPU acceleration is available.

Table 7.8: Computation times: average (per time series) and total (10 runs, all time series) for all
algorithms evaluated in this chapter. TCN-AE final is faster than baseline since it effectively has less
layers. SORAD and NuPIC are not directly compareable to the other approaches since they are not neural-
network-based and run only on one CPU core.

mean (s) total (h) #Params/103

Algorithm

SORAD (Ch. 4,[163]) 12.5±0.1 0.1 0.129
NuPIC [160] 752.0±23.4 52.4 –

TCN-AE final 47.6±0.4 3.3 123.8
TCN-AE baseline 97.0±1.1 6.7 208.4
DNN-AE [58] 237.5±10.3 16.5 242.1
LSTM-ED [108] 626.5±30.8 43.5 134.4
LSTM-AD [161] 1615.0±127.6 112.2 465.6

7.4.4.3 Additional Investigations

Outlier Detection Algorithms We experimented with different outlier detection algo-
rithms using different values of ℓ: The isolation forest [98] and extended isolation forest [57],
the one-class support vector machine (OCC-SVM [147]), local outlier factor (LOF) [19], an

116



Table 7.9: F1-scores (mean ± σmean) of TCN-AE and the other algorithms on all 25 time series of the
ECG-25 benchmark (highest values in boldface). The p-values are computed with the one-sided Wilcoxon
signed-rank test, in which we compare the final TCN-AE algorithm with the other variants. We compare
the F1-scores of ten runs, which are obtained for an EAC. The Wilcoxon test has the null hypothesis that
the median F1-score of TCN-AE (final) is smaller than the compared algorithm against the alternative that
the median F1-score is larger. In all cases in which we fail to reject the null hypothesis at a confidence level
of 5%, we add a grey background the corresponding field.

NuPIC LSTM-ED DNN-AE LSTM-AD TCN-AE
F1 p F1 p F1 p F1 p F1

1 0.03 0.002 0.572±0.022 0.002 0.907±0.008 0.118 0.904±0.007 0.06 0.919±0.006
2 0.5 0.029 0.350±0.017 0.003 0.267±0.045 0.003 0.783±0.026 0.5 0.733±0.083
3 0.196 0.002 0.831±0.010 0.002 0.981±0.006 0.997 0.376±0.009 0.002 0.933±0.008
4 0.0 0.001 0.5 0.001 0.0 0.001 0.250±0.083 0.002 1.0
8 0.088 0.002 0.923±0.012 0.003 0.724±0.010 0.002 0.913±0.007 0.002 0.981±0.003
9 0.218 0.002 0.498±0.014 0.002 0.708±0.005 0.983 0.582±0.005 0.002 0.674±0.011
10 0.725 0.001 0.811±0.016 0.002 0.975±0.005 0.096 0.907±0.016 0.002 0.987
11 0.0 0.001 1.0 – 1.0 – 1.0 – 1.0
12 0.0 0.001 0.5 0.001 0.650±0.077 0.004 1.0 – 1.0
13 0.0 0.001 0.950±0.026 0.042 1.0 – 0.833 0.001 1.0
14 0.524 0.002 0.925±0.004 0.004 0.693±0.005 0.002 0.918±0.002 0.002 0.945±0.004
15 0.0 0.001 0.909 – 0.909 – 0.727 0.001 0.909
16 0.33 0.001 0.877±0.013 0.003 0.675±0.010 0.003 0.945±0.003 0.03 0.953±0.001
17 0.0 0.001 0.9 ±0.1 0.159 1.0 – 1.0 – 1.0
18 0.24 0.002 0.519±0.010 0.003 0.843±0.003 0.003 0.902±0.005 0.003 0.962±0.003
20 0.0 0.001 1.0 – 1.0 – 1.0 – 1.0
21 0.0 0.001 0.9 ±0.1 0.159 0.1 ±0.1 0.001 0.500±0.167 0.013 1.0
22 0.0 0.001 0.900±0.071 0.09 1.0 – 1.0 – 1.0
23 0.19 0.001 0.814±0.025 0.004 0.910±0.009 0.003 0.919±0.010 0.01 0.952
26 0.169 0.002 0.724±0.008 0.002 0.646±0.005 0.002 0.240±0.005 0.003 0.806±0.011
28 0.507 0.001 0.893±0.009 0.049 0.874±0.006 0.003 0.882±0.010 0.007 0.912±0.004
33 0.0 – 0.0 – 0.0 – 0.0 – 0.0
39 0.25 0.002 0.778±0.018 0.002 0.899±0.006 0.002 0.793±0.012 0.003 0.952±0.003
42 0.514 0.002 0.845±0.007 0.003 0.898±0.003 0.045 0.798±0.005 0.003 0.909±0.006
48 0.0 0.002 1.0 0.987 1.0 0.987 1.0 0.987 0.875±0.042
Σ 0.311 0.003 0.770±0.004 0.003 0.806±0.002 0.003 0.815±0.001 0.003 0.926±0.003
mean 0.179 0.003 0.757±0.008 0.003 0.746±0.005 0.003 0.767±0.006 0.003 0.896±0.006
median 0.129 0.002 0.837±0.009 0.003 0.883±0.003 0.003 0.882±0.006 0.003 0.953±0.002

elliptic envelope based on the minimum covariance determinant estimator (MCD) [142], and
finally, a simple method using only the Mahalanobis distance. Overall, we found the sim-
ple Mahalanobis-distance-based approach to deliver the best results. The other algorithms
could partially produce similar results but required significantly more computation time
and mostly required additional hyper-parameters, which had to be tuned first. Using the
Mahalanobis distance as the anomaly score has the advantage that the algorithm only has
to compute a mean vector and a covariance matrix, which is computationally less expensive
and does not require any additional hyper-parameters. One reason for the higher accuracy

117



7.4. AN IMPROVED TCN-AE ARCHITECTURE

of this method over the other outlier detection algorithms could be that the reconstruction
errors are bell-shaped in every dimension (elliptic in higher dimensions), as we observed in
visualizations of the error distributions.

Downsampling and Upsampling Approaches We experimented with different ap-
proaches to create a bottleneck along the time axis and to restore the original time resolution
again. There are several possibilities to decimate/downsample a sequence by a factor s:

1. Resampling: Keep every s-th sample of the sequence. This is the simplest method but
could lead to artefacts in the resulting sequence, since there might be aliasing effects
if higher frequencies are present.

2. Average pooling: Use an average pooling layer, where groups of size s are averaged.
Effectively, the operation is a moving average whose output is resampled. In some
sense, average pooling acts as a crude low-pass filter, which removes higher frequencies
and reduces aliasing effects.

3. Max-Pooling: Similar to average pooling, with the difference that the maximum value
of groups of size s is selected.

4. Strided convolutions: One could use a convolutional layer where the filters are moved
with a stride of s. At the same time, the number of filters nfilters in this layer can be
used to reduce the dimension of the feature map to a desired size.

5. Stepwise downsampling with convolutional layers and (average) pooling: Smoothen
the downsampling process by using a sequence of pooling and convolutional layers. For
example, to achieve a downsampling rate of s = 32, one could use a series of 5 pooling
and convolutional layers.

6. Applying a regularizer to the activations: Instead of downsampling the sequence along
the time axis, sparsity can also be enforced by applying a regularizer to the activations
of the last layer in the encoder. We experimented with L1- and L2-regularization [12]
and the Kullback-Leibler [118] divergence as penalty terms.

Accordingly, we also tested several different upsampling techniques:

1. Sample-and-hold interpolation: This is the simplest upsampling approach, where each
sample is copied s times in order to recover the original length

2. Linear interpolation: Linearly interpolate between adjacent samples.
3. Tranposed convolutional layer: Use transposed convolutions [99, 40] to obtain the orig-

inal length of the time series. Transposed convolutions are still used often in practice,
but can suffer from so-called checkerboard effects [122].

4. Stepwise upsampling: Analogous to method 5 described in the previous list.
5. Max-Unpooling in combination with Max-Pooling [120].

Surprisingly, we observed that the results for the simple methods average pooling (down-
sampling step) and sample-and-hold interpolation (upsampling step) are similar and, in some
cases, even superior to the supposedly more advanced approaches.

118



M
LI

I
V1

original reconstruction error

Figure 7.11: Similar to Figure 7.7, but now showing an excerpt of ECG signal #48. For both signals,
one can observe a slight shift to the right in the reconstruction of the 5th R-peak, which results in an
unusually large error and, ultimately, the TCN-AE algorithm falsely detects an anomaly (false positive) at
this position. Taking the (ECG) signal’s variability into account, in order to prevent situations like these,
is addressed in our ongoing work.

However, it might be possible that more sophisticated down- and upsampling methods
are beneficial in other situations, where the time-series data and algorithmic setup is differ-
ent. Especially for the downsampling, one has to consider that, when using naive decimation
approaches, aliasing effects might occur, which introduce artifacts into the compressed sig-
nal. We are planning to investigate this topic more thoroughly in the future.

7.4.4.4 Discussion

Only for the last ECG recording (#48), our final version of TCN-AE performs significantly
worse most of the other algorithms. Surprisingly, for this time series, the final TCN-AE is
also worse than most other variants without one of the enhancements, i.e., it is the combi-
nation of all additional modules that leads to the deterioration of the result for ECG signal
#48. We found that the final TCN-AE algorithm produced an additional false-positive
event, which reduces the overall precision on this time series. Exemplarily, we illustrate
the cause of this FP in Fig. 7.11: one can see that a reconstructed R-peak appears slightly
shifted, resulting in a large reconstruction error. The reason for this problem could be the
quasi-periodic nature of the ECG signal, which is a major challenge for many algorithms.

119



7.4. AN IMPROVED TCN-AE ARCHITECTURE

M
LI

I

type="|"

V5

M
LI

I
V5

Figure 7.12: Two segments taken from ECG time series #33. This time series only contains one isolated
QRS-like artifact (shown on the left side). The segment on the right side does not contain any anomalies,
although there is a significant change in the signal. These signal quality changes occasionally occurring in
this time series make it rather challenging for the unsupervised anomaly detection algorithms to detect the
single anomaly.

We could observe similar events of this kind in a few other time series as well. Without the
extra FP event in time series #48, TCN-AE would also achieve an F1-score of F1 = 1.0.

For time series #33 the results are unusual: we observe that all algorithms have F1 = 0.
This is because the time series contains only a single anomaly, which is rather hard to spot,
even for the human eye. In Figure 7.12, the problem is illustrated: While the segment on the
left contains the anomaly (an isolated QRS-like artifact), the segment shown on the right
does not contain any anomaly, although there are significant changes in the signal quality.
This makes it rather challenging for unsupervised algorithms to detect the single anomaly.
We could observe many such signal quality changes in time series #33. If we discarded time
series #33 from the benchmark, the average F1-score would improve for all algorithms; for
example, we would observe an increase from F1 = 0.896 to F1 = 0.933 for TCN-AE.

Also, there are a few other time series (#11, #17, #20, #22, #48) for which the majority
of algorithms obtained a perfect F1-score of F1 = 1.0. These time series (except #48, which
has four anomalies) only contain a single anomaly.

Although there are differences to supervised heartbeat classification algorithms, we found
that our results are also roughly comparable to a few works in the literature: In [86], a F1-
score of F1 = 0.93 is obtained, if we consider only the anomaly classes also used in this

120



work. In [169], the F1-score on the test set for the overlapping anomaly classes is F1 = 0.84,
which is slightly lower than the score reported by us (F1 = 0.93, Table 7.5).

Overall, we have shown that the TCN-AE architecture can produce competitive results
on a challenging anomaly detection benchmark. We found that the TCN-AE architecture
has several appealing properties which can be advantageous in time series anomaly detection,
some of which we list in the following:

� Receptive field: Due to the hierarchical dilated convolutional structure, the size of the
receptive field of the network can easily be scaled to the requirements of the problem.

� Skip Connections: Due to the introduced skip connections, TCN-AE is less sensitive
towards the choice of the dilation rates (for example, we could choose dilation rates
1 . . . 64 or 1 . . . 256 and obtain similar results in both cases).

� Utilization of hidden Representations: Outputs of intermediate dilated convolutional
layers are utilized, which allows using information processed at different time scales.
This information is useful for obtaining an accurate reconstruction of the input and
scanning for anomalies at different time scales.

� Fast Training: Due to the parallelizable convolution operation, time series can be
processed very fast using GPUs (in this study, less than 50 seconds per time series, as
shown in Table 7.8).

� Number of Weights: TCN-AE appears to potentially require less trainable weights than
other architectures (e.g., recurrent neural networks) to obtain a good model accuracy.
However, this claim has to be verified in more thorough studies in the future.

7.5 Conclusion and Possible Future Work

In this chapter, we introduced a novel temporal convolutional autoencoder (TCN-AE) ar-
chitecture, which is designed to learn compressed representations of time series data in
an unsupervised fashion. It is, to the best of our knowledge, the first work showing the
combination of TCN and AE.

Starting with a baseline model and evaluating it on the Mackey-Glass anomaly bench-
mark (MGAB), we could already obtain promising results: The baseline TCN-AE performed
best among 3 other state-of-the-art algorithms and could learn interesting representations
of Mackey-Glass time series. However, we also noticed a few limitations which we addressed
and led to a new TCN-AE algorithm with several modifications. We demonstrated the
new algorithm’s efficacy on a challenging real-world anomaly detection task, consisting of
30-minute electrocardiogram (ECG) readings of 25 patients, and could outperform several
other unsupervised state-of-the-art algorithms on the investigated problem. Starting with
a baseline model, we showed that several extensions are crucial to increase the overall per-
formance. Particularly, we found that skip connections from the encoder’s dilated convolu-
tional layers to the bottleneck and skip connections from the decoder’s dilated convolutional
layers to the final reconstruction (output) layer improve the overall learning significantly.

121



7.5. CONCLUSION AND POSSIBLE FUTURE WORK

Furthermore, the utilization of hidden representations (the outputs of the individual dilated
convolutional layers) inside TCN-AE appears to be of considerable importance. The results
suggest that temporal anomalies become more apparent on some time scales than on others.
Another important finding was that TCN-AE was 5 times faster in our experiments than
the second fastest algorithm (DNN-AE, see Table 7.8).

In summary, we demonstrated that it is possible to train a deep learning model without
supervision, which can be used after training to detect anomalies in multivariate time series
data. The novel TCN-AE model proposed in this work appears to be particularly well suited
to learn long-range temporal patterns in complex quasi-periodic time series.

In our future research, we are planning to address several aspects of TCN-AE, which have
not been thoroughly understood or investigated yet: (a) Application of the architecture to
other challenging real-world anomaly detection problems. (b) Gaining more insights from
the representations that TCN-AE learns unsupervisedly (Fig. 7.3). (c) Approaches for
the determination of suitable anomaly thresholds with severely limited labeled data. (d)
Analyzing time series with a higher ratio anomalous/normal data: In this work, we analyzed
time series with not more than 250 anomalous events per patient. It is possible that TCN-
AE also works for data with more anomalies. We plan to investigate our algorithm for
settings with significantly larger anomaly ratios.

122




