
Machine learning and deep learning approaches for multivariate time
series prediction and anomaly detection
Thill, M.

Citation
Thill, M. (2022, March 17). Machine learning and deep learning approaches for multivariate
time series prediction and anomaly detection. Retrieved from
https://hdl.handle.net/1887/3279161
 
Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3279161
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3279161


Chapter 5

An Anomaly Detection Algorithm
based on Discrete Wavelet
Transforms

5.1 Introduction

In the previous chapter, we introduced the SORAD algorithm which demonstrated its effec-
tiveness on the Yahoo Webscope S5 benchmark, outperforming other state-of-the-art algo-
rithms. However, the benchmark time series mostly contained only short-term anomalies.
Initial experiments on the Numenta Anomaly Benchmark (NAB) revealed that SORAD has
difficulties with time series with longer-term patterns and anomalies. A common problem
in practice is that anomalies can appear on quite different time scales: they can be spikes
(short-time events) or broader structures (mid- or long-term irregularities). Many anomaly
detection algorithms available today have their strength either in shorter or in longer time
scales, but not in both. However, it is from great practical relevance to have algorithms
which work robustly on diverse time-series data. Thus, the underlying research question for
this chapter is: Is it possible to propose an online-adaptable anomaly detection algorithm
which works robustly on a very diverse set of benchmarks?

We believe that wavelet-based methods could be a suitable approach to answer this
question. Wavelet transforms [111] are commonly used to decompose a time series signal
into accurate time-localized frequency information. This makes them ideally suited to
detect anomalies on different time scales where the time scale is a priori unknown.1

In the context of the above research question, a new algorithm for unsupervised anomaly
detection in time series, called DWT-MLEAD, is introduced in this Chapter. The approach
is based on the discrete wavelet transform (DWT) of time series and the identification
of abnormal behavior on individual frequency scales using a Mahalanobis-distance-based
method. Wavelets allow feature extraction on different frequency levels in different repre-
sentations and allow a timely precise localization of anomalies in time series. Initially, we

1We note in passing that the visual or auditory system of higher vertebrates contains information-
processing structures similar to wavelets [72], thus underpinning the importance of wavelets for natural
computing.

49



5.1. INTRODUCTION

experimented with an offline version of our algorithm and found that it performs well on
a set of (mostly) stationary time series. On a diverse set of 158 time series (taken from
NAB and the Yahoo Webscope S5 benchmark), the algorithm is compared with three other
state-of-the-art anomaly detectors and it is shown to outperform the other approaches.
Thanks to the linear time complexity of the DWT, the algorithm is also computationally
efficient.

Later in this chapter, we extend DWT-MLEAD to operate fully online. Given streaming
data or time series, the algorithm iteratively computes the (causal and decimating) discrete
wavelet transform. For individual frequency scales of the current DWT, the algorithm now
detects unusual patterns across frequency scales by computing the Mahalanobis distance in
an online fashion. The online DWT-MLEAD algorithm is tested on all 425 time series from
the Yahoo Webscope S5 benchmark and NAB. A comparison to the other state-of-the-art
online anomaly detectors shows that our algorithm can mostly produce results similar to the
best algorithm on each dataset. It produces the highest average F1-score with one standard
parameter setting. That is, it works more stable on high- and low-frequency-anomalies than
all other algorithms. We believe that the wavelet transform is an important ingredient to
achieve this.

This chapter is based on our three earlier publications [162, 164, 165].

5.1.1 Related Work

Although wavelet transforms are widely used in many fields of signal and image processing
and in many data mining tasks such as time series classification, clustering, prediction &
forecasting and similarity search [27], their potential for time series anomaly detection is
only partially exploited. From those techniques found in the literature, most are designed
for high-frequency anomaly detection (e.g. in network traffic data), such as [81, 85]
and [100]. The early work of [6, 5] describes anomaly detection based on non-decimating
wavelet transforms. [74] developed an anomaly detection algorithm for time series, based on
wavelets, neural networks and Hilbert transforms. The algorithm was tested on a relatively
simple benchmark, including two synthetic time series. Shahabi et al. [148] developed an
anomaly detection approach which is based on the visual inspection of the DWT of time
series data. In this chapter, we test our algorithm on two large anomaly benchmarks, one
being the well known Numenta Anomaly Benchmark (NAB, 58 time series, most of them
real-world) [89] and the other being a subset of the Yahoo’s S5 Webscope benchmark [87].
We compare our algorithm with the already introduced state-of-the-art anomaly detectors:
Numenta’s NuPIC, based on Hierarchical Temporal Memory (HTM) [49], our previous
algorithm SORAD (Chapter 4 & [163]) which is specialized on short-term anomalies, and
Twitter’s ADVec algorithm [173].

In the following Section 5.2, we describe the unsupervised algorithm which uses Discrete
Wavelet Transform and Maximimum Likelihood Estimation for Anomaly Detection in

50



time series. Note, however, that the name might be slightly misleading. Initially, we
assumed that the data-generating distributions are Gaussian. Hence, we used maximum
likelihood estimation (MLE) to estimate the parameters of a Gaussian distribution (sample
mean and covariance) which are required to compute the Mahalanobis distance. However,
we noticed later that the assumption of normality is not generally necessary since the Ma-
halanobis distance does not impose any conditions on the distribution of the data.
For each time series the DWT-MLEAD algorithm (i) computes a decimating DWT using
Haar wavelets, (ii) estimates a mean and covariance matrix for the individual frequency
scales of the DWT, (iii) flags unusual data points in each frequency scale based on a
(Mahalanobis-distance-based) quantile estimate, and finally (iv) aggregates the unusual
data points of all frequency scales and detects anomalies in the original time series. We
perform a few initial experiments with the offline DWT-MLEAD algorithm and shortly
discuss the results.

In Section 5.3, we describe the necessary modifications in order to make DWT-MLEAD
fully online. In order not to violate causality-constraints, the resulting algorithm is partially
quite different from its offline counterpart. We compare online DWT-MLEAD on all time
series taken from the Yahoo S5 data and NAB. Section 5.2.5 concludes this chapter and
gives an outlook on possible future work.

5.2 The Offline DWT-MLEAD Algorithm

5.2.1 Methods

5.2.1.1 Wavelet Transforms

Wavelet transforms [111] allow to represent a time series signal in terms of waves (the
so called wavelets) with little local support. While (short-time) Fourier transforms always
have a trade-off between accuracy in the frequency domain and accuracy in the time domain,
wavelet transforms are used to retrieve accurate time-localized frequency information. The
wavelet transform of a time series signal is composed with scaling and shifting functions.
They take a mother wavelet and stretch and shrink it (scaling), dilate it along the time
axis (shifting), and finally form the scalar product with the time series. For sampled time
series data, often the so called discrete wavelet transform (DWT) is applied, which has
linear time complexity and can be implemented efficiently for time series streams using
finite impulse response (FIR) filters. Usually a decimating DWT is performed, in which
the filtered series are downsampled. The DWT decomposes the original time series into
so called approximation and detail coefficients which are arranged in different levels. Due
to the decimating (downsampling) property of the DWT one can represent both coefficient
sets in two binary tree structures.

In its current form, DWT-MLEAD performs a decimating DWT using Haar wavelets
(other wavelets are also applicable, but require some additional considerations) on each time

51



5.2. THE OFFLINE DWT-MLEAD ALGORITHM
5

6
7

8
9

10

0 250 500 750 1000

−100
0

−50
0

50
100

−50

0

−10
0

10

−10
0

10

20
40
60
80

Index

D
et

ai
l C

oe
ffi

ci
en

ts

Figure 5.1: Example of a decimating DWT using Haar Wavelets for a time series of the NAB data. The
original time series is depicted on scale 10. On the scales 5–9 the detail coefficients of the DWT are shown.
While we move towards lower scales, the number of coefficients is decimated (i.e. halved in each step), with
32 coefficients left on scale 5.

series. For this purpose, the R-package wavetresh [117] is used. Since the package requires
the time series to have a length equal to a power of two, we currently artificially extend –
where required – a time series of length n to a length N = 2⌈log2(n)⌉, by mirror copying the
last segment of the original time series into the extended area. However, we do not consider
anomalies which are detected at instances > n. DWT-MLEAD utilizes both the detail
coefficients dk,ℓ and the approximation coefficients ck,ℓ, computed by the DWT (lines 7–8 in
Algorithm 4), where ℓ addresses the level and k ∈ 1, . . . , N the time index.

The lowest level ℓ = log2(N) contains only one coefficient. The highest level ℓ = 0 has
no approximation coefficients but only detail coefficients dk,0 which represent the original
time series. Since lower levels of the DWT usually do not contain patterns which are useful
for anomaly detection, only the L highest levels (L is a parameter of the algorithm) are
considered, where ℓ = L − 1 describes the lowest considered level and ℓ = 0 addresses the
highest possible level (the original time series). In Fig. 5.1 the DWT of a time series from
NAB is illustrated.

52



5.2.1.2 Sliding Windows

In order to express temporal relationships, a simple and common approach in many machine
learning tasks involving time series is to employ sliding windows of a certain size w (e.g.
w = 10), which are used to generate fixed-sized input vectors for a model. Our algorithm
employs an individual sliding window for the detail and approximation coefficients at each
level of the DWT tree.

By stacking the transposed input vectors, we obtain a matrix X with w columns which
can be used to train a model. In the DWT-MLEAD algorithm (Algorithm 4, lines 10–11), a
window of size wℓ is slid over the detail and approximation coefficients dk,ℓ and ck,ℓ at each
DWT level ℓ ∈ {ℓ′, . . . , L} in order to generate the matrices D(ℓ) and C(ℓ). Subsequently,
for each matrix a mean vector and a covariance matrix are estimated, as described in the
following.

5.2.1.3 Detecting Unusual Patterns on Individual Frequency Scales

In order to distinguish between normal and unusual patterns in the individual levels of the
DWT, our algorithm estimates two parameters for each considered level: a mean vector
x̄ and a covariance matrix Σ̄. This is done separately for the approximation and detail
coefficients (cn,ℓ and dn,ℓ). The function estimate in Algorithm 5 estimates x̄ and Σ̄ for a
given matrix X, where X ∈ Rn×wℓ , with n = N − w + 1 being the number of input vectors
generated by sliding the window over the time series, x̄ ∈ Rwℓ is a w-dimensional vector,
which indicates the center of the distribution, and Σ̄ ∈ Rwℓ×wℓ describes the covariances
between individual dimensions. The dimensions of both quantities depend on the length of
the sliding window wℓ used in each level of the DWT. In Algorithm 4, line 13, DWT-MLEAD
estimates both parameters for each D(ℓ) and C(ℓ).

For a given estimate (x̄, Σ̄), one can compute the so-called squared Mahalanobis distance
for a new observation xi ∈ Rwℓ :

m(xi) = (xi − x̄)TΣ̄
−1

(xi − x̄) (5.1)

The Mahalanobis distance is a measure which can be used as an indicator for unusual
behavior. If the Mahalanobis distance is large, it is likely that the observed point x does
not represent a normal instance.

Note that using the Mahalanobis distance in this sense as anomaly indicator does not
require any assumption about the distribution of the data xi. It is often found in the
literature that Mahalanobis distance requires the data to be normally distributed, but this
is not necessary to make m(xi) a useful norm. (If the data were Gaussian distributed, then
m(xi) would follow a Chi-Squared distribution, as derived in Appendix B.3, but we do not
need this fact in our algorithm.)

For every entry in D(ℓ) and C(ℓ) we compute and collect the squared Mahalanobis dis-
tances in a vector m using the previously determined parameters x̄ and Σ̄. This is done in
function mahalanobis of Algorithm 5.

53



5.2. THE OFFLINE DWT-MLEAD ALGORITHM

e

e

2

e

e

2

e

e

3

ℓ = 0

ℓ = 1

ℓ = 2

ℓ = 3

2

Figure 5.2: Detecting anomalies with leaf counters. Along the vertical axis are the DWT levels ℓ, along
the horizontal axis are the time indices k. The leftmost event e thus comes from either an unusual c1,L−2 or
d1,L−2. Each event increases the leaf counters (blue rectangles) connected with the e node. Only counters
with count ≥ 2 are shown.

5.2.1.4 Quantile Boundaries

In order to separate unusual from usual window patterns in D(ℓ) and C(ℓ), one has to find a
suitable threshold for the squared Mahalanobis distance. We use an empirical ϵ-quantile mϵ

(e.g. the 99th percentile) to determine the threshold. After determining mϵ in Algorithm 4,
line 15, instances are flagged as ”unusual” in a binary vector a if their (squared) Mahalanobis
distance mi lies above mϵ (line 16).

5.2.1.5 Leaf Counters

For each instance in the original time series the DWT-MLEAD algorithm maintains a leaf
counter hi. If an instance ck,ℓ or dk,ℓ on a certain level ℓ of the DWT is flagged as unusual
(has a flag ak = 1) then an event e – marked as a black node in Fig. 5.2 – is passed down
the DWT tree to all leaf nodes connected with the e node. Each leaf node has a counter hi

(blue rectangles in Fig. 5.2) which counts all such events (Algorithm 4, line 17). After all
events are processed, all counters with a count hi < 2 are deleted (line 18).

5.2.1.6 Detecting the Anomalies

Once all the leaf counters are updated, DWT-MLEAD forms clusters Cj of all leaf counters
hi having a neighbor not more than dmax apart (Algorithm 4, line 19). Specifically, a cluster
Cj is here a set of counters, each counter carrying its leaf position in the original time series
and its event count. For each cluster Cj a sum sj over all event counts is computed. In
Fig. 5.2 for example, all counters form one cluster with sum sj = 9. If a sum sj exceeds the
predefined threshold B, then the center of cluster Cj is labeled as anomaly event (line 24).
The center µ(Cj) of cluster Cj is the weighted center of mass of all leaf positions, where the
weights are the event counts.

54



Algorithm 4 Offline DWT-MLEAD, an anomaly detection algorithm based on the Discrete
Wavelet Transform (DWT).

1 Define:
2 L: Number of levels considered in the DWT

3 ϵ for computation of quantiles (e.g., the 1st percentile)

4 dmax: maximum distance for same-cluster points

5 B: threshold for the counter sum in a cluster that triggers an anomaly

6 function mleAnomaly(y = (y1, y2, . . . , yN)) ▷ N is a power of 2

7 Compute DWT of y for levels ℓ ∈ {0, . . . , L− 1}
8 Get detail coefficients dk,ℓ and approximation coefficients ck,ℓ of DWT

9 Initialize a leaf counter hi = 0 for each yi, counting the events it receives

10 Set window sizes for each level: wℓ = max{2, log2(m)− ℓ}
11 ∀ℓ ∈ {0, . . . , L− 1}: Build D(ℓ), C(ℓ) by sliding window of size wℓ over dk,ℓ, ck,ℓ

12 for all X ∈ {D(ℓ),C(ℓ) | ℓ = 1, . . . , L− 1} ∪D(0) do

13 (x̄, Σ̄) = estimate(X) ▷ Defined in Algorithm 5

14 m = mahalanobis(X, x̄, Σ̄) ▷ Defined in Algorithm 5

15 Determine threshold mϵ as empirical ϵ-quantile or with mϵ = χ2
1−ϵ(wℓ)

16 a = predict(m,mϵ) ▷ Defined in Algorithm 5

17 For all ai = 1: Trigger an event moving down the tree to any connected leaf

18 When all events are processed: Delete all event counters with count hi < 2

19 Form clusters Cj of leaf counters having a neighbor not more than dmax apart

20 S = {} ▷ Set of detected anomalies

21 for all Cj do

22 sj = sum of counter values in Cj

23 if sj > B then

24 S = S ∪ {µ(Cj)} ▷ Add center µ(Cj) of Cj to anomaly set

25 return S

55



5.2. THE OFFLINE DWT-MLEAD ALGORITHM

Algorithm 5 Helper functions for Algorithm 4.

1 function estimate(X)

2 x̄ = 1
n

∑n
i=1 xi ▷ Vetor xi ∈ Rw is the ith row of matrix X ∈ Rn×w

3 Σ̄ = 1
n−1

∑n
i=1 (xi − x̄)(xi − x̄)T

4 return (x̄, Σ̄)

5

6 function mahalanobis(X, x̄, Σ̄)

7 m : vector of size Rn ▷ n is the number of rows in X
8 for each row xi of X do

9 mi = (xi − x̄)TΣ̄
−1

(xi − x̄)

10 return m

11

12 function predict(m, mϵ)

13 a: vector of same size as m
14 for all ai do

15 ai =
{

1, if mi > mϵ
0, otherwise ▷ Binary anomaly flag vector

16 return a

5.2.2 Algorithms and their Settings

In the following, we compare DWT-MLEAD with three online anomaly detection algorithms,
namely SORAD, NuPIC, and ADVec. We compare the algorithms on the A3 data of
Yahoo’s Webscope S5 benchmark and on NAB (introduced in 2.3). Although we did not
systematically tune the parameters of each algorithm, we empirically determined for each
algorithm and each dataset the best parameters from an informal search.

DWT-MLEAD Overall, three main parameters in Algorithm 4 have to be set, which
are fixed for the whole dataset: a threshold ϵ ∈ [0, 1] for the ϵ-quantiles, which is varied to
adjust the tradeoff between precision and recall, a parameter B (threshold for counter sum),
and the number of considered levels L. From Sec. 5.2.1.4, we use the empirical quantiles for
the NAB data and the χ2-based quantiles for the A3 data. We empirically determined the
setting B = 3.5, L = log2(N) − 5 for the NAB data and B = 1, L = log2(N) − 7 for the
A3 data (longer time series also consider more DWT levels). The window size wℓ is set by
Algorithm 4 in a level-dependent fashion. In its current form the DWT-MLEAD algorithm

56



Table 5.1: Results for various algorithms on the A3 and NAB dataset. Shown are the sums of TP, FP, FN
over all time series and the metrics precision, recall and F1, cf. Eqs. (2.1)–(2.3), derived from these sums.
All algorithms have their threshold chosen such that F1 is maximized (in brackets: F1 for threshold such
that FP ≈ FN).

Dataset Algorithm Threshold TP FP FN Precision Recall F1 Score

A3

DWT-MLEAD 0.015 806 8 44 0.99 0.95 0.97 (0.95)

NuPIC 0.4 172 267 678 0.39 0.2 0.27 (0.26)

SORAD 10−4 810 22 40 0.97 0.95 0.96 (0.96)

ADVec 20 190 216 660 0.47 0.22 0.3 (0.26)

NAB

DWT-MLEAD 0.02 69 65 46 0.51 0.6 0.55 (0.55)

NuPIC 0.55 76 113 39 0.4 0.66 0.5 (0.47)

SORAD 10−9 57 313 58 0.15 0.5 0.24 (0.21)

ADVec 100 66 164 49 0.29 0.57 0.38 (0.34)

operates offline on each time series, the remaining algorithms investigated in this section
are all online.

SORAD The algorithm’s parameters which are set as follows for the experiments: We set
the forgetting factor of the algorithm to λ = 0.98, the anomaly threshold ϵ will be varied
over a larger range, and the window-size is set to w = 10 for the A3 data and to w = 200
for the NAB data.

NuPIC NuPIC is described in Section 3.1.2. We use the standard parameter setting for
all experiments. The only parameter which is adjusted by us is an anomaly threshold that
can be varied in the interval [0,1] and – similar to ϵ in SORAD and DWT-MLEAD – trades
off precision and recall.

ADVec Twitter’s ADVec Algorithm (Section 3.1.1) is the last algorithm which we will
review in this section. The algorithm requires three main parameters, which are as follows:
The first parameter α is used as anomaly threshold. The second parameter, the period-
length, is fixed to the value 40, which has shown to give the best results on the investigated
data. Finally, we found that the setting of the parameter maxanoms is crucial for the per-
formance of ADVec, especially on the NAB dataset. We choose maxanoms = 1% for the A3
data and maxanoms = 0.1% for the NAB data.

57



5.2. THE OFFLINE DWT-MLEAD ALGORITHM

Table 5.2: Computation times of the algorithms on datasets A3 and NAB. Shown is the average and
standard deviation from 20 runs each. The runs were performed on a PC with an i7-3520M CPU and 8 GB
of RAM.

Computation Time (s)

Dataset DWT-MLEAD SORAD NuPIC ADVec

A3 13.6± 0.3 34.6± 0.1 810.9± 1.3 2.6± 0.2

NAB 12.2± 0.2 111.6± 0.2 1636.4± 2.7 5.8± 0.5

5.2.3 Results for the Offline DWT-MLEAD Algorithm

Table 5.1 summarizes the results for the four algorithms on the A3 and NAB data. On the
A3 data with short-term anomalies, DWT-MLEAD and SORAD both clearly outperform
the other algorithms NuPIC and ADVec, achieving both, a high precision and recall. NuPIC
and ADVec produce a large amount of FP and at the same time miss most of the true short-
term anomalies. For the NAB data we observe rather different results: while DWT-MLEAD
still outperforms the remaining algorithms according to the overall F1 score, SORAD now
performs the worst according to all metrics. In particular, the precision is rather low for
SORAD, due to the large number of FP. NuPIC delivers similar results as DWT-MLEAD,
with a slight advantage for DWT-MLEAD.

Two example time series from the NAB data with the detections of the individual al-
gorithms are shown in Fig. 5.3. In the first example it can be clearly seen that SORAD
produces many FP at the recurring spikes in the time series. This is due to the fact that
SORAD has no long-term memory so that such recurring spikes appear to be anomalous.
Only DWT-MLEAD and ADVec detect both anomalies in both examples, although ADVec
produces a few more false-positives.

All algorithms examined in this section have a threshold which can be varied in a certain
range and which trades off FP and FN (as well as precision and recall) to a certain extent.
In Fig. 5.4 the precision is plotted against the recall for different thresholds. For the A3
data the recorded points of DWT-MLEAD and SORAD clearly dominate those of NuPIC
and ADVec. For the NAB data the results are more diverse: while SORAD shows the worst
performance of all algorithms, DWT-MLEAD and NuPIC show the best performance, with
NuPIC having a slightly higher precision in larger recall ranges (recall > 0.6) and DWT-
MLEAD in the lower recall ranges (recall < 0.6).

In Table 5.2, the computation times for the four algorithms on the A3 and NAB data
are shown (mean and standard deviation from 20 runs). Overall, ADVec shows the best
results regarding the computation time. On the A3 (NAB) data DWT-MLEAD is faster by
a factor of 2.5 (9) than SORAD and 60 (134) than NuPIC.

58



Figure 5.3: Example time series taken from the NAB data with the anomalies detected by the algorithms
DWT-MLEAD, NuPIC, ADVec, and SORAD. The red vertical bars in the plot indicate the true anomaly
windows. True-positives are indicated by green colors while False-positives are colored red.

Figure 5.4: Multiobjective plot for the NAB and A3 dataset. Precision and recall are computed based on
the results of all time series of the corresponding data set.

59



5.3. ONLINE-ADAPTABLE DWT-MLEAD ALGORITHM

5.2.4 Discussion

The wavelet transform allows to capture features of the time series on different frequency
levels. This is beneficial for detecting both long- and short-term anomalies. It is thus not
unexpected that DWT-MLEAD is the only algorithm in our comparison which performs
equally well on both benchmarks A3 and NAB. The event pooling mechanism shown in
Fig. 5.2 with a minimum event count of 2 in each leaf counter is effective in shielding
against noise which may produce an unusual event in just one frequency level. As expected,
SORAD operates only well on short-term anomalies, since it analyzes only a short-term
window in the original time series.

The algorithm DWT-MLEAD in its current form has these limitations:

� It is offline, i. e. the anomaly detection is undertaken when the whole time series is
available. (It is still unsupervised since no information about prior anomalies is given
to the algorithm.). This limitation will be lifted in Section 5.3.

� We assume a certain degree of stationarity for the algorithm to work. Trends and
change-points cannot be handled well in the offline form. A (semi-)online version could
offer more flexibility in the sense that trends and change-points can be learned.

� If a time series has long-term periodic structures, not all anomalies might be detected
correctly. This can happen if the frequency of the long-term periodic structure is lower
than the lowest wavelet level ℓ considered in Algorithm 4. In such cases it might help
to extend the algorithm by a periodicity detector and subtract such a periodicity prior
to analyzing the time series with DWT-MLEAD.

5.2.5 Summary

We have shown that the discrete wavelet transform (DWT) is beneficial for detecting anoma-
lies in time series on various time scales. Specifically, our new algorithm DWT-MLEAD
shows consistently good results on two larger benchmarks, one containing short-term anoma-
lies (A3) and the other containing long-term anomalies (NAB). We tested this algorithm
against three other state-of-the-art anomaly detectors and found DWT in first place on
both benchmarks. It is remarkable that a single algorithmic principle works well over such
a diverse set of time series. Due to the efficient implementation available for DWT, our
algorithm is computationally efficient (fast) as well. However, as mentioned before, DWT-
MLEAD is not online yet. In the following section, we add several modifications to the
algorithm to operate fully online.

5.3 Online-Adaptable DWT-MLEAD Algorithm

In order to turn the offline DWT-MLEAD algorithm, presented in the previous section, into a
fully online algorithm, several points have to be taken into consideration: In an online setup,
a causal implementation of all algorithm’s components is required. The DWT, the sliding

60



window approach, the estimation of mean and covariance, and the event detection on the
individual layers of the DWT tree have to be modified to satisfy the causality requirement.
Furthermore, not all components can be directly translated into an incremental (online)
version. For example, it is not straight-forward to estimate a weighted sample mean and
covariance matrix incrementally, and an online version has to be derived (see Appendix
B.2). Also, stability issues in online settings have to be considered while ensuring that
the model acquires new knowledge as fast as possible (stability-plasticity dilemma). In the
following we present a solution for an online DWT-MLEAD algorithm and study it on a
comprehensive benchmark.

5.3.1 Online and Causal DWT & Sliding Windows

The online DWT-MLEAD algorithm also utilizes both the detail coefficients dk,ℓ and the
approximation coefficients ck,ℓ. For the online implementation of the algorithm, a strictly
causal computation scheme is adhered to: For example, two data points in the original time
series have to be collected first before the next coefficient in level ℓ = 1 can be computed.
Similarly, 2ℓ data points from the original time series are necessary to compute the next
coefficient in level ℓ.

We experimented with the length of the sliding windows and found that for the online
version of DWT-MLEAD, window sizes in the form of wℓ = max{1, ⌊bo−ℓ⌋} appear to be
the best choice. b, o ∈ R are two additional hyperparameters of the algorithm. As soon as a
new coefficient in level ℓ is available (cn,ℓ or dn,ℓ), the corresponding window is slid one step
further and the new window embedding is collected and passed to a model, which estimates
the likelihood of observing such a vector. Unlikely vectors would indicate unusual behavior
on the corresponding DWT level. The sliding windows at lower levels are moved with a
slower rate than those on higher levels, since new coefficients are only generated after every
2ℓ time steps in the original time series. This is necessary, to ensure causality of the system.

Anomaly detection starts after an initial transient phase, when the sliding windows can
be completely filled.

5.3.2 Online Estimation of the Mean and Covariance Matrix

Since the DWT-MLEAD algorithm operates in an online fashion, the parameter estimations
also have to be updated incrementally for each new data point. For this purpose we use
an exponentially decaying weighted estimator with an forgetting factor λ ∈ (0, 1]. The
forgetting factor controls at which rate past observations fade out over time. A value of λ
close to 1 results in an algorithm with a very long memory, whereas small values (usually
not smaller than 0.9) can significantly limit the memory of the estimator. By allowing the
estimator to gradually forget historic information, the algorithm can adapt to new concepts
in the data stream. Furthermore, with λ < 1 we can prevent (under most conditions) a
numeric overflow of the required accumulator (the sum of squares of differences from the
current mean). However, forgetting can also lead to a higher variance in the parameter

61



5.3. ONLINE-ADAPTABLE DWT-MLEAD ALGORITHM

estimates. The pseudo-code of the estimator can be found in Alg. 7, lines 1 – 8. Note that
it is not actually necessary to compute the covariance matrix, since only its matrix inverse
is required in later steps. Therefore, we directly estimate the inverse of the sum of squares
of differences from the current mean M̄

−1
n . Since the inverse M̄

−1
n has to be re-computed

for every new data point, which can be computationally expensive for larger dimensions, we
use the Sherman-Morrison formula [150] to incrementally update M̄

−1
n . The inverse of the

covariance matrix is given by Σ̄
−1
n = WnM̄

−1
n . A detailed derivation of the exponentially

decaying estimator of the mean and covariance matrix is given in Appendix B.2.

5.3.3 Detecting Events in the DWT Tree and Anomaly Detection

Since DWT-MLEAD estimates a mean and covariance matrix for every set of DWT-
coefficients on the levels ℓ ∈ [0, 1, . . . , L], it is possible to examine each newly observed
value cn,ℓ and dn,ℓ in the context of its current sliding window in order to detect unusual
patterns. For each new data point the current window embed vector is determined and
the squared Mahalanobis distance mxn to the center of the distribution is computed for
this vector. Subsequently, this distance is compared to a threshold mϵ. We assume that
xn is roughly Gaussian distributed. Since a Gaussian random variable has a squared
Mahalanobis distance to its mean, which is Chi-squared (χ2) distributed with wℓ degrees
of freedom, we set mϵ by simply computing the (1 − ϵ)-quantile of the χ2-distribution
(function predict in Algorithm 7, lines 10–15). Although the assumption of a Gaussian
distribution is often violated in practice, we found that the threshold mϵ, determined based
on the χ2-distribution, usually is a reasonable choice. We also experimented with other
online approaches, such as the P 2 algorithm [70], designed to incrementally track quantiles,
but found the χ2-quantiles to deliver better results.

If the Mahalanobis distance mxn exceeds the threshold mϵ, the current instance cn,ℓ or
dn,ℓ is flagged as unusual and an event e is passed down the DWT tree, as illustrated in
Fig. 5.5. Events arriving at the leaf nodes are summed up in a global, exponentially decaying
event counter Ei (Algorithm 6, line 25). If the activity in a subtree of the DWT exceeds a
certain limit, hence, if many events are produced in a short time, Ei will increase fast. As
soon as Ei is larger than a specified threshold B, an anomaly will be fired and the instance
i in the time series will be flagged. In order to avoid many detections in a short time, a new
anomaly cannot be fired again until Ei has faded away and falls below threshold 2

3
B.

In order to detect extreme outlier events, a simple heuristic is used: The algorithm flags
a point as anomalous, if it exceeds the current minimum/maximum by more than 20% of
the min-max range.

5.3.4 Algorithmic Setup

In this section, we compare online DWT-MLEAD to two other online anomaly detection
algorithms. For each algorithm one standard parameter setting is chosen which is then
used for all experiments across all datasets. Only an anomaly threshold parameter is varied

62



Algorithm 6 An online version of DWT-MLEAD, an anomaly detection algorithm using
the Discrete Wavelet Transform.

1 Define parameters:

2 L: maximum number of levels considered in the DWT
3 b, o: for the computation of the sliding window sizes wℓ

4 λ: forgetting factor for the estimation of the Gaussian distributions

5 ϵ: quantile of χ2-distribution

6 B: threshold for global event counter that triggers an anomaly

7

8 Initialize:

9 Set window sizes for each level: wℓ = max{1, ⌊bo−ℓ⌋}
10 Global event counter: E0 = 0

11 Discount factor: γ = wL−1
wL+1

12 Allow to trigger anomaly with: A = true

13 Initialize all P
(c,ℓ)
0 and P

(d,ℓ)
0 with the tuple (W0, x̄0, M̄

−1
0 , M̄0), where:

14 W0 ∈ R, x̄0 ∈ Rwℓ and, M̄
−1
0 , M̄0 ∈ Rwℓ×wℓ

15 W0 = 0, x̄0 = 0, M̄
−1
0 = M̄0 = I

16

17 function DWTMLEAD(i, yi) ▷ where y = (y1, y2, . . .) is a streaming time series

18 Determine ℓ′ = min(L− 1,max{ℓ∗ ∈ N0 | i mod 2ℓ∗ = 0})
19 for all ℓ ∈ {0, . . . , ℓ′} do
20 n = i/2ℓ

21 Compute DWT coefficients cn,ℓ and dn,ℓ ▷ if not already present

22 x
(c)
n = (cn−wℓ+1,ℓ . . . cn,ℓ)⊺ , x

(d)
n = (dn−wℓ+1,ℓ . . . dn,ℓ)

⊺ ▷ sliding windows

23 P
(c,ℓ)
n = update(P

(c,ℓ)
n−1 , x

(c)
n , λ) , P

(d,ℓ)
n = update(P

(d,ℓ)
n−1 , x

(d)
n , λ)

24 eℓ = predict(P
(c,ℓ)
n , x

(c)
n , ϵ) + predict(P

(d,ℓ)
n , x

(d)
n , ϵ)

25 Ei = γEi−1 +
∑ℓ′

j=0 ej ▷ Adjust global event counter

26 ai =
{

true, if A ∧ Ei ≥ B
false, otherwise ▷ Flag anomaly at time step i, if threshold is exceeded

27 if ai then A = false

28 if Ei <
2
3
B then

29 A = true ▷ Allow new anomaly, if event-counter value falls below threshold

30 return ai

63



5.3. ONLINE-ADAPTABLE DWT-MLEAD ALGORITHM

e

e

2

e

e

1

e

e

1

ℓ = 0

ℓ = 1

ℓ = 2

ℓ = 3

2

Figure 5.5: Detecting anomalies online with leaf counters. All coefficients (except on the leafs) are always
computed bottom-up, based on two child nodes (connected with one dashed and one solid edge). Along
the vertical axis are the DWT levels ℓ, along the horizontal axis are the time indices n of the coefficients of
the DWT. E.g., the leftmost event e comes from either an unusual cn,2 or dn,2. Each event is passed down
the tree only along the solid edges (causal computation) and increases the right-most leaf counter (blue
rectangle) connected with the e node.

for each algorithm and dataset in order to balance precision and recall in a way that the
F1-score is maximized.

DWT-MLEAD As described in Sec. 5.3, in total 6 parameters have to be selected by the
user. In order to find an appropriate setting, we did not systematically tune the parameters.
Instead, we generated 60 design points using latin hypercube sampling (LHS) and evaluated
the algorithm on all time series for these points. The setting B = 2.20, b = 2.27, o = 6,
L = 5, λ = 0.972 achieved the highest average F1-score and will be used throughout the
rest of this paper. The parameter ϵ is used as anomaly threshold and is adjusted in the
range ϵ ∈ [10−6, 10−1]. Additionally, to exclude the possibility of overtuning on the data
sets, we made the following experiment: We separated the set of all time series in a training
and a test set (each containing 50% of the time series) and tuned the parameters of DWT-
MLEAD only on the training data. Then the F1-score was established only on the test set.
The results will be given below under the name TRAIN-TEST-SEP.

NuPIC Similarly to the previous section, we run NuPIC with its standard parameter
settings. Similarly to DWT-MLEAD, an anomaly threshold can be varied in the interval
[0, 1] to control the sensitivity of the algorithm.

ADVec The main three parameters were tuned to achieve the highest average F1-score.
The period-length is set to 40. The second parameter maxanoms is set to maxanoms = 0.003.
The last parameter α is used as anomaly threshold for ADVec and is adjusted in the range
α ∈ (10−6, 1).

64



1.5

2.0

2.5

3.0

0 500 1000 1500
Index

V
al

ue

0

2500

5000

0 500 1000
Index

V
al

ue

−1000

0

1000

2000

0 500 1000 1500
Index

V
al

ue

−6000

−4000

−2000

0

2000

0 500 1000 1500
Index

V
al

ue

0

30

60

90

Dec Jan Feb
time

Te
m

pe
ra

tu
re

 (
o C

)

Type TP FP Algorithm DWT−MLEAD NuPic ADVec

Figure 5.6: Example time series taken from the Yahoo Webscope S5 data and the Numenta Anomaly
Benchmark (NAB). In each graph the real anomalies are indicated by the light-red shaded areas. Three
algorithms are tested on this data and the individual detections are shown with different symbols. The
color of the symbol indicates if the detections were correct (green) or false (red).
Top two rows: One example each from the A1–A4 data. The dashed vertical lines in the A4 data indicate
concept changes which should also be detected by the anomaly detectors.
Bottom: Example time series taken from the NAB data. The graph shows the temperature sensor data
of an internal component of a large industrial machine over its last few months of operation. The second
anomaly (mid of December) is a planned shutdown of the machine. The catastrophic failure occurs end of
February when the recordings end.

65



5.3. ONLINE-ADAPTABLE DWT-MLEAD ALGORITHM

Algorithm 7 Helper functions for Algorithm 6.

1 function update(Pn−1,xn, λ) ▷ xn ∈ Rwℓ , wℓ is the size of the window at scale ℓ

2 (Wn−1, x̄n−1, M̄
−1
n−1, M̄n−1) = Pn−1 ▷ Matrix M̄n−1 is optional (debugging purposes)

3 Wn = λWn−1 + 1

4 ∆n = xn − x̄n−1

5 x̄n = x̄n−1 + 1
Wn

∆n

6 M̄n = λM̄n−1 + ∆n(xn − x̄n)⊺ ▷ Optional, since only inverse M̄
−1
n is required later

7 M̄
−1
n = 1

λ
M̄

−1
n−1 −

1
λ
M̄

−1
n−1∆n(xn−x̄n)⊺M̄

−1
n−1

λ+(xn−x̄n)⊺M̄
−1
n−1∆n

▷ Sherman-Morrison Formula

8 return (Wn, x̄n, M̄
−1
n , M̄n) ▷ Return updated parameters

9

10 function predict(Pn,xn, ϵ) ▷ xn ∈ Rwℓ , where wℓ is the size of the window at scale ℓ

11 (Wn, x̄n, M̄
−1
n , M̄n) = Pn

12 mxn = Wn(xn − x̄n)⊺M̄
−1
n (xn − x̄n) ▷ Mahalanobis distance of xn to x̄n

13 mϵ = χ2
1−ϵ(wℓ) ▷ Threshold: upper ϵ-quantile of χ2-distribution

14 en =
{

1, if mxn > mϵ
0, otherwise ▷ Binary event flag

15 return en ▷ Unusual data points will cause an event in the DWT-tree

SORAD We tried to manually select the parameters of SORAD. However, we could not
find a good compromise for the parameters, to obtain good results on the Yahoo data and
NAB. Hence, we choose the same setting as in Section 5.2.2 and set the forgetting factor of
the algorithm to λ = 0.98, and the window-size is set to w = 10.

5.3.5 Results

The main results of our experiments are summarized in Tab. 5.3. DWT-MLEAD achieves
on all datasets the highest F1-score (the same as SORAD on A1,A2, and A4). NuPIC has
a slightly better precision on A1, but on A2, A3 and A4 the difference in all three metrics
is large in favor of DWT-MLEAD. One reason, among others, for the weak performance of
NuPIC and ADVec could be that the time series in both datasets contain many anomalies,
occurring in part at the very beginning of each time series. Hence, the algorithms have to be
up-and-running much faster and have to be able to detect anomalies in short time intervals.
Furthermore, the A4 time series contain many concept changes, where amplitudes, season-
alities and noise abruptly change. In order to handle such concept changes, a strong online

66



Table 5.3: Results for various algorithms on the datasets A1–A4 and NAB. Shown are the metrics precision
(how many percent of the detected events are true anomalies), recall (how many percent of the true anomalies
are detected) and F1. All algorithms have their threshold for each dataset chosen such that F1 is maximized.
Each algorithm uses otherwise one standard parameter setting for all data sets. The values in square brackets
show the F1-score on the test data of the experiment TRAIN-TEST-SEP.

Precision, Recall
F1-Score

Algorithm A1 A2 A3 A4 NAB Avg

DWT-MLEAD
0.60, 0.65 1, 0.98 0.96, 0.97 0.92, 0.75 0.66, 0.45 0.8, 0.76
0.62 [0.66] 0.99 [0.99] 0.97 [0.97] 0.83 [0.83] 0.54 [0.52] 0.79 [0.80]

SORAD
0.65, 0.67 1, 0.98 0.97, 0.95 0.9, 0.77 0.09, 0.57 0.7, 0.8

0.66 0.99 0.96 0.83 0.15 0.72

NuPIC
0.62, 0.45 0.59, 0.42 0.39, 0.20 0.41, 0.11 0.40, 0.66 0.32, 0.37

0.52 0.49 0.27 0.18 0.5 0.39

ADVec
0.51, 0.56 0.66, 0.6 0.54, 0.20 0.29, 0.15 0.11, 0.72 0.32, 0.45

0.54 0.63 0.29 0.2 0.2 0.37

adaptability is required. For the NAB data, the difference in F1-score between NuPIC and
DWT-MLEAD is not that apparent, although there is a slight advantage for our algorithm.
Overall, we can observe in column Avg that DWT-MLEAD achieves the highest average
values for all three metrics.

The results in Tab. 5.3 are for tuning on all data. The additional experiment TRAIN-
TEST-SEP (see Sec. 5.3.4) revealed very similar F1-scores (less than 1% deviation in the
Avg score). This observation confirms that DWT-MLEAD operates well on new data and
is not overtuned to its parameters.

Since Tab. 5.3 only captures the results for one specific setting of the algorithms anomaly
thresholds, we also measured precision and recall for a wide range of thresholds and plotted
them against each other, as shown in Fig. 5.7. The overall picture mostly corresponds to
the results shown in Tab. 5.3. Only for the NAB data we can observe that for recall values
in the range [0.5, 0.75] NuPIC achieves a higher precision and outperforms DWT-MLEAD.
Finally, a look on Tab. 5.3 shows that the NAB dataset is a tough benchmark: All tested
algorithms are far from being perfect on that dataset, having F1 < 0.55, i.e. there is still
room for improvement.

5.3.6 Discussion

Although algorithm DWT-MLEAD could produce good results on the investigated bench-
marks, it still has several limitations which leave room for improvement:
(1) For our experiments we only used the relatively simple Haar wavelet. This leads to the
limitation that anomalies manifesting themselves in complex frequency patterns might be
difficult to detect. Wavelets with stronger localization in the frequency domain (e.g. Gabor

67



5.3. ONLINE-ADAPTABLE DWT-MLEAD ALGORITHM

●●●
●
●

●
●

●
●

●●●●●
●●●

●

●
●●

●
●

●
●

●
●

●●●
●●

●●●

A1 A3

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Recall

P
re

ci
si

on

●●

●●●
●●

●
●

●

●●●●●
●
●

●
●●●●●●●●●

●

A4 NAB

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Recall

P
re

ci
si

on

● NuPic ADVec DWT−MLEAD

Figure 5.7: Multiobjective plot for Yahoo’s Webscope S5 benchmark and the Numenta Anomaly bench-
mark. The graph for the A2 data is not shown here since the results are very similar to the A3 data.

wavelets or ensembles of such wavelets) might allow to detect frequency changes more reli-
ably.
(2) Due to the strictly causal design of the algorithm, events occurring in the DWT-tree
might be asymmetrically distributed along the leaf counters (Fig. 5.5). More events will
tend to arrive at the leaf nodes on the right side of each sub-tree, which might lead to
undesired effects.2

(3) Using the Mahalanobis-distance-based metric for the sample mean and covariance ma-
trix to detect unusual behavior might not be the best choice. Other (perhaps multimodal)
distributions might be more effective. To test this, we made some runs with Gaussian
mixture models (GMM) which are capable to model more complex distributions. So far,
however, these runs resulted in only marginal improvements.

2We note in passing that we performed runs with an algorithmic variant where we treated each leaf
symmetrical: We wait until an L-subtree is complete, then we collect all events (along the dashed lines in
Fig. 5.5 as well) and process them. The price to pay is a certain delay for some leafs and a deviation from
the strict online scheme. The results in terms of precision-recall-metrics are a bit better for NAB and a bit
worse for A4. Overall, the difference is only marginal.

68



The NAB dataset is a challenging benchmark, as it includes mostly real world data from
many different applications. The time series contain anomalies in high and low frequencies
in a large variety of forms. Many anomalies are also very hard to detect for the human eye
without suitable domain knowledge.
It is worth mentioning that DWT-MLEAD proved to perform robustly on all time series,
without ever showing numerical instabilities from the matrix updates (function update in
Algorithm 7).

5.4 Conclusion & Possible Future Work

In this chapter, we introduced the relatively simple but effective DWT-MLEAD algorithm
for offline and online anomaly detection in time series. Generally, the development of widely
applicable anomaly detection algorithms is possible when suitable features can be obtained.
We found that especially the discrete wavelet transform (DWT) can be an important tool to
generate meaningful features across many different frequency scales. Empirical results on a
large dataset with 425 time series containing both long-term and short-term anomalies show
that DWT-MLEAD is more robust than other state-of-the-art anomaly detectors: Using
only one fixed parameter setting, (online) DWT-MLEAD achieved an average F1 twice as
large as ADVec’s & NuPIC’s scores and 10% higher than SORAD’s. Furthermore, DWT-
MLEAD significantly outperformed SORAD on the NAB data, obtaining a 260% higher
F1-score. Furthermore, the online adaptability of the DWT-MLEAD algorithm appears to
be beneficial in the presence of concept drifts and/or changes, as the results on the A4 data
of Yahoo’s Webscope S5 benchmark suggest. Our anomaly detection algorithm does not
require labeled training data; it is unsupervised and infers from the unlabeled data of each
time series what is normal and what is anomalous.

As future work several aspects of our algorithm can be improved: Currently, only simple
Haar wavelets are used for the offline and online version of the algorithm; experiments with
other wavelets or ensembles of wavelets might lead to a significantly increased performance.
Furthermore, it might be possible to further reduce the sensitivity of DWT-MLEAD towards
its parameters, for example with automatic parameter tuning methods. Finally, also an
extension to multivariate time series should only require a few additional steps.

69



5.4. CONCLUSION & POSSIBLE FUTURE WORK

70




