
Machine learning and deep learning approaches for multivariate time
series prediction and anomaly detection
Thill, M.

Citation
Thill, M. (2022, March 17). Machine learning and deep learning approaches for multivariate
time series prediction and anomaly detection. Retrieved from
https://hdl.handle.net/1887/3279161
 
Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3279161
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3279161


Chapter 4

SORAD: A Simple Online Regression
Anomaly Detection Algorithm

4.1 Introduction

A challenging aspect of time series anomaly detection is working in environments with non-
stationary behavior or unknown or vaguely defined nature of future anomalies. Most of
the current anomaly detection algorithms follow the general idea to classify an anomaly
as a significant deviation from the prediction. This chapter presents a comparative study
where several online anomaly detection algorithms are compared on the Yahoo Webscope
S5 anomaly benchmark. We show that a relatively S imple Online Regression Anomaly
Detector (SORAD) is quite successful compared to other anomaly detection algorithms.
We discuss the importance of several adaptive and online elements of the algorithm and
their influence on the overall anomaly detection accuracy.

In many applications, data is collected continuously sequentially in the form of data
streams or time series. A common characteristic of data streams is the inherent non-
stationarity. In a vast amount of real-world problems, data is generated by non-stationary
processes. Typically, certain properties of streams or time series (such as trends, noise,
periodicity, and other parameters) change over time.

Machine learning tasks involving such non-stationary streaming data are considered
challenging since many classical learning approaches are not applicable due to their offline
character: offline learning algorithms are trained on a whole batch of data. They require
a complete repetition of the training procedure if new examples are added to the data set.
Due to memory and time constraints, such approaches are typically infeasible for problems
with streaming data. In such cases, it is necessary to operate in an online setting on the
data and process the data in an example-by-example manner and incrementally learn from
every new example without re-training an entirely new model each time.

Especially in non-stationary environments, an anomaly is difficult to define. In its most
general form, it is the absence of normality, but

”
normality“ depends mainly on the (current)

context and cannot be expressed in one standard formula. This is the reason why anomaly
detection algorithms are very difficult to benchmark. An anomaly detection algorithm that
performs very well on a particular benchmark dataset might perform surprisingly poorly on

33



4.1. INTRODUCTION

another benchmark. As an example, we will consider in this chapter Yahoo’s well-known
Webscope S5 dataset [87] with labeled anomalies of various kinds.

This chapter’s purpose is twofold: (1) We show that benchmarking anomaly detection
algorithms is difficult with currently well-established benchmark datasets. As an example,
we found that the well-known algorithm NuPIC (based on Hierarchical Temporal Memory
- HTM), which shows remarkable successes on other benchmarks (e.g., NAB [89]), performs
not so well on Yahoo’s S5 dataset. From this point, we will argue that there is a need
for benchmark datasets better capturing the variety of anomalies in time series data. (2)
Numerous applications call for fast yet reliable anomaly detection algorithms. We present
here, as a preliminary study, a relatively simple one, the Simple Online Regression Anomaly
Detector (SORAD), which nevertheless shows good performance on the Yahoo Webscope
S5 dataset. It is preliminary because SORAD needs to be refined, extended, and tested on
more diverse anomaly data benchmarks.

In this chapter, we address the following research questions:

1. How does a simple online regression algorithm perform on the Webscope S5 dataset?

2. How do other algorithms perform on the same benchmark? In particular, we compare
our new algorithm’s performance to Numenta’s NuPIC algorithm[160, 49] and Twitter’s
ADVec algorithm [173].

3. How important is the online capability?

4.1.1 Related Work

In this chapter, we compare with two developments in online anomaly detection where the
frameworks are available as open-source: (a) Hierarchical Temporal Memory (HTM) [49, 89],
which is available as software NuPIC from Numenta 1, and (b) Twitter’s ADVec Algo-
rithm [173], which is available as open-source R package AnomalyDetection from Github 2.
Both algorithms are described in more detail in chapter 3.

The Yahoo S5 anomaly detection benchmark has been investigated in [68, 154, 69, 115].
While [68] uses it for detecting whether a whole time series is anomalous, [154] presents an
anomaly detection approach with echo state networks to which we will later compare. The
algorithm introduced in [69] gives only results for FP (false positives) and is thus not well
comparable. In [115], the CNN-based algorithm DeepAnT is introduced and evaluated on
the Yahoo S5 benchmark. The performance of DeepAnT for A1–A4 is later compared to
SORAD’s.

1http://www.numenta.com
2http://github.com/twitter/AnomalyDetection

34

http://www.numenta.com
http://github.com/twitter/AnomalyDetection


4.2 Methods

In the following sections (4.2.1 – 4.2.2), we present the methods necessary for the offline
variant of SORAD, which we call Offline-RAD. Sections 4.2.3 – 4.2.4 cover the methods
necessary to extend this offline variant to the online algorithm SORAD. Having both variants
available allows us to measure the effect of online adaptivity precisely.

4.2.1 Feature Generation using Sliding Windows

In order to model temporal relationships in machine learning, a common approach is to
employ a so called sliding window of a fixed length ℓ, which creates feature (input) vectors of
length ℓ. When applied to a time series or sequence of length N in the form (y0, y1, . . . , yN−1),
the sliding window creates for each instance yk a feature vector xk+1 consisting of a bias
term and the ℓ previous instances, i. e. xk = (1, yk, yk−1, . . . , yk−ℓ+1)

T . During the transient
phase (k < ℓ) we pad values with negative indices with y0. Matrix X is composed of the
transposed inputs xk, one vector per row. The number of rows is the size K of the training
set. Likewise, matrix Xtest has N −K rows, starting with vector xK .

4.2.2 Offline Regression Anomaly Detection (Offline-RAD)

The offline regression algorithm divides each time series into a training phase t ≤ K and
a test or detection phase t > K. The general procedure is described in Algorithm 1. This
algorithm requires a matrix inversion for each pass through the training data to build the
model vector θ. When the parameters θ are estimated, the prediction for new examples is
computed with ỹk = θTxk. The tuning of the regularization parameter ρ is done as follows:
The K = 500 training data are divided further: For various values of ρ, the training phase
is done on the first 400 training data, and the mean prediction error is measured on the
remaining 100 validation data. After choosing the value ρ with the smallest prediction error,
the final model is trained on all K = 500 training data. We perform two passes through
the data in order to make the training data approximately anomaly-free.

4.2.3 Online Estimation of a Distribution’s Mean and Variance

The naive approach for online estimation of a distribution’s mean and variance from the
sum of squares suffers from numeric instability. The Welford algorithm [176] proposes a
numerically stable variant. A variant of it is used in this chapter to estimate the parameters
of the normal distribution.

As a new element, we introduce a forgetting factor for mean and variance. The forgetting
is realized by weighting the elements, e. g., for the sample variance we use

s2n =
n∑

i=1

wi(xi − µn)2∑n
i=1wi

, (4.1)

35



4.2. METHODS

Algorithm 1 Offline-RAD: Offline anomaly detection algorithm. Input: Time series (yk),
anomaly threshold ϵ, training set size K = 500. Output: Anomaly flags aflags.

1 Initialize:
2 Anomaly flags aflags ← 0 ▷ Binary Vector

3 Tune regularization parameter ρ (Sec. 4.2.2).

4

5 Training phase:

6 Create training data X and y from the K first time steps.

7 for i = 1 . . . 2 do ▷ Two passes through training data

8 θ ← (XTX + ρIℓ+1)
−1XTy

9 δ ← y −Xθ ▷ Compute train prediction error

10 Compute mean µδ and standard deviation sδ for δ

11 Calculate the ϵ-quantile zϵ of N (0, s2δ) (see Fig. 4.1)

12 E ← [µδ − zϵ, µδ + zϵ]

13 for all {k | δk /∈ E} do
14 Remove k-th row from X and y

15

16 Detection phase:

17 Create test data Xtest and ytest

18 δtest ← ytest −Xtest θ

19 for all {k | δtest,k /∈ E} do
20 aflags,k ← 1 ▷ Flag ytest,k as anomalous

where xi is the ith instance in the sample and µn is the current sample mean. The weights

wi = λn−i (4.2)

decay exponentially so that historic elements contribute less to the sample variance s2n. A
similar formula can be obtained for the sample mean µn. Both formulas can be combined
with the modified Welford algorithm to get an online formulation of Eqs. (4.1) and (4.2).
This is presented in Algorithm 2.

36



One can estimate the memory (the number of time steps after an observation is “forgot-
ten” again) with the formula

nmem ≈
1 + λ

1− λ
,

as shown in Appendix B.2.4. A thorough derivation of the online weighted estimation of
mean and (co-) variance can be found in Appendix B.2.

4.2.4 SORAD

The Offline-RAD algorithm has two main disadvantages: (a) It needs a training period (500
time steps in our application) before it can perform predictions, and (b) it does not learn
any further in the detection phase. Both aspects call for an online version of this algorithm.

δ

sδ

ϵ

+zϵ−zϵ 0

Figure 4.1: The ϵ-quantiles ±zϵ of N (0, s2δ) which define the border be-
tween anomalous and normal data in Offline-RAD and SORAD.

One of the most popular online models of the past few decades is the recursive least-
squares (RLS) algorithm [59] from adaptive filter theory. The standard RLS formulation
often includes a forgetting factor λ ∈ (0, 1] that allows to deal with non-stationary systems
to some extent [172, 17]. RLS is used in Algorithm 3 to estimate the model vector θ
recursively [17]:

P← 1

λ
P− 1

λ
· Pxkx

T
kP

1 + xT
kPxk

(4.3)

θ ← θ + δk+1Pxk (4.4)

with prediction error δk+1 and forgetting factor λ. Each input vector xk is used only once.
A RLS variant for mini-batch updates (updating the parameters θ with more than one
example) is derived in Appendix B.1 and can also be used in practice.

37



4.3. EXPERIMENTAL SETUP

Having an online estimation of P makes it possible to introduce a forgetting factor λ
which causes the algorithm to slowly fade out the long-ago parts of history and adapt the
model to non-stationary elements in the time series. This is not possible in the offline
version. Of course, a careful balancing between stability and plasticity of the model is
necessary.

Finally, the modified weighted Welford algorithm (Sec. 4.2.3) provides an online estima-
tion for mean and variance of the error δk+1 (Algorithm 3, step 20).

SORAD has a short transient phase for k < ℓ. In this period, where the input vector xk

needs to be partially padded (see Sec. 4.2.1), the model vector θ is left in its initial state.
But the changes ∆θ according to Eq. (4.4) are accumulated separately and added to θ at
k = ℓ. Likewise, the standard deviation sδ is kept at∞, leading to an inhibition of anomaly
detection. The changes ∆sδ are accumulated and applied to sδ at k = ℓ. After the transient
phase, θ and sδ are updated normally (Algorithm 3 and 2).

Algorithm 2 Online estimation of sample mean and sample variance for the prediction
errors. A more detailed derivation of the update rules can be found in Appendix B.2.

1 Initialize:

2 µδ = 0, s2δ = 0, M = 0, W = 0

3

4 function updateEstimation(k, δk+1)

5 W ← λW + 1

6 ∆← δk+1 − µδ

7 µδ ← µδ + ∆
W

8 M ← λM + ∆ · (δk+1 − µδ) ▷ Use new value of µδ

9 s2δ ← M
W

▷ Without bias-correction

4.3 Experimental Setup

4.3.1 Algorithm Setup

All algorithms (except Offline-RAD) operate online on the time series. We evaluate all
algorithms on the Yahoo Webscope S5 benchmark (introduced in Section 2.3).

Offline-RAD We use a window size of ℓ = 10. The first K = 500 instances of each time
series are used for training, the remaining 1000 instances for testing (detection).

Setup of Numenta’s NuPIC (HTM) To verify the correctness of our NuPIC instal-
lation, we applied it to the Numenta Anomaly Benchmark (NAB) [89] using the standard

38



Algorithm 3 Pseudo code of SORAD. Input: Time series (yk), anomaly threshold
ϵ ∈ (0, 1), forgetting factor λ ∈ (0, 1]. Additionally, there is a short transient phase (see
Sec. 4.2.4). Output: Anomaly flags aflags.

1 Initialize and Transient Phase

2 θ ← (θBias 2−1 2−2 · · · 2−ℓ)T , with θBias = 0

3 (µδ, s
2
δ)← (0,∞)

4 P← 500Iℓ+1, with the identity matrix Iℓ+1

5 Anomaly flags aflags ← 0 ▷ Binary Vector

6

7 Set instance counter k ← 0
8 while instance yk+1 available do

9 xk+1 ← (1, yk, yk−1, . . . , yk−ℓ+1)
T

10 ỹk+1 ← θTxk+1 ▷ Predict next step

11 Observe yk+1

12 δk+1 ← yk+1 − ỹk+1 ▷ Compute prediction error

13 Calculate the ϵ-quantile zϵ of N (0, s2δ) (see Fig. 4.1)

14 E ← [µδ − zϵ, µδ + zϵ]

15 if δk+1 /∈ E then

16 aflags,k+1 ← 1 ▷ Flag yk+1 as anomalous

17 k ← k + ℓ− 1 ▷ Skip next ℓ instances

18 else

19 Update P and θ according to Eq. (4.3) and (4.4)

20 Update µδ, s
2
δ with updateEstimation(k, δk+1)

21 k ← k + 1

22 end while

39



4.4. RESULTS

parameter settings and confirmed that we can exactly reproduce the results3 published
in [89]. In a first round of experiments we used the same parameter setting for the S5
datasets. In a second round we used NuPIC’s so called swarming algorithm [3], a tool to
aid automatic parameter search for a given dataset. The results were very similar, so we
list in the following only the results for the standard parameter settings.

Setup of Twitter’s ADVec Algorithm The ADVec algorithm has two parameters.
The first parameter α describes the level of statistical significance with which to accept or
reject anomalies. Similar to an anomaly threshold, this parameter trades off false-positives
and false-negatives. The period-length is set to the value 40 in all experiments4. Finally,
the parameter maxanoms is left at its default (maxanoms = 2%).

4.4 Results

Table 4.1 summarizes the results of all algorithms running on the four datasets A1–A4.
To have a fair comparison to Offline-RAD, we include for all algorithms only time steps
t > 500 (after the Offline-RAD training phase) into the anomaly detection phase. Appar-
ently, SORAD has a better performance than Offline-RAD, and both are on most datasets
significantly better than NuPIC and ADVec in nearly all performance measures.

The great advantage of online algorithms is, of course, that they are much faster up-and-
running. We show in Table 4.2 the results when including all time steps t > ℓ beyond the
transient phase in the anomaly detection. Basically, the results are very similar. This means
that the

’
anytime-ready‘ feature of online-algorithms does not severely influence accuracy.

Fig. 4.2 shows an example time series from the A4 dataset with the anomalies detected
by the various algorithms included. It is seen that NuPIC and ADVec produce a number of
false-positives (FP).

Anomaly detection algorithms always have a threshold parameter that allows the user to
control the trade-off between FP and FN. Fig. 4.5 shows that the performance measure F1

is very stable over several threshold decades.5 The multiobjective plot (where the measures
FP and FN are plotted against each other) in Fig. 4.3 varies these thresholds and shows
the multiobjective front for each algorithm. It is seen that both RAD algorithms dominate
the others irrespective of the chosen threshold. SORAD is significantly better than Offline-
RAD.6 This might be due to the fact that the online algorithm continues to learn, which is
advantageous for non-stationary environments.

3The result files can be obtained from: https://github.com/numenta/NAB/tree/master/results/

numenta.
4We tuned this parameter over a wide range for all four datasets.
5Fig. 4.5 shows the stability of F1 for SORAD (without forgetting). However, it holds the same way for

the SORAD-variants with forgetting.
6Additionaly, the variation of the threshold produces for SORAD a more diverse population on the

multiobjective front with no ’holes’ as in Offline-RAD.

40

https://github.com/numenta/NAB/tree/master/results/numenta
https://github.com/numenta/NAB/tree/master/results/numenta


We test in Fig. 4.3 the one-pass and the two-pass variant of Offline-RAD, showing that
there is no significant difference between both. This means that the poorer performance of
Offline-RAD (as compared to SORAD) is not due to the occasional presence of anomalies
in the training phase.

All of these results were obtained with a forgetting factor λ = 1, that is, with no
forgetting. If a time series is non-stationary, then anomaly detection might benefit from a
certain degree of forgetting the past values. We show in Fig. 4.6 the effect of varying the
forgetting factor in the range [0.8,1.0]. Additionally, Table 4.2 shows the overall results for
two SORAD variants with forgetting: While forgetting in the RLS part (SORAD-F) does
not change much, a forgetting mechanism additionally for the online estimation of the error
distribution (µδ, sδ) is of great benefit (SORAD-FMS), especially for the datasets A1 and
A4.

Table 4.3 shows the computation times for all algorithms.

0

10000

20000

30000

0 500 1000 1500
Index

V
al

ue

Algorithm
NuPic
ADVec
SORAD

Type
TP
FP

Figure 4.2: Example time series taken from data set A1 with the anomalies detected by the various
algorithms SORAD, HTM (NuPIC), and ADVec. The red vertical bars in the plot indicate the true anomaly
windows.

4.5 Discussion

4.5.1 Transient Phase

As described in Sec. 4.2.4, algorithm SORAD needs a short transient phase. During this
phase, the model vector changes are accumulated, and no anomaly detection is allowed. It

41



4.5. DISCUSSION

●

●●
●●

●
●●●

●
●

●
●

●

●

●

●

0

200

400

600

0 200 400 600
False−Negatives

Fa
ls

e−
P

os
iti

ve
s

Algorithm
● Offl. RAD

Offl. RAD 2−Pass
NuPic
SORAD
ADVec

Figure 4.3: Multiobjective plot for different algorithms and thresholds for t > 500. Here, the results for
the A4 data are shown. The FNs and FPs are the sums over the 100 time series of the A4 data.

●●●●●●●●●●
●

●
●

●

●

●

●

0

100

200

300

400

0 20 40 60 80
False−Negatives

Fa
ls

e−
P

os
iti

ve
s

Algorithm
● SORAD

SORAD−F
SORAD−FMS

Figure 4.4: Multiobjective plot for different SORAD variants and thresholds for all t after the transient
phase. Here, the results for the A1 data are shown. The FNs and FPs are the sums over the 100 time series
of the A1 data.

42



F
1−

S
core

P
recision, R

ecall

1e−16 1e−11 1e−06 1e−01

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Threshold ε

Measure
Precision
Recall
F1−Score

Figure 4.5: The performance of SORAD (without forgetting) over a wide range of thresholds for the
A1-data. The F1 score is virtually constant for a wide range ϵ ∈ [1e− 17, 1e− 9].

●
● ● ●

●
●

●
●

●

● ●
●

●
● ● ●

● ● ●

0.60

0.65

0.70

0.75

0.80

0.80 0.85 0.90 0.95 1.00
Forgetting Factor λ

F
1−

S
co

re Algorithm
● SORAD−F

SORAD−FMS

Figure 4.6: Comparing results on A4 for various forgetting factors of SORAD. The first curve SORAD-F
shows the results for SORAD with forgetting in RLS; the forgetting factor λ = 0.992 results in the highest
F1 score of F1 = 0.68 in this case. For the second curve SORAD-FMS, the forgetting is applied to the
estimation of µδ and sδ of the error signal distribution as well. The best F1 score on the A4-data with a
value of F1 = 0.83 is reached for a forgetting factor of λ = 0.9805.

43



4.5. DISCUSSION

Table 4.1: Results for various algorithms on the Yahoo S5 datasets A1–A4. Shown are TP, FP, FN for
each dataset (sum over all time series, t > 500) and the quantities precision, recall, and F1 for each dataset
(over all time series, t > 500). All algorithms have their threshold chosen such that FP ≈ FN. (Only for
the F1 score in brackets, the threshold is chosen such that F1 is maximized.)

Dataset

Algorithm Measure A1 A2 A3 A4

Offline RAD

TP, FP, FN 73, 101, 54 197, 3, 3 603, 18, 37 312, 382, 395

Precision, Recall 0.42, 0.57 0.98, 0.98 0.97, 0.94 0.45, 0.44

F1 score 0.49 (0.53) 0.98 (0.99) 0.96 (0.96) 0.45 (0.48)

Offline RAD 2-Pass

TP, FP, FN 73, 107, 54 197, 3, 3 615, 36, 25 306, 394, 401

Precision, Recall 0.41, 0.57 0.98, 0.98 0.94, 0.96 0.44, 0.43

F1 score 0.48 (0.5) 0.98 (0.99) 0.95 (0.96) 0.43 (0.49)

SORAD

TP, FP, FN 85, 43, 42 197, 0, 3 627, 16, 13 460, 272, 247

Precision, Recall 0.66, 0.67 1, 0.98 0.98, 0.98 0.63, 0.65

F1 score 0.67 (0.67) 0.99 (0.99) 0.98 (0.98) 0.64 (0.66)

NuPIC

TP, FP, FN 67, 57, 60 91, 102, 109 151, 465, 489 109, 677, 598

Precision, Recall 0.54, 0.53 0.47, 0.46 0.25, 0.24 0.14, 0.15

F1 score 0.53 (0.55) 0.46 (0.48) 0.24 (0.26) 0.15 (0.19)

ADVec

TP, FP, FN 60, 62, 67 114, 65, 86 165, 458, 475 112, 578, 595

Precision, Recall 0.49, 0.47 0.64, 0.57 0.26, 0.26 0.16, 0.16

F1 score 0.48 (0.48) 0.6 (0.64) 0.26 (0.29) 0.16 (0.17)

has proven to be adversarial to start directly with the recursive procedure while the sliding
window is not entirely filled with true data. Our experiments have shown that in such a case,
the estimation of the vector θ tends to be unstable, and the anomaly error rate increases.

4.5.2 Forgetting Factor

Online algorithms open the possibility to add a certain degree of forgetting. We investigated
different forms of forgetting in SORAD. SORAD-F only uses forgetting in RLS. For SORAD-
FMS, the forgetting is applied to the estimation of µδ and sδ of the error signal distribution
as well. Our results indicate that the usual forgetting element in the RLS part (SORAD-
F) does not play a significant role. However, the new element to add forgetting to the
estimation of the error distribution (SORAD-FMS) has proven beneficial in datasets A1
and A4. The increase in F1 score (13%) is most prominent for dataset A4, which is the
dataset with the most significant non-stationary elements. Note that all datasets in the
Yahoo S5 benchmark are relatively short (1500 time steps), thus putting a boundary on the

44



Table 4.2: Same as Table 4.1, but now the detection phase is larger (all time steps after the transient
phase), and only the online algorithms (SORAD in different variants, NuPIC, ADVec) are compared. Similar
accuracy as in Table 4.1, but the online algorithms are faster up-and-running. For SORAD-F and SORAD-
FMS the forgetting factor is fixed to λ = 0.98 for all experiments.

Dataset

Algorithm Measure A1 A2 A3 A4

SORAD

TP, FP, FN 94, 62, 58 197, 0, 3 877, 24, 28 648, 301, 331

Precision, Recall 0.6, 0.62 1, 0.98 0.97, 0.97 0.68, 0.66

F1 score 0.61 (0.62) 0.99 (0.99) 0.97 (0.97) 0.67 (0.67)

SORAD-F

TP, FP, FN 95, 59, 57 197, 1, 3 888, 51, 17 672, 331, 307

Precision, Recall 0.62, 0.62 0.99, 0.98 0.95, 0.98 0.67, 0.69

F1 score 0.62 (0.63) 0.99 (0.99) 0.96 (0.96) 0.68 (0.68)

SORAD-FMS

TP, FP, FN 98, 52, 54 197, 1, 3 855, 24, 50 796, 289, 183

Precision, Recall 0.65, 0.64 0.99, 0.98 0.97, 0.94 0.73, 0.81

F1 score 0.65 (0.66) 0.99 (0.99) 0.96 (0.96) 0.77 (0.83)

NuPIC

TP, FP, FN 69, 110, 83 91, 102, 109 177, 816, 728 129, 1034, 850

Precision, Recall 0.39, 0.45 0.47, 0.46 0.18, 0.2 0.11, 0.13

F1 score 0.42 (0.5) 0.46 (0.48) 0.19 (0.2) 0.12 (0.15)

ADVec

TP, FP, FN 81, 171, 71 114, 93, 86 241, 668, 664 147, 844, 832

Precision, Recall 0.32, 0.53 0.55, 0.57 0.27, 0.27 0.15, 0.15

F1 score 0.4 (0.4) 0.56 (0.59) 0.27 (0.3) 0.15 (0.16)

Table 4.3: Computation times of the algorithms on datasets A1–A4. Shown are the average and standard
deviation from 20 runs each. The runs were performed on a PC with an i7-3520M CPU and 8GB of RAM.

Computation Time (s)

Algorithm A1 A2 A3 A4

Offline RAD 7.7± 0.1 11.6± 0.1 12.9± 0.1 12.7± 0.1

SORAD-FMS 21.1± 0.1 31.8± 0.1 35.8± 0.1 36.3± 0.1

NuPIC 368± 5 693± 2 813± 3 828± 4

ADVec 3.3± 0.1 4.8± 0.2 5.6± 0.4 6.0± 0.7

degree of non-stationarity one can observe. For longer time series, the effect of having or
not having a forgetting factor can be much larger.

45



4.6. CONCLUSION

4.5.3 Detection Accuracy

This comparative study’s most striking result is that our relatively simple regression anomaly
detection works better on all datasets A1–A4 than NuPIC or ADVec. It has to be said
that NuPIC has a large number of parameters, and we cannot exclude with certainty the
possibility that there might be another parameter set leading to better results for NuPIC.
But we can say that it must be hard to find since even the parameter optimization procedure
built into NuPIC (swarming algorithm) did not reveal such a parameter set.

4.5.4 Other algorithms

Suh et al. [154] propose an echo state network approach to anomaly detection and test it
on Webscope S5, but only for the A1 dataset. Besides methodological issues (they devote
44 complete time series to training, 11 to validation, omit the 45th time series, and perform
their evaluation only on the remaining 11 time series, without cross-validation), their results
for precision / recall / F1 = 0.54 / 0.51 / 0.52 are inferior to the results of SORAD. In [115],
the F1 scores of an CNN-based algorithm (DeepAnT) on A1–A4 are reported: The obtained
F1-scores for A1, A2, A3 and A4 are 0.46, 0.94, 0.87, and 0.68, respectively, which are all
slightly lower than the reported values for SORAD-FMS in Table 4.2.

4.5.5 Limitations of SORAD

Initially, we intended SORAD to act as a baseline algorithm (to show how far simple al-
gorithms get on a particular benchmark and how much further advanced algorithms would
lead). It was a surprise for us that SORAD performed better on A1–A4. We are led to
the conclusion that anomaly detection benchmarks with a larger variety of anomalies are
essential for proper benchmarking.

We do not claim that SORAD is for all time series the better anomaly detector. It
has not enough memory for more complicated long-term interactions. On the Numenta
anomaly detection benchmark NAB [89], where NuPIC achieves good results (F1=0.51),
SORAD does not perform too well in its current form (F1=0.24). Further research effort is
needed here.

4.6 Conclusion

In concluding this chapter, we refer to our research questions from 4.1 by providing the
following summarizing answers:

(1) A simple online regression anomaly detector (SORAD) performs surprisingly well on
the Webscope S5 anomaly benchmark dataset.

(2) It outperforms other anomaly detection algorithms (NuPIC, ADVec) on these
datasets. This is at least true if those algorithms are used with their standard parameter

46



settings. A search for better parameter settings for NuPIC using its parameter optimization
routine did not reveal significantly different results.

(3) Our third research question on the importance of the online capability is answered
as follows: We compared algorithm SORAD with its offline sibling (Offline-RAD) and could
thus assess in this comparative study the differences between both: The online variant is
superior to the offline variant (around 40% increase in F1 score on datasets A1 and A4).
We showed that it is crucial to make all elements of the algorithm adaptive, including the
parameters of the error distribution. This underpins the importance of building online and
adaptive anomaly detection algorithms to cope successfully with today’s large data streams.

4.6.1 Possible Future Work

It is necessary to build up more diverse anomaly detection benchmarks and to collect com-
prehensive results of algorithms working on them. As said before, our algorithm SORAD is
not yet good on all anomaly benchmarks. For example, it does not work too well on the Nu-
menta Anomaly Benchmark (NAB). Simple extensions of the algorithm, such as multi-step
ahead prediction (predict several horizons instead of just one), additional non-linear fea-
ture transformations, replacing the RLS algorithm with an kernel-based RLS approach [41],
and the usage of other online approaches for modeling the prediction errors (instead of a
Gaussian distribution) could likely improve the performance of SORAD.

In the following chapter, we will introduce the DWT-MLEAD algorithm, which – con-
trary to SORAD – can analyze time series at different time scales and thus, performs better
on the time series (with longer-range anomalies) of the Numenta Anomaly Benchmark.

47



4.6. CONCLUSION

48




