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Chapter 3

Related Work

In this chapter, we shortly describe several state-of-the-art anomaly detection algorithms
that we use in this work for comparison purposes. Additionally, we give an overview of the
current relevant state of the art in the field of time series anomaly detection. Since this
field is very wide, the algorithms and benchmarks discussed in this chapter are in no way
intended to represent a comprehensive list. For a detailed overview and classification of
the different algorithms and datasets, the reader is referred to general anomaly (novelty)
detection survey papers [26, 64, 131, 135, 109, 110, 23, 128] or survey papers with the focus
on time series [31, 8, 16, 55]. Additional, more specific related work is also presented in the
following chapters.

3.1 Algorithms used for Comparison Purposes

This section describes all time series anomaly detection algorithms used in this thesis for
comparison purposes. Our own contributions will be described in the course of the thesis:
Chapter 4 – 7 introduce SORAD, DWT-MLEAD (offline & online variant), LSTM-AD, and
TCN-AE, respectively.

3.1.1 ADVec

Twitter’s ADVec algorithm [173] is a robust online anomaly detection algorithm designed
to detect local and global anomalies in time series with seasonal/periodic behavior and
underlying trend. ADVec uses a method called Seasonal Hybrid ESD (S-H-ESD), which
is based on the Generalized ESD (extreme Studentized deviate) test [141], combined with
robust statistical approaches and piecewise approximation. It is available as open-source
R package ”AnomalyDetection” from Github.1 The algorithm requires three main para-
meters: The first parameter α describes the level of statistical significance with which to
accept or reject anomalies. As in the other algorithms, this parameter can be interpreted
as an anomaly threshold. ADVec requires a second parameter, a period-length. The third
parameter, maxanoms, determines the maximum number of anomalies that the algorithm will

1http://github.com/twitter/AnomalyDetection
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3.1. ALGORITHMS USED FOR COMPARISON PURPOSES

detect as a percentage of the data. We found that the setting of the parameter maxanoms is
crucial (but not difficult to select) for the performance of ADVec.

3.1.2 NuPIC

Numenta’s online anomaly detection algorithm NuPIC [160] is based on the hierarchical
temporal memory (HTM) model [49] which is biologically inspired by the neocortex of
the brain. NuPIC is also open-source and can be obtained from GitHub2. To verify the
correctness of our NuPIC installation, we applied it to the Numenta Anomaly Benchmark
(NAB) ([89], section 2.3.2) using the standard parameter settings and confirmed that we
could exactly reproduce the results3 published in [89]. The anomaly detection algorithm
behind NuPIC, similarly to other approaches, is based on the assumption [160, 89] that
time series are predictable to a certain extent. At each time step t, NuPIC performs several
predictions for time step t+ 1. These predictions are compared with the time series’s actual
value at t + 1 and based on the prediction errors, an anomaly score is formed. NuPIC
also tracks and adapts the estimated mean and variance for the anomaly scores in an online
fashion and can thus handle dynamically changing behavior to some extent. Furthermore, it
is supposed to work on a large variety of datasets without manual parameter tweaking [89].
Although the parameters can be tuned with an internal swarming tool [3], a tool to aid
automatic parameter search for a given dataset, we decided to use the standard parameter
settings recommended in [89] for all investigated problems. For some problems, the time-
expensive tuning process is not feasible, and for the other problems, we found that the
results were very similar, so we list the results for the standard parameter settings in all
chapters. NuPIC outputs an anomaly likelihood in the interval [0,1] for each time series
point, which is suitably thresholded to control the algorithm’s sensitivity.

3.1.3 LSTM-ED

LSTM-ED [108] attempts to reconstruct sub-sequences of time series in order to detect
anomalies. It addresses the problem that many time series are not predictable (in a sense
that it is impossible to accurately forecast the time series’s next values). Internally, it uses
an encoder-decoder LSTM [63, 54, 62] network, which takes sub-sequences from the time
series and encodes them into vectors of fixed length and, subsequently, attempts to recon-
struct the whole input sequence from the encoded vector. For each reconstructed point, a
reconstruction error is computed. For the reconstruction errors, a Gaussian distribution is
estimated, and the probability density of each point is used as anomaly score. The algo-
rithm’s main parameters are batch size B, the number of training epochs nepochs, sequence
length Ttrain, hidden size h = 100 and %Gaussian, which specifies the fraction of the data

2https://github.com/numenta/nupic
3The result files can be obtained from https://github.com/numenta/NAB/tree/master/results/

numenta.
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used to estimate a Gaussian distribution for the anomaly detection task. Both encoder and
decoder use a stacked LSTM network with two layers.

3.1.4 DNN-AE

DNN-AE [46] is similar to LSTM-ED in that it takes short sequences from a time series
and attempts to encode and reconstruct these. However, it is a conventional deep autoen-
coder architecture improving an earlier approach based on replicator neural networks [58].
Contrary to the replicator neural network approach, DNN-AE uses a significantly deeper
architecture, trains its weights with the more powerful ADAM optimizer [82], and replaces
the step-wise (staircase) activation function4 at the bottle-neck layer with tanh(·). The al-
gorithm requires several parameters similar to LSTM-ED: batch size B, number of training
epochs nepochs, sequence length Ttrain and a hidden size of h for the bottle neck (which results
in a compression factor of Ttrain/h for each sequence) and %Gaussian (same as for LSTM-ED).
The number of densely connected layers L depends on Ttrain and h: The number of units
in all hidden layers (except for the bottle neck) are powers of two which are smaller than
Ttrain and h. For example, for Ttrain = 50 and h = 10 we have L = 6 layers and the number
of units for the individual layers is (32, 16, 10, 16, 32, 50).

3.2 Other Anomaly Detection Algorithms

In recent years much effort was put into the design of time series anomaly detection algo-
rithms, and researchers proposed many new methods. In this section, we give an overview of
different approaches. Due to the great variety in this field, this overview is not exhaustive.

3.2.1 Online Algorithms

Next to the already introduced algorithms ADVec [173] and NuPIC [160, 49] many very dif-
ferent approaches exist for online anomaly detection in time series, for example: Yao et al.
[181] present a simple method, called Segmented Sequence Analysis (SSA), which uses the
similarity of piecewise linear representations of univariate time series and a reference model
to detect anomalous behavior in sensor data. Ma & Perkins derived an online support vector
regression (SVR) training algorithm [104] which they use to predict time series and detect
anomalies (novelties) based on the prediction error [102]. In [175], Wang et al. introduce an
online algorithm based on two statistical approaches, the Tuckey method, and the relative
entropy statistic. Their algorithm is designed to detect anomalies in large-scale cloud ser-
vices. Ahmed et al. [4] use the kernel recursive least squares (KRLS) algorithm to maintain
a relatively small dictionary of feature vectors forming a cluster in a high-dimensional fea-
ture space that approximately describes the normal behavior of traffic measurements in a

4We also experimented with the step-wise activation function introduced in [58] but could not observe
any improvements over using tanh(·).
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network. The maintained dictionary can adapt itself over time and detects anomalous net-
work traffic by computing the distance of new data points to the normal cluster. Talagala
et al. [157] present an online algorithm for univariate time series based on extreme value
theory and a kernel density estimation. In [158], an adaptable approach for streaming data
based on so-called half-space (HS) trees is proposed. Wei et al. developed an online ap-
proach based on symbolic time series representations (Symbolic Aggregate approXimation,
SAX [94]) which can – according to its authors – be applied to a wide range of applications
without domain-specific customization.

We did not find many online-adaptable DL algorithms for time series anomaly detection
in the literature: Saurav et al. [146] introduce an online DL model for (multivariate)
time series. A stacked GRU (gated recurrent unit) network is used for multistep ahead
prediction, and the mean of the prediction errors is used as anomaly score and is compared
to a threshold in order to detect anomalies. The learning algorithm is based on a stochastic
gradient descent (SGD) approach with an anomaly-score-dependent learning rate, which
can perform the backpropagation through time (BPTT) in a fully online fashion.

3.2.2 Deep Learning Approaches

Although some DL algorithms exist, which can be used in an online-adaptable fashion [146],
we found that most DL anomaly detection algorithms for time series are trained offline.
Due to the temporal nature of the data, common building blocks for DL algorithms are
convolutional neural networks or recurrent neural networks (RNNs) such as the long short-
term memory (LSTM) [63] or gated recurrent units [29], which are generally applicable to
multivariate time series. In some cases also regular fully-connected neural networks are used.
Most algorithms that we found in the literature can be classified either as prediction-based
or reconstruction-based or are combinations of both.

3.2.2.1 Prediction-based DL Algorithms

The most common approach is to train a DL model to perform a multistep-ahead prediction
(forecasting) and compare the predictions to the observed values. Typically, the prediction
errors are used as an indicator for anomalous behavior. Although these approaches are
trained in a (self-) supervised fashion to predict the time series, they are still considered
unsupervised as long as the actual anomaly labels are not used. Malhotra et al. [107]
describe such an anomaly detection algorithm based on LSTMs. It predicts over several
horizons and estimates a multivariate Gaussian distribution for the prediction errors, and
uses the probability density function of the estimated Gaussian as anomaly score. [28, 45,
44, 67, 18, 51] are similar to and partially based on [107], but apply their algorithms to
different problems. Partially, also the anomaly thresholds are computed in different ways,
for example, simply with the mean squared error (MSE) [45, 44], or using exponentially-
weighted error averages [67]. However, most of these models ([107, 28, 45, 44, 67, 18]) are
only trained with anomaly-free data and partially also require that the time series data is
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manually split into training, validation, and test sets (which requires labeled data or expert
knowledge). In chapter 6 (based on [161]), we present a prediction-based LSTM model
which can be trained with contaminated data (time series with anomalies) and extends
[107] in several aspects.

Instead of LSTMs or GRUs, in [61], He & Zhao use a temporal convolutional net-
work (TCN) [13] for predicting time series, while Munir et al. [115] use regular CNNs.
Zhu & Laptev [187] present an algorithm that is a prediction-based approach but uses a
reconstruction-based approach (described in the following section) for pre-training: during
the pre-training phase, an LSTM encoder-decoder network is trained to extract useful em-
beddings from a sequence. Subsequently, the decoder is discarded. The encoder network
generates features for the prediction network (a multi-layer densely connected network),
predicting the next few time-series steps. Additionally, the authors describe an approach to
assess the prediction uncertainty, which can help to detect anomalies.

3.2.2.2 Reconstruction-based Algorithms

Other popular approaches for time series anomaly detection are based on compressing and
reconstructing time series (or segments thereof) and detecting anomalies using the recon-
struction error (or reconstruction probabilities). Reconstruction-based algorithms can be
applied when a time series contains normal patterns which are inherently unpredictable.
Generally, they are also applicable to predictable time series. The previously introduced
DNN-AE ([58], Section 3.1.4) and LSTM-ED ([108], Section 3.1.3) are examples for such ap-
proaches. Similarly to [58], other early approaches apply regular (deep) autoencoders (AE)
to windows of fixed length and slide the AE over the whole time series. Although relatively
simple, these approaches demonstrate their effectiveness in various applications [144, 58, 35].
Oh & Yun [123] present an autoencoder architecture based on CNNs, which is trained to en-
code and reconstruct segments of a spectrogram. If the reconstruction SSE (sum of squared
errors) of a segment lies above a predefined threshold, the corresponding segment is flagged
as anomalous. Kieu et al. [80] use an autoencoder architecture based on 2D CNNs and
another LSTM encoder-decoder approach similar to [108]. Additionally, they enrich time
series with additional features before passing them to the autoencoder. In [79], Kieu et al.
present an autoencoder approach based on an ensemble of sparse recurrent neural networks.
Zong et al. present with DAGMM an architecture [188] where the parameters of a deep
autoencoder and a Gaussian mixture model are simultaneously learned during training.
Zhang et al. [184] construct so-called signature matrices of time series segments, capturing
the correlations between different dimensions of the time series, and subsequently use an
attention-based convolutional LSTM (convLSTM) autoencoder to encode and decode the
signature matrices. The residual signature matrices are used as an indicator for anomalous
behavior.

Variational approaches Variational autoencoders [83] have a wide range of applica-
tions. In recent years, they are also becoming increasingly popular in the field of (time
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series) anomaly detection. Generally, variational anomaly detection approaches attempt to
compute reconstruction probabilities instead of reconstruction errors [9]. Pereira & Silveira
[133] propose a variational Bi-LSTM autoencoder with variational self-attention (VSAM),
which takes short segments as input. But instead of reconstructing the original points of
the input sequence, the decoder attempts to compute the reconstruction probability of each
point by estimating the parameters of a Laplace distribution (again, for each point of the
sequence). Given the parameters of the Laplace distribution, the probability (density) of
the corresponding input point can be used as anomaly score (here, lower values indicate a
larger degree of abnormality). The authors apply their VSAM algorithm to univariate solar
photovoltaic generation time series. In later work, they apply similar approaches to ECG
data [132, 134]. The Donut algorithm [180] uses sliding windows and applies a variational
autoencoder to windows of fixed length. The algorithm is studied on a dataset from a large
internet company and outperforms several baseline algorithms. The dataset is not publicly
available. Su et al. propose the OmniAnomaly algorithm [153], which is based on stochastic
recurrent neural networks and is designed to encode and reconstruct short sub-sequences
of a multivariate time series. Similar to most other approaches, the authors use the re-
construction probability as anomaly score. Additionally, they present an approach for an
automatic threshold selection. Other similar variational anomaly detection algorithms were
introduced by Park et al. [129] (LSTM variational autoencoder) and Su et al. [154] (echo
state conditional variational autoencoder).

GAN-based approaches In recent years, the generative adversarial network (GAN),
invented by Goodfellow et al. [53], is being applied to anomaly detection tasks [39]. For
time series anomaly detection, often encoder-decoder architectures are used for the generator
network [186, 71]. In other approaches, the original sequence is reconstructed from an
incrementally updated latent space representation (the gradients of an error function are
used to improve an initially random latent space vector iteratively) [91, 92]. Most GAN-
based approaches compute the anomaly score for a given sample as a weighted average of a
reconstruction loss and a discriminator loss [91, 92, 71]. In [186], the authors only consider
the reconstruction loss for the anomaly score. Remarkably, all GAN-based approaches that
we studied [186, 71, 91, 92] require that the training data is exclusively normal and does
not contain any anomalous sequences.

3.2.2.3 Other relevant Algorithms

The HOT SAX algorithm [77, 78] by Keogh et al. is based on Symbolic Aggregate ApproX-
imation (SAX) [94, 95] and is designed to detect time series discords, i.e., anomalous sub-
sequences in a longer time series. Other worth-mentioning approaches are based on one-class
classification (e.g., using support vector machines [103] or using neural networks [24, 149]),
artifical immune-system approaches [33, 34], or energy based models [183]. Notable exam-
ples from industry – next to ADVec [173] and NuPIC [160] – are Yahoo’s EGADS [88],
LinkedIn’s luminol [97] and Expedia.com’s adaptive alerting [43].
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3.3 Benchmarks

As described before in Section 2.3, we use Yahoo’s Webscope S5 dataset, the Numenta
Anomaly Benchmark (NAB) [89], the Mackey-Glass Anomaly Benchmark [167, 166] and the
MIT-BIH Arrhythmia database [52, 112, 113] in our work for benchmarking and comparison
purpoes.

Apart from these four datasets, other benchmarks can be found in the literature: Filonov
et al. generated the synthetic Gasoil Heating Loop (GHL) dataset [45], using a model of
a real gasoil plant to simulate hacker attacks. During the attacks, the simulated intruders
adjust the setpoints of various process variables. In order to prevent a fault of the system, an
anomaly detection algorithm has to detect the unauthorized changes. In total, the bench-
mark contains 49 19-dimensional time series. One time series contains only normal behavior
and is used as the training data. However, many anomalies can be detected by applying a
simple threshold to one of the time series’ dimensions. A similar benchmark [44] uses the
Tennessee Eastman Process (TEP) with simulated cyberattacks to generate industrial mul-
tivariate (59-dimensional) time series. In [20], a benchmark containing 276 univariate time
series is introduced. The time series are taken from real-world sensor data (such as temper-
ature or light). However, the authors only inserted artificial anomalies. Each time series
has a length between 2000 and 18 000 data points and contains 5 to 23 anomalies of various
types (random, malfunction, bias, drift, polynomial drift, and combinations). Additionally,
a Java program is available to generate new anomalous time series. However, we did not
use this benchmark for our work as the anomalies were artificial and partially appeared to
be too trivial. Other popular time series anomaly benchmarks are the Soil Moisture Active
Passive satellite (SMAP) and Mars Science Laboratory rover (MSL) data by NASA [67]
and the Server Machine Dataset (SMD) [153]. A more recent dataset is Skoltech’s anomaly
benchmark (SKAB) [75], which currently contains more than 30 multivariate time series.
Each time series contains about 1 200 points. The data was collected in a testbed consisting
of a water circulation system with eight different sensors. In [18], Bontemps et al. de-
scribe how they converted the KDD Cup 1999 dataset [76], a network instrusion detection
benchmark (initially designed for point-based anomaly detectors), into a time series version.

In our work, we mostly use the standard metrics precision, recall, and F1-score to com-
pare the performance of algorithms. Additionally, we use precision-recall curves to compare
algorithms over a large range of anomaly thresholds. More advanced – but less commonly
used – evaluation metrics for time series are introduced in [159] and [89].
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