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Abstract

Adaptive intelligence aims at empowering machine learning techniques with the
additional use of domain knowledge. In this work, we present the application of
adaptive intelligence to accelerate MR acquisition. Starting from undersampled k-
space data, an iterative learning-based reconstruction scheme inspired by compressed
sensing theory is used to reconstruct the images. We developed a novel deep neural
network to refine and correct prior reconstruction assumptions given the training
data. The network was trained and tested on a knee MRI dataset from the 2019
fastMRI challenge organized by Facebook AI Research and NYU Langone Health. All
submissions to the challenge were initially ranked based on similarity with a known
groundtruth, after which the top 4 submissions were evaluated radiologically. Our
method was evaluated by the fastMRI organizers on an independent challenge dataset.
It ranked #1, shared #1, and #3 on respectively the 8x accelerated multi-coil, the 4x
multi-coil, and the 4x single-coil tracks. This demonstrates the superior performance
and wide applicability of the method.



6.1 Introduction

Magnetic Resonance Imaging (MRI) is a widely applied non-invasive imaging modality,
with excellent soft tissue contrast and high spatial resolution. Unlike Computed
Tomography (CT) scanning, MRI does not expose patients to any ionizing radiation,
making it a compelling alternative. MR images are essential for clinical assessment
of soft tissue as well as functional and structural measurements, which leads to early
detection and diagnosis of many diseases. However, MRI is relatively slow compared
to other imaging modalities. The total examination time can vary from 15 minutes for
knee imaging to an hour or more for cardiac imaging. Remaining still for this long in
a confined space is challenging for any patient, being especially difficult for children,
elderly and patients under pain. Motion artifacts are not only difficult to correct,
which may require a complete re-scan [134]. Furthermore, the acquisition time affects
the temporal resolution and subsequently limits the potential of MRI for dynamic
imaging, where high temporal resolution and robustness against motion are critical
for diagnosis. Moreover, the relatively long scan times lead to high costs that limit the
availability of MRI scanners [135]. Therefore, fast acquisition and reconstruction are
crucial to improve the performance of current MR scanners, which led in recent years
to the development of techniques such as parallel reception, compressed sensing and
multi-band accelerations. However, there is still a need for further scan acceleration.

The long acquisition time is intrinsic to the scanner and physics properties of
MRI. For the majority of scans performed in clinical practice, this acquisition is
done through consecutive reading-out of single lines in k-space. These readouts are
constrained by physical limitations of the hardware, the contrast generating principle,
and human physiology. The scanning time could be shortened by reducing the number
of acquired lines in k-space, i.e. by undersampling the 2D or 3D k-space. However,
this could violate the Nyquist criterion, resulting in aliasing and blurriness in the
reconstructed images, rendering them unqualified for clinical purpose. Compressed
Sensing (CS) and Parallel Imaging are the most common solutions for acceleration
by undersampling, while maintaining image quality. Compressed Sensing, the focus
of this paper, introduced by Donoho [28], Lustig [29] and Candes [30], leverages
the fact that MR images can be compressed in some domain, restoring the missing
k-space data through an iterative reconstruction algorithm [31]. Parallel Imaging uses
multiple receive coils that provide an additional signal encoding mechanism, allowing
to reduce the number of necessary k-space lines to reconstruct an image, thus partially
parallelizing the data acquisition [136].

When CS is used to accelerate MR acquisitions, the k-spaces is sampled pseudo-
randomly and the image is subsequently reconstructed by promoting a sparse solution.
In the optimal setting, the reconstructed image will be identical to the Fourier
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transform of the full k-space and have a limited number of large coefficients when
transformed to the sparse domain. Equation (6.1) shows the optimization function
that describes the CS algorithm:

min
x

{∥ MFx−My ∥2
2 +λ ∥Ψx ∥1

}
, (6.1)

where x is the reconstructed image, y is the fully measured k-space data, F is the
Fourier transform, M (mask) is the undersampling operation, Ψx represents the
sparsity transform coefficients, and λ is the regularization parameter. The `1 norm is
used to enforce sparsity of the solution in a domain specified by the transformation Ψ.
The `2 norm is used as a similarity measure between the measured k-space data My

and the reconstructed k-space MFx, called the “data consistency” term. Note that, in
case of multi-coil acquisitions, the data consistency term is given by:∑

q
∥ MF

(
Sq ·x

)−Myq ∥2
2, (6.2)

where q denotes the coil element and Sq the corresponding coil sensitivity map. The
coil sensitivity maps S are computed using the fully centered region of k-space. A
low-passed version of the coil images xlpf

q is obtained by cropping the available region
of k-space. The sensitivity map Sq , for the individual coil element is computed as
follows:

Sq =
xlpf

q√∑
j

(
xlpf

j

)2
(6.3)

To simplify notation, without loss of generality, the single-coil data consistency term
will be used throughout this paper.

Recently, deep learning has shown promising results for speeding up MR acquisition
by adopting Convolutional Neural Networks (CNN) and Generative Adversarial Net-
works (GAN). In contrast to iteratively solving optimization problems, deep learning
offers a solution for reconstructing highly-accelerated scans by adopting learnable
reconstruction schemes.

The literature of deep learning-based reconstruction algorithms can be divided
into two categories [137]. First, data-driven approaches, where a neural network is
trained to find the optimal transformation from the zero-filled k-space to the desired
reconstruction. Here, the network is completely dependent on the underlying training
dataset without any task-specific prior knowledge on the domain; following are
selected exemplar algorithms of this approach. Quan et al. [138] developed a GAN
network for MR reconstruction starting from undersampled data. Their network
consists of two consecutive networks, one for reconstruction and one for refining
the results. They used a cyclic data consistency term alongside the WGAN loss.
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Mardani et al. [139] developed a GAN network for CS. The proposed network corrects
aliasing artifacts of MR images. Guo et al. [140] proposed a WGAN with recurrent
context-awareness to reconstruct MRI images from highly undersampled k-space data.
Schlemper et al. propose a cascaded CNN-based compressive sensing (CS) technique
for the reconstruction of diffusion tensor cardiac MRI [141]. Yang et al. proposed
a conditional GAN-based architecture for de-aliasing and fast CS-MRI [142, 143].
Putzky et al. [144] treated the MR reconstruction problem as an inverse problem.
They applied the previously introduced invertible Recurrent Inference Machine (i-
RIM) model [145], which iteratively updates its current state based on the output
of the forward model. The model was trained and evaluated on the single- and
multi-coil data at 4x and 8x accelerations from the fastMRI challenge (see Section
6.2 for more details). AUTOMAP [146] reports good reconstruction results with
an architecture that learns to directly transform k-space into image data. Lee et al.
[147] introduced two separate deep residual networks for magnitude and phase. The
proposed networks successfully reconstructed images even when obtained with high
undersampling factors.

Second, hybrid approaches are presented in the literature. This class of algo-
rithms builds on top of existing reconstruction solutions and integrate learning-based
approaches to substitute part of the original computations, often by adopting an
unrolled implementation of an iterative algorithm [32]. A notable example is the
Variational network presented by Hammernik et al. [33] utilizing learned filters in
an existing iterative optimization scheme, while Yang et al. presented the Deep
ADMM-Net [34], which extends the Alternating Direction Method of Multipliers
(ADMM) [148] approach by integrating learnable operators.

Aggarwal et al. [149] introduced a model based deep learning architecture named
MoDL to solve the inverse problem, including MR reconstruction. The proposed model
consists of a series of recursive linear CNN networks. These networks share weights
for regularization and reduction in the number of parameters. The proposed network
imitates the CS algorithm and for numerical optimization, the authors introduced a
data consistency term using a conjugate gradient (CG) optimization scheme at every
iteration. The model was trained on multi-coil brain MR slices from 4 patients and
tested on one patient. Ramzi et al. [150] provided a reproducible benchmark of deep
learning based reconstruction methods on the single-coil part of the fastMRI dataset
[151]. The benchmark consists of a U-net [116], cascade net [152], KIKI-net [153],
and PD-net [154]. Cascade net has been inspired by a dictionary learning approach
[155]. This approach is composed of residual convolutional blocks applied in image
space followed by data consistency layers. The data consistency layers enforce the
k-space values be close to the original k-space measurements. KIKI-net is a cascaded
network where a non-residual convolutional block has been added to perform k-space
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completion, while PD-net provides a learnable and unrolled version of the Primal Dual
Hybrid Gradient optimization algorithm [156]. Seitzer et al. discussed the inadequacy
of loss function for training a CS-MRI reconstruction CNN [157]. In that study they
proposed a refinement method which incorporates both loss functions in a harmonious
way to improve the training stability.

Recently, Zhang and Ghanem [158] developed a deep learning approach called
ISTA-Net that mimics the conventional ISTA algorithm, but enriches it by replacing
the sparsifying transform and the thresholding with learned operations. The resulting
network does not implement a fully iterative algorithm, but it simulates it by adopting
a fixed number of iterations, effectively enabling the implementation of a deep neural
network that can be trained by the backpropagation algorithm. Inspired by the work
of Zhang and Ghanem [158], in this paper we propose a deep-learning based solution,
Adaptive-CS-Network, that mimics the ISTA algorithm, but introduces strong prior
information, i.e., inductive biases, to better constrain the reconstruction problem.
The main contributions of this work are: i) we propose a novel CNN network that
integrates and enhances the conventional CS approach; ii) it integrates multiscale
sparsification, inspired by wavelet transforms, but in a learnable manner; iii) we adopt
domain-specific knowledge, such as data consistency, a prior on known phase behavior,
and the location of the background: these computations cannot be easily learned by a
CNN; iv) the proposed model exploits the correlation between neighbouring slices by
adopting a 2.5D learning approach. In addition, we propose a hierarchical training
strategy that leverages the available data. We conducted extensive experiments to
investigate the performance of the network, and show that domain specific information
is crucial for reconstructing high-quality MR images. The proposed network showed
superior performance by winning one, and co-winning a second track out of the three
tracks of the fastMRI challenge [151].

6.2 FastMRI challenge

The fastMRI challenge is a challenge organized by Facebook AI Research and NYU
Langone Health [151]. The aim of the challenge is to advance and encourage AI-based
research in MR reconstruction in order to allow acceleration of the acquisition and,
subsequently, to reduce the examination time. The challenge is divided in three tracks:
4x single-coil, 4x multi-coil, and 8x multi-coil accelerations. Eight teams participated
in the multi-coil track and 17 teams in the single-coil track [159].

6.2.1 Dataset

The challenge organizers released a large-scale dataset of raw MR data of the knee
[160]. The data was acquired with a 2D protocol in the coronal direction with a 15
channel knee coil array using Siemens MR machines at two different field strengths:
1.5T and 3T [151]. The data was acquired using two pulse sequences: a proton
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density weighting with (PDFS) and without (PD) fat suppression. The data is divided
approximately equally between these pulse sequences. The pixel size is 0.5 mm × 0.5
mm with a slice thickness of 3 mm.

The dataset is divided in 4 categories: training (973 volumes, 34,742 slices),
validation (199 volumes, 7,135 slices), test (118 volumes, 4,092 slices), and challenge
(104 volumes, 3,810 slices). These numbers are the same for multi-coil and single-coil
data, with the exception of the test and challenge categories, where single-coil data has
respectively 10 and 12 volumes less than the multi-coil data. The training, validation
and test sets were publicly available since late November, 2018, while the challenge set
was available since September 2019. The full k-space was available for all the datasets
except for the test and challenge sets. Training and validation sets were considered for
training and optimizing our model, while the test set was used for evaluating model
performance on a public leaderboard. The final model was evaluated by the organizers
on the independent challenge set.

The k-space data provided in the challenge were undersampled using a Cartesian
mask, where k-space lines are set to zero in the phase encoding direction. The
sampling density is dependent on the acceleration rate (4x or 8x), where the sampled
lines are randomly selected. All masks, however, are fully sampled in the central
area of k-space which corresponds to the low frequencies of the image. For the 4x
accelerated scans, this percentage is 8% while it is 4% for 8x acceleration. Besides
making the reconstruction problem easier to solve, such lines allow for obtaining a
low-pass filtered version of the image that is used to compute the coil sensitivity maps
Sq as presented in Equation (6.3) using a root sum of square approach [151].

6.2.2 Quantitative evaluation

In order to measure the accuracy of the reconstructed volumes r compared to the
target volumes t, the following metrics were considered:

6.2.2.1 Normalized mean square error (NMSE)

measures the square of the Euclidean norm between a pair of images:

NMSE= ||r− t||22
||t||22

(6.4)

6.2.2.2 Peak signal-to-noise ratio (PSNR)

the ratio between the maximum intensity and the underlying distortion noise:

PSNR= 10log10
max(t)2

1
N ||r− t||22

(6.5)
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6.2.2.3 Structural similarity index metric (SSIM)

measures image similarity using human perception aspects [161]. SSIM is calculated
by measuring three image distortions including luminance l (·), contrast c(·) and
structure s(·):

SSIM= l (r,t)αc(r,t)βs(r,t)γ, (6.6)

where α,β,γ are the distortion weights, here chosen as 1. In this study, similar to the
fastMRI challenge, the SSIM score is computed on the magnitude version of the 2D
MR scans, leading to grayscale images.

6.2.3 Radiological evaluation on the challenge dataset

We submitted the reconstructions on the challenge dataset via an online form, which
were then evaluated independently by the fastMRI organizers, described in detail by
Knoll et al. [159]. All submissions were ranked by the SSIM metric, after which only
the 4 highest ranking submissions were evaluated by a panel of 7 radiologists. The
panel was asked to evaluate the reconstructions on a scale from 1 to 5 on four different
categories, where 1 is the best and 5 is the worst. The 4 categories were the rating of
artifacts, reconstruction sharpness, perceived contrast-to-noise ratio and diagnostic
confidence. The radiological scores were subsequently averaged and translated to a
final ranking.

6.3 Methods

In this section we present the background of our solution, first by introducing the
Iterative Shrinkage-Thresholding Algorithm (ISTA) [162] and, second, by introducing
its deep learning-based variant, ISTA-Net [158]. Then, we present our solution, the
Adaptive-CS-Network, that builds on top of the ISTA-Net framework by introduc-
ing several improvements, including strong inductive biases derived from domain
knowledge on the reconstruction problem.

6.3.1 ISTA background

ISTA is an optimization algorithm to solve (6.1) in an iterative fashion, starting
from the reconstruction x0, which is often obtained by reconstructing the zero-filled
undersampled k-space. The initial estimate is refined using the following update rules:

ri+1 = xi −ρF T (MFxi −My), (6.7)

xi+1 = argmin
x

1

2
∥ x− ri+1 ∥2

2 +λ ∥Ψx ∥1, (6.8)

where F T denotes inverse Fourier transform, ri+1 is an update of the estimate xi ,
where the error in the measured data My is corrected by a step ρ. Equation (6.8) is a
special case of the proximal mapping, with a regularization weight λ, and a crucial
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Figure 6.1: Proposed adaptive Adaptive-CS-Net architecture. The input and output of
the network are stacks of three consequent knee MR images.

step for optimization algorithms such as ISTA, ADMM [148] and AMP [163]. When Ψ
is a wavelet transform W, it can be proven that

xi+1 = W−1so f t (Wri+1,λ), (6.9)

where so f t is the soft-tresholding operator defined as so f t (u,λ) = max(|u|−λ,0) · u
|u| .

In general, solving (6.8) is not straightforward for non-linear operators Ψ, limiting
the applicability of the ISTA framework to simple transforms. Another problem of
this family of algorithms, is the difficulty of tuning the hyperparameters λ and ρ in
addition to its slow convergence, hence requiring a lot of iterations to achieve the
optimal solution of (6.1).

6.3.2 ISTA-Net

Recently, Zhang and Ghanem introduced a deep-learning approach to overcome the
limitations of the ISTA framework for image-to-image reconstruction. Their solution,
called ISTA-Net [158], replaces the handcrafted transform Ψ with a learned operator
S (·), which consists of a 2D learnable convolution followed by a rectified linear unit
(ReLU) and a second convolution. By replacing Ψ with S (·) in (6.8), we can rewrite
the update rule as

xi+1 = argmin
x

1

2
∥ x− ri+1 ∥2

2 +λ ∥S (x) ∥1, (6.10)

and, by defining Ŝ as the inverse of S , i.e., Ŝ ◦S = I , Zhang and Ghanem propose to
update (6.9) as follows:

xi+1 = Ŝ (so f t (S (ri+1),λ)), (6.11)

where Ŝ has a similar architecture as S .
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The model is trained end-to-end, where the iterations of the ISTA algorithm are
“unrolled”, i.e., a number b of identical reconstruction blocks are created. Note that in
the ISTA-Net approach, the learnable parameters are shared among all the blocks in
the unrolled network, unlike our solution. The training loss is defined as a combination
of the reconstruction and discrepancy loss:

L =Lr econstr ucti on +σLdi scr epanc y (6.12)

Lr econstr ucti on =∥ xb −F T y ∥2
2 (6.13)

Ldi scr epanc y =
1

b

b∑
i=1

∥ Ŝ (S (xi ))−xi ∥2
2 (6.14)

The reconstruction loss encodes the need for the final reconstruction, defined as xb , to
be as close as possible in the least squares sense to the ground-truth image, i.e., F T y.
The discrepancy loss stimulates that Ŝ ◦S = I . The σ parameter allows to control
the weight given to the discrepancy loss, and it is chosen to be arbitrarily small, e.g.,
σ = 0.01. An extension, called ISTA-Net+ is also presented by the authors, where
residual computations are adopted.

6.3.3 Adaptive-CS-Network

Starting from the network developed by Zhang and Ghanem, we developed the
Adaptive-CS-Network approach. Our solution builds on top of the ISTA-Net solution
based on three key innovations, here ordered by importance to the final network
performance: i) the use of multi-scale and ii) multi-slice computations, together with
iii) the introduction of soft MRI priors. We present them independently, building
towards the update rule of the Adaptive-CS-Network model as presented in (6.16).
Fig. 6.1 illustrates the proposed network.

First, many non-learned CS algorithms make use of multi-scale transforms to
sparsify the signal. An example is given in (6.9), where W is a wavelet transform; a
decomposition of the signal into a set of basis functions at different scales. We include
this inductive bias in our design, and adopt a multi-scale transform U , and its inverse
Û . As an additional design choice, we decide to sparsify and learn only the residual,
therefore our update rule is written as follows:

xi+1 = Û (so f t (U (ri+1),λs, fs ))+ ri+1, (6.15)

where U comprises of 2D convolutions and non-linearities in the form of Leaky-ReLU
to counteract the problem of dying neurons. To generate a multiscale representation,
a max-pooling layer is used and the resulting features are then processed again by
convolutional blocks and non-linearities. The exact design of U is presented in Fig. 6.1.
The feature maps produced at the different scales are then thresholded using the soft-
max function. Differently from ISTA-Net+, we learn a lambda parameter and feature
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channel fs for each scale s. This approach gives the network the flexibility of tuning the
thresholds independently, hence reducing the complexity of the transforms learned by
the convolutional operators. Finally, the filtered channels are transformed back into the
image domain by the inverse Û , consisting of interpolation, 2D convolutions and Leaky-
ReLU operators. Note that, contrary to the latest literature in deep learning networks,
we decided not to adopt strided convolutions for sub- and up-sampling, which would
increase the risk of creating checkerboard artifacts [164]; instead we took the more
conservative approach of adopting pooling and interpolation layers for achieving
better image quality. Overall, the computation represented by Û (so f t (U (ri+1),λs, fs ))

is implemented with a UNet-like architecture [116], where the feature maps before
the skip connections are filtered according to the parameter λs, fs .

Second, it is important to note that the slice thickness of the dataset is much
higher than the in-plane resolution. This indicates that inter-slice correlations are less
useful for finer scales, and potentially damaging as they will become a confounder for
the network. However, such information becomes beneficial at coarser scales, e.g.,
to facilitate the delineation of the bone in several slices. Since our transform U is
multi-scale by nature, we found it beneficial to inject neighboring slices into the
model, while leaving it to the network to identify at which scale the information will
be used. To reduce the memory footprint of the model, we adopted a 2.5D convolution
approach by concatenating neighbouring slices into the input tensor along the channel
dimension, enabling to “reinvest” the saved GPU memory as compared to a truly 3D
convolution approach, into more unrolled iterations. More details on the number of
slices used and the definition of the loss function are given in Section 6.4.3.

Finally, we adopted a hybrid- or nudge- approach to incorporate additional prior
knowledge into the reconstruction algorithm. We therefore computed additional
information derived from the current estimate xi together with k-space My. These
soft priors, which are presented in the next section, capture some properties of an MR
image that cannot be easily learned by a deep neural network due to the limited size
of the receptive field. The priors come in the form of images, and are provided as extra
input channel to the transform U . In this way, they are integrated in the computations
performed by U whenever this is beneficial for the optimization of the loss function.

6.3.4 Final design

The overall update for a block Bi+1 in the Adaptive-CS-Network model is defined as
follows:

xi+1 = Bi+1(xi ) =
xi + Ûi

(
so f t

(
Ui

(
xi ,edc,i ,eφ,i ,ebg,i

)
,λs, fs

))
.

(6.16)

Each block in the network learns different transforms Ui and Ûi , enabling each block
to focus on different properties of the image and effectively increasing the network
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capacity. Note that Ui and Ûi are different for every reconstruction block i .
In our final design, the transform Ui does not receive the data consistent image

ri , as defined in (6.7), but rather the current estimate xi together with the data
consistency prior edc,i computed as follows:

edc,i =F T (MFxi −My). (6.17)

This “soft data-consistency” update allows the network to evaluate the reliability of
the acquired data and potentially compensate errors in the coil combination defined
by F in (6.1).

The second prior we provided to the network, eφ,i , represents the known phase
response for spin-echo MR sequences. Theoretically, spin-echo sequences have zero
phase everywhere in the image. In practice, however, slowly varying phase will occur,
i.e. nonzero phase only in the low frequencies, due to hardware and acquisition
imperfections. Taking this into account, it is noted that the final reconstructed image
should be a real valued image after removal of the slowly varying phase. This
information is captured in the following prior:

eφ,i =
{

xi ·
x∗i ,lpf

‖xi ,lpf‖2

}
i mag

, (6.18)

where ∗ denotes the complex conjugate, and lpf refers to low pass filtering. The low
pass filter is chosen such that it corresponds to the center part of k-space which is fully
sampled. By doing so, the low pass filtered image xi ,lpf can be derived beforehand only
once, hence xi ,lpf is replaced by x0,lpf.

Finally, we adopt a simple approach to estimate the location in xi where the
background is found, which is common in parallel imaging techniques. The following
prior is applied:

ebg,i =
xi

‖xi ,lpf‖2
. (6.19)

This prior will penalize estimated signal content where ‖xi ,lpf‖ is low, i.e., within the
background. Again, xi ,lpf is replaced by x0,lpf. Because x0,lpf is based on the fully
measured central part of k-space, the image is artefact free albeit at low spatial
resolution, leading to a reliable background identification.

In Fig. 6.1 the design of the Adaptive-CS-Network is shown, including the multi-
scale transforms, the multi-slice computation and the priors provided as input. Note
how the spin-echo and background priors are computed only for the central slice, in
order to save GPU memory.

6.3.5 Network training and implementation details

We implemented our models in PyTorch [165]. All the optimization experiments were
performed on an NVIDIA V100 GPU with 16 GB RAM and the final network was trained
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on two NVIDIA V100 GPU with 16 GB RAM. In order to run as many experiments as
possible given the challenge deadline, model optimization (see Section 6.4) was done
with a relatively small model (≤ 10 blocks), which we trained for 20 epochs. All the
optimization networks were trained and validated on the highest acceleration rate
of the challenge, i.e. 8x and for single-coil data, except for the number of the blocks
which was performed for both 4x and 8x, and for the priors which are more relevant
for the multi-coil data. Since the ground truth for the test set was not available, all the
quantitative comparisons were only done on the validation set.

For the challenge, we trained the final model using the training and validation
datasets for 25 epochs and accelerations randomly selected from 2x to 10x. The
residual connections designed on a per-iteration basis, facilitates the learning and
prevents the degradation of the error gradient throughout the architecture. The
model was subsequently fine-tuned on eight data sub-populations identified by the
acceleration (4x and 8x), the protocol (PD and PDFS) and the scanner field strength
(1.5T and 3T). Fine-tuning was then performed for 10 epochs on the sub-populations.
This procedure was performed independently for the single- and multi-coil datasets,
resulting in a total of 8 models. All models were trained using an exponentially
decaying learning rate of 10−4. The final models have 33M trainable parameters each;
for the single-coil data this leads to an inference time of approximately 327 ms, while
it takes approximately 518 ms to compute the reconstruction of a multi-coil dataset
on an NVIDIA V100 GPU.

6.4 Experiments and results: Model optimization

In this section we present how we optimized the network configuration, on a smaller
model with 10 reconstruction blocks, using the quantitative measures reported in
Section 6.2.2 for validation. We performed experiments on the number of the blocks,
the loss functions, the influence of using adjacent slices, the optimizer, and the soft
priors. A repeated measure one-way ANOVA test was performed on the SSIM values
using a significance level of p = 0.05. P-values are only stated for the comparisons
between the best method and the other methods. In all the experiments a learning
rate of 0.0001 was used.

6.4.1 Number of blocks

The proposed model consists of multiple blocks, related to the number of unrolled
iterations of the ISTA scheme. Increasing the number of blocks leads to an increase
in the number of parameters of the model, and subsequently training time and GPU
memory usage as well as an increase in risk of overfitting. In this experiment we
investigated the effect of the number of the blocks on the quality of reconstructed
images. Tests were ran with the 2D network for 4x and 8x acceleration rates without
neighboring slices, MSE as loss function, RMSprop as optimizer, and with the Unet-like

89



1 2 3 4 5 10 15
# of blocks

0

1

2

3

4

5

SSIM 4X
SSIM 8X

1 2 3 4 5 10 15
# of blocks

0

1

2

3

4

PSNR 4X
PSNR 8X

1 2 3 4 5 10 15
# of blocks

25

20

15

10

5

0

NMSE 4X
NMSE 8X

Relative change

Figure 6.2: The effect of the number of blocks on performance, using the 4x and 8x
single-coil validation data. The variance values are shown by the bars. The stars in the
first plot show one-way ANOVA statistical significance.

Table 6.1: The effect of the loss function on performance, using the 8x single-coil
validation data. Stars denote one-way ANOVA statistical significance.

Loss function
SSIM NMSE PSNR

p-value
µ±σ µ±σ µ±σ

MSE 0.657±0.149∗ 0.046±0.029 30.2±2.8 ¿0.001
Perceptual loss 0.664±0.157∗ 0.061±0.044 29,2±3.2 ¿0.001
Huber 0.664±0.148∗ 0.062±0.041 29.1±3.0 ¿0.001
`1 0.664±0.148∗ 0.062±0.041 29.1±3.0 ¿0.001
SSIM 0.662±0.145∗ 0.065±0.041 28.9±2.8 ¿0.001
MSSIM [168] 0.671±0.143∗ 0.050±0.034 30.1±3.1 ¿0.001
Eq. (6.21) 0.673±0.143 0.048±0.033 30.3±3.1

architecture of 16 filter maps for each convolutional layer. Fig. 6.2 reports the relative
changes to a single block of our quantitative metrics. Based on the experiments,
increasing the number of the blocks will improve the performance of the network.
Therefore, the final network was configured with the maximum number of blocks
that could be fitted into GPU memory: 25 blocks. However, for the optimization
experiments below only 10 blocks were employed to limit the duration of the training.

6.4.2 Loss functions

In this experiment we investigated the effect of a wide range of differentiable loss func-
tions on the performance of our network. Here, we used the single slice reconstruction
network with only 10 blocks, RMSprop as the optimizer, and 16 filter maps for each
convolutional layer. The models were trained for 20 epochs to ensure convergence of
the model. The evaluated loss functions included MSE, perceptual loss (PL) [166], `1,
Huber [167] and multi-scale structural similarity index (MSSIM) [168]. The PL loss
function was calculated using a pre-trained VGG-16 at layers relu1_2, relu2_2, and
relu3_3.

MSSIM [168] builds upon SSIM (see Section 6.2.2.3) by incorporating structural
similarity at multiple image resolutions, thereby supplying more flexibility compared
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to SSIM, and is defined as follows:

MSSIM= [
lM (rc,tc)

]αM
M∏

i=1

[
ci (rc,tc)

]βi
[
si (rc,tc)

]γi , (6.20)

where rc ,tc , denote the reconstructed and target images respectively, M is the number
of scales used, lM , ci and si are the luminance, contrast, and structure as defined
in [161], αM , βi , and γi are the weights of the distortion factors at different resolution
levels. We adopted the same weights as reported in [168].

Zhao et al. [169] reported that a linear combination of SSIM and `1 preserves the
different properties of an image better than each separately: SSIM encourages the
network to preserve structural and contrast information, while `1 enforces sensitivity
to uniform biases to preserve luminance [170]. Since MSSIM reached higher metric
values than SSIM (see Table 6.1), we deployed a weighted summation of MSSIM [168]
and `1:

L =αMSSIM(rc,tc)+ (1−α)‖rc − tc‖1, (6.21)

where α = 0.84 was chosen, following Zhao et al. [169]. Note that, compared to
the ISTA-Net approach, we found it beneficial not to adopt the discrepancy loss as
presented in Eq. (6.12) for two reasons. First, we empirically found that tuning the
loss multiplier θ is not straightforward, leading to sub-optimal results in terms of the
reconstruction loss. Secondly, computing the discrepancy loss is very demanding in
terms of GPU memory, requiring to perform a second forward pass where only the
thresholding operation is ignored. While feasible, it requires to make the model signif-
icantly smaller in terms of learnable parameters, hence reducing model performance
significantly.

Table 6.1 reports the quantitative results for the different loss functions. The
weighted linear combination of MSSIM and `1 yielded the best results, where the
p-values indicate that the improvement achieved thanks to our modifications is highly
consistent across all scans, despite the small improvements on SSIM-values. Fig. 6.3
shows two example results for the different loss functions, confirming the favorable
results for the model trained using a combination of MSSIM and `1. Therefore, this
loss function was selected for training the final model. For the remainder of the
experiments, MSSIM is used as loss function.

6.4.3 Multi-slice network

The resolution of the images in the dataset is anisotropic with a voxel size of 0.5×0.5×3

mm3. Due to the correlation between adjacent slices with respect to anatomical
structures in MRI images, we performed an experiment to assess whether inclusion
of neighbouring slices into the reconstruction might improve the performance. We
compared the 2D scheme using only the center slice with three alternative 2.5D
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0.498 0.491 0.465 0.512

Figure 6.3: Two examples of single-coil 4x for the different loss functions. A small
network is used to test several losses. SSIM values are shown in yellow.

Table 6.2: The effect of adopting a 2.5D approach on the 8x single-coil data using
the small model. W denotes the loss weight applied to the neighboring slices. Stars
denote one-way ANOVA statistical significance.

Network
SSIM NMSE PSNR

p-value
µ±σ µ±σ µ±σ

2D 0.671±0.143∗ 0.050±0.034 30.1±3.1 ¿0.001
2.5D W0.1 0.549±0.128∗ 0.089±0.034 26.8±2.1 ¿0.001
2.5D W0.2 0.548±0.128∗ 0.090±0.033 26.8±2.1 ¿0.001
2.5D 0.674±0.143 0.048±0.033 30.3±3.1

schemes: i) the neighboring slices were used together with the center slice as input,
but only the center slice was used in the loss function (network 2.5D); ii) and iii) the
neighboring slices are also used in the loss, with different weights (0.1 vs 0.2 for the
neighbors; 1.0 for the center slice). To compute the first and last slice, we pad the
volume with replicas of the edge slices. MSSIM was used for the loss function, 10
blocks, RMSprop as the optimizer, and 16 feature maps.

Table 6.2 shows the results of this experiment, showing that the 2.5D schema very
consistently improves over the 2D scheme, and that the loss should only be defined on
the center slice. For the final model, this scheme was selected.

6.4.4 Optimizer

We experimented with different optimizers including RMSprop, rectified Adam (RAdam)
[130], LookAhead [171] and Ranger [172]. RAdam exploits a dynamic rectifier to
adjust the adaptive momentum of Adam [173]. LookAhead not only uses an adaptive
learning rate and accelerated schemes but also iteratively updates two sets of weights,
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Table 6.3: The effect of the optimizer on performance, using the 8x single-coil
validation data. Stars denote one-way ANOVA statistical significance.

Optimizer
SSIM NMSE PSNR

p-value
µ±σ µ±σ µ±σ

RMSprop 0.673±0.143∗ 0.048±0.033 30.3±3.1 ¿0.001
LookAhead 0.668±0.140∗ 0.050±0.032 30.0±2.9 ¿0.001
Ranger 0.668±0.140∗ 0.050±0.032 30.0±2.9 ¿0.001
RAdam 0.674±0.141 0.048±0.032 30.3±3.0

Table 6.4: Adaptive-CS-Net vs ISTA-Net+ on the 8x single-coil dataset. ISTA-Net+ has
0.75M trainable parameters, while ISTA-Net-L+ and A-CS-Net have 2.12M trainable
parameters. Stars denote one-way ANOVA statistical significance.

Model
SSIM NMSE PSNR

p-value
µ±σ µ±σ µ±σ

ISTA-Net+ 0.547±0.117∗ 0.169±0.022 23.8±1.9 ¿0.001
ISTA-Net-L+ 0.543±0.119∗ 0.103±0.038 26.2±2.0 ¿0.001
A-CS-Net 0.671±0.143 0.050±0.034 30.1±3.1

i.e. fast and slow weights. Ranger combines Radam and LookAhead optimizers into
a single one. We used the 2D network with 10 blocks and 16 feature maps for each
layer, and MSSIM the loss function.

Table 6.3 tabulates the results for the different optimizers. Since the best results
were obtained for the RAdam optimizer, very consistently improving over the other
optimizers, this was used for the final network.

6.4.5 Adaptive-CS-Net vs ISTA-Net+

In this experiment, we compare the proposed model to ISTA-Net+ [158]. For this
experiment, a 2D network with 10 blocks and 16 feature maps per layer was used,
SSIM as loss function, and RAdam as the optimizer. Since ISTA-Net+ uses a much
smaller single scale architecture with much fewer network parameters, we added
an experiment increasing the feature maps for ISTA-Net+ such that the number of
parameters was the same as for our architecture. According to the results reported in
Table 6.4, the proposed model outperforms ISTA-Net+ significantly. Figure 6.4 shows
a qualitative comparison between ISTA-Net+ and Adaptive-CS-Net on the single-coil
4x dataset. Although for the first image Adaptive-CS-Net reconstructed a better output
in terms of the anatomical structure, the output of ISTA-Net-L+ has a higher SSIM
value. This implies that the radiological evaluation is a complementary step to judge
the quality of the results.
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Figure 6.4: Qualitative comparison of Adaptive-CS-Net vs ISTA-Net+ on the single-coil
4x dataset. The SSIM values are shown in yellow.

Table 6.5: The effect of adding priors to the final network on performance, using the
multi-coil test data.

Acceleration prior SSIM NMSE PSNR

4x
− 0.772 0.025 30.98
+ 0.773 0.028 33.49

8x
− 0.674 0.038 30.90
+ 0.675 0.044 30.27

6.4.6 Soft priors

To assess the contribution of the additional soft priors, we compared the full model
against a version without known phase behaviour eφ,i and without background
information ebg,i . Visually, we observed only small differences. To verify the differences
in a realistic setting, we submitted the results to the public leaderboard of the fastMRI
challenge. As shown in Table 6.5, the network with all priors performed better in
terms of the SSIM metric, although the results worsened in terms of NMSE and PSNR.
Despite the fact that the improvement was minimal, we decided to adopt all priors
for the final model to ensure our participation in the last challenge phase, since the
selection was based on SSIM.
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Figure 6.5: Final network, each block has the same structure as shown in Fig. 6.1 and
is defined by U ,Û [number of scales, kernel size, number of feature maps in the first
scale]. For all layers Leaky ReLU was used as the activation function.

6.5 Adaptive-CS-NET: Submitted model

In this section, we describe the configuration of the submitted model [174] and analyze
the resulting reconstructions. The final performance is evaluated with the quantitative
metrics on the test and challenge datasets, and by presenting the radiological scores
for the challenge dataset as performed by the fastMRI challenge organizers.

Following our model optimization study, the configuration of the final model was
determined as follows. The linear combination of MSSIM and `1 (6.21) was chosen as
the loss function. The 2.5D scheme was chosen with two neighboring slices, with the
loss applied only on the central slice. For training the model, the RAdam optimizer was
deployed. Fig. 6.5 shows the structure of the final network. Each block is determined
by three parameters for the denoiser: 1) the number of scales for the denoiser U ,Û ,
2) the kernel size used in the convolutions and, 3) the number of feature maps
in the first convolutional layer, which is then doubled at each scale. According to
the experiments presented in Fig. 6.2, the number of reconstruction blocks greatly
affects the reconstruction performance, empirically observing that performance still
improves when 15 blocks are used. The available GPU memory is a limiting factor
when designing a deep neural network. To allow for a large number of blocks, we
chose a different design in each block, mixing a less powerful design (16 filters) with
more powerful ones (64 filters). By adopting this strategy, our final design contained
25 reconstruction blocks and has 33M parameters.

Fig. 6.6 shows example results of the final network for the multi-coil track from
the validation dataset. Fig. 6.7 shows examples from the test and challenge datasets.
Table 6.6 shows the SSIM, NMSE, and PSNR values for the test and challenge set (as
described in Section 6.2.1), for the images with and without fat suppression and both
combined, for both single- and multi-coil MRI scans. For the radiological evaluation,
our method scored 2.285, 1.286, and 2.714 for multi-coil 4x, multi-coil 8x, and single-
coil 4x, respectively (the closer to 1, the better). The average runtimes for the model
are 518 and 327 milliseconds for the multi-coil and the single-coil data, respectively.
More details on the results for the challenge were presented in [159].
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Table 6.6: Results for the final model for single- and multi-coil data on the test and
challenge dataset.

Dataset Coil Detail SSIM NMSE PSNR

Test

multi

4x
ALL 0.928 0.005 39.9
PD 0.961 0.002 41.7
PDFS 0.891 0.009 37.9

8x
ALL 0.888 0.009 36.8
PD 0.937 0.005 38.5
PDFS 0.843 0.013 35.3

single

4x
ALL 0.777 0.027 33.7
PD 0.877 0.010 36.9
PDFS 0.685 0.043 30.7

8x
ALL 0.680 0.042 30.5
PD 0.777 0.019 32.4
PDFS 0.575 0.067 28.5

Challenge
multi

4x ALL 0.927 0.005 39.9
8x ALL 0.901 0.009 37.4

single 4x ALL 0.751 0.030 32.7
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Figure 6.6: Example results of the final model for the multi-coil track accelerated
by 8x on the validation dataset. Top row depicts the target image, bottom row the
reconstructed images with the SSIM value in yellow.

6.6 Discussion

In this paper we propose a general method, named Adaptive-CS-Net, for reconstructing
undersampled MRI data, combining ideas from compressed sensing theory with ideas
from MR physics and deep learning. The method was developed in the context of
the 2019 fastMRI challenge, which focused on accelerating knee MR imaging. The
proposed network is an unrolled iterative learning-based reconstruction scheme, in
which a large number of reconstruction blocks refine the MR image by denoising the
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Figure 6.7: Example results of the final network from the test and challenge datasets,
for which no ground truth reconstructions are available.

signal in a learned and multi-scale fashion. Moreover, we added neighboring slices as
input to the sparsifying transform, as well as a number of soft priors that encode MRI
domain knowledge.

The main driver of the performance of our network is the multi-scale architecture,
as demonstrated in a direct comparison with ISTA-Net+ that is corrected by the
number of trainable parameters. According to the experimental results on the number
of blocks for 4x and 8x accelerations of both single- and multi-coil data, we showed
that the number of blocks has a large impact on model performance. Therefore, it
was decided to use the maximum number of blocks that we could fit into the GPU
memory, where we adopted different model designs for the different blocks to save
memory. It might be expected that beyond a certain number of blocks, overfitting
of the data might occur. However, signs of overfitting were not observed during
training and the final number of blocks was only marginally larger than tested in
the optimization experiments. Whether further increase in the number of blocks
could result in even better performance could be the topic of further experiments.
This would, however, need better hardware, as the current design is memory- and
time-bound during training. With the current configuration, final model training took
approximately 7 days on two V100 GPUs.

We experimented with a large variety of loss functions. Results showed that the
linear summation of MSSIM and `1 performed best. Figure 6.6 showed that poor SNR
data yield very low SSIM scores. Surprisingly, within high SNR data, a large variance
of SSIM scores is also found. This highlights the fact that further research is required
in order to develop better quality metrics. Moreover, we defined a 2.5D scheme to
train the network in which three adjacent slices were reconstructed while the loss
function was calculated only for the central slice. The proposed scheme outperformed
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the 2D network as well as 2.5D networks in which the loss was calculated over all
slices. By incorporating the neighbouring slices, the network can exploit existing
correlations into the reconstruction of the target slice, which is our main target as
defined by our loss. It can be expected that for MRI acquisition with less asymmetric
voxel sizes, the inclusion of information of neighbouring slices would become more
important. However, weighing the loss of the neighbouring slices resulted in less
optimal results since it forces the network to solve a more difficult problem: the
network has to reconstruct multiple slices instead of a single one. This reduces the
effective network capacity per slice, leading to a degradation of the reconstruction
performance. We tested different optimizers, where the newly introduced RAdam
outperformed the others and we used it for training the final network. We also
incorporated prior knowledge, including data consistency, known phase behaviour
and background discrimination to support the network in the reconstruction process.
We observed that these priors provided only limited extra performance to the network,
resulting in visually similar images and minimal difference in the metrics.

We can conclude that the Adaptive-CS-Net is sufficiently powerful to learn directly
from the data how to reconstruct the undersampled k-space, being the multi-scale
structure and the use of many reconstruction blocks the main driver of our performance.
As a future work, we want to better understand how much the network is relying
on the priors by adopting interpretable AI techniques such as differentiable image
parameterizations for feature visualization [175]. Stronger use of the priors via the
loss function is an additional option.

As mentioned before, the radiologist scores were based on the visual quality of the
reconstructed images and not on diagnostic interchangeability. Therefore, designing a
network based on the diagnosis can be considered a point for further research. We
furthermore observed that optimizing for SSIM was needed for reaching the final stage
of the challenge, but is not necessarily an ideal representative of radiological image
quality. This observation was very recently confirmed in a comparative study by others
[176]. The proposed method outperforms the benchmark networks, including U-net
[116], cascade net [152], KIKI-net [153], and PD-net [154], on the single-coil track
as reported in [150]. It outperforms as well the i-RIM model [145] on the Multi-coil
track but not the single coil track [159].

6.7 Conclusion

In this paper we propose an adaptive intelligence algorithm called Adaptive-CS-Net,
which was developed in the context of the 2019 fastMRI challenge. In the two
clinically relevant tracks of the challenge, using multi-coil MRI acquisitions, the
proposed method was leading, while on a simulated single-coil track the method
ranked 3rd.
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