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Abstract

Medical image registration and segmentation are two of the most frequent tasks in
medical image analysis. As these tasks are complementary and correlated, it would be
beneficial to apply them simultaneously in a joint manner. In this paper, we formulate
registration and segmentation as a joint problem via a Multi-Task Learning (MTL)
setting, allowing these tasks to leverage their strengths and mitigate their weaknesses
through the sharing of beneficial information. We propose to merge these tasks not
only on the loss level, but on the architectural level as well. We studied this approach in
the context of adaptive image-guided radiotherapy for prostate cancer, where planning
and follow-up CT images as well as their corresponding contours are available for
training. At testing time the contours of the follow-up scans are not available, which is
a common scenario in adaptive radiotherapy. The study involves two datasets from
different manufacturers and institutes. The first dataset was divided into training
(12 patients) and validation (6 patients), and was used to optimize and validate the
methodology, while the second dataset (14 patients) was used as an independent
test set. We carried out an extensive quantitative comparison between the quality of
the automatically generated contours from different network architectures as well
as loss weighting methods. Moreover, we evaluated the quality of the generated
deformation vector field (DVF). We show that MTL algorithms outperform their Single-
Task Learning (STL) counterparts and achieve better generalization on the independent
test set. The best algorithm achieved a mean surface distance of 1.06±0.3 mm, 1.27±0.4

mm, 0.91±0.4 mm, and 1.76±0.8 mm on the validation set for the prostate, seminal
vesicles, bladder, and rectum, respectively. The high accuracy of the proposed method
combined with the fast inference speed, makes it a promising method for automatic re-
contouring of follow-up scans for adaptive radiotherapy, potentially reducing treatment
related complications and therefore improving patients quality-of-life after treatment.
The source code is available at https://github.com/moelmahdy/JRS-MTL.

https://github.com/moelmahdy/JRS-MTL
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5.1 Introduction

Medical image analysis aims to extract clinically useful information that aids the
diagnosis, prognosis, monitoring and treatment of diseases [92, 93]. Two of the most
common tasks in such analyses are image registration and segmentation [94]. Image
segmentation aims to identify and cluster objects that prevail similar characteristics
into distinctive labels, where these labels can be used for diagnosis or treatment
planning. Image registration is the task of finding the geometrical correspondence
between images that were acquired at different time steps or from different imaging
modalities. These two tasks are complementary, as for example image atlases warped
by image registration algorithms are often used for image segmentation [21, 22],
while image contours can be used to guide the image registration method in addition
to the intensity images [23, 17, 24]. Contours are also used for evaluating the quality
of the registration [25, 26]. However, each of these tasks has its own strengths and
weaknesses. For instance, image segmentation algorithms can directly delineate images
based on texture and surrounding anatomy, and may therefore be robust to large
organ deformations. However it sometimes has difficulties with low contrast areas and
irregularly shaped organs. On the other hand, image registration algorithms have the
ability to encode prior knowledge of the patient’s anatomy and therefore may perform
better on low quality images. However, such methods sometimes have difficulty with
large deformations. Therefore, coupling of image registration and segmentation tasks
and modeling them in a single network could leverage their strengths and mitigate
their weaknesses through the sharing of beneficial information.

Adaptive image-guided radiotherapy is an exemplar application where the coupling
of image registration and segmentation is vital. In radiotherapy, treatment radiation
dose is delivered over a course of multiple inter-fraction sessions. In an adaptive
setting, re-imaging of the daily anatomy and automatic re-contouring is crucial to
compensate for patient misalignment, to compensate for anatomical variations in
organ shape and position, and an enabler for the reduction of treatment margins or
robustness settings [95, 96]. These have an important influence on the accuracy of
the dose delivery, and improve the treatment quality, potentially reducing treatment
related side-effects and increasing quality-of-life after treatment [97]. Automatic
contouring can be done by direct segmentation of the daily scan, or by registration
of the annotated planning scan with the daily scan followed by contour propagation.
Image registration has the advantage of leveraging prior knowledge from the initial
planning CT scan and the corresponding clinical-quality delineations, which may
especially be helpful for challenging organs. On the other hand, image segmentation
methods may better delineate organs that vary substantially in shape and volume
between treatment fractions, which is often the case for the rectum and the bladder.
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In this study, we propose to fuse these tasks at the network architecture level as well
as via the loss function. Our key contributions in this paper are as follows:

1. We formulate image registration and segmentation as a multi-task learning
problem, which we explore in the context of adaptive image-guided radiotherapy.

2. We explore different joint network architectures as well as loss weighting
methods for merging these tasks.

3. We adopt the cross-stitch network architecture for segmentation and registration
tasks and explore how these cross-stitch units facilitate information flow between
these tasks.

4. Furthermore, we compare MTL algorithms against single-task networks. We
demonstrate that MTL algorithms outperform STL networks for both segmenta-
tion and registration tasks. To the best of our knowledge this is the first study to
investigate various MTL algorithms on an architectural level as well as on a loss
weighing level for joint registration and segmentation tasks.

5. We thoroughly investigate the internals of the STL and MTL networks and
pinpoint the best strategy to merge this information to maximize the information
flow between the two tasks.

Initial results of this work were presented in [98], focusing on the cross-stitch unit
in a proposed joint architecture. In the current paper we extend this study to the archi-
tectural fusion of these tasks as well as different loss weighting mechanisms. Moreover,
an extensive analysis of the different methodologies was performed, detailing the
effect of architectural choices, information flow between the two tasks, etc.

The remainder of this paper is organized as follows: Section 5.2 introduces single-
task networks, multi-task networks, and loss weighting approaches. In Section 5.3 we
introduce the datasets and details about the implementation as well as the experiments.
In Sections 5.5 and 5.6, we discuss our results, provide future research directions, and
present our conclusions.

5.1.1 Related work

In the last decade, researchers have been exploring the idea of fusing image seg-
mentation and registration. Lu et al. [99] and Pohl et al. [100] proposed modeling
these tasks using a Bayesian framework such that these tasks would constrain each
other. Yezzi [101] proposed to fuse these tasks using active contours, while Unal et
al. [102] proposed to generalize the previous approach by using partial differential
equations without shape priors. Mahapatra et al. [24] proposed a Joint Registration
and Segmentation (JRS) framework for cardiac perfusion images, where the temporal
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intensity images are decomposed into sparse and low rank components corresponding
to the intensity change from the contrast agent and the motion, respectively. They
proposed to use the sparse component for segmentation and the low rank component
for registration. However, most of the aforementioned methods require complex
parameter tuning and yield long computation times.

Recently, deep learning-based networks have shown unprecedented success in
many fields especially in the medical image analysis domain [20, 103, 104, 105,
106, 13], where deep learning models perform on par with medical experts or even
surpassing them in some tasks [107, 108, 109, 110]. Several deep learning-based
approaches have been proposed for joint registration and segmentation. The joining
mechanisms in the literature can be classified in two categories, namely joining via the
loss function and via the architecture as well as the loss function. Selected exemplar
methods of the first approach are Hue et al. [111], who proposed to join segmentation
and registration via a multi-resolution Dice loss function. Elmahdy et al. [23] proposed
a framework that is a hybrid between learning and iterative approaches, where a
CNN network segments the bladder and feeds it to an iterative-based registration
algorithm. The authors integrated domain-specific knowledge such as air pocket
inpainting as well as contrast clipping, moreover they added an extra registration
step in order to focus on the seminal vesicles and rectum. Elmahdy et al. [17] and
Mahapatra et al. [112] proposed a GAN-based (Generative Adversarial Network)
approach, where a generative network predicts the correspondence between a pair
of images and a discriminator network for giving feedback on the quality of the
deformed contours. Exemplar methods of the second category are Xu et al. [113], who
presented a framework that simultaneously trains a registration and a segmentation
network. The authors proposed to jointly learn these tasks during training, however
the networks can be used independently during test time. This enables prediction
of only the registration output, when the labels are not available during test time.
Estienne et al. [114] proposed to merge affine and deformable registration as well as
segmentation in a 3D end-to-end CNN network. Recently Liu et al. [115] proposed an
end-to-end framework called JSSR that registers and segments multi-modal images.
This framework is composed of three networks: a generator network, that synthesizes
the moving image to match the modality of the fixed image, a registration network
that registers the synthesized image to the fixed image, and finally a segmentation
network that segments the fixed, moving, and synthesized images.

All the previous methods explored the idea of joining segmentation and registration,
where to the best of our knowledge none have explored how these tasks are best
connected and how to optimize the information flow between them on both the loss
and architectural levels.
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Figure 5.1: The proposed network architectures introduced in the paper. (a) is the base
STL network architecture for either segmentation or registration, but also represents
the dense parameter sharing MTL network architecture; (b) is the architecture with a
shared encoder, while (c) is the Cross-stitch network architecture. Details about the
number of feature maps are presented in Section 5.3.2.

5.2 Methods

5.2.1 Base network architecture

The base architecture for the networks in this paper is a 3D CNN network inspired by
the U-Net and BIRNet architectures [116, 117]. Figure 5.1a shows the architecture of
the base network. The network encodes the input through 3×3×3 convolution layers
with no padding. LeakyReLU [118] and batch normalization [119] are applied after
each convolutional layer. We used strided convolutions in the down-sampling path
and trilinear upsampling layers in the upsampling path. Through the upsampling path,
the number of feature maps increases while the size of the feature maps decreases,
and vice versa for the down-sampling path. The network has three output resolutions
and is deeply supervised at each resolution. Each resolution is preceded by a 1×1×1

fully convolution layer (Fconv) so that at coarse resolution, the network can focus on
large organs as well as large deformations, while vice versa at fine resolution. In order
to extract the groundtruth for different resolutions, we perform cropping of different
sizes as well as strided sampling so that for every input patch of size n3, the sizes of
the coarse, mid, and fine resolution are ( n

4 −7)3, ( n
2 −18)3, and (n −40)3, respectively.
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5.2.2 Single task learning

Single-task networks are designed to solve one task and therefore require a large
amount of labeled training samples, which are scarce in the medical domain since it
takes time and trained medical personnel to contour these images. The segmentation
and registration networks have the same architecture as the base network depicted in
Figure 5.1a, but differ in the input and output layers. Here, single-task networks are
considered baseline networks for comparing with the performance of the proposed
multi-task networks.

5.2.2.1 Segmentation network

The input to the segmentation network is the daily CT scan, referred to as the fixed
image I f , where the network predicts the corresponding segmentation Spred

f . Spred
f

represents the probability maps for the background, target organs, and organs-at-risk.
The network was trained using the Dice Similarity Coefficient (DSC) loss, which
quantifies the overlap between the network prediction Spred

f and the groundtruth S f

as follows:

LDSC = 1− 1

K

K∑
k=1

2∗∑
x Spred

k (x) ·Sk (x)∑
x Spred

k (x)+∑
x Sk (x)

, (5.1)

where K is the number of structures to be segmented, x is the voxel coordinate, Sk is
the ground truth segmentation, and Spred

k the predicted probabilities. The network has
779,436 trainable parameters.

5.2.2.2 Registration network

The input to the registration network is the concatenation of the planning scan,
referred to as the moving image Imand the daily scan I f . The network predicts
the geometrical correspondence between the input images. This correspondence is
represented by the displacement vector field (DVF), referred to as φpred. This DVF is
then used to warp Im . In an ideal scenario, the warped moving image I warped

m would be
identical to I f . The network is trained using Normalized Cross Correlation (NCC) in
order to quantify the dissimilarity between I warped

m and I f . Since the images are from
a single imaging modality (CT) with a similar intensity distribution, NCC is an obvious
choice abundantly used in the registration literature. Moreover, the implementation is
straightforward and efficient when using plain convolution operations. NCC is defined
by the following equation:

LNCC = 1−
∑

x [(I f (x)−I f )·(I warped
m (x)−I warped

m )]
σI f

σ
I

warped
m

, (5.2)

where x is the voxel coordinate, and σI f and σ
I warped

m
are the standard deviation of the

fixed and warped images, respectively. In order to encourage the network to predict a
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smooth DVF, a bending energy penalty term is added for regularization:

LBE = 1

N

∑
x
‖H(φpr ed (x))‖2

2, (5.3)

where H is the Hessian matrix. Now the total registration loss becomes:

LRegistration =LNCC +w ·LBE, (5.4)

where w is the bending energy weight. For more details on the selection of w , see
Section 5.4.1. The network has 779,733 trainable parameters.

5.2.3 Multi task learning

In Multi-Task Learning (MTL), related tasks regularize each other by introducing an
inductive bias, thus making the model agnostic to overfitting compared to its STL
counterparts [120]. MTL can also be considered as an implicit data augmentation
strategy, since it effectively increases the training sample size while encouraging the
model to ignore data-dependent noise. Because different tasks have different noise
patterns, modeling these tasks simultaneously enables the model to generalize well
[121]. Moreover, in MTL models, some features can be more easily learned by one
task than another, thus encouraging information cross-talk between tasks [122].

Also, in real-world scenarios, physicians usually incorporate knowledge from
different imaging modalities or previous tasks in order to come up with a diagnosis or
better understanding of the underlying problem. This illustrates that the knowledge
embedded in one task can be leveraged by other tasks and hence it is beneficial to
jointly learn related tasks.

Choosing the architecture of an MTL network is based on the following two factors
[123]: what to share and how to share. What to share defines the form in which
knowledge is shared between tasks. This knowledge sharing can be done through
hand-crafted features, input images, and model parameters. How to share determines
the optimal manner in which this knowledge is shared. In this paper, we focus on
parameter-based sharing.

In the following sections, we investigate different MTL network architectures in
order to best understand how segmentation and registration tasks share information
on the architectural level. The investigated networks predict two sets of contours, one
set resulting from the segmentation task and one from the registration task. In this
paper, we select the best set of contours as the final output, based on the validation
results. More sophisticated strategies are discussed in Section 5.5.

5.2.3.1 Joint registration and segmentation via the registration network

The network in this method, dubbed JRS-reg, has the same architecture as the STL
registration network from Section 5.2.2.2, except that this network is optimized using
a joint loss as presented in Eq. 5.6.
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5.2.3.2 Dense parameter sharing

In this architecture both segmentation and registration tasks are modeled using a
single network, where both tasks share all parameters except for the task-specific
parameters in the output layer, see Figure 5.1a. The network architecture is the same
as the base network (see Section 5.2.1) except for the input and output layers. This
dense sharing eliminates overfitting issues since it enforces the parameters to model all
the tasks at once, however it does not guarantee the best representation for individual
tasks [123]. The input to the network is the concatenation of Im , I f , and Sm . The
network predicts the φpred between input images as well as Spred

f . The network has
781,164 trainable parameters.

5.2.3.3 Encoder parameter sharing

Since the input to the segmentation and registration tasks are both CT scans, this
means they both encode similar features in the down-sampling path of the network.
Therefore in this network both tasks share the encoding path and then splits into two
upsampling task specific decoder paths. We call this network the Shared Encoder
Double Decoder (SEDD) network. Figure 5.1b shows the architecture of the network.
The input to the network is the concatenation of Im , I f , and Sm . The network predicts
φpred between the input images from the registration path while predicting Spred

f from
the segmentation path. The network has 722,936 trainable parameters.

5.2.3.4 Cross-stitch network

A flexible approach to share parameters is via a Cross-Stitch (CS) network [124]. In
contrast to the heuristic approach of manually choosing which layers are shared and
which are task-specific, the CS network introduces a learning-based unit to determine
the amount of feature sharing between tasks. The CS units learn to linearly combine
feature maps from the two networks, one for segmentation and one for registration,
as shown in Figure 5.1c. The unit itself is defined as:[

X̄ `,k
S

X̄ `,k
R

]
=

[
α`,k

SS α`,k
SR

α`,k
RS α`,k

RR

][
X `,k

S

X `,k
R

]
, (5.5)

where X `,k
S and X `,k

R represent the feature maps k at layer l for the segmentation and
registration networks, respectively. α`,k

SS , α`,k
SR , α`,k

RS , and α`,k
RR represent the learnable

parameters of the CS unit. X̄ `,k
S and X̄ `,k

R are the output feature maps for the
segmentation and registration networks, respectively. The advantage of CS units
is that the network can dynamically learn to share the feature maps in case this is
beneficial in terms of the final loss value. In case there is no benefit, an identity
matrix can be learned, so that the feature maps become task-specific. This allows the
network to learn a smooth sharing between the tasks at a negligible increase in the

59



number of parameters. As suggested by the original paper, we placed the CS units
after the downsampling and upsampling layers resulting in a total of 4 CS units. The
CS network has 779,000 trainable parameters.

5.2.4 Loss weighting

The loss function for the MTL networks is defined by:

L = w0 ·LNCC +w1 ·LDSC−R +w2 ·LDSC−S +w3 ·LBE, (5.6)

where wi are the loss weights. They are chosen based on the relative contribution of
their corresponding tasks, so that different tasks would learn at the same pace. These
weights can be chosen manually based on empirical knowledge, or automatically. A
simple choice would be to weigh the losses equally with a fixed weight of 1. Following
are some exemplar algorithms for choosing the loss weights automatically. Chen et al.
proposed GradNorm [125] to weigh different tasks by dynamic tuning of the gradient
magnitudes of the tasks. This tuning is achieved by dynamically changing the learning
rate for each task so that all tasks would be learning at the same speed. The drawback
of this approach is that it requires access to the internal gradients of the shared layers
which could be cumbersome. Moreover, one needs to choose which shared layer to
back propagate to in case of multiple shared layers. Kendall et al. [126] proposed to
weigh each task by considering the homoscedastic uncertainty of that task, so that
tasks with high output variance will be weighted less than tasks with low variance.
This approach only adds few trainable parameters, namely equal to the number of
loss functions. Inspired by GradNorm, Liu et al. proposed Dynamic Weight Averaging
(DWA) [127], where each task is weighted over time by considering the rate of change
of the relative loss weights. Contrary to GradNorm, DWA only requires the numerical
values of the loss functions rather than their derivatives. In this paper, we compared
equal weights versus homoscedastic uncertainty and DWA. For all the experiments,
we set the weight of the bending energy to a fixed value of 0.5 (for more details see
Section 5.4.1) instead of a trainable one. This is to prevent the network to set it too
low in order to improve the DSC of the deformed contours on the account of the
smoothness of the predicted DVF.

5.2.4.1 Homoscedastic uncertainty

Homoscedastic uncertainty was proposed as a loss weighting method by Kendall et al.
[126]. This is a task-dependant uncertainty which is not dependant on the input data
but rather varies between tasks. The authors derived their finding by maximizing the
Gaussian likelihood while considering the observational noise scalar σ that represents
the homoscedastic uncertainty term related to each task. The following equation
describes the weight loss using homoscedastic uncertainty, where σ is a trainable
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parameter:

Lhomoscedastic =
T∑

i=1

1

σ2
i

Li + log σi , (5.7)

where T is the number of tasks. The higher the uncertainty of task i , the lower the
contribution of its associated loss Li to the overall loss. The log term can be viewed as
a regularization term, so that the network would not learn a trivial solution by setting
the uncertainty of all tasks to extreme values.

5.2.4.2 Dynamic weight averaging

Dynamic Weight Averaging (DWA) was proposed by Liu et al. [127]. Similar to
GradNorm [125], DWA weights the losses via the rate of change of the loss of each
task over the training iterations t . In contrast to GradNorm, DWA does not require
access to the internal gradients of the network, but only requires the numerical loss
values. According to DWA, the weight w of the loss L associated with the task k is
defined as:

wk (t ) = K exp(rk (t −1)/tmp)∑
i exp(ri (t −1)/tmp)

, rk (t −1) = Lk (t −1)

Lk (t −2)
, (5.8)

where rk is the relative loss ratio and tmp is the temperature that controls the
smoothness of the the task weighting. Here, we set tmp = 1 as suggested by the
original paper. For the initial two iterations, rk (t ) is set to 1.

5.3 Datasets, implementation, and evaluation

5.3.1 Datasets

This study involves two datasets from two different institutes and scanners for patients
who underwent intensity-modulated radiotherapy for prostate cancer. The first dataset
is from Haukeland Medical Center (HMC), Norway. The dataset has 18 patients
with 8-11 daily CT scans, each corresponding to a treatment fraction. These scans
were acquired using a GE scanner and have 90 to 180 slices with a voxel size of
approximately 0.9 × 0.9 × 2.0 mm. The second dataset is from Erasmus Medical
Center (EMC), The Netherlands. This dataset consists of 14 patients with 3 daily CT
scans each. The scans were acquired using a Siemens scanner, and have 91 to 218
slices with a voxel size of approximately 0.9 × 0.9 × 1.5 mm. The target structures
(prostate and seminal vesicles) as well as organs-at-risk (bladder and rectum) were
manually delineated by radiation oncologists. All datasets were resampled to an
isotropic voxel size of 1 × 1 × 1 mm. All scans and corresponding contours were
affinely registered beforehand using elastix [128], so that corresponding anatomical
structures would fit in the network’s field of view. The scan intensities were clipped to
[-1000, 1000] .
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5.3.2 Implementation and training details

All experiments were developed using Tensorflow (version 1.14) [129]. The convo-
lutional layers were initialized with a random normal distribution (µ= 0.0, σ= 0.02).
All parameters of the Cross-stitch units were initialized using a truncated normal
distribution (µ= 0.5, σ= 0.25) in order to encourage the network to share information
at the beginning of the training. In order to ensure fairness regarding the number of
parameters in all the networks, the number of filters for the Cross-stitch network were
set to [16, 32, 64, 32, 16], while for the other networks the numbers were scaled byp

2 resulting in [23, 45, 91, 45, 23] filtermaps. This results in approximately 7.8×105

trainable parameters for each network. The networks were trained using the RAdam
optimizer [130] with a fixed learning rate of 10−4. Patches were sampled equally
from the target organs, organs-at-risk and torso. All networks were trained for 200K
iterations using an initial batch size of 2. The batch size is then doubled by switching
the fixed and moving patches so that the network would warp the fixed patch to the
moving patch and vice versa at the same training iteration.

The networks were trained and optimized on the HMC dataset, while the EMC
dataset was used as an independent test set. Training was performed on a subset of
111 image pairs from 12 patients, while validation and optimization was carried out
on the remaining 50 image pairs from 6 patients.

From each image, 1,000 patches of size 96 × 96 × 96 voxels were sampled. The
size of the patch was chosen so that it would fit in the GPU memory, while still
producing a patch size of 173 at the lowest resolution, which is a reasonable size
to encode the deformation from the surrounding region. Losses from the deeply
supervised resolutions were weighted equally, 1

3 each. Training was performed
on a cluster equipped with NVIDIA RTX6000, Tesla V100, and GTX1080 Ti GPUs
with 24, 16 and 11 GB of memory, respectively. The source code is available at
https://github.com/moelmahdy/JRS-MTL.

5.3.3 Evaluation metrics

The automatically generated contours are evaluated geometrically by comparing them
against the manual contours for the prostate, seminal vesicle, rectum, and bladder.
The Dice similarity coefficient (DSC) measures the overlap between contours:

DSC =∑ 2 | S f ∩Sg |
| S f | + | Sg | , (5.9)

where Sg is the generated contour from either the segmentation or the registration
network. The distance between the contours is measured by the Mean Surface Distance
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Table 5.1: The effect of network input for the different architectures on the validation
set (HMC) in terms of MSD (mm). Lower values are better. Here, ⊕ is the concatenation
operation, and ·‖· represents the inputs to the segmentation network (left of ‖) and the
inputs to the registration network (right of ‖). Stars denote one-way ANOVA statistical
significance with respect to the Cross-stitch network with I f || I f ⊕ Im ⊕Sm as inputs.

Prostate Seminal vesicles Rectum Bladder
Network Input Output path µ±σ median µ±σ median µ±σ median µ±σ median

Seg

I f 1.49±0.3∗ 1.49 2.50±2.6 2.09 3.39±2.2 2.73 1.60±1.1∗ 1.13
I f ⊕Sm 1.31±0.4 1.23 1.63±0.9 1.26 2.88±3.4 2.06 1.12±0.5 0.97
I f ⊕ Im 3.06±0.6∗ 3.01 5.36±4.4 3.71 14.57±9.4∗ 11.58 1.46±1.3 1.12

I f ⊕ Im ⊕Sm 1.26±0.4 1.20 2.08±2.2 1.27 2.79±1.6 2.45 1.05±0.4 0.97

Reg
I f ⊕ Im 1.43±0.8∗ 1.29 1.71±1.4∗ 1.37 2.44±1.1∗ 2.17 3.40±2.3∗ 2.71

I f ⊕ Im ⊕Sm 1.91±1.3 1.59 1.92±1.5 1.44 2.58±1.1 2.33 3.88±2.5 3.16

JRS-reg
I f ⊕ Im 1.16±0.3 1.16 1.32±0.6 1.11 2.08±1.0 1.82 2.57±2.0 2.04

I f ⊕ Im ⊕Sm 1.20±0.4 1.13 1.35±0.7 1.16 2.08±1.0 1.82 2.63±2.3 1.90

Cross-stitch

I f || I f ⊕ Im
Segmentation 1.47±0.3∗ 1.48 2.93±3.0∗ 2.08 2.93±2.0∗ 2.25 1.19±1.0 0.89
Registration 1.10±0.3 1.07 1.38±0.7 1.17 2.12±1.0 1.89 2.55±2.1 1.89

I f || I f ⊕ Im ⊕Sm
Segmentation 1.06±0.3 0.99 1.27±0.4 1.15 1.76±0.8 1.47 0.91±0.4 0.82
Registration 1.10±0.3 1.06 1.30±0.6 1.13 2.00±1.0 1.75 2.45±2.1 1.81

I f ⊕Sm || I f ⊕ Im ⊕Sm
Segmentation 2.05±0.7∗ 2.00 3.66±4.4∗ 2.19 2.44±1.0∗ 2.35 1.09±0.5∗ 0.93
Registration 1.40±0.4 1.35 1.31±0.6 1.17 2.27±1.0 2.02 2.56±1.9 1.96

I f ⊕ Im ⊕Sm || I f ⊕ Im ⊕Sm
Segmentation 1.08±0.3 1.05 1.54±0.9∗ 1.28 1.88±1.0 1.61 1.01±0.7 0.82
Registration 1.20±0.3 1.18 1.35±0.7 1.16 2.12±1.1 1.87 2.54±2.2 1.80

(MSD) and Hausdorff Distance (HD) defined as follows:

MSD = 1

2

(
1

N

n∑
i=1

d
(
ai ,Sg

)+ 1

M

m∑
i=1

d
(
bi ,S f

))
, (5.10)

HD = max

{
max

i

{
d

(
ai ,Sg

)}
,max

j

{
d

(
bi ,S f

)}}
, (5.11)

where {a1; a2; . . . ; an} and {b1; b2; . . . ; bm} are the surface mesh points of the
manual and generated contours, respectively, and d

(
ai ,Sg

) = min j ‖b j −ai‖. For all
the experiments, we apply the largest connected component operation on the network
prediction.

In order to evaluate the quality of the deformations, we calculate the determinant
of the Jacobian matrix. A Jacobian of 1 indicates that no volume change has occurred;
a Jacobian > 1 indicates expansion, a Jacobian between 0 and 1 indicates shrinkage,
and a Jacobian ≤ 0 indicates a singularity, i.e. a place where folding has occurred.
We can quantify the smoothness and quality of the DVF by indicating the fraction of
foldings per image and by calculating the standard deviation of the Jacobian alongside
the MSD of the segmentation.

A repeated one-way ANOVA test was performed using a significance level of
p = 0.05. P-values are only stated for the comparisons between the best network with
the other networks.
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5.4 Experiments and results

In the paper we present two single-task networks dubbed Seg and Reg networks (see
Sections 5.2.2.1 and 5.2.2.2 for more details). Moreover, we investigated multiple
multi-task networks, namely JRS-reg, dense, SEDD, and Cross-stitch (see Sections
5.2.3.1, 5.2.3.2, 5.2.3.3, and 5.2.3.4 for more details). We compared our proposed
methods against three state-of-the-art methods that were developed for prostate
CT contouring. These methods represent three approaches, namely an iterative
conventional registration method, a deep learning-based registration method, and a
hybrid method. For the iterative method, we used elastix software [128] with the
NCC similarity loss using the settings proposed by Qiao et. al. [131]. In the deep
learning method proposed by Elmahdy et. al. [17], a generative network is trained
for contour propagation by registration, while a discrimination network evaluates
the quality of the propagated contours. Finally, we compare our methods against the
hybrid method proposed by Elmahdy et. al. [23], where a CNN network segments the
bladder and then feeds it to the iterative registration method as prior knowledge.

Following, we optimize some of the network settings on the validation set (HMC),
in order to investigate the influence of the bending energy weight, network inputs,
weighting strategy and network architecture on the results. Then, on the independent
test set, we present the final results comparing with methods from the literature.

5.4.1 Bending energy weight

We compared the single-task registration, the JRS-reg method and the Cross-stitch
network for a set of bending energy weights, see Equations (5.4) and (5.6), while the
weights of the other loss functions are set to 1. Figure 5.2 shows the performance of
the aforementioned methods using different bending energy weights. The optimal
performance of the registration network occurs at a bending weight of 0.5, while
the optimal bending weight for both JRS-reg and Cross-stitch network is much lower
but with higher standard deviation of the Jacobian. Therefore, for the remainder of
the paper we set the weight of the bending energy to 0.5 since it achieves the best
compromise between the contour performance in terms of MSD and the registration
performance in terms of the std. of the Jacobian determinant.

5.4.2 Optimization of the networks inputs

During training, validation, and testing, we have access to the fixed image I f , the
moving image Im , and the moving segmentation Sm . In Table 5.1 we compared
different sets of inputs on the validation dataset. This experiment helps to better
understand how these network interpret and utilize these inputs and how this would
reflect on the network outcome represented by the MSD metric. For this experiment
we used equal loss weights for the MTL networks.
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Figure 5.2: The performance of the registration, JRS-registration and Cross-stitch
networks with different bending energy weights on the validation set (HMC), in terms
of mean MSD averaged over the four organs. The annotation at each point represents
the standard deviation of the determinant of the Jacobian.

Feeding Sm to the segmentation network improves the results substantially com-
pared to only feeding I f , especially for the seminal vesicles, while feeding Im deteri-
orates the results. For the registration and JRS-reg networks, feeding Sm alongside
I f and Im resulted in a similar performance compared to not feeding it. Since the
Cross-stitch network is composed of two networks, one for segmentation and the other
for registration, we experimented with various combinations of inputs. The results are
very consistent with our previous findings on the single-task networks on the effect of
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Table 5.2: MSD (mm) values for the different networks and loss weighting methods for
the HMC dataset. Lower values are better. Stars and daggers denote one-way ANOVA
statistical significance for inter-network experiments with respect to Homoscedastic
weights and intra-network experiments with respect to Cross-stitch with Equal weights,
respectively. Grey numbers represent the values of the worst path between the
segmentation and registration paths, while bold numbers represent the best results.

Prostate Seminal vesicles Rectum Bladder
Network Weight Output path µ±σ median µ±σ median µ±σ median µ±σ median

JRS-reg
Equal Registration 1.20±0.4 1.13 1.35±0.7 1.16 2.08±1.0 1.82 2.63±2.3∗ 1.90
Homoscedastic Registration 1.20±0.3 1.20 1.22±0.5 1.07 2.05±1.0 1.81 2.34±2.2 1.60
DWA Registration 1.22±0.3 1.18 1.37±0.7∗ 1.20 2.29±1.1∗ 2.04 3.18±2.4∗ 2.43

Dense

Equal
Segmentation 1.14±0.4 1.06 1.73±2.1 1.12 1.91±0.9 1.64 1.04±0.7 0.87
Registration 1.20±0.3 1.11 1.33±0.7∗ 1.10 2.16±1.1 1.85 2.56±1.9 1.90

Homoscedastic
Segmentation 1.09±0.3 1.04 1.51±1.2 1.13 1.86±0.8 1.69 0.99±0.4 0.91
Registration 1.17±0.3 1.15 1.31±0.6 1.13 2.17±1.0 1.96 2.63±2.0∗ 1.95

DWA
Segmentation 1.12±0.3∗† 1.04 1.74±2.0 1.13 1.99±0.9∗ 1.77 1.00±0.4 0.85
Registration 1.14±0.3 1.14 1.27±0.6 1.07 2.24±1.1∗ 1.97 2.72±1.9 2.13

SEDD

Equal
Segmentation 1.47±0.6∗† 1.31 2.81±4.6 1.34 1.97±1.0 1.59 1.21±1.0 0.94
Registration 1.28±0.4∗ 1.19 1.50±0.9∗ 1.26 2.26±1.1∗ 1.94 2.61±2.1∗ 1.83

Homoscedastic
Segmentation 1.15±0.3† 1.14 1.47±1.0 1.22 2.12±1.1 1.91 0.99±0.2 0.94
Registration 1.19±0.3 1.21 1.23±0.5 1.13 2.15±1.0 1.92 2.31±2.0 1.64

DWA
Segmentation 1.22±0.3∗† 1.18 1.44±0.8 1.21 2.12±1.4 1.73 1.10±0.6 0.93
Registration 1.22±0.3 1.22 1.32±0.6∗ 1.10 2.30±1.1∗ 2.01 2.86±1.9∗ 2.41

Cross-stitch

Equal
Segmentation 1.06±0.3 0.99 1.27±0.4 1.15 1.76±0.8 1.47 0.91±0.4 0.82
Registration 1.10±0.3∗ 1.06 1.30±0.6 1.13 2.00±1.0∗ 1.75 2.45±2.1 1.81

Homoscedastic
Segmentation 1.23±0.3† 1.16 1.51±1.2 1.17 2.37±1.0 2.09 0.92±0.2 0.89
Registration 1.24±0.3 1.24 1.32±0.6 1.13 2.12±1.0 1.89 2.45±1.9 1.97

DWA
Segmentation 1.34±0.4∗† 1.27 1.75±1.7 1.29 2.32±0.9† 2.11 1.17±0.8∗ 0.91
Registration 1.22±0.3 1.19 1.27±0.6 1.09 2.21±1.0∗ 2.00 2.93±2.3∗ 2.27
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Figure 5.3: The evolution of the loss weights during training for different multi-task
networks on the validation dataset (HMC).

using Sm as an input.
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Figure 5.4: The evolution of the Cross-stitch units weights during training using equal
weights. CS#1 and CS#2 are placed in the down-sampling path, while CS#3 and
CS#4 are placed in the upsampling path. The solid lines represent the mean of the
weights across the diagonal of the CS unit, while the dashed lines represent the mean
of the off-diagonal weights.

For the remainder of this paper, we chose to use I f as input for the segmentation
network, and I f and Im as inputs for the registration network. Although adding Sm

proved to be better especially for the segmentation network, here we exclude it, since
these two methods act as a baseline and this is the standard setting in single-task
networks. For dense, SEDD, and JRS-reg networks, we select a concatenation of Im ,
I f , and Sm for the final network. For the Cross-stitch network, we select I f for the
segmentation network and the concatenation of Im , I f , and Sm for the registration
network.

5.4.3 Optimization of loss weighting strategy

In this experiment we investigate the performance of the various loss weighting
strategies introduced in Section 5.2.4 in order to select the best weighting method for
the underlying tasks.

Table 5.2 shows the results of the different weighting strategies for the MTL
networks in terms of MSD. For the JRS-reg network architecture, weighting the
losses with homoscedastic uncertainty achieved comparable results to using equal
weights, while DWA scored somewhat less. For the dense and SEDD architectures,
homoscedastic weighting achieved a slightly better performance, while equal weights
was best for the Cross-stitch network. For these architectures (dense, SEDD, and
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Figure 5.5: The effect of the bladder volume deviation from the planning volume
on the performance of the Seg, Reg, and Cross-stitch networks for the validation set
(HMC).

Cross-stitch), the segmentation output path showed improvement over the registration
output path.

Figure 5.3 illustrates the evolution of the loss weights wi during training, for
different multi-task network architectures and weighting strategies.

For the remainder of this paper and based on the previous findings, we chose
the homoscedastic uncertainty weighting strategy for the JRS-reg, dense and SEDD
networks, while using equal weights for the Cross-stitch network.

5.4.4 Analysis of cross-stitch units

Analysis of the behavior of the Cross-stitch units during training facilitates the
understanding of how the segmentation and registration networks interacts in the
MTL settings. Figure 5.4 shows the mean of the CS units across the diagonal and off-
diagonal (See Equation (5.5)). Higher weights on the diagonal means that the network
tends to separate the task-specific feature maps, while higher weights off-diagonal
means that the network tends to share the corresponding feature maps.

5.4.5 Effect of the bladder filling

For the HMC dataset, which was used for training and validation, a bladder filling
protocol was in place, meaning that the deformation of the bladder between daily and
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Figure 5.6: The effect of the bladder volume deviation from the planning volume
on the performance of the STL and the Seg, Reg, and Cross-stitch networks for the
independent test set (EMC).

planning scans is not large. However, this is not the scenario for the EMC dataset, the
test set.

Figure 5.5 and 5.6 illustrates the effect of the bladder volume variation from the
planning scan on the performance of the Seg, Reg, and Cross-stitch networks. The
Cross-stitch network is resilient to bladder filling for both the HMC and EMC datasets.

5.4.6 Evaluation of the quality of the DVF

The smoothness of the predicted DVF is an important parameter to evaluate the
predicted deformation field. Table 5.5 shows a detailed analysis of the DVF in terms
of the standard deviation of the determinant of the Jacobian as well as the folding
fraction for the registration path of the different networks.

5.4.7 Comparison against the state-of-the-art

Table 5.3 and 5.4 show the results for the validation set (HMC) and test set (EMC),
respectively. The first two networks in each table are single-task networks. For both
sets, the registration network outperformed the segmentation network for all organs
except the bladder. The mean MSD for the independent test set is higher than the
corresponding numbers in the validation set for most organs. However, the median
values are on par. For the MTL networks, the segmentation path of the networks
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Table 5.3: MSD (mm) values for the different networks on the validation set (HMC).
Lower values are better.

Prostate Seminal vesicles Rectum Bladder
Network Output path µ±σ median µ±σ median µ±σ median µ±σ median
Seg Segmentation 1.49±0.3 1.49 2.50±2.6 2.09 3.39±2.2 2.73 1.60±1.1 1.13
Reg Registration 1.43±0.8 1.29 1.71±1.4 1.37 2.44±1.1 2.17 3.40±2.3 2.71
JRS-reg Registration 1.20±0.3 1.20 1.22±0.5 1.07 2.05±1.0 1.81 2.34±2.2 1.60

Dense
Segmentation 1.09±0.3 1.04 1.51±1.2 1.13 1.86±0.8 1.69 0.99±0.4 0.91
Registration 1.17±0.3 1.15 1.31±0.6 1.13 2.17±1.0 1.96 2.63±2.0 1.95

SEDD
Segmentation 1.15±0.3 1.14 1.47±1.0 1.22 2.12±1.1 1.91 0.99±0.2 0.94
Registration 1.19±0.3 1.21 1.23±0.5 1.13 2.15±1.0 1.92 2.31±2.0 1.64

Cross-stitch
Segmentation 1.06±0.3 0.99 1.27±0.4 1.15 1.76±0.8 1.47 0.91±0.4 0.82
Registration 1.10±0.3 1.06 1.30±0.6 1.13 2.00±1.0 1.75 2.45±2.1 1.81

Elastix [131] Registration 1.73±0.7 1.59 2.71±1.6 2.45 3.69±1.2 3.50 5.26±2.6 4.72
Hybrid [23] Registration 1.27±0.3 1.25 1.47±0.5 1.32 2.03±0.6 1.85 1.75±1.0 1.26
JRS-GAN [17] Registration 1.14±0.3 1.04 1.75±1.3 1.44 2.17±1.1 1.89 2.25±1.9 1.54

Table 5.4: MSD (mm) values for the different networks on the independent test set
(EMC). Lower values are better. Results for JRS-GAN are not available for this dataset.

Prostate Seminal vesicles Rectum Bladder
Network Output path µ±σ median µ±σ median µ±σ median µ±σ median
Seg Segmentation 3.18±1.8 2.57 9.33±10.1 5.82 5.79±3.4 5.18 1.88±1.5 1.50
Reg Registration 2.01±2.5 1.18 2.86±5.2 1.18 2.89±2.5 2.23 5.98±4.7 4.44
JRS-reg Registration 1.94±2.6 1.16 2.48±4.8 1.01 2.67±2.4 2.05 4.80±4.6 2.12

Dense
Segmentation 2.01±2.6 1.15 4.08±7.2 1.23 3.70±5.4 2.03 2.75±3.1 1.23
Registration 1.93±2.5 1.15 2.53±4.7 1.01 2.67±2.3 2.13 5.08±4.4 3.01

SEDD
Segmentation 1.99±2.4 1.24 6.26±8.9 3.01 4.21±4.9 2.12 2.43±2.9 1.04
Registration 1.92±2.5 1.19 2.43±4.5 1.07 2.72±2.4 2.17 4.86±4.4 2.22

Cross-stitch
Segmentation 1.88±1.9 1.30 2.76±3.5 1.28 4.87±6.8 2.49 1.66±1.7 0.85
Registration 1.91±2.3 1.23 2.41±4.5 0.95 2.78±2.4 2.16 4.90±4.0 2.84

Elastix [131] Registration 1.42±0.7 1.17 2.07±2.6 1.24 3.20±1.6 3.07 5.30±5.1 3.27
Hybrid [23] Registration 1.55±0.6 1.36 1.65±1.3 1.22 2.65±1.6 2.36 3.81±3.6 2.26

Table 5.5: Analysis of the determinant of the Jacobian for the validation and the
independent test sets. Lower values are better.

Validation set (HMC) Independent test set (EMC)
Network Std. Jacobian Folding fraction Std. Jacobian Folding fraction
Reg 0.2935±0.1022 0.0049±0.0039 0.4129±0.2258 0.0112±0.0115
JRS-reg 0.2543±0.0505 0.0030±0.0014 0.3148±0.1106 0.0066±0.0062
Dense 0.2062±0.0431 0.0018±0.0012 0.2558±0.0899 0.0036±0.0027
SEDD 0.2626±0.1167 0.0019±0.0016 0.4287±0.3000 0.0066±0.0074
Cross-stitch 0.2241±0.0784 0.0024±0.0018 0.3301±0.1869 0.0071±0.0070

achieved better performance than the registration path on both datasets except for the
seminal vesicles. The Cross-stitch network achieved the best results compared to the
other MTL networks.

The proposed STL and MTL networks were compared against other state-of-the-art
methods that were evaluated using the HMC dataset. For the validation set, the STL
network achieved comparable results, while the Cross-stitch network outperformed
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Figure 5.7: Example contours from the validation dataset (HMC) generated by the
proposed STL and MTL networks. From left to right, the selected cases are the first,
second, and third quartile in terms of the prostate MSD of the Cross-stitch network.
The contours of the bladder, prostate, seminal vesicles, and rectum are colored in red,
yellow, green, and blue, respectively.

these methods for both output paths. On the test set, elastix [131] and the Hybrid
method [23] performed better except for the bladder, although the median values of
the MTL networks were better.

For the quality of the predicted contours, Figure 5.7 and 5.8 show example contours
from the HMC and EMC datasets for the Seg, Reg, and Cross-stitch networks. The
examples show that the Cross-stitch network achieves better results compared to the
Seg and Reg networks especially for the seminal vesicles and rectum with large gas
pockets.

5.5 Discussion

In this study, we proposed to merge image registration and segmentation on the
architectural level as well as the loss, via a multi-task learning setting in order to
leverage their strengths and mitigate their weaknesses through the sharing of beneficial
information. We studied different network architectures and loss weighting methods in
order to explore how these tasks interact, and thereby leverage the shared knowledge
between them. Moreover, we carried out extensive quantitative analysis in the context
of adaptive radiotherapy, and compared the proposed multi-task methods to their
single-task counterparts. In this paper, a substantial number of experiments were
executed, where we explored the following methodological choices: the bending
energy weight, the input to the STL and MTL networks, and the loss weighting
method. We also performed a thorough analysis on how Cross-stitch units and loss
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Figure 5.8: Example contours from the independent test set (EMC) generated by the
proposed STL and MTL networks. From left to right, the selected cases are the first,
second, and third quartile in terms of the prostate MSD of the Cross-stitch network.

weights evolve during training. Finally, we compared our proposed methods against
state-of-the-art methods.

In all the experiments we fixed the weight of the bending energy weight so that
the network would not set it too low in order to improve the DSC of the deformed
contours on the account of the smoothness of the predicted DVF. As shown in Figure
5.2 low bending energy weights result in better contour quality on the account of the
smoothness of the predicted DVF.

For the inputs to the STL networks, additionally feeding Sm to the segmentation
network resulted in a statistically significant improvement especially for the seminal
vesicles. Apparently the network considers Sm as an initial estimation for S f and
subsequently uses it as a guidance for its final prediction. When feeding Imthe results
deteriorated; this may confuse the network as I f and Im have the same anatomy but
with different shapes and local positions. The addition of both Im and Sm performed
similar to the addition of only Sm , which indicates that the networks learned to ignore
Im . For the registration network, the addition of Sm resulted in a sub-optimal result,
since the Sm contours on its own does not represent the underlying deformation well.

For the inputs to the MTL networks, in the JRS-reg network, feeding Sm alongside
I f and Im resulted in a similar performance compared to not feeding it. This indicates
that the incorporation of Sm via the DSC loss, already enables the JRS-reg network
to exploit this extra information, and that additionally adding Sm as a network
input does not provide further benefits. In the Cross-stitch network, we found that
adding Sm to the registration network results in a statistically significant improvement.
Furthermore, feeding Sm to one of the networks is sufficient, proving that segmentation
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and registration networks communicate their knowledge efficiently through the Cross-
stitch units.

We selected the STL networks with I f (for segmentation) and I f alongside Im

(for registration) as input to our baseline methods. Between these two networks,
the registration network performed better overall, since the registration network
leverages prior knowledge from the organs in the moving image. For the bladder, the
segmentation network achieved better results; Apparently the registration network
had difficulties finding the correspondence between the bladder in the fixed and
moving images, since it tends to deform considerably between visits. However, the
segmentation network failed to segment the seminal vesicles for five cases. That is
explained by the fact that the seminal vesicles is a difficult structure to segment, due
to its relatively small size, undefined borders, and poor contrast with its surroundings.
The registration network on the other hand is able to employ the surrounding anatomy
as context, to accurately warp the seminal vesicles.

For the multi-task networks, we demonstrated that fusing segmentation and
registration tasks is performing better than its single-task counterparts. Merging
these tasks using Cross-stitch network achieved the best results on both the validation
and testing datasets.

Different loss weighting methods achieved comparable results as shown in Table
5.2. In Figure 5.3, homoscedastic uncertainty tended to weigh all losses equally, using
almost a fixed weight of 0.9 during most of the training iterations. On the contrary,
DWA tended to fluctuate during training as the weights are updated based on the
ratio of the loss from previous iterations, which fluctuates due to the batch-based
training. Since the fixed and moving images are affinely registered beforehand, DWA
tended to down-weigh the registration loss and the associated DSC at the beginning
of the training, while weighting the segmentation network loss more in order to
improve its prediction. Later during training, all the weights stabilized around 0.9
similar to homoscedastic uncertainty. Although both methods stabilized by the end
of the training around the same value (0.9), the homoscedastic uncertainty achieved
slightly better results compared to DWA and equal weighting methods, except for the
Cross-stitch network. Our reasoning behind this is that homoscedastic uncertainty,
unlike other methods, is learnable during the training and highly dependent on the
underlying task uncertainty.

By analyzing the performance of the Cross-stitch units as demonstrated in Figure
5.4, we found that the Cross-stitch units tended to average feature maps for the
down-sampling path, while preferring to be more task-specific for the upsampling
path. This somewhat mimics the shared encoder double decoder (SEDD) network,
but in contrast to this network, the Cross-stitch network does not completely split the
decoder paths. This finding confirms that the segmentation and registration tasks are
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correlated and thereby encode similar features.

We carried out an experiment to study the effect of the bladder filling protocol
between the HMC and EMC datasets. As shown in Figure 5.5, the HMC dataset
has a bladder filling protocol so the volume of the bladder changes slightly around
100 mL between different sessions, which is not the case for the EMC dataset as
shown in Figure 5.6. Since the registration-based networks and joint networks were
trained on small bladder deformations, they failed on large deformations, however the
segmentation network was not affected since it does not depend on the deformation
but rather the underlying texture to segment the bladder.

In terms of the smoothness of the predicted DVF shown in Table 5.5, MTL networks
achieved lower numbers for the standard deviation of the Jacobian as well as for the
folding fraction, compared to the STL network (Reg), on both the test and validation
set. Our reasoning is that joining the segmentation task to the registration task works
as an additional regularization to the registration network. Due to the fact that the
higher the quality of the predicted DVF, the higher the quality of the propagated
contours and subsequently the lower the DSC loss. The numbers on the test set are
slightly higher than the validation set, but this is due to the variance between the
deformations between both sets and the fact that the network has not seen the test set
before. This can be addressed using transfer learning as suggested by Elmahdy et al.
[106] or by using synthetic deformations that mimic the one presented in the EMC
dataset.

In the paper, we compared our algorithm against different algorithms from
various categories: non-learning (elastix [128], a popular conventional tool); hybrid
[23], and GAN-based [17]. The presented multi-task networks outperformed these
approaches on the validation set and performed on par to these methods for the test
set. However, the test time for the hybrid and elastix methods are in the order
of minutes, while the presented methods have the advantage of fast prediction in
less than a second. This enables online automatic re-contouring of daily scans for
adaptive radiotherapy. Moreover, in our hybrid study [23] we carried out an extensive
dosimetric evaluation alongside the geometric evaluation. The predicted contours
from that study met the dose coverage constraints in 86%, 91%, and 99% of the
cases for the prostate, seminal vesicles, and lymph nodes, respectively. Since our
multi-task networks outperformed the geometrical results in that study, we expect
that our contours would achieve a higher success rate in terms of the dose coverage.
This could potentially reduce treatment related complications and therefore improve
patient quality-of-life after treatment.

A promising direction for future research is the addition of a third task, potentially
radiotherapy dose plan estimation. Hence, we can generate contours that are consis-
tent with an optimal dose planning. Further studies could also focus on sophisticated
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MTL network architectures similar to sluice networks [132] or routing networks
[133]. Moreover, we can study how to fuse the contours from the segmentation and
registration paths in a smarter way rather than simply selecting one of them based on
the validation set.

5.6 Conclusion

In this paper, we propose to formulate the registration and segmentation tasks as
a multi-task learning problem. We presented various approaches in order to do
so, both on an architectural level and via the loss function. We experimented with
different network architectures in order to investigate the best setting that maximizes
the information flow between these tasks. Moreover, we compared different loss
weighting methods in order to optimally combine the losses from these tasks.

We proved that multi-task learning approaches outperform their single-task coun-
terparts. Using an adaptive parameter sharing mechanism via Cross-stitch units gives
the networks freedom to share information between these two tasks, which resulted
in the best performance. An equal loss weighting approach had similar performance
to more sophisticated methods.

The cross stitch network with equal loss weights achieved a median MSD of 0.99
mm, 0.82 mm, 1.13 mm and 1.47 mm on the validation set and 1.09 mm, 1.24
mm, 1.02 mm, and 2.10 mm on the independent test set for the prostate, bladder,
seminal vesicles, and rectum, respectively. That is equal or less than slice thickness
(2 mm). Due to the fast inference of the methods, the proposed method is highly
promising for automatic re-contouring of follow-up scans for adaptive radiotherapy,
potentially reducing treatment related complications and therefore improving patient
quality-of-life after treatment.
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