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4
Adversarial Optimization for Joint

Registration and Segmentation in Prostate CT

Radiotherapy

This chapter was adapted from:

M Elmahdy, J Wolterink, H Sokooti, I Išgum, and M Staring. Adversarial optimization
for joint registration and segmentation in prostate CT radiotherapy, International
Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI),
Pages 366-374, 2019.
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Abstract

Joint image registration and segmentation has long been an active area of research
in medical imaging. Here, we reformulate this problem in a deep learning setting
using adversarial learning. We consider the case in which fixed and moving images
as well as their segmentations are available for training, while segmentations are not
available during testing; a common scenario in radiotherapy. The proposed framework
consists of a 3D end-to-end generator network that estimates the deformation vector
field (DVF) between fixed and moving images in an unsupervised fashion and applies
this DVF to the moving image and its segmentation. A discriminator network is
trained to evaluate how well the moving image and segmentation align with the
fixed image and segmentation. The proposed network was trained and evaluated on
follow-up prostate CT scans for image-guided radiotherapy, where the planning CT
contours are propagated to the daily CT images using the estimated DVF. A quantitative
comparison with conventional registration using elastix showed that the proposed
method improved performance and substantially reduced computation time, thus
enabling real-time contour propagation necessary for online-adaptive radiotherapy.
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4.1 Introduction

Joint image registration and segmentation (JRS) has long been an active area of
research in medical imaging. Image registration and segmentation are closely related
and complimentary in applications such as contour propagation, disease monitoring,
and data fusion from different modalities. Image registration could be enhanced and
improved using an accurate segmentation, and vice versa registration algorithms could
be used to improve image segmentation.

An important application in which coupling of image registration and segmentation
is crucial, is online adaptive image-guided radiotherapy. In this application, clinically
approved contours are propagated from an initial planning CT scan to daily inter-
fraction CT scans of the same patient. Image registration can be used to correct
for anatomical variations in shape and position of the underlying organs, as well as
to compensate for any misalignment in patient setup. Ideally, contours should be
propagated quickly to allow immediate computation of a new dose distribution.
With these propagated contours, margins can be smaller and treatment-related
complications may be reduced. Thus, it is important that the daily contours are
of high quality, are consistent with the planning contours, and are generated in near
real-time.

In the last decade, researchers have been working on fusing image registration
and segmentation. Lu et al. [81] proposed a Bayesian framework for modelling
segmentation and registration such that these could alternatingly constrain each other.
Yezzi et al. [82] proposed using active contours to register and segment images. Unal
et al. [83], generalizing on [82], proposed to use partial differential equations without
any shape prior. Most of these methods require long computation times and complex
parameter tuning. Recently, the widespread adoption of deep learning techniques
has led to remarkable achievements in the field of medical imaging [53]. Among
these techniques are generative adversarial networks (GANs), which are defined by
joint optimization of a generator and discriminator network [54]. GANs have boosted
the performance of traditional networks for image segmentation [84] as well as
registration [85]. Recently, Mahapatra et al. [86] proposed a GAN for joint registration
and segmentation of 2D chest X-ray images. However, this method requires reference
deformation vector fields (DVFs) for training. In practice, these are often unavailable
and it may be more practical to perform unsupervised registration [87], i.e. training
without reference DVFs.

In this paper, we introduce a fast unsupervised 3D GAN to jointly perform de-
formable image registration and segmentation. A generator network estimates the
DVF between two images, while a discriminator network is trained simultaneously
to evaluate the quality of the registration and the segmentation and propagate the
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feedback to the generator network. We consider the use-case in which fixed and
moving images as well as their segmentations are available for training, which is a
common scenario in radiation therapy. However, no segmentations are required for
DVF estimation during testing. This paper has the following contributions. First, we
propose an end-to-end 3D network architecture, which is trained in an adversarial
manner for joint image registration and segmentation. Second, we propose a strategy
to generate well-aligned pairs to train the discriminator network with. Third, we
leverage PatchGAN as a local quality measure of image alignment. Fourth, the proposed
network is much faster and more accurate than conventional registration methods.
We quantitatively evaluate the proposed method on a prostate CT database, which
shows that the method compares favorably to elastix software [62].

4.2 Methods

Image registration is the transformation of a moving image Im to the coordinate system
of a fixed image I f . In this paper, we assume that all image pairs are affinely registered
beforehand, and we focus on local non-linear deformations. In conventional contour
propagation algorithms, registration and segmentation are disjoint. First, the DVF Φ is
estimated using image registration, and then Φ is used to warp the contours Sm to the
fixed coordinate space. Afterwards, during system evaluation, a similarity measure
such as the Dice similarity coefficient (DSC) can be used to measure the quality of
the propagated contours w.r.t. ground truth contours, but this information is not fed
back to the registration algorithm. We call this an open loop system. In contrast, this
paper proposes an end-to-end closed loop system to improve image registration based
on feedback on the registration as well as the segmentation quality.

4.2.1 Adversarial training

We propose to train a GAN containing two CNNs: a generator network that predicts
the DVF Φ given I f and Im , and a discriminator network that assesses the alignment
of I f (x) and Im(Φ(x)) as well as the overlap between S f (x) and Sm(Φ(x)). Hence, we
assume that S f and Sm are both available, but during training only. The GAN is trained
using a Wasserstein objective [88], which has empirically been shown to improve
training stability and convergence compared to the GAN objective in [54]. Equations
(4.1) and (4.2) list the generator loss LG AN

G and the discriminator loss LG AN
D of WGAN:

LG AN
G = E

[
D(I f (x), Im(Φ(x)),Sm(Φ(x)))

]
, (4.1)

LG AN
D = E

[
D(I f (x), Im(Φ(x)),Sm(Φ(x)))

]− [
D(I f ,Θ(I f ),S f )

]
, (4.2)

where G and D denote the generator and discriminator networks with trainable
parameters and Φ is the DVF provided by G. In a GAN, the discriminator is trained to
distinguish between real and fake samples. In this case, fake samples are the triple
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(I f , Im(Φ),Sm(Φ)), while real samples should be well-aligned images. As we perform
unsupervised registration, and assume no knowledge about the ideal alignment of two
images, we synthesize such image based on the fixed image and its segmentation alone:
(I f ,Θ(I f ),S f ). Hence, Θ in Equation (4.2) is a random combination of disturbance
functions, as follows. First, to mimic imaging noise, Gaussian noise and Gaussian
smoothing are added with zero mean and a standard deviation of 0.04. Second, to
mimic contrast variations, we apply gamma correction with a random gamma factor
in the range [−0.4,0.4]. Third, we mimic interpolation errors by applying a random
deformation of less than 0.5 mm and resample the images using that deformation
using linear interpolation.

In addition to these image-based quality measures, we include the segmentation of
the deformed moving image as input to the discriminator in order to enforce DVFs
that are consistent with the moving segmentation. We test two designs. The first
design concatenates the segmentation as a third input channel in the discriminator,
next to the fixed and moving image channels. The second design multiplies the fixed
and moving image channel with the corresponding segmentation, so that the network
learns to focus on the target structures and organs-at-risk instead of on the bowels
and other less relevant soft tissue. These designs are named JRS-GANa and JRS-GANb ,
respectively.

We found that training the network using WGAN loss only, resulted in slow
convergence and suboptimal registrations. Thus, a similarity loss Lsi m , based on
image similarity and segmentation overlap, was added to the generator:

Lsi m = (1−DSC(Sm(Φ(x)),S f (x)))+ (1−NCC(Im(Φ(x)), I f (x))), (4.3)

where DSC is the Dice similarity coefficient and NCC is normalized cross-correlation.
Adding the DSC to Lsi m ensures that the registration improves the segmentation
and vice versa. Furthermore, to ensure smooth and continuous DVFs, the bending
energy penalty of the DVF, Lsmooth , was added as a regularization term to the overall
generator loss, which was defined as:

LG = Lsi m +λ1Lsmooth +λ2LG AN
G , (4.4)

where λ1 and λ2 are weights for the DVF smoothness and the generator loss.
During training of the network, for every iteration of the generator we used 100

iterations of the discriminator, for the first 25 iterations. After that we used the
ratio 1:5. In each iteration, weights of the discriminator were clipped to the range
[−0.01,0.01] [88].

4.2.2 Network architectures

Generator Network To estimate the parametric mapping function Φ between the fixed
and moving images we use a 3D network similar to the U-net [89]. Figure 4.1 shows
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Figure 4.1: The proposed generator (top) and discriminator (bottom) networks, where
k, s, and p represent the kernel size, stride size, and padding option, respectively. The
numbers above the different layers represent the feature maps.

the network design in more detail. The input to the network is the concatenation of
I f and Im . The network encodes the image pairs through a set of 3×3×3 convolution
layers followed by LeakyReLU and batch normalization layers. Strided convolutions
are used in the contractive path and upsampling layers are used in the expanding path.
The output size of the network is smaller than the input size in order to consider a
larger field of view. A resampling network adopted from NiftyNet [90] is used to warp
the images using the estimated DVF during training time so that the network can be
trained end-to-end.

Discriminator Network The discriminator is responsible for assessing whether the
image pairs are well-aligned or not, as well as assessing whether the segmentations
overlap. Figure 4.1 shows the network design, which is similar to the contracting
path of the generator. The discriminator network was trained using PatchGAN [91].
Hence, instead of representing the quality of the whole patch with a single number,
the network could quantify the sub-patch quality locally.

4.3 Experiments and results

4.3.1 Dataset, evaluation criteria and implementation details

This study includes eighteen patients who underwent intensity-modulated radiation
therapy for prostate cancer in 2007 at Haukeland university hospital [67]. Each patient
had a planning CT as well as 7 to 10 inter-fraction repeat CT scans. The prostate,
lymph nodes, seminal vesicles, as well as the rectum and bladder were annotated.
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Table 4.1: MSD (mm) values for different experiments, where † and ‡ represent a
significant difference compared to elastix-MI and Reg-CNN, respectively.

Prostate Seminal vesicles Lymph nodes Rectum Bladder
Evaluation µ±σ µ±σ µ±σ µ±σ µ±σ
elastix-NCC 1.81±0.7 2.80±1.6 1.19±0.4 3.79±1.2 5.31±2.6
elastix-MI 1.73±0.7 2.70±1.6 1.18±0.4 3.68±1.2 5.26±2.6
Reg-CNN 1.44±0.5† 2.09±1.7† 1.22±0.3 2.59±1.3† 4.18±2.6†

JRS-CNN 1.18±0.4†‡ 1.91±1.6†‡ 1.02±0.3†‡ 2.32±1.3†‡ 2.37±2.0†‡

Reg-GAN 1.40±0.5† 2.14±1.7† 1.06±0.3†‡ 2.72±1.3† 4.31±2.8†

JRS-GANa 1.13±0.4†‡ 1.81±1.6†‡ 1.00±0.3†‡ 2.21±1.3†‡ 2.29±2.0†‡

JRS-GANb 1.17±0.4†‡ 1.90±1.5†‡ 1.01±0.3†‡ 2.34±1.3†‡ 2.41±2.1†‡

Each scan has 90 to 180 slices with a slice thickness of around 2 to 3 mm. All the slices
were of size 512 × 512 with an in-plane resolution of around 0.9 mm. All the volumes
were affinely registered using elastix. The volumes were resampled to isotropic
voxel size of 1×1×1 mm. All volumes intensities were scaled to [-1, 1]. We split the
dataset into 111 image pairs (from 12 patients) for training and validation and 50
image pairs (6 patients) for testing.

The quality of registration is quantified geometrically in 3D by comparing the
manual delineations of the daily CT with the automatically propagated contours.
We use the mean surface distance (MSD), and the 95% Hausdorff distance (HD). A
Wilcoxon signed rank test at p = 0.05 is used to compare results.

The networks were implemented using TensorFlow (version 1.13) [73] with the
RMSProp optimizer using a learning rate of 10−5. The networks were trained and
tested on an NVIDIA Tesla V100 GPU with 16 GB of memory. From each image
pair, 1000 patches of size 96×96×96 voxels were sampled within the torso mask. To
improve stability, the network was trained to warp the fixed patch to the moving patch
and vice versa at the same training iteration. The magnitude of the three loss terms in
Equation (4.3) was scaled by setting λ1 = 1 and λ2 = 0.01.

4.3.2 Experiments and results

Tables 4.1 and 4.2 provide quantitative results comparing the following methods.
First, we include conventional iterative methods using elastix software [62] with
NCC (elastix-NCC) and MI (elastix-MI) similarity measures, using the settings
from [42]. Second, we evaluate two unsupervised deep learning-based methods
without adversarial feedback: One uses the generator trained with the NCC loss
(Reg-CNN), similar to [87]; the other uses the generator with both the NCC and DSC
loss (JRS-CNN). Third, we evaluate several versions of our GAN-based approach. To
study the effect of adversarial training without added segmentations, we perform
an experiment named Reg-GAN. Finally, we evaluate the proposed JRS-GANa and
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Table 4.2: %95HD (mm) values for different experiments, where † and ‡ represent a
significant difference compared to elastix-MI and Reg-CNN, respectively.

Prostate Seminal vesicles Lymph nodes Rectum Bladder
Evaluation µ±σ µ±σ µ±σ µ±σ µ±σ
elastix-NCC 4.2±1.8 6.1±3.3 2.8±1.0‡ 11.0±5.2 15.4±8.4‡

elastix-MI 4.0±1.7 6.0±3.7 2.8±1.0‡ 10.9±5.2 15.3±8.3‡

Reg-CNN 5.3±2.5 6.2±3.5 4.4±1.4 11.0±6.5 16.6±9.3
JRS-CNN 3.6±1.5†‡ 5.4±3.4†‡ 3.1±0.9‡ 10.3±6.7†‡ 11.6±10.5†‡

Reg-GAN 4.3±2.1‡ 6.0±3.6 3.4±1.0‡ 11.1±6.4 16.2±9.6‡
JRS-GANa 3.4±1.4†‡ 5.3±3.3†‡ 3.1±0.9‡ 10.0±6.7†‡ 11.0±10.3†‡

JRS-GANb 3.5±1.4†‡ 5.6±3.7‡ 3.0±1.0‡ 10.5±6.8†‡ 11.4±10.6†‡
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Figure 4.2: Boxplots for the evaluated methods in terms of MSD (mm).

JRS-GANb methods.

The MSD values in Table 2.5 show that for all organs, the GAN-based methods
significantly improved over elastix. This is further shown in Figure 4.2. The
results indicate a significant improvement when performing joint registration and
segmentation instead of disjoint registration. Furthermore, the boxplot indicates that
performance for JRS-GANa and JRS-GANb was very similar. Similarly, the 95% HD
values in Table 2.6 show improvements in contour accuracy when the GAN-based
method is used. Especially the organs-at-risk showed large improvements. The
standard deviations of the Jacobian determinant of the estimated DVFs were 0.08±0.01

and 0.17±0.04 for elastix-MI and JRS-GANa , respectively. The average runtime for
the proposed pipeline is 0.6 seconds on the GPU for a volume of size 2563 voxels,
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Figure 4.3: An example result for three of the methods. Top row shows the fixed
image with propagated contours (solid line is manual; dotted is automatic result).
The red, yellow, cyan, violet, and green contours represent the bladder, lymph nodes,
prostate, rectum, and seminal vesicles, respectively. Bottom row shows heatmaps of
absolute difference images between fixed and deformed moving image.

while the average runtime of elastix at 100 iterations is 13 seconds per volume on
an Intel Xeon E51620 CPU using 4 cores. Figure 4.3 illustrates the segmentation and
registration for an example case.

4.4 Discussion and conclusion

In this study, we investigated the performance of an end-to-end joint registration and
segmentation network for adaptive image-guided radiotherapy. Unlike conventional
registration methods, our network encodes and learns the most relevant features for
joint image registration and segmentation, and exploits the combined knowledge on
unseen images without segmentations.

We demonstrate that including the segmentation during training boosts the system’s
performance by a margin. Furthermore, adversarial feedback had a small benefit on
performance, when comparing Reg-CNN with Reg-GAN. Results indicate a noticeable
benefit of including segmentation masks as input to the discriminator during training.
How exactly segmentation masks were embedded during training was less relevant,
with only small differences observed for the seminal vesicles. This could be due to
the small size and irregular nature of the seminal vesicles. A key advantage of the
proposed deep learning-based contour propagation method is its runtime on new and
unseen data, i.e. 0.6 s.

This work has shown that adversarial feedback can help improve registration, i.e.
that a discriminator can learn a measure of image alignment. This is a promising
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aspect that could be further explored in future work. This will include improved GAN
objectives, such as the use of gradient penalty regularization.

To conclude, we have proposed a 3D adversarial network for joint image registra-
tion and segmentation with a focus on prostate CT radiotherapy. The proposed method
demonstrated the effectiveness of training the registration and segmentation jointly.
Moreover, it showed a substantial reduction in the computation time making it a strong
candidate for online adaptive image-guided radiotherapy of prostate cancer. Since the
proposed method did not only improve accuracy for the target areas, but substantially
so for the organs-at-risk, this may aid reducing treatment-induced complications.
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