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Robust Contour Propagation Using Deep

Learning and Image Registration for Online

Adaptive Proton Therapy of Prostate Cancer

This chapter was adapted from:

M Elmahdy, T Jagt, Y Qiao, R Shahzad, H Sokooti, S Yousefi, L Incrocci, C Marijnen, M
Hoogeman, and M Staring. Robust contour propagation using deep learning and
image registration for online adaptive proton therapy of prostate cancer, Medical
Physics, Pages 3329-3343, 2019.
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Abstract

Purpose: To develop and validate a robust and accurate registration pipeline
for automatic contour propagation for online adaptive Intensity-Modulated Proton
Therapy (IMPT) of prostate cancer using elastix software and deep learning.
Methods: A 3D Convolutional Neural Network was trained for automatic bladder
segmentation of the CT scans. The automatic bladder segmentation alongside the CT
scan are jointly optimized to add explicit knowledge about the underlying anatomy to
the registration algorithm. We included three datasets from different institutes and
CT manufacturers. The first was used for training and testing the ConvNet, where
the second and the third were used for evaluation of the proposed pipeline. The
system performance was quantified geometrically using the Dice Similarity Coefficient
(DSC), the Mean Surface Distance (MSD), and the 95% Hausdorff Distance (HD).
The propagated contours were validated clinically through generating the associated
IMPT plans and compare it with the IMPT plans based on the manual delineations.
Propagated contours were considered clinically acceptable if their treatment plans met
the dosimetric coverage constraints on the manual contours.
Results: The bladder segmentation network achieved a DSC of 88% and 82% on
the test datasets. The proposed registration pipeline achieved a MSD of 1.29±0.39,
1.48±1.16, and 1.49±0.44 mm for the prostate, seminal vesicles, and lymph nodes,
respectively on the second dataset and a MSD of 2.31±1.92 and 1.76±1.39 mm for
the prostate and seminal vesicles on the third dataset. The automatically propagated
contours met the dose coverage constraints in 86%, 91%, and 99% of the cases for
the prostate, seminal vesicles, and lymph nodes, respectively. A Conservative Success
Rate (CSR) of 80% was obtained, compared to 65% when only using intensity-based
registration.
Conclusion: The proposed registration pipeline obtained highly promising results
for generating treatment plans adapted to the daily anatomy. With 80% of the
automatically generated treatment plans directly usable without manual correction, a
substantial improvement in system robustness was reached compared to a previous
approach. The proposed method therefore facilitates more precise proton therapy of
prostate cancer, potentially leading to fewer treatment related adverse side effects.
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2.1 Introduction

Prostate cancer is one of the leading causes of mortality and the most common cancer
among men. The National Cancer Society (NCS) estimates around 164,690 new cases
and 24,430 deaths from prostate cancer in the United States only for 2018 [36]. Due
to its slow progress, individuals could develop prostate cancer for many years without
explicit signs. There are treatment options for prostate cancer including surgical
removal of the prostate, hormone therapy, and radiotherapy. Intensity-Modulated
Proton Therapy (IMPT) is able to deliver a highly localized dose distribution to the
target volume, while minimizing collateral damage to the surrounding healthy tissues
[37]. IMPT is however more sensitive to daily changes than photon therapy, which
may result in distortion of the delivered dose distribution [4, 6]. These changes could
arise from anatomical variations in the shape and position of both target volumes
and Organs-At-Risk (OARs) or a misalignment in the patient setup. In order to
compensate for these changes, a margin is added to the Clinical Target Volume
(CTV) to generate the Planning Target Volume (PTV) in addition to robust treatment
planning. These margins result in extra dose to the OARs, leading to an increase in the
treatment-related toxicities that may prevent dose escalation. Traditionally, motion-
induced variations are minimized by implanting fiducial markers in the prostate,
subsequently compensating for the daily prostate motion using online imaging [38].
However, such correction strategies are invasive and only capable of correcting for
translational motion and limited amount of rotational motion [39]. Online imaging
and re-planning should be able to handle this problem without using fiducial markers
[40]. These online CT scans have to be delineated first in order to update the
treatment plan. Usually this task is done by radiation oncologists according to certain
guidelines [7, 8]. However, intra and inter-observer inconsistency has been noted due
to different preferences and experience among radiation oncologists [9, 10]. Typically,
daily manual re-contouring is not performed because it is time consuming and new
anatomical variations may be introduced in the time it takes to delineate the scan [11].
Automatic re-contouring algorithms can alleviate these issues, but robust methods are
required, because otherwise still time consuming fallback strategies are needed.

Automatic re-contouring could be accomplished effectively using Deformable
Image Registration (DIR) by deducing the correspondence between the daily CT
and the planning CT. Using the generated Deformation Vector Field (DVF), manual
contours can be propagated from the planning CT to the daily CT. The automatically
generated contours together with fast re-optimization of the treatment plan [41]
could compensate for the daily variation and ensure the delivery of the prescribed
dose distribution at small margins and robust settings. DIR is a crucial step towards
developing online adaptive IMPT alongside re-planning and personalized dose Quality
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Assurance (QA). Currently, these steps are time consuming, thus severely limiting
online procedures.

There are commercially available applications for automatic re-contouring such as
Atlas Based Auto Segmentation (ABAS), Mirada, and RayStation. These applications
are, however, considered a black box for the end-users and therefore limit the
parameter choices and tuning. Open source DIR packages provide a high level of
flexibility with a concrete scientific evidence and reproducibility. Qiao et al. [42]
reported an MSD of 1.36±0.30 mm, 1.75±0.84 mm, 1.49±0.44 mm for the prostate,
seminal vesicles, and lymph nodes, respectively for 18 patients using the open source
elastix software. A clinical success rate of 69% was achieved, which means that 31%
of the delineations have to be corrected, leading to increased costs and a suboptimal
patient workflow. In 2011, Thor et al. deployed DIR to propagate the contours of
the prostate and OARs from CT to cone-beam CT [43]. The system achieved a mean
DSC of 0.80 for the prostate, 0.77 for the rectum, and 0.73 for the bladder with a
relatively high variance. Moreover, the system was not qualitatively evaluated in terms
of dosimetric coverage. Recently, Woerner et al. [44] investigated the error between
different radiologists and both DIR and rigid registration in different body regions.
They only reported the results for the prostate, which were 0.90, 0.99 mm, and 8.12
mm for the DSC, MSD, and Hausdorff Distance (HD), respectively. Thörnqvist et
al. [45] used two different demons-based registration algorithms, with one more
conservative than the other. They achieved an average DSC of 0.88, 0.85, 0.89, 0.78
for the lymph nodes, prostate, bladder, and rectum, respectively.

In spite of the existence of quite accurate registration algorithms, they still suffer
from a lack of robustness, which is a critical aspect for clinical application. Therefore,
in this paper we focus on the robustness aspect of the registration pipeline. The main
challenges in Qiao et al. were the presence of gas pockets and large deformations
surrounding the seminal vesicles, bladder, and rectum. Hence, we propose to tackle
these challenges by inpainting the rectum gas pockets as well as embedding the
bladder segmentation in the registration pipeline using deep learning to enhance the
system’s robustness. The proposed registration pipeline was evaluated geometrically
and dosimetrically for generating clinically acceptable IMPT plans. Compared to our
conference paper [46], we made several improvements, such as the inclusion of more
datasets, dealing with gas pockets, data normalization, and multi-stage registration.
Moreover, we carried out an extensive dosimetric validation for the automatically
generated contours to verify its clinical viability.

2.2 Methods

The prostate and seminal vesicles are positioned between the bladder and the rectum,
therefore prostate motion is mainly influenced by the filling and motion of both the
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Figure 2.1: The proposed multi-stage registration process using elastix software
and deep learning. The red boxes denote the contours finally used as output of the
algorithm.

bladder and the rectum [47]. Hence, we hypothesize that embedding an explicit prior
knowledge about the deformation of either organs to the intensity-based DIR method
may improve the accuracy and robustness of the registration. Here, we considered the
bladder because it has a well-defined shape that could be more easily delineated in
a fully automatic manner than the rectum. Since the registration is intensity-based,
the quality of the registration process is correlated to the quality of the input images.
Hence, we introduced multiple data preprocessing steps to enhance the quality of the
input images. These steps include rectum gas pocket detection and inpainting and
contrast clipping as shown in Figure 2.1.

2.2.1 Bladder segmentation using deep learning

In this study, we automatically segment the bladder using a 3D U-net Convolutional
Neural Network (3D-CNN) similar to the architecture introduced in [48]. The network
consists of encoding and decoding branches connected with skip connections as shown
in Figure 2.2. In order to represent the volumetric information and tissue homogeneity
of the CT volume, 3D convolution layers followed by non-linear leaky rectified linear
units were used. The original maxpooling layers were replaced by strided convolution
in both encoder and decoder branches. Negative Dice Similarity Coefficient (DSC) [49]
is deployed as a cost function and the network is trained using the Adam optimizer
[50] with a fixed learning rate of 10−4. The network has 64,320 trainable parameters
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Conv [3 x 3 x 3, Stride=2]  + LeakyReLU 3D Upsampling

161616168 16 16 16 8 2

Conv [3 x 3 x 3, Stride=1]  + LeakyReLU

2

Softmax

96

96

96 96

96

96

Figure 2.2: The architecture for the 3D-CNN network, where the numbers on the
blocks denote the number of feature maps.

which enables network inference of the entire CT image in approximately 2 seconds.
The network was designed to output the same size as input, however the input size
should be divisible by 16. Largest connected component analysis was applied as a
post-processing step to eliminate irrelevant activations.

2.2.2 Gas pocket detection and inpainting

A problem that usually arises for intensity-based DIR of the pelvic region is the
presence of gas pockets in the bowel and rectum. These pockets appear as dark areas
surrounded by soft tissue. Usually the size and position of these pockets are not the
same in the planning and the daily CT. In such situations, physical correspondence
between images at different sessions does not exist because of the insertion or occlusion
of image content. Only few studies addressed this issue in the literature. Gao et al.
[51] proposed introducing a virtual gas pocket to the planning CT that follows the
pocket in the daily CT. They tested it on 15 prostate cancer patients with distended
rectum. Foskey et al. [52] proposed to deflate the pocket to a virtual point. In both
papers, the authors assumed no gas pockets in the planning CT, which is not usually
the case. Recently, deep learning based algorithms have revolutionized the medical
image analysis field [53]. One category of deep learning architectures is Generative
Adversarial Networks (GANs) introduced by Goodfellow et al. [54] in 2014. GANs
have been growing since then in generating realistic natural and synthetic images. As
for medical images, GANs have been used in image segmentation [55], synthesis [56],
registration [57], and denoising [58]. Recently Yu et al. [59] proposed a 2D GAN
network with a contextual attention model to restore and inpaint occluded regions
in natural images. The network also blends the restored region with the surrounding
texture to make it look more realistic. The proposed model has two successive networks
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(a) (b) (c)

Figure 2.3: Different inpainting algorithms, where (a), (b), and (c) represent the
original CT, the result from simple-inpainting, and the result from GAN-inpainting,
respectively.

for image generation in order to generate patches with fine quality. The first ’generator’
network generates a coarse result through a dilated convolution network. This result
is then fed to the second network. The second ’discriminator’ network has two routes,
one goes to a dilated convolution network while the other goes through a contextual
attention model. Finally, the results from these two routes are concatenated and fed to
a prediction network. This network has shown an improvement over a similar network
proposed by Iizuka et al. [60]. In this paper, we retrained this network so that it
can inpaint (fill) gas pockets of different shapes and sizes with a more sophisticated
and realistic content rather than a fixed value. The same implementation and hyper
parameters were used as in the original paper.

Alternatively, we also experimented with a simplified method for inpainting.
Following the idea proposed by Rodriguez-Vila et al. [61] we fill the gas pockets
with a fixed value and smooth the output to blend it with the surrounding tissues. A
threshold of -200 is used to generate a binary mask of the gas pockets. This mask is
then dilated with a kernel of size 7x7x1 voxels (M) while the CT image is filled with
a fixed HU number of 60 (the average HU number for faeces), and smoothed with a
sigma of 4mm (Ismoothed ). Equation (2.1) shows the simple inpainting process:

Iout = Ii nput × (1−M) + Ismoothed × M (2.1)

Figure 2.3 shows a comparison between gas pocket inpainting using the GAN network
and simple inpainting.

2.2.3 Contrast enhancement

To enhance the soft tissue contrast, the CT intensity was clipped to the range of
[−300,300]. This clipping is similar to viewing the soft tissue with an appropriate
window level. Moreover, such enhancement improves the registration convergence.
Figure 2.4 shows the effect of intensity clipping.
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(a) (b)

Figure 2.4: The effect of contrast clipping, where (a) and (b) represent the image
before and after intensity clipping, respectively.

2.2.4 Image registration

For carrying out the DIR experiments, we used the open software package elastix
[62]. For more details, see the website http://elastix.isi.uu.nl. All the experi-
ments were performed on a cluster of workstations operated on the Oracle Grid Engine
(OGE), which has 500 nodes with a total of 800 cores. Testing time is reported using a
PC with 16 GB memory, Windows 7 Professional 64 bit operation system and an Intel
Xeon E51620 CPU with 4 cores at 3.6 GHz, utilizing only the CPU.

In this study, the planning CT scan (moving image) was aligned with the daily CT
scan (fixed image) of each patient. The registrations were initialized based on the
center-of-gravity of the bony anatomy defined by a Hounsfield number larger than
200. A mask of the body torso was generated using Pulmo software [63] to remove
the effect of the CT table. The registration process is done in three stages. First, the
moving and fixed images are registered using a single resolution affine transformation
using 200 iterations as defined in Eq. (2.2):

∧
µ1 = argmin

µ
C1

(
IF , IM , MF , MM ;Tµ1

)
, (2.2)

where IF is the daily scan, IM is the planning scan, MF is the torso mask of the daily
scan, MM is the torso mask of the planning scan, and C1 is the mutual information
cost function. The affine transformation aligns the bones and large structures. Second,
a deformable registration is applied to tackle the local deformations of the organs. In
this stage, the planning CT of each patient combined with the manual delineation of
the bladder are considered the moving images, while the repeat CT of the same patient
accompanied with the bladder segmentation resulting from the proposed 3D-CNN are
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the fixed images. Equation (2.3) defines the optimization problem for this stage:

∧
µ2 = argmin

µ
{C1

(
IF , IM , MF , MM ,Tµ1 ;Tµ2

)+αC2
(
DT (SF ) ,DT (SM ) ,Tµ1 ;Tµ2

)
}, (2.3)

where C2 is the Mean Squared Difference (MSD) cost function, α is a weight for
balancing these two cost functions, DT (SF ) is the distance transform of the 3D-CNN
bladder segmentation, and DT (SM ) is the distance transform of the manual annotation
of the planning scan. The Distance Transform (DT) of the bladder segmentations is
used instead of the binary segmentations themselves, to ensure a smooth and stable
optimization process. The generated Deformation Vector Field (DVF) from this step is
then used to propagate the contours of the prostate, lymph nodes, bladder, and rectum
from the planning CT to the repeat CT. Because the seminal vesicle is a small irregular
structure, which is highly affected by the deformation in the rectum, we introduce a
third stage to focus the registration on the rectum and seminal vesicle region. In this
stage, the rectum contour of the planning CT and the rectum contour of the daily CT
(from the previous stage) are dilated with a kernel of 45x45x1 voxels and used as a
registration mask together with the fixed and moving CT scans. The contours of the
rectum and seminal vesicles are then propagated using the generated DVF from the
final stage. Equation (2.4) defines the optimization problem for this stage:

∧
µ3 = argmin

µ
C1

(
IF , IM , M̃F , M̃M ,Tµ1 ,Tµ2 ;Tµ3

)
, (2.4)

where M̃M is the dilated rectum mask of the planning CT and M̃F is the dilated rectum
mask of the daily CT. A fast recursive implementation of the B-spline transformation
was employed for DIR [64] in stage 2 and 3. Adaptive stochastic gradient descent was
used for optimization [65] in all three stages. For the DIR stage we used a three level
Gaussian pyramid with smoothing factors of 4, 2, and 1 mm. Figure 2.1 illustrates the
proposed registration pipeline in detail.

2.3 Experiments and results

2.3.1 Dataset

This study includes three datasets representing three different institutes and CT
scanners from three different vendors for patients who underwent intensity-modulated
radiation therapy for prostate cancer. Table 2.1 shows detailed information about
these datasets. The LUMC dataset was used to train and validate the neural network
for segmenting the bladder (Section 2.2.1) as well as the inpainting network (Sec-
tion 2.2.2), while the EMC and HMC dataset were used as independent test sets for
the complete registration pipeline. Geometric evaluation was performed on both the
EMC and HMC dataset. Eleven out of the eighteen HMC patients were considered
for dosimetric evaluation due to the availability of not only the manual delineations
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Table 2.1: Details of the datasets reported in this study. LUMC, EMC, and HMC are
abbreviations for Leiden University Medical Center (Netherlands), Erasmus Medical
Center (Netherlands), and Haukeland Medical Center (Norway), respectively. SV and
LN denote Seminal Vesicles, and Lymph Nodes, respectively.

Institute Scanner #Patients
#Scans/
patient

Image
size

Voxel
spacing (mm)

Manual
delineations

LUMC Toshiba 418 1 512x512x(68-240) ∼1.0x1.0x3.0 bladder, rectum

EMC [66] Siemens 14 4 512x512x(91-218) ∼0.9x0.9x1.5
prostate, SV

bladder, rectum

HMC [67] GE 18 8-11 512x512x(90-180) ∼0.9x0.9x2.0
prostate, SV, LN
bladder, rectum

for the target organs (prostate, seminal vesicles, lymph nodes) and OARs (bladder,
rectum), but moreover the manual delineations of the bowels and femoral heads
needed for planning.

2.3.2 Evaluation measures

The quality of the registration is quantified in terms of geometric aspects and dosimetric
coverage. The geometric quality is measured by comparing the manual contours and
the automatically propagated contours of the daily CT for the prostate, lymph nodes,
seminal vesicles, rectum, and bladder. The Dice Similarity Coefficient (DSC) measures
the overlap between the segmentations, while the Mean Surface Distance (MSD), and
the 95% Hausdorff Distance (HD) measure the residual distance between the contours
in 3D space.

DSC =∑ 2 | F ∩M |
| F | + | M | , (2.5)

where F and M are the propagated contour and the ground truth contour, respectively.

MSD = 1

2

(
1

n

n∑
i=1

d (ai , M)+ 1

m

m∑
i=1

d (bi ,F )

)
, (2.6)

HD = max

{
max

i
{d (ai , M)} ,max

j
{d (bi ,F )}

}
, (2.7)

where {a1, a2, ..., an} and {b1,b2, ...,bm} are the surface mesh points of the fixed and
moving contours, respectively and d (ai , M) = min j || b j −ai ||. The geometrical success
rate, as a marker for geometric robustness, is defined as the percentage of registrations
with MSD < 2 mm (slice thickness): γ = n

N {MSD < 2 mm}, where (N) is the total
number of registrations performed.

IMPT plans were generated for 11 patients from the HMC dataset using both
the manual and the automatic delineations. The plans were then evaluated on the
manual delineations to investigate the clinical effect of the error between these two
delineations. Erasmus-iCycle, an in-house developed treatment planning optimization
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system, [68, 69, 70, 71, 72] together with the Astroid dose engine were used to
generate the IMPT plans. Erasmus-iCycle uses a multi-criteria optimization to generate
a clinically desirable Pareto optimal treatment plan on the basis of a wish list consisting
of hard constraints and objectives. A small margin of 2 mm around the prostate and
3.5 mm around the lymph nodes and seminal vesicles is used to compensate for the
marginal error of the propagated contours and to account for intra-observer variations
in the manual contouring. These margins alone can not account for variations in shape
and location of the target volumes. Dose was prescribed according to a simultaneously
integrated boost scheme in which the high-dose PTV (prostate + 2 mm margin) was
assigned 74 Gy and the low-dose PTV (seminal vesicles and lymph nodes + 3.5 mm
margin) 55 Gy, to be delivered using two laterally opposed beams. In order to avoid
under-dose, the optimization ensures that at least 98% of the target volumes receive
at least 95% of the prescribed dose (V95% ≥ 98%). To avoid overdose the optimization
ensures that less than 2% of the target volumes receive more than 107% of the highest
prescribed dose (V107% ≤ 2%). To achieve a clinically acceptable result, automatically
generated treatment plans from the propagated contours should still fulfill these goals.
Hence, IMPT plans from the propagated contours are evaluated based on the manual
contours. The clinical success rate, as a marker for geometric robustness, is defined as
the percentage of registrations for which the prostate directly meets the dose treatment
criteria: η= n

N {V95% ≥ 98%}. Conservative Success Rate (CSR) is a more conservative
measure of clinical success when all target volumes (the prostate, seminal vesicles
and lymph nodes) meet this dosimetric criterion. For dosimetric coverage calculation
N = 99.

2.3.3 Network training and performance

We implemented the 3D-CNN and GAN-inpainting networks using Tensorflow [73].
For training these networks, we used the LUMC dataset. This dataset was a sufficiently
large dataset to be able to train the neural networks. Since the LUMC dataset only
had one CT scan per patient, it was not used for registration evaluation. From the
418 LUMC patients, 350 patients were used for network training, and 68 patients
for validation. The trained network was then applied without modification to the
CT scans in the EMC and HMC datasets. In order to account for the variations in
voxel size between datasets and scans, all scans were resampled to a fixed voxel size
of 1.0×1.0×2.0 mm. For the 3D-CNN, 100,000 patches of size 96×96×96 voxels
were randomly extracted from the training volumes, making sure they are equally
distributed between foreground and background. For the GAN-inpainting network, all
the slices with gas pockets were eliminated from training. Moreover, all slices were
resampled to a pixel size of 1.0 × 1.0 mm and centrally cropped to 256x256 pixels
so that more patches could fit into memory as well as it would be beneficial for the
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Figure 2.5: Examples of the automatic bladder segmentation using the 3D-CNN
alongside the DSC of the volume. First and second rows represent samples from HMC
and EMC, respectively. (a) and (d) are suboptimal results and the rest are good results.
The red line represents the ground truth and the blue line is the network output.

network to learn the most relevant contextual information to the rectum. Randomly
selected windows of size 64x64 pixels were occluded in order to train the network
to inpaint these regions with a realistic content. Both the 3D-CNN and the 2D-GAN-
inpainting network were trained for 100,000 iterations on the raw CT patches without
any preprocessing except for resampling. All the experiments were carried out using an
NVIDIA GTX1080 Ti with 11 GB of GPU memory. The 3D-CNN bladder segmentation
network obtained a DSC of 85.4%±1.4% on the validation scans. Moreover, the network
was tested on the EMC and HMC datasets and achieved an average DSC of 82.3%±1.5%

and 87.9%±1.2%, respectively. Using a single GPU, the average inference time of the
segmentation and inpainting networks were approximately 2 seconds and 3 seconds
per volume depending on the number of slices per volume. Figure 2.5 shows examples
of the network output.

2.3.4 Parameter optimization and preprocessing analysis

For a fair comparison, the same registration parameters as in [42] were used. For
the weight α that balances the contribution of the bladder segmentation in the cost
function (2.3), we investigated multiple settings based on initial experiments on EMC
and HMC datasets. The weight was set for the coarse (first) resolution only and was
set to zero for the other two resolutions, in order to avoid overfitting issues. Here we
compared four settings for α: 0.2, 0.1, 0.05, and 0.01. For this experiment we did
not use inpainting. The results are shown in Table 2.2 for the HMC dataset where
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Table 2.2: MSD (mm) of the target volumes and OARs of the HMC dataset for different
registration and weight settings after the third stage of registration. Registrations
using 100 and 500 iterations were both tested.

Prostate Seminal vesicles Lymph nodes Rectum Bladder

Method α µ±σ µ±σ µ±σ µ±σ µ±σ
Affine, 200 1.63±0.74 2.92±1.74 1.23±0.49 3.89±1.62 4.37±2.11

B-spline, 100
0.20 1.55±0.90 1.70±0.74 1.63±0.58 2.70±1.12 1.85±1.85
0.10 1.53±0.82 1.72±0.73 1.58±0.50 2.72±1.11 1.85±1.71
0.05 1.50±0.75 1.74±0.79 1.55±0.46 2.75±1.16 1.86±1.56
0.01 1.41±0.36 1.75±0.86 1.57±0.38 2.76±1.15 1.98±1.19

B-spline, 500
0.20 1.49±0.90 1.76±0.80 1.65±0.64 2.87±1.39 1.74±1.63
0.10 1.45±0.77 1.77±0.93 1.59±0.52 2.78±1.19 1.77±1.58
0.05 1.43±0.77 1.78±0.90 1.55±0.47 2.79±1.19 1.81±1.57
0.01 1.36±0.47 1.76±0.82 1.56±0.48 2.81±1.18 1.84±1.24

Table 2.3: MSD (mm) of the target volumes and OARs for different registration settings
and inpainting methods at α = 0.05. Registrations using 100 and 500 iterations were
both tested.

Prostate Seminal vesicles Lymph nodes Rectum Bladder

# It. Inpainting Method µ±σ µ±σ µ±σ µ±σ µ±σ
100

Simple 1.29±0.39 1.48±1.16 1.49±0.44 2.39±1.92 1.72±1.17
GAN 1.29±0.41 1.70±2.12 1.49±0.44 2.65±2.17 1.71±1.16

500
Simple 1.28±0.42 1.36±0.40 1.49±0.44 2.19±1.03 1.67±1.22
GAN 1.28±0.42 1.36±0.38 1.48±0.45 2.33±0.95 1.67±1.22

"Affine" refers to the affine registration defined in Eq. (2), which is considered a
reference method. The weights 0.05 and 0.20 yielded very similar performance. We
opted for a weight of 0.05 to avoid overfitting on the bladder. Since the target areas
(prostate, lymph nodes, and seminal vesicles) obtained slightly better accuracy for a
lower weight and these are important for radiotherapy planning, we selected 0.05. For
the EMC dataset a similar experiment gave a weight of 0.01 (not reported). Therefore,
for the remainder of the paper these weights have been used.

In order to investigate the difference between simple-inpainting and GAN-inpainting,
we run the registration on HMC dataset using both techniques as shown in Table 2.3.
The results shows a very similar performance for simple-inpainting and GAN-inpainting.
Hence, the simple-inpainting is used for gas pocket inpainting for the remainder of
the paper.

From the aforementioned experiments and analysis (Table 2.2 and 2.3), we noticed
a similar performance between 100 and 500 iterations and in order to reduce the
registration time, we considered only the results from 100 iterations for the final
experiments.
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2.3.5 Registration performance

Since the LUMC dataset did not have any follow-up scans, we only consider the EMC
and HMC datasets for evaluating the registration performance. Figure 2.6 shows
example results of the automatically propagated contours. We compared the proposed
method with the intensity-based registration approach of Qiao et al. [42]. For the
HMC data we directly compare with the results reported in [42], as the same dataset
was used. For the EMC data we applied their algorithm, and compare with our results.
The DSC overlap of the proposed algorithm is presented in Table 2.4. For the HMC
dataset, the prostate, lymph nodes, and bladder performed similarly for the proposed
method and Qiao et al., while the seminal vesicles and rectum showed substantial
improvements. The median DSC values of the prostate, seminal vesicles, lymph nodes,
rectum, and bladder were 0.88, 0.70, 0.89, 0.78, and 0.91 ,respectively for Qiao et
al., while they were 0.89, 0.73, 0.89, 0.85, and 0.94, respectively for the proposed
method. For the EMC dataset, the proposed algorithm showed consistent improvement
for the seminal vesicles, rectum, and bladder. The median DSC values of the prostate,
seminal vesicles, rectum, and bladder were 0.91, 0.80, 0.76, and 0.86, respectively
for Qiao et al. and 0.89, 0.81, 0.81, and 0.90, respectively for the proposed method.
For the MSD results shown in Table 2.5, the proposed method outperformed Qiao
et al. for all the target areas and OARs. The MSD of most of the targets and the
OARs was less than one voxel (2 mm). The geometrical success rate was 97%, 93%,
and 87% for the prostate, seminal vesicles, and lymph nodes, respectively for the
HMC dataset and 67% and 71% for the prostate and seminal vesicles for the EMC
dataset. Table 2.6 shows the 95% HD, yielding a significant improvement for the
proposed method over Qiao et al. on the HMC dataset, but less improvement for
the EMC dataset. Moreover, Qiao et al. and the proposed method show a significant
improvement from the affine method except for the lymph nodes. Figure 2.7 shows a
scatter plot depicting the effect of the bladder distension (volume difference between
planning and daily CT) on the Mean Surface Distance (MSD) of different target organs
of the HMC dataset. The figure shows that the MSD of the proposed method is less
than the slice thickness (2 mm) for most of the cases, and that there is little correlation
between registration performance and bladder distensibility. Figure 2.8 shows the
comparison of the registration performance between Qiao et al. (intensity only) and
the proposed method (intensity and bladder segmentation), both using 100 iterations
for the HMC dataset. The comparison illustrates the performance in terms of DSC,
MSD, and 95%HD for the target volumes and OARs. The figure shows a similar
pattern between the proposed method using the manually annotated contours of the
bladder and the contours from the 3D-CNN network. This pattern emphasizes that the
proposed method achieved the upper limit of the system. The average runtime for the
proposed pipeline is 98.3 seconds for each registration at 100 iterations.
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(a) The MSD of the prostate, lymph nodes, and seminal vesicles is 0.8, 1.6, and 1.0 mm, respectively.
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(b) The MSD of the prostate, lymph nodes, and seminal vesicles is 1.4, 1.8, and 1.2 mm, respectively.
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(c) The MSD of the prostate, lymph nodes, and seminal vesicles is 2.1, 1.6, and 1.5 mm, respectively.
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(d) The MSD of the prostate, lymph nodes, and seminal vesicles is 1.5, 1.6, and 11.0 mm, respectively.

Figure 2.6: Examples from the automatic contours propagation of the HMC dataset
and the corresponding dose volume histograms evaluated on the manual contours.
The solid line represents the manual contouring results while the dotted line is the
automatically propagated one.
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(e) The MSD of the prostate, lymph nodes, and seminal vesicles is 1.3, 1.3, and 1.1 mm, respectively.

0 20 40 60 80
Dose [Gy]

0.0

0.2

0.4

0.6

0.8

1.0

DV
H

Prostate
Seminal Vesicles
Lymph Nodes
Bladder
Rectum

(f) The MSD of the prostate, lymph nodes, and seminal vesicles is 0.9, 1.4, and 0.9 mm, respectively.
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(g) The MSD of the prostate, lymph nodes, and seminal vesicles is 1.3, 1.1, and 1.1 mm, respectively.

Figure 2.6: Continued.

2.3.6 Dosimetric performance

Figure 2.6 shows the Dose Volume Histogram (DVH) of the target organs and OARs
for some examples. The clinical constraints in terms of V95% and V107% were calculated
for the prostate, seminal vesicles, and lymph nodes based on the manual contours. In
order to monitor the accumulated dose for the OARs, we calculated V45G y%, V60G y%,
V75G y%, and Dmean for the rectum, as well as V45%, V65G y%, and Dmean for the bladder.
Here Dmean is the structure’s average dose and VxxG y% is the percentage of volume
receiving a dose of xx Gy. Table 2.7 shows a comparison between the propagated
contours from Qiao et al. and the proposed algorithm in terms of the percentage
of scans that achieved the clinical criteria of V95% ≥ 98% and V107% ≤ 2%. The Table
shows a significant improvement for the seminal vesicles, which is a small and difficult
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Figure 2.7: Scatter plot showing the effect of the bladder volume change between
planning and daily scans of the HMC dataset on the performance of the proposed
method in terms of MSD. Red line represents the slice thickness.

Table 2.4: DSC value of the target volumes and the OARs of the HMC and EMC
datasets for different registration methods. † represents a significant difference (at
p = 0.05) between Qiao et al. and the proposed algorithm.

Prostate Seminal vesicles Lymph nodes Rectum Bladder

Method # It. µ±σ µ±σ µ±σ µ±σ µ±σ

H
M

C Affine 200 0.84±0.11 0.46±0.26 0.90±0.08 0.71±0.10 0.77±0.11
Qiao et al. 100 0.87±0.08 0.65±0.18 0.88±0.07 0.77±0.09 0.88±0.11
Proposed 100 0.87±0.08 0.70±0.13† 0.87±0.07 0.82±0.12† 0.89±0.12

EM
C Affine 200 0.78±0.20 0.49±0.32 - 0.62±0.18 0.66±0.25

Qiao et al. 100 0.87±0.13 0.70±0.26 - 0.72±0.16 0.78±0.22
Proposed 100 0.87±0.12 0.75±0.18† - 0.78±0.15† 0.83±0.17†

target organ, while the performance of the prostate and lymph nodes was very similar.
The boxplot in Figure 2.9 illustrates the difference between the dosimetric parameter
values of the manual delineations, calculated by using either the treatment plan
based on the automated delineations or the manual delineations. We can see that the
difference for all dosimetric parameters of all the target organs and OARs is almost 0
% or Gy except for the lymph nodes, which is approximately 1%.

2.4 Discussion

In this study, we developed and evaluated an automatic contour propagation pipeline
using DIR, while considering the robustness, accuracy, and clinical acceptance rate for
the target organs and the OARs of prostate cancer. Online adaptive IMPT is a crucial
step towards treatment with small margins for target organs. In this study we used
margins of 2 mm for the prostate and 3.5 mm for the seminal vesicles and lymph nodes,
respectively. Such small margins are only viable when online and daily re-planning is
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Table 2.5: MSD (mm) of the target volumes and the OARs of the HMC and EMC
datasets for different registration methods. † represents a significant difference (at
p = 0.05) between Qiao et al. and the proposed algorithm.

Prostate Seminal vesicles Lymph nodes Rectum Bladder

Method # It. µ±σ µ±σ µ±σ µ±σ µ±σ

H
M

C Affine 200 1.70±0.96 3.02±1.96 1.26±0.51 3.92±1.59 4.47±2.27
Qiao et al. 100 1.40±0.47 1.85±1.26 1.51±0.44 3.13±1.38 2.38±1.79
Proposed 100 1.29±0.39 1.48±1.16 1.49±0.44 2.39±1.92† 1.72±1.17†

EM
C Affine 200 2.82±3.18 4.42±6.03 - 4.63±3.01 8.03±6.46

Qiao et al. 100 1.41±0.76 2.24±3.14 - 3.21±1.85 5.42±5.84
Proposed 100 1.54±0.67 1.67±1.38† - 2.67±1.76† 3.89±4.00†

Table 2.6: %95HD (mm) of the target volumes and the OARs of the HMC and EMC
datasets for different registration methods. † represents a significant difference (at
p = 0.05) between Qiao et al. and the proposed algorithm.

Prostate Seminal vesicles Lymph nodes Rectum Bladder

Method # It. µ±σ µ±σ µ±σ µ±σ µ±σ

H
M

C Affine 200 3.97±1.96 6.61±3.70 3.12±1.27 11.8±5.98 12.5±7.06
Qiao et al. 100 3.31±1.16 4.59±2.95 3.73±1.02 10.4±5.99 7.41±6.85
Proposed 100 3.07±1.30 3.82±3.19† 3.74±1.02 8.66±6.92† 5.11±4.38†

EM
C Affine 200 5.98±6.19 8.11±7.66 - 13.2±6.88 21.3±16.3

Qiao et al. 100 3.65±2.31 4.80±5.09 - 11.3±6.77 16.5±17.2
Proposed 100 3.93±2.24 4.92±5.13 - 10.4±7.77 11.5±12.5†

Table 2.7: Percentage of registrations that meets the dose constraints for different
registration iterations. Conservative Success Rate (CSR) refers to the percentage of
registrations for which all target volumes (the prostate, seminal vesicles and lymph
nodes) meet the dose constraints.

V95% ≥ 98% V107% ≤ 2%
Prostate SV LN CSR Prostate SV LN

Qiao et al. 83.8% 75.7% 97.9% 65% 100% 100% 100%
Proposed 85.8% 90.9% 98.9% 80% 100% 100% 100%

performed. This re-planning procedure should be accurate as well as robust to avoid
any subsequent adverse side effects. The automatically propagated contours were
validated geometrically on the EMC and HMC datasets as well as dosimetrically on the
HMC dataset in order to investigate whether or not the propagated contours meet the
clinical acceptance criteria for dose coverage. DSC, MSD, and 95%HD were chosen
for geometric validation while V95% ≥ 98% and V107% ≤ 2% were used for dosimetric
coverage validation. Here, V95% ≥ 98% ensures that at least 98% of the target volumes
receive at least 95% of the prescribed dose and V107% ≤ 2% ensures that less than 2%
of the target volumes receive more than 107% of the highest prescribed dose.
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Figure 2.8: Boxplot comparison between Qiao et al. and the proposed algorithm for
image registration on the HMC dataset versus the number of iterations. The columns
show the DSC, MSD, and 95%HD from left to right. Prostate, seminal vesicles, lymph
nodes, rectum, and bladder are shown from top to bottom rows, respectively. The red
box is the method from Qiao et al., the blue box is the proposed method, while the
green box is an upper bound of the proposed method using manual daily contours.

In order to enhance the registration robustness, the segmentation of the bladder
was introduced to steer the optimization. Since the registration process is partially
driven by the bladder segmentation, this segmentation should be as accurate and
robust as possible. Hence, we chose a 3D-CNN for bladder segmentation, and obtained
a DSC of 87.9% and a Jaccard index of 80.2%, which is very comparable to the reported
Jaccard index of 81.9% in [74], where the authors developed a CNN network alongside
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Figure 2.9: Boxplot depicting the difference in dosimetric parameters of the manual
delineations, calculated by using either the treatment plan based on the automated
delineations or the manual delineations for 99 scans of the HMC dataset.

level-sets to segment the bladder in CT urography. Moreover, our proposed network
outperformed the 2D CNN network developed by Zhou et al. [75], where the authors
reported a DSC of 72%. The high performance of the proposed network may be
attributed to the use of a large receptive field as well as replacing the 2D convolutions
with 3D convolutions, which helps the network to embed depth information.
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Applying contrast clipping to the CT scans before registration was beneficial to the
registration process, since the registration is intensity-based, which is consistent with
the findings in [76]. Inpainting gas pockets in the rectum enhanced the registration
of the rectum as well as the seminal vesicles. The presence of these pockets were
challenging for the registration due to the physical non-correspondence between
the daily and planning CT scans. Although the inpainting results from the GAN-
inpainting network were more realistic than the simple-inpainting procedure, a similar
performance with respect to the registration was obtained. Our explanation for this
finding is that the mutual information similarity metric pays more attention to the
overall intensity distribution and since the results from the simple-inpainting were
blended and smoothed with respect to its neighbours, it produces a similar histogram
distribution to the GAN-inpainting and subsequently gives a similar registration
performance.

The initialization of the registration algorithm on the bony structures is a crucial
step for optimal performance, which is consistent with the reported results in [42].
Moreover, masking out the couch using a torso mask removed its disrupting effect
on the registration. Increasing the number of iterations had a minimal effect on the
registration performance while increasing the registration time. We found that the
effect of adding a third registration step focussing on the rectal area, boosted the
performance regarding the rectum and seminal vesicles while there was no detrimental
effect for the prostate, lymph nodes, and bladder.

In this study, we focused on the generalizability and robustness of the registration
represented by performance on different datasets and the number of failed registrations
according to geometrical and dosimetric criteria. This target is achieved through
several steps. First, inpainting the rectum gas pockets. Second, enhancing the CT
image contrast by contrast clipping. Third, introducing the bladder segmentation with
an optimized weights (α = 0.05 and 0.01) to steer the optimization problem to a
better local minimum while avoiding overfitting to the bladder. Fourth, using a third
stage for registration to focus on the rectum and consequently the seminal vesicles
by using a dilated mask for the rectum. Overall, these steps yielded a more robust
registration and substantially decreased the number of registrations with insufficient
quality, especially for the seminal vesicles, rectum, and bladder. Improving the MSD
for the seminal vesicles, which is an important target volume, resulted in a more
precise targeting with potential benefits in terms of local control (lower probability of
recurrences). Moreover, both the rectum and the bladder improved in terms of MSD
and 95% HD, thereby avoiding treatment-induced complications after the therapy,
so a higher probability of better quality-of-life after treatment. For the bladder, 11
of the 18 registrations with an MSD larger than the top whisker in Fig. 2.8, were
belonging to two patients. For these two patients the 3D-CNN achieved an average
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DSC of 0.65, explaining the suboptimal performance of the proposed method on these
cases. From the CT images no apparent reason for this was found. In terms of the
geometric success rate defined by the number of registrations that achieved an MSD
lower than 2 mm (slice thickness), the system achieved 97%, 93%, and 87% for the
prostate, seminal vesicles, and lymph nodes, respectively. This compares to a success
rate of 95%, 78%, and 86% for Qiao et al., i.e. especially improving the performance
for the seminal vesicles. Moreover, the proposed system showed robustness to the
change in bladder distension between planning and daily CT as shown in Figure 2.7.
The proposed registration method achieved quite similar results on the EMC and HMC
datasets, except for the bladder. We suspect this is partially due to the difference in
bladder segmentation performance of the neural network, which was 82% on the EMC
data and 88% on the HMC data. It could also be related to the affine registration
results for the EMC dataset (Table V) being slightly less than HMC dataset. We visually
checked the affine results and noticed that the field of view for some cases were
cropped or zoomed. The average runtime for the proposed pipeline is 98.3 seconds for
each registration at 100 iterations, comparing to 13.5 seconds reported by Qiao et al.
However, the pipeline could be further optimized and adapted for GPU acceleration.
For validating the clinical acceptance of the proposed algorithm, we considered
V95% ≥ 98%, V107% ≤ 2%, and CSR for dosimetric coverage for 99 registrations. All the
scans meet the V107% ≤ 2% constraint. Fourteen out of the 99 registrations (14.1%) did
not directly meet the V95% ≥ 98% constraint for the prostate. After visual inspection
of these failure cases, we found inconsistencies between the manual delineations for
the planning and daily CT scans for 7 cases. These cases had a V95% of 92.5%±0.1%,
meaning that these cases were still close to be dosimetrically acceptable. The proposed
algorithm improved the contouring quality and robustness especially for the seminal
vesicles, which directly increased the percentage of acceptable scans from 75.5% to
90.9% for this important target organ. These success rates imply that the automatically
generated contours have the potential to be employed for online adaptive IMPT.
Moreover, the typical 7 mm margins [77] may be replaced with smaller daily margins,
which means delivering an effective dose with potentially less adverse effects.

The reported performance of the proposed pipeline could be further improved by
correcting the inconsistency present in the manual contouring. Also, the weighting
parameter α could be selected automatically by introducing it as a trainable parameter.
Moreover, the current 3D-CNN was trained using CT scans without contrast material,
and therefore is unlikely to perform well on scans acquired with contrast. In case the
clinical protocol dictates contrast-enhanced CT acquisitions, the network could be
easily retrained. We may further investigate the effect on segmentation performance of
CT clipping as a preprocessing step for the 3D-CNN for bladder segmentation. We also
consider developing an end-to-end neural network to jointly optimize the registration
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and segmentation tasks to further improve the system robustness and accuracy.

2.5 Conclusion

In this study we proposed a registration pipeline for automatic contour propagation
for online adaptive IMPT of prostate cancer using the open source package elastix
software in combination with deep learning. The proposed pipeline achieved a
geometrical success rate of 97%, 93%, and 87% for the prostate, seminal vesicles, and
lymph nodes, respectively for HMC dataset as well as 67% and 71% for the prostate
and seminal vesicles, respectively for ECM dataset. The HMC automatically propagated
contours meet the dose coverage constraints in 86%, 91%, and 99% of cases for these
targets. A Conservative Success Rate (CSR) of 80% was achieved, meaning that 80%
of the automatically generated treatment plans can be directly used without manual
correction. This re-contouring showed a promise for generating daily treatment plans.
Moreover, it showed a substantial improvement in the system robustness compared
to a previous open source method, which means that more treatment plans can be
directly used without manual correction, which is a crucial factor for enabling online
daily adaptation and thus the use of relatively small treatment margins. Therefore, the
proposed method could facilitate online adaptive proton therapy of prostate cancer.
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