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Introduction

1.1 Automatic delineation in adaptive radiotherapy

Cancer is a leading cause of mortality, accounting for about 10 million deaths world-
wide annually. The National Cancer Institute (NCI) predicts that by 2040, the number
of new cancer cases per year will rise to 29.5 million and the number of cancer-related
deaths to 16.4 million [1]. Radiotherapy (RT) is one of the widely used treatment
options for cancer diseases, where a high dose of ionizing radiation damages the DNA
of cancerous cells [2]. RT is frequently combined with other treatment modalities
such as chemotherapy, surgery, and recently immunotherapy [3]. RT dose is usually
delivered by using a technique called Intensity Modulated Photon Therapy (IMRT)
or Intensity Modulated Proton Therapy (IMPT). Prior to the radiation treatment
of a patient, a personalized treatment plan is constructed based on a planning CT
scan and sometimes augmented with MR and/or PET images. RT doses are usually
fragmented over 4 to 8 weeks resulting in 20 to 40 daily fractions [4]. Since the dose
is delivered over several sessions, variations in the size and shape of the target area
and Organs-At-Risk (OARs) are bound to take place. These variations are caused by
multiple factors such as patient motion, weight loss, breathing, organ filling, tumors
and OARs shrinkage [5]. IMPT is more sensitive to these daily changes than IMRT,
which may result in the dose being distorted or dose not match the anatomy of the
day [4, 6]. The simplest strategy to compensate for these variations is to account for
them beforehand by adding a margin to the Clinical Target Volume (CTV) to generate
the Planning Target Volume (PTV), and then generate the treatment plan using the
PTV. However, these margins result in extra dose to the OARs, thus increasing the
risk of toxicity, making it a suboptimal strategy. A more sophisticated approach is
called Adaptive Radiotherapy (ART), where we account for inter-fraction variations
by adapting the treatment plan online to the daily anatomy. Figure 1.1 illustrates
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Figure 1.1: Illustration of the online adaptive radiotherapy workflow. A CT scan of the
day is acquired using an in-room scanner, after which the patient table is moved to
the treatment beam via a robotic arm. During the movement of the table, the daily CT
scan is re-contoured and the treatment plan is adapted accordingly.

the workflow of online adaptive radiotherapy using an in-room CT scanner. However,
these daily CT scans have to be delineated online to update the treatment plan.
Usually this task is done by radiation oncologists according to certain guidelines [7, 8].
However, intra and inter-observer inconsistency has been noted due to preference and
experience differences among radiation oncologists [9, 10]. Typically, daily manual
re-contouring is not performed because it is time consuming and new anatomical
variations may be introduced in the time it takes to delineate the scan [11]. Automatic
re-contouring algorithms can alleviate these issues, but robust methods are required,
because otherwise still time consuming fallback or correction strategies are needed.
Automatic contouring can be done by direct segmentation of the daily scan, or by
registration of the annotated planning scan with the daily scan followed by contour
propagation. These two methods are discussed in detail in the following sections.

1.2 Image registration in radiotherapy

Image registration is the task of finding the geometrical correspondence between
images that were acquired at different time steps or from different imaging modalities.
In this dissertation we focus on deformable, non-linear, image registration (DIR)
which accounts for local deformations such as stretching or shrinkage deformations.
In the context of adaptive radiotherapy, the aim is to find the transformation that
aligns the planning scan (moving image) and daily scan (fixed image) of the same
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Figure 1.2: A diagram of iterative-based image registration algorithms.

patient (inter-fractional registration). DIR has been extensively integrated into RT
applications such as dose planning, delivery and evaluation, since all these tasks can
be improved by accounting for organ deformation. DIR is an ill-posed problem because
there is no unique transformation between the fixed and moving images. Therefore it
is formulated as an optimization problem (see Figure 1.2) that can be solved using
iterative approaches such as Stochastic Gradient Descent (SGD):

fi=argmin C (If(x), Iy (%); Tu(x)), (1.1)
u

where I¢(x), I,;(x) are the fixed and moving images, C is a dissimilarity metric
such as Normalized Cross Correlation (NCC), and T(x) is the transformation that
makes I,(T(x)) spatially aligned to Iy(x). The transformation function can be
modeled by a limited number of parameters (parametric transformation) or by a
vector per voxel describing the displacement of this voxel in a continuous space
using interpolation (non-parametric transformation). In this thesis we focus on non-
parametric transformation. For contour propagation, the contour of the moving image
is resampled in the fixed image domain by interpolation.

With the recent advance of deep learning, a variety of methods on learning-
based registration were proposed to replace conventional iterative methods. This
research either uses deep learning to model the transformation function via supervised
training through synthesized deformations [12, 13, 14] or via unsupervised training by
equipping the network with a spatial transformer [15] similar to the work presented
in [16, 17, 18, 19]. For further details, the reader may refer to [20] where a detailed
review on medical image registration using deep learning is provided.
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Figure 1.3: A diagram of joint registration and segmentation algorithms.

1.3 Joint registration and segmentation

Automatic contouring of the daily anatomy can be done by either a segmentation
algorithm or via DIR as mentioned in Section 1.1. However, each of these tasks
has its own strengths and weaknesses. For instance, image segmentation algorithms
can directly delineate images based on texture and surrounding anatomy, and may
therefore be robust to large organ deformations. However, it sometimes has difficulties
with low contrast areas and irregularly shaped organs. On the other hand, image
registration algorithms have the ability to encode prior knowledge of the patient’s
anatomy and therefore may perform better on low quality images. However, such
methods sometimes have difficulty with large deformations. These two tasks are in fact
complementary, as for example image atlases warped by image registration algorithms
are often used for image segmentation [21, 22], while image contours can be used
to guide the image registration method in addition to the intensity images [23, 17,
24]. Contours are also used for evaluating the quality of the registration [25, 26].
Therefore, coupling image registration and segmentation tasks and modeling them
in a single framework could leverage their strengths and mitigate their weaknesses
through the sharing of beneficial information. Figure 1.3 is a diagram showing how
these tasks might be joined.

1.4 Accelerating MR acquisition for adaptive radiotherapy

CT-guided radiotherapy has long been the standard setup for radiation oncology
despite its low contrast compared to MRI since it encodes crucial information about
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tissue electron density needed for dose calculation and simulation. The introduction of
MRI-guided radiation therapy (MRIgRT) has revolutionized the practice of radiation
oncology. This is due to the superior performance of MR images over CT in terms
of soft tissue contrast (see Figure 1.4), which facilitates the monitoring of the daily
anatomical changes and subsequently adapt the treatment radiation in real-time.
Any substantial latency in this MRI-guided workflow might, however, result in the
introduction of new anatomical variations and subsequently the delivered dose would
be different from the intended dose [27]. One of the potential causes for this latency
is imaging latency, which represents the time delay between the anatomical change
and its emergence in the reconstructed image.

Therefore, fast image acquisition and reconstruction are crucial to improve the
performance of current MR scanners, which led in recent years to the development of
techniques such as parallel reception, compressed sensing and multi-band accelera-
tions. However, there is still a need for further scan acceleration. The long acquisition
time is intrinsic to the scanner and physics properties of MRI. For the majority of scans
performed in clinical practice, this acquisition is done through consecutive read-outs
of single lines in k-space. The scanning time could be shortened by reducing the
number of acquired lines in k-space, i.e. by undersampling the 2D or 3D k-space.
However, this could violate the Nyquist criterion, resulting in aliasing and blurriness
in the reconstructed images. These issues may result in a lag between the organ
positions derived from the reconstructed image and the actual positions by the time
the acquisition is finished. Compressed Sensing (CS) is one of the most common
solutions for acceleration by undersampling, while maintaining image quality. CS was
introduced by Donoho [28], Lustig [29] and Candes [30], where it leverages the fact
that MR images can be compressed in some domain, restoring the missing k-space
data through an iterative reconstruction algorithm [31].

Recently deep learning-based algorithms were introduced in order to reconstruct a
high quality MR images at acceptable speed. These algorithms often focus on modeling
iterative approaches similar to CS algorithm via deep learning models [32, 33, 34].

1.5 Outline of the thesis

The aim of the work described in this thesis is to develop a deep learning-based
methodology for automatic contouring for real time adaptive radiotherapy either
guided by CT or MR imaging modalities. Our proposed automatic contouring networks
were trained and tested on CT images since it is the commonly used for treatment
planning, while for MR we focused on the other bottleneck, i.e. the reconstruction
time.

Chapter 2 presents a contour propagation pipeline that combines conventional
iterative-based registration with a deep learning model. We propose a CNN network
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Figure 1.4: Example of prostate images, where from left to right are CT, T2-weighted
MR, and fat suppressed MR images [35].

that automatically segments the bladder, and then feeds it to the registration algorithm
as prior knowledge of the underlying anatomy. We also introduce a GAN model to
address the problem of gas pockets in the rectum to avoid the registration algorithm
to be distracted.

Chapter 3 presents a novel transfer learning approach in order to leverage
personalized anatomical knowledge accumulated over the treatment sessions. We
adapt a baseline segmentation model as the patient goes through their RT treatment.
Thus, instead of depending on a static deep learning segmentation model for all
patients, we accumulate knowledge over successive sessions for a particular patient.
This accumulated knowledge is then used to encourage the model into predicting a
segmentation that has a higher quality for this specific patient.

Chapter 4 proposes to combine the registration and segmentation tasks in a deep
learning setting using adversarial learning. The proposed framework consists of an
unsupervised 3D end-to-end generator network that estimates the deformation vector
field (DVF) between the input image pairs. Meanwhile, a discriminator network is
trained to evaluate how well the registration is performing.

Chapter 5 proposes to formulate the registration and segmentation as a joint
problem via a Multi-Task Learning (MTL) setting, allowing these tasks to leverage their
strengths and mitigate their weaknesses through the sharing of beneficial information.
We explored different joint network architectures as well as loss weighting methods for
merging these tasks, thus pinpointing the best strategy to maximize the information
flow between the two tasks.

Chapter 6 presents a fast MR reconstruction algorithm, which enables the appli-
cation of the automatic contouring methods proposed in the previous chapters for
online adaptive MR-guided radiotherapy. Starting from undersampled k-space data, an
iterative learning-based reconstruction scheme inspired by compressed sensing theory
is used to reconstruct the images. We developed a novel deep neural network to refine
and correct prior reconstruction assumptions given the training data. The proposed
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network was ranked #1, shared #1, and #3 on respectively the 8x accelerated
multi-coil, the 4x multi-coil, and the 4x single-coil tracks in the fastMRI competition
organized by Facebook and New York University (NYU).

Chapter 7 summarizes and discusses the ideas presented in this thesis.
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