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Abstract

In Weyl semimetals, the application of parallel electric and magnetic fields leads to valley
polarization—an occupation disbalance of valleys of opposite chirality—a direct conse-
quence of the chiral anomaly. In this work, we present numerical tools to explore such
nonequilibrium effects in spatially confined three-dimensional systems with a variable
disorder potential, giving exact solutions to leading order in the disorder potential and
the applied electric field. Application to a Weyl-metal slab shows that valley polarization
also occurs without an external magnetic field as an effect of chiral anomaly “trapping”:
Spatial confinement produces chiral bulk states, which enable the valley polarization
in a similar way as the chiral states induced by a magnetic field. Despite its finite-size
origin, the valley polarization can persist up to macroscopic length scales if the disorder
potential is sufficiently long ranged, so that direct inter-valley scattering is suppressed
and the relaxation then goes via the Fermi-arc surface states.
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1 Introduction

The most famous effect associated with Weyl Fermions is the chiral anomaly [1,2]—magnetic-
field induced chiral states moving parallel or antiparallel to the field, depending on the chirality
of the Weyl Fermion. In Weyl semimetals [3,4] the two chiralities occur pairwise, ensuring an
equal number of forward- and backward-propagating states, and the chiralities are connected
by Fermi-arc surface states. Existing Weyl-semimetal materials typically have a small but finite
Fermi momentum kF measured from the Weyl node and a much larger momentum-space
separation ∆k of valleys that host the opposite chiralities.

The valley degree of freedom [5] plays a central role in the transport behavior of Weyl
semimetals. Parallel electric and magnetic fields produce a difference in the non-equilibrium
occupation of valleys [3,6,7]. A direct consequence of this valley polarization is an enhanced
conductivity parallel to the magnetic field due to the polarization-enhanced occupation disbal-
ance of countermoving chiral states [8–13]. Experimental observations, although obscured
by the competing current-jetting effect [14], support the general feature of a chiral-anomaly
enhancement of the conductivity [15–17]. Other manifestations of the valley degree of freedom
are found in nonlocal transport measurements [6,18] and in the photogalvanic response [19,20].

Crucial in understanding “valleytronic” transport is to explore the effect of disorder and
the finite size of the crystal, which are two unaviodable properties of real materials. Disorder
plays a subtle role if the Fermi level lies at the Weyl nodes, where it may or may not destroy the
ideal semimetal phase by inducing a finite density of states [21–24] or, for finite inter-valley
scattering, drive the system into an insulating phase [25]. At finite chemical potentials, well-
separated Weyl nodes, and a weak disorder potential the Weyl-semimetal phase has proven to
be robust, allowing for a perturbative treatment of disorder, which will be employed in this
work.

Finite-size effects in meso- and macroscopic Weyl semimetals (crystal dimensions much
larger than the lattice constant), have also been explored with the focus on the role of topological
Fermi-arc surface states [26–36]. Peculiarities are rooted in the specifics of the momentum-space
structure of Fermi arcs connecting valleys of opposite chirality and their unidirectional motion
at a single surface, see Fig. 1. Separation of countermoving Fermi arcs to opposite surfaces
explains their relevance at large systems sizes, most prominently in the intrinsic anomalous
Hall effect [34,37–39]. The relevance of finite-size effects for the valley degree of freedom, on
the other hand, is much less obvious, since the valleys consist of extended bulk states, lacking
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Figure 1: (a) Schematic picture of the considered Weyl-slab model in a mixed
momentum-/real-space illustration. The plot shows the slab spectrum as a func-
tion of in-plane momenta. Top (blue) and bottom (red) surface states are indicated
with their position and propagation direction in real space. Chiral bulk states connect-
ing surface states of both surfaces are depicted in green. (b) Top-view on equi-energy
contours of the slab spectrum of (a).

the spatial separation.
In this work, we show that in a disordered Weyl semimetal slab valley polarization can

be induced without external magnetic fields as a finite-size effect at mesoscopic slab widths,
possibly extending to even larger sizes. Crucial turn out to be confinement-induced chiral bulk
states [33, 36]: At zero magnetic field and a finite Fermi momentum kF there is a residual
density of chiral bulk states, which must remain to reconnect the two Fermi-arc surface states
as shown in Fig. 1. The density of chiral bulk states of a single valley, relative to the density
of magnetic-field induced chiral states, is kF/l

−2
B W , where lB =

p

ħh/eB ≈ 26nm
p

1/B[T] is
the magnetic length, and W the width of the slab. Taking an experimentally realistic value
of kF = 0.01Å

−1
, the density of anomalous chiral states is larger than that of magnetic-field

induced ones for W ® 100nm /B[T]. At a mesoscopic width W ∼ 100nm, the effect of
anomalous chiral states is thus comparable to that of the field-induced chiral states at B ∼ 1 T,
which relevance is commonly accepted and experimentally supported [15–17].

We find that the confinement-induced valley polarization and the presence of surface states
can lead to conductivity enhancements by several orders of magnitude, compared to that of
the infinite system. This conductivity enhancement is suppressed with increasing width W as
1/W , simply due to the decreasing density of confinement-induced chiral states. The valley
polarization, however, turns out to remain unsupressed up to widths set by the probability of
direct inter-valley scattering, which in case of Gaussian-type disorder potetials is exponentially
enhanced ∼ exp

�

(ξ∆k)2
�

.
To reveal this effect, we develop a two-part numerical approach combining the full quantum

mechanical calculations of a multiband slab dispersion and wavefunctions, with a numerical
solution for the non-equilibrium corrections to the density matrix [40]. The resulting non-
equilibrium density matrix is exact to leading order in the disorder potential and the applied
external electric field.

The paper is organized as follows. In Section II we start with a derivation of transport
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equations for multiband systems with a large number of bands and discuss its validity regime.
In Section III we introduce the model of the Weyl slab, the impurity potential, and calculate
the scattering rate. In Section IV we present the transport results obtained from solving the
transport equations numerically, which we discuss in Section V by comparing with simplified
analytic calculations. We conclude in Section VI.

2 Quantum transport approach

In the first part of this section we recapitulate the general transport formalism in the presence
of weak disorder following Kohn and Luttinger [41]. This is necessary to identify the validity
regime of this formalism when applied to a spatially confined system, which we do in the
second part.

2.1 General quantum transport approach

We separate a general single-particle Hamiltonian into the free-particle part H0, the additional
weak scattering potential V , and a time-dependent electric-field term eE · r est with the position
operator r and an adiabatic time dependence est with s→ 0+,

H = H0 + V + est eE · r . (1)

The scattering is due to a random configuration of impurities with a vanishing impurity-averaged
potential ⟪V⟫= 0.

We make the ansatz for the full density matrix

ρ = p+ gest , (2)

where p is the equilibrium density matrix

p =
e−β(H0+V )

Tr e−β(H0+V )
(3)

and g the non-equilibrium correction. Inserting into the von Neumann equation for the density
matrix,

i∂tρ = [H,ρ] , (4)

and expanding to first order in E we obtain

i s g = [eE · r , p] + [H0 + V, g] . (5)

The following analysis consists in expanding (5) in powers of V . We write (5) in terms of
its matrix elements in the basis of H0 eigenstates |κ〉, where κ combines the quantum numbers.
Off-diagonal and diagonal elements read, respectively,

(Eκ − Eκ′ − is) gκκ′ = (gκ − gκ′)Vκκ′ + Cκκ′ +
∑

κ′′ 6=κ′,κ

(gκκ′′Vκ′′κ′ − Vκκ′′ gκ′′κ′) , (6)

−isgκ = Cκ +
∑

κ′ 6=κ

(gκκ′Vκ′κ − Vκκ′ gκ′κ) , (7)

where the notation is Aκκ′ = 〈κ|A|κ′〉, Aκ = Aκκ, Eκ = 〈κ|H0|κ〉. The field-dependent term

Cκκ′ = eE · [r , p]κκ′ (8)
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expands in powers of V starting with the zeroth order,

C (0)κκ′ = eE · rκκ′ [nF (Eκ)− nF (Eκ′)] , (9)

where nF (E) is the Fermi distribution. From (6) and (7) we see that the leading order of the
off-diagonals of g are of order V−1, while the diagonals are of order V−2. To leading order, the
latter two terms in (6) can thus be neglected, leading to

gκκ′ =
(gκ − gκ′)Vκκ′
Eκ − Eκ′ − is

. (10)

Inserting into (7), taking the adiabatic limit s→ 0+, and applying disorder averaging ⟪. . .⟫ we
obtain

C (0)κ = i 2π
∑

κ′′ 6=κ

δ(Eκ − Eκ′)⟪|Vκκ′ |2⟫ (gκ′ − gκ) . (11)

If the electric field points in a direction in which the system is infinite, let it be x and y , the
eigenstates can be chosen as momentum k = (kx , ky) eigenstates. The field term (9) becomes

C (0)κ = i eE · vκ n′F (Eκ) , (12)

where vκ = ∂κEκ is the velocity.
Making the ansatz

gκ = −eE ·Λκ n′F (Eκ) (13)

(11) simplifies to

n′F (Eκ)vκ = 2π
∑

κ′ 6=κ

n′F (Eκ)δ(Eκ − Eκ′)⟪|Vκκ′ |2⟫ (Λκ −Λκ′) , (14)

known as Boltzmann equation (BE), to be solved with respect to the vector-valued state-resolved
transport mean free paths Λκ, which we will refer to as transport length in short. The average
magnitude of the transport length scales with the strength of the impurity potential as V−2.

Note that since the summation operator acting on Λκ in (14) has an eigenvalue zero for a
κ independent vector, the solution is generally determined up to a constant

c =

∑

κ n′F (Eκ)Λκ
∑

κ n′F (Eκ)
. (15)

Particle conservation however requires
∑

κ gκ = 0, which fixes the constant to c = 0.
The current-density expectation value reads

j = −e
1
V

∑

κ

vκ gκ , (16)

where V is the system volume. The conductivity tensor σ, defined as j = σE, becomes,
using (13),

σ = e2 1
V

∑

κ

n′F (Eκ)vκ ⊗Λκ . (17)

Note that the BE (14) is exact in the weak-disorder limit, giving a conductivity that scales with
the squared inverse strength of the disorder potential. Leading corrections, which will not be
considered here, are of zeroth order in the impurity potential, they include, e.g., the anomalous
Hall effect.
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2.2 Application to a slab model

We now discuss the validity regime of (14) when applied to a slab model. We consider a system
that is infinite in two spatial directions, x and y (as specified above), and confined in direction
z to −W/2 < z < W/2. The slab energy eigenspace κ = (k, b), where k is the in-plane
momentum, has the particularity that the number of bands (band index b) is potentially very
large, scaling with the width W of the system. Since the BE that we have just derived relies
only on considering the leading order in the scattering potential V , it can still be applied to
the slab, provided that V can be taken to be arbitrary small. For the slab, a problem arises if
we want to consider such a large width W that the effect of boundaries becomes smaller than
that of the impurity scattering, which can invalidate the expansion in powers of V . We now
examine when exactly the width becomes “too large” in that sense.

The large width W enters our above formalism through the position matrix elements in
Cκκ′ , see Eq. (8). Let us thus repeat the above steps without neglecting higher V orders in
C since they might still be large due to W . In this case the BE obtains an extra term on the
right-hand side (rhs), so that the extended BE reads

Cκ =
∑

κ′ 6=κ

δ(Eκ − Eκ′)|Vκκ′ |2(gκ′ − gκ) +
∑

κ′ 6=κ

δ(Eκ − Eκ′)(Cκκ′Vκ′κ − Vκκ′Cκ′κ) . (18)

Now expanding C in powers of V the rhs term with C (0) vanishes upon impurity averaging
since the mean potential due to impurities is zero. We thus consider the next order term,

C (1)κκ′ = eE ·
∑

κ′′

�

rκκ′′Vκ′′κ′
nF (Eκ′′)− nF (Eκ′)

Eκ′′ − Eκ′
−rκ′′κ′Vκκ′′

nF (Eκ)− nF (Eκ′′)
Eκ − Eκ′′

�

.

While it also vanishes upon averaging on the left-hand side (lhs) of (18), the new term on the
rhs becomes

eE ·
∑

κ′ 6=κ

∑

κ′′

δ(Eκ − Eκ′)
nF (Eκ)− nF (Eκ′′)

Eκ − Eκ′′
[Vκ′′κ′Vκ′κrκκ′′ + Vκκ′Vκκ′′ rκ′′κ′] .

In this sum there are terms that are proportional to |Vκκ′ |2, which certainly do not vanish upon
impurity averaging. Compared to the first term on the rhs of (18) with the general ansatz (13),
the new term is generally smaller if the position matrix elements are smaller than the typical
values of the transport length, let us denote them by Λ̄. This correction can thus be neglected
only if the width is much smaller,

W � Λ̄ . (19)

Higher order terms due to the expansion of C are of order W times a higher power of V and
thus give even smaller corrections.

Summarizing section III, Eq. (19) characterizes the validity regime of the BE (14) if applied
to the slab. In words, one is allowed to consider impurity scattering as a weak perturbation to
a free propagation in the slab treated as a two-dimensional multiband system as long as the
mean free path is much larger than the width.

3 Weyl-semimetal slab model

We consider a minimal lattice model of a Weyl semimetal [42],

H0(κ) = tσx sin kz + tσy sin ky +mκσz , (20)

6
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Figure 2: Position-z-resolved probability density |ψ|2 = |〈z|ψ〉|2 of Fermi-level states.
Colors indicate surface states at the lower boundary (red) and upper boundary (blue),
the confinement-induced chiral bulk states (green), and normal bulk states (gray).
The inset shows the position of the states in momentum space. Other parameters are
EF = 0.3 t, W = 201, µb = 0.3 t.

where mκ = t(2 + cosβ − cos kx − cos ky − cos kz) and σi are pseudospin Pauli matrices
(corresponding to an arbitrary degree of freedom), t is the hopping amplitude, and the lattice
constant is set to unity. The two Weyl nodes are placed at k = ±β , where β = β x̂ corresponds
to a time-reversal breaking magnetization. We consider a “good” Weyl semimetal with a cone
separation β ∼ 1.

The Hamiltonian of the slab is given by the lattice Hamiltonian (20) but for a finite number
W of sites in the z direction. Transformation into the site basis in the z direction replaces
cos kz → (δi, j+1 + δi, j−1)/2, where i = 0,1, . . . , (W − 1) is the site number, corresponding to
the discrete position in z,

z ≡ i −
W − 1

2
, (21)

in units of the lattice constant which is set to one. We furthermore add a boundary potential µb
at the surface layers of the slab, which main effect is to bend the Fermi-arc surface states. We
label the eigenstates by κ= (k, b) where k = (kx , ky) are the continuous in-plane momenta
and b denotes the 2W modes at each value of k.

The eigenstates |ψκ〉 and eigenenergies Eκ of the slab are obtained from exact diagonaliza-
tion of the Hamiltonian at a fixed in-plane momentum k using standard methods of numerical
diagonalization [40]. For our transport considerations we need to take into account all Fermi-
level states, which are continuous contours in the space of the in-plane momentum k. We
numerically [40] determine the contours by means of the marching squares algorithm [43],
whereby the contours are discretized. The precision level of the discretization is improved until
full convergence of the results. Figure 2 illustrates typical results of numerical diagonalization
giving the Fermi-level contours (inset, see also Fig. 1) and the wavefunction probability density
|ψ|2 ≡ |〈z|ψ〉|2.

Most bulk states form closed contours located at one of the valleys. Additionally there is
the special contour that connects the valleys by wrapping around them. In between it consists
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Figure 3: Plot of the function M(z, z′,ξ, W ) (a) and
∫

dz′M(z, z′,ξ, W ) (b) at ξ= 3
and W = 100. The width of the diagonal peak in (a) and the region of reduced weight
in (b) are both set by ξ.

of surface states but at places where the contour touches the bulk contours, the states are
delocalized — we call them chiral bulk states, since they are unidirectional, moving parallel or
antiparallel to the intrinsic magnetization (here x direction) depending on the valley. While
the number of bulk contours ∼ kF W/π increases with the width, there is always only a single
contour that contains the surface and chiral bulk states.

4 Scattering

4.1 Disorder potential

We model the disorder by static Gaussian potentials,

V =
∑

α

Uαφ(r − rα) , φ(r ) = e−|r |
2/2ξ2

, (22)

where the sum runs over the Gaussian’s with a characteristic width ξ, random and uncorrelated
potential magnitudes Uα ∈ [−δ,δ], and random positions rα.

The disorder potential enters the BE (14) in the form of the scattering rate between two
energy eigenstates Q(κ,κ′) = 2πδ(Eκ − EF )q(κ,κ′), where

q(κ,κ′) = ⟪|〈ψκ|V |ψκ′〉|2⟫ (23)

and ⟪. . .⟫ denotes disorder average.
In the slab model, as compared to a translation-invariant system, the scattering rate is not

a simple Gaussian as a function of the momentum difference. Inserting the impurity potential
and averaging over the disorder configurations within the slab we obtain

q(κ,κ′) =
(2πξ2)3δ2ni

3Lx L y
e−ξ

2(k−k ′)2/2
∑

z,z′
M(z, z′,ξ, W )ψ†

κ′(z)ψκ(z)ψ
†
κ(z
′)ψκ′(z

′) , (24)

where ψκ(z) = 〈z|ψκ〉 and ni is the impurity concentration. A detailed derivation can be found
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in the Appendix. The function M(z, z′,ξ, W ) is given by

M(z, z′,ξ, W ) =
e−(z−z′)2/4ξ2

4
p
πξ

�

erf
�

W + z + z′

2ξ

�

+ erf
�

W − z − z′

2ξ

��

,

where the error function is defined as erf (x) = (2/
p
π)
∫ x

0 e−t2
dt. As illustrated in Fig. 3,

M(z, z′,ξ, W ) is mainly the (z − z′) dependent part of the Gaussian impurity potential, which
magnitude however reduces by approximately a factor of 2 at the slab surfaces, where the
possible impurity positions obviously fill only half of the space. Another effect of the finite size
is that the z dependence of the wavefunctions is not plane-wave like, hence the sum in (24)
does not reduce to a Fourier transformation. In particular, note that the wavefunction factor
in (24) strongly suppresses the scattering rate between surface states of opposite surfaces when
ξ and the penetration depth of the surface states are both much smaller than W due to a
vanishing overlap between the surface states.

In the limit ξ� 1 one obtains M(z, z′,ξ, W ) = δ(z − z′), in which case

q(κ,κ′)
ξ�1
−−→

(2πξ2)3δ2ni

3Lx L y
e−ξ

2(k−k ′)2
∑

z

|ψκ′(z)|
2|ψκ(z)|

2 .

Despite the rather complex form, the impurity scattering is fully determined by two param-
eters — the real-space impurity width ξ and the overall impurity strength (set by δ2ni), the
latter will be in the following quantified by the average mean free path l, defined below. The
impurity width ξ essentially sets the momentum-space range of most scattering processes to
|k − k ′|® ξ−1, hence for a large value of ξ scattering between states that are far apart from
each other in the in-plane momentum k is exponentially suppressed ∼ exp[−ξ2(k − k ′)2].

4.2 Scattering lengths

In the presence of surface and bulk states it is interesting to quantify averaged scattering
rates and scattering probabilities between different types of states, which will be helpful to
understand the numerical transport results.

To quantify the overall strength of impurity scattering, we define the averaged mean free
path

l =

*

|vκ|

�

∑

κ′

δ(Eκ − EF )q(κ,κ′)

�−1+

, (25)

where the Fermi-surface average is given by

〈. . . 〉=
1
N

∑

κ

δ(Eκ − EF )(. . . ) ; N =
∑

κ

δ(Eκ − EF ) , (26)

and N is the number of states at the Fermi level. Note that for a nearly constant |vκ| that we
have, the mean free path is inversely proportional to the total scattering probability.

To quantify the scattering probability between different types of states i ∈ [b, s], where b
(s) denotes bulk (surface) states, we define the scattering length

li j =

*

|vκ|

 

j
∑

κ′

δ(Eκ − EF )q(κ,κ′)

!−1+

i

, (27)

where the sum runs over the type j of states and the averaging is analogous to (26) but only
over type i of states (

∑

κ→
∑i
κ).
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We now want to determine the dependence of the scattering probability on the width W
of the slab in two limiting cases (i) the number of bulk states being much larger than that of
surface states, N � Ns and (ii) the number of states being dominated by surface states, N ∼ Ns.
In regime (ii) the number of bulk states Nb = N − Ns, is given by the number of chiral bulk
states. Thus the scaling of Nb with the slab width reads

Nb ∼

¨

W (i)

1 (ii).
(28)

The scaling of the scattering rate (24) is governed by the z dependence of the wavefunctions.
A normalized surface state with a penetration depth λ∼ β−1 ∼ 1 and a normalized bulk state
are of the form

ψs(z) =

√

√2
λ

e−z/λ, ψb(z) = 1/
p

W , (29)

respectively. Consequently, for W � λ (which we always consider), we can estimate the scaling
of the scattering rate between the different types of states as

q(κ,κ′)∼











1 same surface
1
W bulk-surface, bulk-bulk

0 opposite surfaces.

(30)

From this, (28), and (27) the width dependence of the scattering probabilities summarizes to

lbb/l lss/l lsb/l lbs/l
(i) 1 Nb

NsW
∼ 1 1 Nb

Ns
∼W

(ii) W Ns
Nb

1 W Ns
Nb

W
(31)

Most importantly, in the regime (i) the scattering probability from bulk to surface (∝ l−1
bs ) is

a factor W smaller than other scattering probabilities, due to the ratio of the number of bulk
states to surface states, which is large and increases with W . In the regime (ii) instead, the
number of bulk states (consisting only of the chiral bulk states) does not depend on W . The
peculiarity of this regime is that surface states scatter most probably within the surface states,
which is due to the larger overlap of surface wavefunctions.

5 Numerical results

We calculate the nonequilibrium occupation function (13) at zero temperature by numerically
solving Eq. (14) with respect to the transport length on the basis of the numerical solution of
the discretized slab spectrum discussed in Section III [40]. The nonequilibrium occupation
function (or, equivalently, the transport length) determines the conductivity, given in Eq. (17),
and the valley polarization, defined in (5.2) below.

5.1 Conductivity

We consider the conductivity in units of the standard Drude estimate given by the mean free
path l, the density of states at the Fermi level n= N/V , and the Fermi velocity v ≈ t/ħh,

σ0 =
e2n l v

3
. (32)
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Figure 4: Impurity-range dependence of the conductivity. (a),(c),(e): Discretized
Fermi-level contours for the three parameter choices (EF = 0.3 t, W = 201),
(EF = 0.3 t, W = 21), and (EF = 0.03 t, W = 201). The number of finite-size
induced states (surface states and chiral bulk states), Ns + Nc, relative to the total
number of states N is (a) (Ns + Nc)/N = 0.14, (c) (Ns + Nc)/N = 0.68, and (e)
(Ns + Nc)/N = 1. Color indicates surface states at the upper (blue) and lower (red)
surfaces, bulk states (gray), and the chiral bulk states (green), cf. Fig. 2. (b), (d), (f):
Conductivity as a function of the impurity width ξ. The green curves show power-law
fits, the exponent is indicated in the plot. Other parameters are β = 1.5, µb = 0.3 t.

This is the result one would expect to find for a system with point-like impurities (ξ→ 0) and
only bulk states arranged in form of a spherical Fermi surface.

The dependence of the slab conductivity on the width of the impurity potential ξ is sum-
marized in Fig. 4. For ξ > 1 the conductivity is well fitted by a power-law dependence on ξ,
with an exponent between 2 and 3. An exception is found for σy y at EF � t, which shows a
weak ξ dependence at a strongly enhanced conductivity at all ξ. In total, the magnitude of the
conductivity, especially in the direction of motion of Fermi arcs, may be enhanced by several
orders of magnitude, either due to a wide impurity range, or if the Fermi energy is close to the
Weyl points.

To gain further insight, in Fig. 5 we consider the width dependence of the conductivity.
Figure 5(a) shows that in the case of a large number of bulk states and point-like impurities,
the conductivity is nearly independent of W and is close to σ0 — in this regime the slab
thus resembles a conventional metal. At a large ξ, however, the conductivity enhancement
decreases antiproportional to the width, indicating that the conductivity enhancement at large
EF is related to the presence of the confinement-induced surface and chiral bulk states, which
number, relative to the total number of states N , is antiproportional to W . At small EF , however,
when there is only one Fermi-level contour mainly consisting of surface states, the total number
of states is nearly independent of W . In this case, the large conductivity in the direction of
motion of surface states, σy y , linearly increases with the width W .
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Figure 5: Width dependence of the conductivity at (a) EF = 0.3 t, ξ = 0.1, (b)
EF = 0.3 t, ξ = 5, (c) EF = 0.03 t, ξ = 0.1, and EF = 0.03 t, ξ = 5. Other parameters
are β = 1.5, µb = 0.3 t. The dashed lines in (b) indicate W−1 dependence and in (c)
and (d) linear dependence.
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Figure 6: Width dependence of the conductivity at ξ = 5 and EF = 0.15 t, µb = 0.3 t.
The transition from a single contour to three contours is indicated by the dotted lines
and the contour-plots below the W axis.

To explore more carefully the transition from an increasing to a decreasing W dependence,
in Fig. 6 we plot the conductivity at smaller width, when the first bulk contours appear. This
plot shows that the strong W enhancement of the surface conductivity requires the normal bulk
contours to vanish, which happens if W kF/π® 1. As soon as at least one normal bulk contour
appears, the conductivity jumps to a significantly lower value and becomes decreasing in W .
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Figure 7: Valley polarization χ, defined in Eq. (5.2). (a) Dependence of χ on the
impurity range ξ at a width W = 201. (b) Width dependence of χ at ξ = 5. Other
parameters are µb = 0.3 t, β = 1.5, and EF = 0.3 t.

5.2 Valley polarization

Besides the conductivity it is interesting to explore the non-equilibrium occupation difference
of the valleys, which occurs when the electric field points along the valley separation, E = x̂ E.
The average occupation of the valley at kx = ±β is given by

∑±
κ gκ/(Nb/2), where the sum runs

over all bulk states at the valley ±, and Nb/2 =
∑±
κ is the number of those states. We quantify

the valley polarization by the difference of the valley occupations relative to the standard
occupation difference of states δ(EF − Eκ)eEl due to the mean free motion in the electric field,

χ ≡

∑+
κ gκ

∑+
κ δ(EF − Eκ)eEl

−

∑−
κ gκ

∑−
κ δ(EF − Eκ)eEl

=
〈Λx
κ〉+ − 〈Λ

x
κ〉−

l
, (33)

where in the second line we used Eq. (13) and defined the average over valley bulk states
〈. . . 〉± =

∑±
κ δ(EF − Eκ) . . ./

∑±
κ δ(EF − Eκ).

A representative result for the impurity range and width dependence of the valley polariza-
tion is shown in Fig. 7. The valley polarization shows the power-law ξ dependence, similar to
the conductivity. However, unlike for the conductivity, there is no significant width dependence
at large ξ (here already at ξ ¦ 1) in the numerically accessible width range. This is very
surprising as it seems to imply a presence of valley polarization for sufficiently large impurity
widths in arbitrary large systems, contradicting previous predictions based on infinite-system
calculation [3]. Below we will show that the valley polarization in fact does decay but for
width above ¦ l e(ξ∆k)2 , which becomes exponentially large for ξ∆k ¦ 1.

6 Discussion

The numerical results of the previous section show enhancements of the slab conductivity by
several orders of magnitude (compared to the expectation for a conventional metal (32)) and
a substantial valley polarization in a wide region of the parameter space. The characteristic
dependencies on ξ and W allow to identify the main mechanisms of these effects, which we
now systematically discuss.
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6.1 Impurity-range dependence

When the impurity range ξ increases, the scattering rate (24) between two countermovers
separated by ∆k becomes exponentially suppressed, ∼ exp[−(ξ∆k)2]. The transport length
does not inherit the exponential enhancement though, since relaxation happens via multiple
small-angle scattering processes. To illustrate this, we consider a toy model of a closed chain of
N states labeled i ∈ [1,N ] with arbitrary velocities vi . The BE (14) is of the form (summation
over repeated indices assumed)

vi = Mi jΛ j , (34)

where Mi j = δi j
∑

k qik − qi j is given by the scattering rates between states, qi j. We assume
scattering only between the nearest neighbors, with the rate qnn, and direct scattering between
countermovers with the rate qd, in which case the matrix M becomes

Mi j = (2qnn + 2qd)δi j − qnn(δi j+1 +δi, j−1) , (35)

where we used that the direct-scattering part of qi j cancels when multiplied with Λ. For the
nearest-neighbor part Mnn of M there is a left pseudo-inverse,

Pi j =
1

qnn

|i − j| (|i − j| −N )
2N

, (36)

so that PMnnΛ = Λ (note
∑

i Λi = 0 due to particle conservation). With its help, the full
solution of (34) becomes

Λ= (1+ 2qdP)−1 P v . (37)

We first ignore direct scattering. From the form of P, it is clear that the solution can de-
pend on N to maximally the power N 2. In particular, for a circular velocity arrangement
v = {− cos[2π(i − 1)/N ], sin[2π(i − 1)/N ]} the vector mean free path for N � 1 assumes
the value

Λ=
1

qnn

(ξ̃∆k)2

4
v , (38)

where we have written the number of nearest neighbors as N = πξ̃∆k, in terms of the spacing
between nearest neighbors ξ̃−1 and the distance between countermovers ∆k.

Considering the full result with direct scattering in Eq. (37), we see that the nearest-neighbor
scattering contributions to Λ dominate as long as

(ξ̃∆k)p

qnn
�

1
qd

, (39)

where the exponent p depends on the velocity arrangement. In the opposite limit we instead
obtain

Λ=
1

2qd
v . (40)

Transferring this insight to the Weyl slab model, the distance between the nearest neighbors
ξ̃−1 corresponds to ξ−1. The mean free path corresponds to the inverse diagonal of M times
velocity, l ∼ v/(qd + qnn). Interpolating between the two regimes of dominant direct scattering
and nearest-neighbor scattering the typical values of the transport length may be well estimated
as

Λ̄= l [1+ (ξ∆k)p] . (41)

This explains the general power-law conductivity enhancement with ξ in Fig. 4, except for σy y
in Fig. 4(f), which we discuss separately.
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6.2 Valley polarization

The averaged occupation of the two valleys ± can be expressed as

µ± =

∑±
κ gκ

Nb/2
, (42)

where
∑±
κ δ(EF − Eκ) = Nb/2. The occupation difference is related to the valley polarization χ

defined in Eq. (5.2),
µ+ −µ− = χ eEx l . (43)

A single valley has a total velocity in the x direction — the unbalanced velocity of the chiral
states vNc/2, where Nc is the total number of chiral states (Nc/2 in each valley). An electric
field in the x direction thus pumps charge between the valleys with the rate veEx Nc , which in
a steady state must be counterbalanced by scattering. We can write down a simple balance
equation as a condition for a steady valley occupation,

eNb
dµ±
d t
= 0= ±veEx Nc + eNb

�

∂ µ±
∂ t

�

scat
, (44)

where we used Nb� Nc . The time-change of µ+ −µ− due to scattering is proportional to the
occupation difference itself and the scattering probability, which we quantify by the scattering
length lc , hence

�

∂ (µ+ −µ−)
∂ t

�

scat
= −2

µ+ −µ−
lc/v

= −2
χeEl
lc/v

. (45)

Together with (44) we obtain

χ =
Nc

Nb

lc
l

. (46)

For a point-like disorder potential (ξ→ 0) the ratio lc/l goes to one and the valley polarization
is small. For larger ξ, direct scattering between the valleys becomes strongly suppressed and
the relaxation of µ+ − µ− must go via surface states. Thereby the relaxation along the arcs
and the scattering from surface to bulk is much faster than the scattering from bulk to surface,
see (31). The scattering length lc is thus set by the bulk-surface scattering length lbs, which is
proportional to the ratio Nb/Ns so that

χ∝
Nc

Ns
. (47)

This explains the surprising result that the valley polarization does not depend on the width,
as seen numerically in Fig. 6. This is surprising since the origin of the valley polarization are
the chiral bulk states, which number Nc is a factor∝W smaller than the total number of bulk
states Nb. The explanation is that the valley relaxation also becomes suppressed∝W−1 since
the probability to scatter into Fermi arcs decreases with an increasing number of bulk states.
For a much larger width, when the probability of relaxation via Fermi arcs becomes smaller
than the probability of relaxation via direct inter-valley scattering, the valley polarization
will ultimately go to zero like W−1. In case of a Gaussian potential, the amplitude of direct
inter-valley cattering is however exponentially suppressed ∼ exp[−(ξ∆k)2] so that the width
independence can easily extend to arbitrary macroscopic sizes for realistic values of the impurity
width and the cone separation ξ∆k ¦ 1.

Regarding the strong enhancement of valley polarization with ξ, one is tempted to under-
stand it as a consequence of an increasing number of scattering events needed for a relaxation
along the Fermi arcs. However, the contribution of such a process to χ would enter in the form
lss(ξ∆)p/l∝ 1/W , with a clear 1/W dependence, which we do not observe. It rather must be
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the suppression of the bulk-surface scattering probability with ξ, which is plausible in view of
the typical effect of an increasing ξ to increase the relaxation time. We note, however, that
the simplified analytical calculation of Section 6.1 does not apply since in this case the valleys
correspond to two-dimensional pools of states, while the model of Section 6.1 only considers
one-dimensional chains.

6.3 Conductivity in case of a large number of bulk states

For bulk states (excluding chiral bulk states) the small separation of countermovers in momen-
tum space ∼ kF makes their transport length close to the mean free path l and not significantly
enhanced with ξ. We thus approximate the current contribution of bulk states as

jn = σ0E. (48)

For an electric field in the y direction there is additionally the contribution of surface states,
which transport length is mainly set by surface-surface scattering, enhanced by ξ according
to (41),

js = e2nsv lss(ξ∆k)p y Ey , (49)

where ns = Ns/V is the density of surface states.
The current contribution of chiral bulk states is negligible compared to (48), except if the

valley polarization becomes large, in which case

jc = ev x̂ nc(µ+ −µ−)/2= e2v x̂ ncχ l E/2 , (50)

where nc = Nc/V is the density of chiral bulk states. Adding all the current contributions, we
obtain

σ(i)x x

σ0
= 1+

3
2

Nc

Nb
χ, (51)

σ(i)y y

σ0
= 1+ 3

Ns

Nb

lss(ξ∆k)p

l
∼ 1+

1
W
(ξ∆k)p , (52)

where we again used (31). This rough estimate is in qualitative agreement with the numerical
results. Note that Nb increases proportional to W , which explains the W dependence of σx x
and σy y in Fig. 5(b). We now understand that the enhancement of σx x and σy y are mainly
due to chiral bulk states and surface states, respectively.

In conventional metals the conductivity is width independent as long as the width is much
larger than the mean free path; when the width becomes smaller, the conductivity tends to
decrease due to additional scattering at boundaries. Our work shows that in Weyl semimetals
away from charge neutrality the opposite trend of increasing conductivity with shrinking the
width may occur due to chiral bulk states and surface states. A qualitatively similar width
dependence may occur also in the regime l � W (we consider the opposite limit l � W ),
which has been considered in Ref. [34]. Observations of enhanced conductivity for reduced
widths have been reported in Ref. [35], where the Weyl semimetal nanobelts, according to
estimates of the mean free path, are presumably in the regime of our work, l �W , or in the
crossover regime l ∼W .

6.4 Conductivity in case of a small number of bulk states

We now come to the case (ii) when the number of states is dominated by surface states, while in
the bulk only chiral bulk states are present. The conductivity in the y direction can be written
in the form

σ(ii)y y

σ0
= 1+

Ns

N
Λs

l
, (53)
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where Ns ≈ N is the number and Λs the transport length of surface states. Scattering within
surface states at the same surface does not lead to relaxation of motion in the y direction
since the average velocity vy of those states is not zero. Countermoving surface states, on
the other hand, have no overlap with each other, direct scattering between them is blocked.
The relaxation of Fermi arc states must thus go via the small number of chiral bulk states,
so that Λs is set by the surface-bulk scattering probability, Λs ∼ lsb. In Section 4.2 we found
lsb/l ∼W Ns/Nc—Eq. (31)—which leads to

σ(ii)y y

σ0
∼W

Ns

Nc
. (54)

Both factors are of order 100 for parameters in Fig. 4(f), which explains the large magnitude.
Also the W dependence in Fig. 5 is consistent since both Ns and Nc are W independent in this
case.

For large ξ, surface-bulk scattering becomes limited to small regions at the nodes and the
full relaxation must involve nearest-neighbor scattering along the Fermi arc. According to
Section 6.1, the latter should elongate the full transport length by an additional lss(ξ∆k)p. For
the considered parameters, lsb is much larger than this additional part since (ξ∆k)p�W Ns/Nc ,
which explains the weak ξ dependence in Fig. 4(f).

The transition from (ii) to (i) spoils the strong enhancement of σy y in two ways: First,
the ratio Ns/Nc changes to Ns/(Nc + Nb) and thus becomes smaller and second, according to
Eq. (31), lsb/l ∼W Ns/Nb→ 1 is no longer width dependent, which in Fig. 6 explains the jump
and the change of slope.

The conductivity in the x direction is also governed by the dominant number of surface
states. Relaxation however happens via scattering within the same surface, since vx averages
to zero at each surface separately. Since lss/l ∼ 1, the conductivity in the x direction is not
significantly enhanced.

7 Conclusion

In conclusion, we have studied linear-response properties of a finite Weyl semimetal slab (width
W ) in the presence of long-ranged disorder (disorder potential width ξ). Our work highlights
the remarkable property of Weyl semimetals to realize valleys of opposite chirality that are
well separated in momentum space (∆k) and continuously connected only via surface states.
For a Fermi energy that is not exactly at the Weyl nodes, the surface states occur together
with confinement-induced chiral bulk states. In the presence of an electric field parallel to
cone separation they allow to violate chiral charge conservation even without an external
magnetic field. This peculiarity stabilizes an anomalous valley polarization at zero magnetic
field. If the potential width is substantially larger than the inverse separation of valleys, the
valley polarization persists up to very large slab width. This is explained by the fact that direct
inter-valley scattering is strongly suppressed and the relaxation must go via Fermi arcs, which
is however also increasingly ineffective owing to their vanishing density with an increasing
width. The resulting width independence of the confintenment-induced valley polarization
persists up to a width, for which relaxation via direct inter-valley scattering becomes more
effective than relaxation via Fermi arcs. For Gaussian-type disorder potentials this maximum
width is exponentially enhanced by exp[(ξ∆k)2] and can thus easily reach macroscopic length
scales at realistic values of cone separation ∆k and inpurity-potential widths ξ.

The valley polarization and Fermi-arc surface states lead to a conductivity enhancement
which increases with an increasing width of the disorder potential and a decreasing width of
the slab (σ∝ 1/W ). Moreover, if the Fermi energy is reduced towards charge neutrality such
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that normal bulk states vanish completely, the conductivity in the direction of motion of surface
states becomes strongly enhanced because relaxation of surface states can only go via bulk
states which number becomes strongly reduced.

Methodologically our work performs first steps in the application of the weak-disorder
transport formalism to a multilayer system with a large (¦ 100) number of layers and con-
sequently a similarly large number of bands in the in-plane Brillouin zone. The numerical
code [40] is designed to be easily applicable to an arbitrary lattice model and can thus be used
to explore in detail the confinement-induced valley polarization in various Weyl-metal models.
In this work, we introduced the formalism by considering a minimal two-Weyl-cone model. We
find that the qualitative aspects of the valley polarization are robust to lattice details such as
boundary potentials (which give the Fermi arcs a finite curvature) or velocity anisotropy of
the Weyl cones. Our analytical discussion shows that the valley polarization depends on the
mere presence of chiral bulk states and surface states (which is topological) and the ratio of
the inverse separation of Weyl cones vs. the width of the scattering potential, which explains
the robustness of this effect.

An interesting application of the introduced tools is to consider lattice models of existing
Weyl semimetals. For the case of several pairs of Weyl nodes that are sufficiently separated in
momentum space, such as in the TaAs material family, we expect valley polarization to occur in
each pair which cone sepration aligns with the electric field, similarly to the two-cone case. The
reason is that due to the large pair separation, scattering between pairs should be negligible
compared to the intervalley scattering within a single pair, making each pair independent and
thus reduce the problem to the two-cone case.

General limitations of the introduced numerical tools are the restriction to slab width
being smaller than the mean free path and the restriction to the leading order in the disorder
potential. Both the fate of confinement-induced effects for larger widths as well as corrections
of higher order in the disorder potential, which are known to start with Berry phase effects [44],
constitute interesting directions to extend this formalism.
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Supplementary Material

Derivation of scattering amplitudes

We consider Gaussian-type static impurity potentials,

V =
∑

α

Uαφ(r − rα), φ(r ) = e−|r |
2/2ξ2

, (S1)

where the sum runs over impurities with a characteristic width ξ, random and uncorrelated
potential magnitudes Uα ∈ [−δ,δ], and random positions rα.

For our transport consideration we consider the scattering rate Q(κ,κ′) = 2πδ(Eκ − EF )×
q(κ,κ′) between energy eigenstates |ψκ〉 and |ψκ′〉, which we calculate using Fermi’s Golden
Rule,

q(κ,κ′) = ⟪|〈ψκ|V |ψκ′〉|2⟫ , (S2)

where the disorder average is defined as

⟪. . .⟫=
∏

α

∫ δ

−δ

dUα
2δ

∫

drα
V
(. . . ) . (S3)

We write the normalized wavefunctions as

〈r |ψκ〉=
1

Æ

Lx L y
eik·ρψκ(z) , (S4)

where ρ = (x , y) is the in-plane position and Lx L y the in-plane volume and ψκ(z) is the
normalized eigenvector of numerical diagonalization of the lattice model, z denoting the
discrete sites in the z direction.

The expectation value of the impurity then calculates to

〈ψκ′ |V |ψκ〉=
2πξ2

Lx L y
e−ξ

2(k−k ′)2/2
∑

α

Uα
∑

z

φ(z − zα)ψ
†
κ′(z)ψκ(z) . (S5)

Inserting into (S2) and using (S3), we obtain

q(κ,κ′) =
4π2ξ4

L2
x L2

y
e−ξ

2(k−k ′)2 ⟪
∑

α,β

UαUβ
∑

z,z′

∫

dzα
W
φ(z − zα)φ(z

′ − zβ)ψ
†
κ′(z)ψκ(z)ψ

†
κ(z
′)ψκ′(z

′)⟫

=
4π2ξ4δ2

3L2
x L2

y
e−ξ

2(k−k ′)2
∑

α

∑

z,z′
ψ†
κ′(z)ψκ(z)ψ

†
κ(z
′)ψκ′(z

′)

∫

dzα
W
φ(z − zα)φ(z

′ − zα)

=
4π2ξ4δ2ni

3Lx L y
e−ξ

2(k−k ′)2
∑

z,z′
ψ†
κ′(z)ψκ(z)ψ

†
κ(z
′)ψκ′(z

′)

∫

dziφ(z − zi)φ(z
′ − zi)

=
(2πξ2)3δ2ni

3Lx L y
e−ξ

2(k−k ′)2
∑

z,z′
ψ†
κ′(z)ψκ(z)ψ

†
κ(z
′)ψκ′(z

′)M(z, z′,ξ, W ) ,

(S6)
where ni =

∑

α /Lx L yW is the impurity concentration, furthermore we used

⟪UαUβ . . .⟫= δαβ
δ2

3
⟪. . .⟫ , (S7)

and defined the function

M(z, z′,ξ, W ) =
1

2πξ2

∫

dziφ(z − zi)φ(z
′ − zi) (S8)

=
e−(z−z′)2/4ξ2

4
p
πξ

�

erf
�

W + z + z′

2ξ

�

+ erf
�

W − z − z′

2ξ

��

, (S9)
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plotted in Fig. 3; the error function is defined as erf (x) = (2/
p
π)
∫ x

0 e−t2
dt. Note that

∫

dz′M(z, z′,ξ, W ) (S10)

is a weak function of z, equal to 1 in the middle of the slab, and going down to ≈ 0.4 at the
edges in the range ξ.
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