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When cooled down, emulsion droplets stabilized by a frozen interface of alkane molecules and
surfactants have been observed to undergo a spectacular sequence of morphological transformations: from
spheres to faceted liquid icosahedra, down to flattened liquid platelets. While generally ascribed to the
interplay between the elasticity of the frozen interface and surface tension, the physical mechanisms
underpinning these transitions have remained elusive, despite different theoretical pictures having been
proposed in recent years. In this Letter, we introduce a comprehensive mechanical model of morphing
emulsion droplets, which quantitatively accounts for various experimental observations, including the size
scaling behavior of the faceting transition. Our analysis highlights the role of gravity and the spontaneous
curvature of the frozen interface in determining the specific transition pathway.
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Despite liquid drops representing the quintessential
realization of spherical geometry across an extraordinary
vast range of length scales, from stars down to microscale
and nanoscale aerosols, a variety of faceted polyhedral
shapes has been reported in simple oil-in-water emulsions
[1] and recently investigated by Denkov et al. [2] and
Guttman et al. [3] [Figs. 1(a)–1(c)]. Unlike typical emul-
sion droplets, these are enclosed by an interfacially frozen
monolayer of alkane molecules and surfactants. Upon
cooling, the droplets undergo a series of shape trans-
formations: from spheres to icosahedra, to hexagonal
platelets [Fig. 1(a)], to even more exotic shapes featuring
tentaclelike protrusions [3]. The specific transition pathway
is not universal, but depends on several factors, such as the
oil and surfactant chemical composition, the cooling rate,
and the droplet size [2–6].
Whereas these fascinating experimental results are now

reproducible (see Ref. [14] for a recent overview), a
convincing explanation of the physical mechanisms under-
pinning the sequence of shape transformations is still
lacking, despite two alternative scenarios having been
proposed [2–7,15–18]. The first, hereafter referred to as
rotator phase mechanism [2,16], revolves around the
existence of a rotator phase in the proximity of the droplet’s
surface, whose estimated thickness ranges between < 45
[18] and 300 nm [2], serving as a plastic scaffold for the
observed shape transformations, especially across different
flat morphologies [16]. The second scenario, proposed in
Refs. [3,15] and referred to as elastic buckling mechanism,
ascribes instead the transformations to a competition
between the stretching elasticity of the frozen interfacial
monolayer and surface tension. As the former consists of a
triangular lattice [19] lying on a closed surface, its structure

is geometrically frustrated and inevitably features topo-
logical defects, where the local sixfold rotational symmetry
of the lattice is broken [20]. Furthermore, as the elastic
stress introduced by these defects can be relieved by
increasing the local curvature [21,22], such a crystalline
monolayer is generally prone to buckling and faceting. The
most prominent example of this mechanism is found in the
context of viral capsids. In these, the trade-off between in-
plane stresses, originating from the presence of twelve
topologically required fivefold disclinations, and bending
moments, resulting from out-of-plane deformations, drives
the buckling of spheres into icosahedra [23–25]. The
transition occurs at large values of the so called Föppl-
von Kármán number, YR2=κ, expressing the ratio between
the stretching and bending energy scale, with Y the two-
dimensional Young modulus, R the system size (e.g., the
capsid radius prior to buckling), and κ the bending rigidity.
Thus, large viral capsids are energetically favored to
be icosahedral, while small capsids are preferentially
spherical.
Although potentially plausible to justify the observed

sequence of shape transformations, neither of these scenar-
ios succeeds in explaining all the experimental observa-
tions. Recent cryo-transmission electron (CryoTEM)
micrographs revealed that the solid layer located at the
oil-water interface of small icosahedral and other polyhe-
dral droplets is only a few nanometers thick [Fig. 1(d) and
Refs. [7,19] ], thus too thin to support the rotator phase
mechanism, at least in the experimental setup pioneered by
Guttman et al. [3,4,7,15]. By contrast, the elastic buckling
mechanism fails to reproduce the observed size dependence
of the sphere-icosahedron-platelet transition. Denkov et al.
noted that while lowering the temperature, the smaller the

PHYSICAL REVIEW LETTERS 126, 038001 (2021)
Editors' Suggestion Featured in Physics

0031-9007=21=126(3)=038001(6) 038001-1 © 2021 American Physical Society

https://orcid.org/0000-0003-2654-042X
https://orcid.org/0000-0002-7481-3739
https://orcid.org/0000-0001-7740-5960
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.126.038001&domain=pdf&date_stamp=2021-01-21
https://doi.org/10.1103/PhysRevLett.126.038001
https://doi.org/10.1103/PhysRevLett.126.038001
https://doi.org/10.1103/PhysRevLett.126.038001
https://doi.org/10.1103/PhysRevLett.126.038001


droplet, the more the shape changes before reaching the
bulk oil freezing point, with the largest droplets remaining
spherical [2,5]. Consistently, by imaging several individual
droplets upon slow cooling, Guttman et al. reported
quantitatively that small droplets undergo faceting at higher
temperatures compared to large droplets [see micrograph in
Fig. 1(b) and the experimental data in Fig. 1(f), adopted
from Ref. [3], with slightly improved statistics]. This
cannot be explained either via the classic virus buckling
picture, whose size dependence is in fact opposite to that
observed in icosahedral droplets [23], nor by postulating a
similar interplay between defect-driven stretching elasticity
and surface tension. As both the stretching and the surface
energy scale like R2, the latter implies that, depending on
the ratio between Y and the surface tension γ, at a given
temperature, droplets are either always spherical (for small
Y=γ values) or always icosahedral (for large Y=γ values),
regardless of their size. Furthermore, in order for the elastic
buckling mechanism to account for the icosahedra-platelet
transition, one must assume κ ≈ 10−1 kBT [17], orders of
magnitude smaller than the value 103 kBT estimated
in Ref. [3].
In this Letter, we resolve this dilemma by demonstrating

that elastic buckling can, in fact, explain not only the
sphere-icosahedron-platelet transition, but also the size
dependence observed in experiments, provided it is aug-
mented with the following mechanisms: the spontaneous
curvature of the frozen alkane-surfactant monolayer and

gravity. The starting point of our approach is the following
functional describing the energy of a droplet of volume V
and density ρoil enclosed by a crystalline monolayer and
suspended in water, namely

E ¼ 1

2

Z
dA½2γ0 þ Yσ2 þ 4κðH −H0Þ2 þ gΔρz2Nz�; ð1Þ

where σ ¼ σii=Y is the trace of the covariant stress tensor σij
arising in the interface in response to stretching deforma-
tions, H is the droplet mean curvature taking H > 0 for a
sphere, H0 the spontaneous curvature, g the gravitational
acceleration, Δρ ¼ ρwater − ρoil the oil-water density differ-
ence, and Nz the projection of the surface normal vector
along the z direction. The first term in Eq. (1) corresponds
to the standard surface energy. The second term accounts
for the in-plane stretching originating from the combined
effect of the Gaussian curvature and the topological defects.
The third term describes the energetic cost of bending, in
terms of the departure of the droplet mean curvature from
its preferential value H0. The latter arises in droplets as a
consequence of the asymmetry of the adsorbed surfactant
molecules [26], and can be interpreted as a renormalization
of the surface tension, analogous to that caused by an
inhomogeneous Tolman length [27]:

γ0 ¼ γ − 4κH0H; ð2Þ

(a)

(b) (c) (d)

(e)

(f)

FIG. 1. (a) Light microscopy snapshots of the volume-conserving faceting and flattening of a single spherical droplet as temperature is
lowered. (b) Typical configuration of a polydispersed sample showing large spherical and small icosahedral droplets (highlighted by
arrows). Icosahedral droplets and platelets are oriented with the flat face orthogonal to the direction of gravity; see the hexagonal
platelets marked by arrows in (c). (d) CryoTEM image of the interface of an icosahedral droplet, revealing that the thickness of the
crystalline structure is close to 3 nm, corresponding solely to the interfacially frozen monolayer (reproduced and modified with
permission from [7]. Copyright (2019) American Chemical Society). (e) Schematic of the phase diagram of the droplets based on the
experimental observations, with the triangulated surfaces used in the numerical calculations of the energy [see Eq. (3)]. (f) Experimental
estimate and theoretical fit of the difference between the surface tension at the sphere-icosahedron and icosahedron-platelet transitions,
Δγ ¼ γsph-ico − γico-pla, as a function of droplet radius [3]. See Supplemental Material [8] for details.
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where γ ¼ γ0 þ 2κH2
0 is the uniform part of the effective

surface tension, inclusive of the contribution arising from
the spontaneous curvature H0. As we detail further below,
this renormalization is instrumental to the observed size
dependence. Since surface tension is the main restoring
mechanism in spherical droplets, Eq. (2) implies that for
H0 > 0, the smaller the droplet the less it is prone to return
to a spherical shape once it is deformed. Finally, the last
term in Eq. (1) describes the gravity-buoyancy balance
caused by the density difference Δρ, here expressed as a
surface integral by means of the divergence theorem.
In the following, we assume that all the material

parameters are uniform across the surface and we search
for the lowest energy configuration of the droplet as a
function of γ and for various κ, H0, Y, and gΔρ values.
Consistently with experimental studies, γ ∼ T is the only
material parameter strongly affected by temperature within
the experimental range and can, therefore, be used as a
proxy for temperature [15,16] (see also Ref. [8]). We
compute the energy associated with three configurations
depicted in Fig. 1(a) by modeling surfaces via triangulated
meshes with rounded vertices and edges [8]. The platelet, in
particular, has a height-to-width ratio of around 1=10
at the center, consistently with three-dimensional electron
microscopy reconstructions [28] (see also Fig. S1).
Measuring energy in units of κ and length in units of
1=H0, we numerically calculate the dimensionless energy
E ¼ E=κ for each surface as a function of the dimensionless
size r ¼ H0R, with R ¼ ½V=ð4π=3Þ�1=3. Namely,

E ¼ EW − EHrþ ðΓEC þϒESÞr2 þ ΠEGr4; ð3Þ

where the terms on the right-hand side denote the dimen-
sionless form of the bending (EW , EH), capillary (EC),
stretching (ES), and gravitational (EG) energies. The bend-
ing energy has been split into the so called Willmore
functional, EW ¼ 2

R
dAH2, and the contribution associ-

ated with the spontaneous curvature, EHR ¼ 4
R
dAH. The

numbers

ϒ ¼ Y
κH2

0

; Γ ¼ γ

κH2
0

; Π ¼ gΔρ
κH4

0

;

quantify the energetic cost of stretching, capillarity, and
gravity in comparison to bending, and they constitute the
set of independent material parameters of the system.
With the exception of ES, all energy contributions

depend exclusively on the shape of the droplet and can
be straightforwardly computed using our triangular meshes
(Table I). In order to calculate the stretching energy, one
needs to determine the local stress induced by the non-
vanishing curvature of the droplet and by the topological
defects populating the interfacial monolayer, by solving the
Poisson equation ∇2σ ¼ η − K, where ∇2 is the Laplace-
Beltrami operator, K the surface Gaussian curvature, and η

is the topological charge density of the defect distribution
[22]. In general, the latter consists of twelve topologically
required, fivefold disclinations surrounded by a “cloud” of
topologically neutral dislocations, which ease the distortion
introduced by the disclinations, thereby reducing the elastic
energy [21,29]. Following Ref. [30], we express η in terms
of a discrete set of “seed” disclinations, coupled with a
continuous distribution of screening dislocations. This
yields

η ¼
XV
α¼1

�
π

3
qα −Φ

�
δðr − rαÞ þ

Φ
F=V

XF
β¼1

δðr − rβÞ; ð4Þ

where V and F represent, respectively, the number of
vertices and faces of the polyhedral droplets, qα ¼ 6 − zα is
the topological charge of a zα-fold disclination located at
position rα and Φ is the in-plane flux of the screening
dislocations originating in proximity of the vertices and
terminating at positions rβ in the bulk of the faces of the
polyhedral droplets, where K ≈ 0 (see Fig. S2 in [8]). This
construction guarantees that

R
dAη ¼ 4π such that, con-

sistently with the divergence and the Gauss-Bonnet theo-
rems, both sides of the stress equation vanish upon
integration over the entire surface. The optimal dislocation
flux Φ for a given surface is found by minimizing the
energy ES [30], although all our results still hold qualita-
tively under the assumption of little to no screening (i.e.,
Φ ¼ 0). Within this framework, we have numerically
calculated and compared the energies Esph, Eico, and Epla
of the spherical, icosahedral, and platelet conformations.
The outcome of our analysis is summarized in Table I and
in the phase diagram of Fig. 2.
First, we focus on the faceting transition (i.e., sphere to

icosahedron), for which buoyancy plays a marginal role
(see EG in Table I) and thus can be temporarily neglected.
In this case, the total energy is just a quadratic function of
the dimensionless size r, from which the corresponding
phase boundaries can be easily computed as shown by the
dashed lines in Fig. 2. The defect configuration that
minimizes the stretching energy ES consists of twelve
fivefold disclinations (i.e., qα ¼ 1) approximately located
at the vertices of an icosahedron and surrounded by
screening dislocations, so that η ≈ K in their vicinity.

TABLE I. Contributions to the dimensionless energy Eq. (3) for
the spherical, icosahedral, and hexagonal droplets. See Ref. [8]
for details.

Energy Sphere Icosahedron Platelet

EW 25.4 49.2 209.6
EH 50.3 55.9 112.0
EC 12.6 12.9 34.6
ES 0.0028 0.0013 0.0016
EG 4.19 4.00 0.555
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In the absence of restoring mechanisms favoring spherical
shapes, as bending and capillarity, icosahedral shapes
would be preferred over spherical ones, for any temperature
and droplet size. Since the icosahedron has a larger area and
bending energy compared to a sphere of the same volume
(both EW and EH diverge for a perfectly sharp icosahedron),
these restoring mechanisms render the icosahedral con-
formation energetically optimal only at low temperature,
where capillarity is sufficiently weak (i.e., the yellow
region of Fig. 2). Furthermore, as surface tension becomes
effectively smaller for decreasing droplet size due to the
spontaneous curvature [Eq. (2)], smaller droplets generally
undergo the faceting transition at higher temperature than
large droplets, consistently with the experimental observa-
tions [Fig. 1(b) and Ref. [3] ]. At a fixed Γ value, the critical
size at which the transition takes place is found by solving
the equation Eico ¼ Esph with respect to r > 0. These
solutions yield the range of parameters in which spherical
and icosahedral droplets coexist, namely,

0 < Γþϒ
ΔES

ΔEC
<

ΔE2
H

4ΔEWΔEC
; ð5Þ

where ΔEi (i ¼ S, C, H,W) labels the various contribution
of the Eico − Esph energy difference. The upper bound of
this inequality corresponds to the peak of the yellow region
in Fig. 2(d), above which capillarity dominates and droplets
are always spherical regardless of their size. The abscissa of
the peak of the sphere-icosahedron phase boundary,
r ¼ 2ΔEW=ΔEH, approximates the minimal droplet radius

rmin at which icosahedral droplets can be found. For
r < rmin, the Gaussian curvature of the sphere is suffi-
ciently large to accommodate the angular deficit introduced
by the fivefold disclinations and faceting does not occur,
except in the limit of vanishing bending rigidity. The lower
limit Γ ¼ −ϒΔES=ΔEC in Eq. (5), defines a lower critical
surface tension, indicated in Fig. 2, below which all
droplets of size r > rmin are nonspherical. Finally, buoy-
ancy only affects the large-r region of the phase diagram by
favoring icosahedra over spheres [color boundary in
Fig. 2(d)]. In general, the gravitational energy can be
lowered by reducing the distance between the droplet
center of mass and the top wall of the sample container.
In particular, for regular polyhedra with Dnh and Dnd point
group, EGR ¼ ð4π=3Þh=2 with h the height of the droplet,
hence this can be achieved by aligning one of the flat faces
orthogonally to the z direction. As h=2 < R in the faceted
droplets of conserved volume, buoyancy widens the icosa-
hedral phase at large r values.
Next we focus on the flattening transition (i.e., icosa-

hedron to platelet). Experimentally, this is observed at
ultralow (or even transiently negative) values of the surface
tension [15]. In this regime, the system lacks the main
restoring mechanism favoring spherical shapes and the
icosahedral configuration represents the absolute minimum
of the elastocapillary energy for large ϒ values. As the area
of a platelet is larger than that of an icosahedron with the
same volume, in the absence of spontaneous curvature and/
or gravitational effects, the droplet flattening can only occur
at negative Γ values. A positive spontaneous curvature, by
contrast, favors platelets over icosahedra at small r values
as a consequence of the larger mean curvature at the edges
and vertices. Furthermore, upon orienting orthogonally
with respect to the z direction, platelets can raise their
center of mass to reduce their gravitational energy to
arbitrarily small values, at the cost of increasing the
stretching energy by pairwise merging the twelve fivefold
disclinations into six fourfold disclinations (i.e., with
charge qα ¼ 2). This causes icosahedral droplets to morph
into hexagonal platelets, where the Gaussian curvature at
the vertices is sufficiently large to compensate for the
elastic distortion introduced by the higher topological
charge, resulting into a modest increase of the stretching
energy (see Table I). Because of spontaneous curvature at
smaller scales and buoyancy at larger ones, flattening is
possible at very low but still positive surface tension values
(see Fig. 2), consistently with experimental observations.
To assess the significance of our predictions, we have

fitted the difference Δγ ¼ γsph-ico − γico-pla between the
surface tension at the sphere-icosahedron and icosahe-
dron-platelet transitions as a function of the droplet radius,
upon fixing Δρ ¼ 0.25 g=cm3 [4,17] and κ ¼ 103 kBT [3]
[see red line in Fig. 1(f)]. From the fit we obtain
Y ≈ 4.4 mN=m and H−1

0 ≈ 58 nm, consistently with cur-
rent knowledge (see Ref. [8] for details).

(a) (b) (c)

(d)

FIG. 2. (a)–(c) Defect-induced stress field σ2 on the crystalline
interface with screening dislocations, computed from the charge
density η in Eq. (4). (d) Morphological phase diagram in the
ðr;ΓÞ plane obtained by comparing the energies of spherical,
icosahedral, and platelet-shaped droplets calculated via Eq. (3).
The bound values of Γ for faceting, Eq. (5), are indicated with
dotted lines. The dashed lines correspond to the phase boundaries
when buoyancy effects are ignored, while the solid ones are for
Π ¼ 10−8. To create this diagram we used ϒ ¼ 4.
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In conclusion, we look at the effect of the mechanical
properties of the frozen interfacial monolayer, embodied
in the number ϒ, for both transitions. Assuming Γ fixed,
we solve the equations Esph ¼ Eico and Eico ¼ Epla with
respect to the r and ϒ in the proximity of the sphere-
icosahedron and icosahedron-platelet phase boundaries.
The corresponding solutions are displayed in Fig. 3 for
Γ ¼ 0.33 and Γ ¼ 0.056. These are intermediate values
from the range in Eq. (5) when ϒ ¼ 4, where we observe
the coexistence of different shapes for differently sized
droplets, as in experiments. The critical droplet size
associated with the faceting transition increases with ϒ
until a limiting value is reached, where all droplets are
icosahedral at any r > rmin. For Π ¼ 0, this corresponds
to the dashed vertical line in Fig. 3(a). By contrast, the
critical radius associated with the flattening transition
[Fig. 3(b)], is a slowly decreasing function of ϒ, since
only at smaller sizes is the curvature gain sufficient to
compensate for the slight increase in stretching. As
ϒ → 0, however, the two critical radii are comparable
in magnitude, indicating that decreasing ϒ narrows the
gap between the faceting and flattening transition, and
also allows for the possible coexistence of spheres and
platelets at the same temperature by reducing the range
of the icosahedral phase. Finally, both critical radii
increase under the effect of gravity, as this facilitates
departure from isotropic shapes. In Fig. 3(a), the limiting
ϒ value where droplets of all sizes are icosahedral,
decreases for increasing Π values.
In summary, we theoretically addressed the mechanical

origin of the faceting and flattening transitions that,
starting from the pioneering work of Denkov [2] and
Guttman et al. [3] have been systematically reported in
emulsion droplets stabilized by a frozen layer of alkane
molecules and surfactants. Using a combination of con-
tinuum mechanics and three-dimensional computer
modeling, we demonstrated that both transitions originate
from the fourfold interplay between defect-driven
stretching, bending elasticity, capillarity, and gravity.

In particular, we highlighted the importance of the
spontaneous curvature of the interface monolayer, that,
by effectively hindering the magnitude of capillary
forces, allows one to reproduce the counterintuitive size
dependence observed in the experiments. While more
advanced theoretical models may be needed to describe
the behavior of multicomponent droplets [14], our present
work provides the basis for these more complex future
models.
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