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a b s t r a c t

Advanced LIGO and Advanced Virgo are monitoring the sky and collecting gravitational-wave strain
data with sufficient sensitivity to detect signals routinely. In this paper we describe the data recorded
by these instruments during their first and second observing runs. The main data products are
gravitational-wave strain time series sampled at 16384 Hz. The datasets that include this strain
measurement can be freely accessed through the Gravitational Wave Open Science Center at http:
//gw-openscience.org, together with data-quality information essential for the analysis of LIGO and
Virgo data, documentation, tutorials, and supporting software.

© 2021 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Motivation and significance

Gravitational waves (GWs) are transverse waves in the space-
ime metric that travel at the speed of light. They are generated
y accelerated masses and more precisely, to lowest order, by
ime changes of the mass quadrupole [1], such as in the orbital
otion of a binary system of compact stars. GWs were predicted

n 1916 by Albert Einstein after the final formulation of the field
quations of general relativity [2,3]. They were first observed
irectly in 2015 [4] by the Laser Interferometer Gravitational-
ave Observatory (LIGO) [5] during its first observing run (O1),
hich took place from September 12, 2015 to January 19, 2016.
After an upgrade of the detectors, the second observing run

O2) took place from November 30, 2016 to August 25, 2017.
dvanced Virgo [6] joined this observing run on August 1, 2017.
n April 1, 2019, Advanced LIGO and Advanced Virgo initiated
heir third observing run (O3), lasting almost one year [7]. The
nalysis of O1 and O2 data produced 11 confident detections (10
inary black hole mergers [4,8–12] and 1 binary neutron star
erger [13]) and 14 marginal triggers, collected and described

n the Gravitational Wave Transient Catalog (GWTC-1) [14].
Notable events in this catalog are the first observed event

W150914 [4], the first three-detector event GW170814 [12] and
he binary neutron star (BNS) coalescence GW170817 [13]. This
atter event is the first case where gravitational and electromag-
etic waves have been observed from a single source [15] offering
unique description of the physical processes at play during and
fter the merger of two neutron stars.
The main data product of the LIGO and Virgo detectors is
time series containing the measure of the strain, which will
e described more in detail in the section 2. The LIGO Scien-
ific Collaboration and the Virgo Collaboration (LVC) release their
alibrated strain data to researchers outside the LVC and to a
roader public that includes amateur scientists, students, etc.
he roadmap for these data releases is described in the LIGO
ata Management Plan [16] and in the Memorandum of Under-
tanding between Virgo and LIGO [17] (Attachment A, Sec. 2.9).
wo types of data release are foreseen. When GW events are
iscovered and published individually or in a catalog, the LVC
eleases short segments of GW strain data around the time of the
W events, as in the case of GWTC-1 [18]. In addition, a release of
he strain recorded during the entire observation run occurs after
proprietary period of internal use, necessary also to validate and
alibrate the data.
The cleaned, calibrated GW strain data related to both the O1

nd O2 runs were released in January 2018 [19] and in February
019 [20], respectively. The release of the strain data for the first
lock of six months of O3 is currently scheduled for April 2021,
nd November 2021 for the second 6-month block.
This article focuses on the already-released data from the O1
nd O2 runs. Public access to these data along with extensive p
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documentation and usage instructions are provided through the
Gravitational Wave Open Science Center (GWOSC) [21] at http:
//gw-openscience.org. GWOSC also provides online tools for find-
ing and viewing data, usage guidelines and tutorials. We summa-
rize this information, and include a comprehensive bibliography
describing the detectors, the data collection and calibration, the
noise characterization and software packages for data analysis.

To date more than 200 scientific articles have been writ-
ten using the data from the GWOSC website. These analyses
confirm, complement and extend the results published by the
LVC, demonstrating the impact on the scientific community of
the GW data releases. The covered topics span from alternative
methods to search for gravitational wave events, some leading
to new detections, e.g. [22–34], to reassessed estimations of the
event parameters, e.g. [35–42], studies on matter effects for the
binary neutron star, e.g. [43–46], GW polarization, e.g. [47,48],
black-hole ringdown, e.g. [49,50], application of machine learn-
ing techniques to GW data analysis, e.g. [51,52], search for GW
lensing effects, e.g. [53,54] and many other applications to as-
trophysics and cosmology, e.g. [55–59]. The list of projects goes
beyond published scientific research and also includes student
projects, academic courses, and art installations.1

This paper is organized as follows. The section 2 provides
insights about how the data are collected and calibrated, about
data quality and simulated signal injections. The GWOSC file
format and content are described in the section 3, while the
section 5 gives suggestions on the tools that can be used to guide
the analysis of the GW data.

2. Methods

The Advanced LIGO [5] and Advanced Virgo [6] detectors are
enhanced Michelson interferometers (see a simplified description
of the experimental layout in Fig. 3 of [4] and Fig. 3 of [6]). Each
detector has two orthogonal arms of equal length Lx = Ly = L,
each with two mirrors acting as test masses and forming a Fabry–
Perot optical cavity. The arm length is L = 4 km for LIGO, and L =

3 km for Virgo. Advanced LIGO consists of two essentially iden-
tical detectors at Hanford, Washington and Livingston, Louisiana,
while the Advanced Virgo detector is located in Cascina near Pisa,
Italy.

When GWs reach Earth, they alter the detector arm lengths,
stretching or contracting each one according to the wave’s di-
rection, polarization and phase. This induces a time-dependent
differential arm length change ∆L = δLx − δLy = hL, proportional
to the GW strain amplitude h projected onto the detector (see
e.g., [1] chap. 9, p. 470). Photodiodes continuously sense the dif-
ferential length variations by measuring the interference between

1 See http://gw-openscience.org/projects/ for the list of scientific papers and
rojects.

https://doi.org/10.7935/K57P8W9D
https://doi.org/10.7935/CA75-FM95
https://www.gw-openscience.org/O1
https://www.gw-openscience.org/O2
mailto:gwosc@igwn.org
http://gw-openscience.org
http://gw-openscience.org
http://gw-openscience.org
http://gw-openscience.org/projects/
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he two laser beams that return to the beam splitter from the
etector arms.
While Advanced LIGO and Advanced Virgo follow a similar

eneral scheme, each facility has a specific, though closely re-
ated, design. We refer the reader to the following references for
etails about the technical developments on the instrumentation
nd instrument controls that play a major part in reaching the
ensitivities obtained during the O1 and O2 observing runs. For
dvanced LIGO those include the light source (a pre-stabilized
aser) [60,61], the main optics [62–69], the signal recycling mirror
used to optimize the GW signal extraction) [5,70,71], the optics
uspension and seismic isolation systems [72–85], the sensing
nd control strategies [86–88], the automation system [89], and
arious techniques for the mitigation of optical contamination,
tray light and thermal effects [90–93].
For Advanced Virgo [6,94] a similar list includes the high

eflective coatings of the core optics [95,96], the locking, control
nd thermal compensation systems [97–99], and the mitigation
f magnetic and seismic noises [100–103].
When the detectors are taking data in their nominal config-

ration, they are said to be in observing mode or science mode.
his condition does not occur all the time for various technical
easons. For example, the Fabry–Perot cavities included in the
etector arms have to be kept at resonance together with the
ower and signal recycling cavities [104]. There are periods when
he control loops fail to maintain the instrument on this working
oint causing a non-observing period. Other possible reasons
or non-observing include maintenance periods and environmen-
al effects like earthquakes, wind and the microseismic ground
otion arising from ocean storms [105,106].
The time percentage during which the detectors are in science

ode is called duty cycle or duty factor. During O1 the LIGO de-
ectors had individual duty factors of 64.6% for Hanford and 57.4%
or Livingston, while in O2 it was 65.3% and 61.8%, respectively.
irgo operated with a duty factor of 85.1% during O2 (see table 1
f [7]).
If we define the network duty factor by the time percentage

uring which all the detectors in the network are in science mode
imultaneously, we find 42.8% for the LIGO network during O1
nd 46.1% during O2 [14]. For the LIGO–Virgo network it was 35%.
It is customary to quantify the detector sensitivity by the

ange [107,108], i.e., the distance to which sources can be ob-
erved. In Figs. 1 and 2, the BNS range is calculated assuming
that the observed source is a coalescence of compact objects of
masses of 1.4 M⊙ each, the observation has a minimum threshold
in signal-to-noise ratio (SNR) of 8, and the range is averaged
over all possible sky locations and orientations of the source, fol-
lowing [107]. The figures contain also the equivalent cumulative
time–volume [108] obtained by multiplying the amount of time
spent observing by the observed astrophysical volume as defined
by the range. The sharp drops in the BNS range are typically due to
ransient noise in the interferometer limiting its sensitivity, while
he gaps are due to non-observing periods. In particular, during
2, there were two long breaks, one for end-of-year holidays
nd another to make improvements to the detectors. At the end
f both runs there was a sensitivity drop in one of the LIGO
etectors. For O1, a drop in sensitivity at LIGO Livingston was
aused by electronics noise at one of the end stations while, for
2, a drop in sensitivity at LIGO Hanford was due to electrostatic
harging of the test mass optics caused by an earthquake in
ontana.
The plots in Figs. 1 and 2 are indicative of the performance of

he individual detectors.2 However, observations are performed

2 These figures are produced with data calibrated using the procedure
escribed in the next section.
 n
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jointly by Advanced LIGO and Advanced Virgo as a network.
Roughly speaking, the sensitivity of the global network is deter-
mined by that of the second most sensitive detector operating
at any time. Despite the lower BNS range and cumulative time–
volume for Virgo, its contribution has been important for astro-
physical parameter estimation, especially in determining source
localization and orientation [109]. For instance, GW170814 and
GW170817 were localized by the three-detector network within a
few tens of square degrees while the other events were localized
by the two-detector network in sky areas ranging from a few
hundreds to several thousands of square degrees.

Note that the sensitive distance depends strongly on the
source mass, and can be much higher (up to gigaparsecs) for
higher-mass BBH systems (see e.g. Fig. 1 of Ref. [110]).

The next sections provide details on the calibration, the detec-
tor noise characterization, the data quality and signal injections.

2.1. Calibration

The differential arm length read-out of the interferometer is
recorded digitally through a data acquisition system [5,6,111].
The LIGO and Virgo data acquisition systems acquire data at
sampling rates fs = 16 384 Hz and 20 000 Hz, respectively. The
irgo data is digitally converted to the same sampling rate as
IGO prior to any analysis.
A calibration procedure [112–117] is applied to produce the

imensionless strain from the differential arm length read-out.
or both the Advanced LIGO and Advanced Virgo detectors, the
alibration procedure creates a digital time series, h(t), from the
detector control system channels. Details of the production and
characterization of h(t) can be found in [118,119]. The calibration
ncertainty estimation and residual systematic errors are dis-
ussed in [119–121]. The strain time series include both detector
oise and any astrophysical signal that might be present.
Multiple versions of the calibrated data are produced as more

recise measurements or instrument models become available.
first strain h(t) is initially produced online using calibration

arameters measured just before the observing period starts. This
ata stream is analyzed within a few seconds to generate alerts
hen an event is detected thus allowing follow-up observations
y other facilities [122]. Other offline versions of the calibration is
roduced later, offline, to include improvements to the calibration
odels or filters, to resolve dropouts in the initial online version
r after applying noise cleaning procedures. This data stream is
sed in the production of the final search results, e.g., the final
vent catalog.
For the O1 and O2 science runs, we released the final offline

ersion, that has the most precise uncertainties and after applying
vailable noise cleaning procedures. The calibration versions dif-
er for the single event data releases depending on whether they
ertain to the initial publication of the event (early version) [123–
29] or to the catalog GWTC-1 publication (final version) [18].
The detector strain h(t) is only calibrated between 10 Hz and

000 Hz for Advanced LIGO [118,120] and 10 Hz and 8000 Hz
or Advanced Virgo [119]. Any apparent signal outside this range
annot be trusted because it is not a faithful representation of the
W strain at those frequencies. This part of the spectrum where
he data are not calibrated corresponds to the regions where the
easurement noise increases rapidly, thus drastically reducing

he chance for observing GWs.

.2. Detector noise characterization and data quality

The strain measurement is impacted by multiple noise sources,
uch as quantum sensing noise, seismic noise, suspension thermal

oise, mirror coating thermal noise, and local gravity gradient
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Fig. 1. Upper plot: O1 sensitivity of the Livingston and Hanford detectors to GWs as measured by the BNS range (in megaparsecs) to binary neutron-star mergers
averaged over all sky positions and source orientations [107]. Lower plot: cumulative time–volume (assuming an Euclidean geometry appropriate for small redshifts)
of the Livingston and Hanford detectors during O1, obtained by multiplying the observed astrophysical volume by the amount of time spent observing.
noise produced by seismic waves (called Newtonian noise) [5].
The noise budget plot for Advanced LIGO during O1 can be found
in [70]. In Figs. 3 and 4 the noise budget for O2 is shown for
Advanced LIGO and Advanced Virgo, respectively.

The plots show the measured noise spectrum and the con-
tribution from various known noise sources.3 The noise spectra
indicate that the dominant noises rise steeply at high and low
frequencies. This opens an observational window between tens of
Hz and a few kHz. Data analysis pipelines that are used to search
for gravitational-wave signals usually concentrate on frequency
intervals smaller than the full calibrated bandwidth to avoid the
high noise level at the extremes of this band.

The strain data are high-pass filtered at 8 Hz to avoid a
number of digital signal processing problems related to spectral
dynamic range and floating point precision limitation that may
occur downstream when searching in the data.4

As shown in Figs. 3 and 4, the data contain spectral lines
that can complicate searches for signals in those frequency bands
[132]. These lines include calibration lines, power line harmonics,
‘‘violin’’ modes (resonant frequencies of mirror suspension fibers),
other known instrumental lines, unknown lines and also evenly
spaced combs of narrow lines, typically in exact multiples of some
fundamental frequency. Further details on spectral lines during

3 Other useful references for the detector sensitivity are [130] for O1 and [14]
or O2.
4 See https://www.gw-openscience.org/yellow_box/ and in particular the ex-
mple showing the 8 Hz roll-off at https://www.gw-openscience.org/static/
mages/ASDs_GW150914_1~Hz.png.
 o
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O1 and O2 can be found in [133,134] as well as on the GWOSC
web pages.5

The detector sites are equipped with a large number of sen-
sors that monitor both the instrumental and environmental state
(see [105,106,135] for details). The measurements performed by
these sensors are recorded in auxiliary channels that are crucial
for diagnosing instrument faults or for identifying environmen-
tal perturbations. Non-Gaussian transient noise artifacts, called
glitches, can mask or mimic true astrophysical signals [105]. Aux-
iliary channels provide a useful source of information for the
characterization of glitches, and their mitigation. Glitches are
caused by anomalous behavior in instrumental or environmen-
tal channels that couple into the GW channel. The observation
of coincident glitches between the GW and auxiliary channels
provides a mechanism for rejecting a detected (potential) event
in the former as not astrophysical in origin. The large volume
of auxiliary data (hundreds of thousands of auxiliary channels)
are inspected (see [105,106,135] for details) and distilled into
data quality vetoes that allow identification of times that are
unsuitable for analysis or are likely to produce false alarms.
Veto conditions are determined using systematic studies to re-
move glitches with high efficiency and limited loss of observation
time [105]. As an example, vetoes discard glitches from elec-
tronics faults, photodiode saturations, analog-to-digital converter
(ADC) and digital-to-analog converter (DAC) overflows, elevated
seismic noise and computer failures. The data quality vetoes are

5 http://gw-openscience.org/o1speclines and http://gw-openscience.org/
2speclines.

https://www.gw-openscience.org/yellow_box/
https://www.gw-openscience.org/static/images/ASDs_GW150914_1~Hz.png
https://www.gw-openscience.org/static/images/ASDs_GW150914_1~Hz.png
http://gw-openscience.org/o1speclines
http://gw-openscience.org/o2speclines
http://gw-openscience.org/o2speclines
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Fig. 2. Upper plot: O2 sensitivity of the Livingston, Hanford and Virgo detectors to GWs as measured by the BNS range (in megaparsecs) to binary neutron-star
mergers averaged over all sky positions and source orientations [107]. Lower plot: cumulative time–volume (assuming Euclidean geometry appropriate for small
redshifts) of the Livingston, Hanford and Virgo detectors during O2, obtained by multiplying the observed astrophysical volume by the amount of time spent observing.
Although Virgo has a lower BNS range and cumulative time–volume, its contribution is crucial for source localization and astrophysical parameter estimation.
o

used by the GW searches to reduce the noise background [105]
(see Sec. 3.2 for search-related usage information).

Different categories of data quality are defined according to
he severity level and degree of understanding of the noise arti-
act. Data flagged as invalid due to severe detector malfunction-
ng, calibration error, or data acquisition problems, as described
n [136] are typically not used for data analysis and are replaced
y NaNs in the GWOSC data releases. We elaborate further on the
arious data quality categories and their usage in the section 3.6
Auxiliary channels are also used to subtract post-facto some

ell identified instrumental noise from the GW strain data. A
rocedure based on a linear coupling model [137] computes
he transfer function that couples the witness channels to h(t)
nd subtracts the contributing noise from the strain amplitude.
his procedure was used during the second observing run in
dvanced LIGO data. It achieved an increase of up to 30% of the
etector sensitive volume to GWs for a broad range of compact
inary systems and was most significant for the LIGO-Hanford
etector [138]. In some cases data are available both before and
fter noise subtraction is applied (for example in the case of
W170817 [129]).

.3. Signal injections

In addition to data quality, some metadata provide informa-
ion about hardware injections [139] inserted into the detector

6 See also http://gw-openscience.org/o1_details and http://gw-openscience.
rg/o2_details.
13
data for testing and calibration. The detectors’ test masses (in-
terferometer mirrors) are physically displaced by an actuator in
order to simulate the effects of a GW.7 A simulated GW signal is
introduced into the detector control system yielding a response
which mimics that of a true GW. The analysis of a data segment
that includes an injection allows an end-to-end test of the ability
for the analysis procedure to detect and characterize the GW
strain signal.

Hardware injections are also used for detector characteriza-
tion to check that the auxiliary channels used for vetoes do not
respond to gravitational-wave-like signals. This is a safety check
since a channel that has no sensitivity to GWs is considered safe
for use when constructing a veto. It is clearly important to keep
a record of injections to avoid any confusion with real events. In
the section 3 we describe how this bookkeeping is done.8

3. Data records

GW open data are distributed under the Creative Commons
Attribution International Public License 4.09 through the GWOSC
web pages.10 The files can be directly downloaded one by one
from this web page. However, to download large amounts of

7 Calibration lines mentioned earlier are generated using the same process.
8 See the GWOSC web page http://gw-openscience.org/o1_inj and http://gw-
penscience.org/o2_inj.
9 https://creativecommons.org/licenses/by/4.0/legalcode

10 http://gw-openscience.org/data/

http://gw-openscience.org/o1_details
http://gw-openscience.org/o2_details
http://gw-openscience.org/o2_details
http://gw-openscience.org/o1_inj
http://gw-openscience.org/o2_inj
http://gw-openscience.org/o2_inj
https://creativecommons.org/licenses/by/4.0/legalcode
http://gw-openscience.org/data/
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Fig. 3. Sensitivities of the Advanced LIGO detectors during the second observation run (O2), expressed as the equivalent strain noise spectrum of each detector
(the blue ‘‘Measured’’ curves). Also shown are the known contributors to the detector noise, which sum to the measured spectrum across much, but not all of the
frequency band (i.e. the measured noise spectrum is not fully explained by all known sources of noise). The quantum noise includes both shot noise (dominant
at higher frequencies) and radiation pressure noise (dominant at lower frequencies). Thermal noise includes contributions from the suspensions, the substrate and
coatings of the test masses. Seismic noise is computed as the ground displacement attenuated through the seismic isolation system and the suspensions chain. The
seismic curves differ for H1 and L1 as actual seismic data were used for L1 while the H1 curve is a model that also includes Newtonian noise. Technical noise
includes angular and length sensing/control noise for degrees of freedom that are not related to the differential arm length measurement, and other sub-dominant
noises such as laser frequency, intensity and beam jitter noise, sensor and actuation noise, and Rayleigh scattering by the residual gas. The strong line features are
due to the violin modes of the suspension wires, other resonance modes of the suspensions, the AC power line and its harmonics, and the calibration lines. Examples
of similar plots for other data taking runs can be found in [70,131]. These noise spectra do not include any of the post-data collection noise subtraction mentioned
in the text. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 4. Sensitivity of the Advanced Virgo detector during the O2 observation run. The meaning of the noise source contributions is the same as in Fig. 3, except for
he seismic and thermal noises that are combined in this case and for the Newtonian noise which is not included. These noise spectra do not include any of the
ost-data collection noise subtraction mentioned in the text.
ata (such as an entire observing run) the use of the distributed
14
filesystem CernVM-FS [140,141] is preferred.11 Once installed,

11 For installation instructions, see http://gw-openscience.org/cvmfs/

http://gw-openscience.org/cvmfs/
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able 1
he channel names and frame types listed in this table are unique identifiers in
he LIGO and Virgo data archives that allow tracing the provenance of the strain
ata released on GWOSC. The attribute CLEAN in H1 and L1 for O2 indicates that
he noise subtraction procedure mentioned previously and described in [137]
as used. The attributes C02, DCS, DCH and Repro2A refer to the calibration
ersion.
Run Det. Channel name Frame type

O1 H1 H1:DCS-CALIB_STRAIN_C02 H1_HOFT_C02
O1 L1 L1:DCS-CALIB_STRAIN_C02 L1_HOFT_C02

O2 H1 H1:DCH-CLEAN_STRAIN_C02 H1_CLEANED_HOFT_C02
O2 L1 L1:DCH-CLEAN_STRAIN_C02 L1_CLEANED_HOFT_C02
O2 V1 V1:Hrec_hoft_V1O2Repro2A_16384 Hz V1O2Repro2A

this filesystem allows access to GWOSC data as files in a directory
tree mounted locally on the user’s computer.

The calibrated strain data of O1 [19] and O2 [20] described
n this paper are conveniently divided into files of 4096 s. Short
egments of 32 s and 4096 s duration for each GW event are
lso released.12 The description of the data records that follows

is valid both for single event release and for bulk data release.
The strain data are repackaged and resampled by GWOSC

o make it more accessible to users both within the LVC and
utside. Along with the native 16384 Hz sampling rate, the data
n GWOSC are also made available at 4096 Hz.13 The down-
ampling is performed using the standard decimation technique
mplemented in scipy.signal.decimate14 from the Python
ackage scipy [143]. From the Nyquist–Shannon sampling the-
rem [144–146], the largest accessible frequency is the Nyquist
requency equal to half of the sampling rate fs. This should be
ept in mind when choosing the sampling rate to download from
WOSC, and in general when analyzing these files; in particular,
ecause of the anti-aliasing filter’s roll-off, the data sampled at
kHz are valid only up to frequencies of about 1700 Hz.
The publicly released data are generated from data streams in

he LIGO and Virgo data archives uniquely identified by a channel
ame and a frame type (an internal label that specifies the con-
ent of the files). For completeness, we give the provenance of
he GWOSC data in Table 1 and list the channel names and frame
ypes used to generate the O1 and O2 dataset discussed in this
rticle. In this table and in the following, H1 and L1 indicate the
wo LIGO detectors (Hanford and Livingston respectively) while
1 refers to Virgo. Downsampling (for the 4 kHz dataset) and
eplacement with NaNs of bad quality or absent data are the only
odifications of the original data.

.1. Gwosc file formats

The GW open data are delivered in two different file for-
ats: hdf and gwf. The Hierarchical Data Format hdf [147] is a
ortable data format readable by many programming languages.
he Frame format gwf [148] is used internally by the GW com-
unity. In addition, the data associated with GW events are also

eleased as plain text files containing two columns with the GPS
ime and the corresponding strain values.

There are some differences in the structure of the file names
etween O1 and O2 due to the evolution of GWOSC itself. For
1 the name of the files has the structure: obs-ifo_LOSC_s_Vn-
PSstart-duration.extension, where obs is the observatory, i.e. the

12 http://gw-openscience.org/eventapi/
13 In the rest of the paper the sampling rates will be indicated in kHz and
ounded to the closest integer, i.e. 4 and 16 kHz means 4096 and 16384 Hz,
espectively
14 This method applies an anti-aliasing filter based on an order-8 Chebyshev
ype I infinite impulse response (IIR) filter [142] before decimation.
15
Table 2
Channel names of the GWOSC frame (gwf) files. In the name, ifo is a place
holder for the interferometer name, i.e. H1, L1 or V1, and s the sampling rate
in kHz. The R1 substring represents the revision number of the channel name
so it will become R2 in case there is a second (revised) release, and so on.

O1 (4 kHz sampling) O1 (16 kHz sampling) and O2

Strain ifo:LOSC-STRAIN ifo:GWOSC-sKHZ_R1_STRAIN

Data quality mask ifo:LOSC-DQMASK ifo:GWOSC-sKHZ_R1_DQMASK

Injections mask ifo:LOSC-INJMASK ifo:GWOSC-sKHZ_R1_INJMASK

site, so can have values L or H; ifo is the interferometer and can
have values H1 or L1; LOSC is the previous name of GWOSC,
(the L in LOSC stands for LIGO); s is the sampling rate in kHz
with possible values 4 or 16; n is the version number of the
file (until now we have only one version, so only V1); GPSstart
is the starting time in GPS of the data contained in the file;
duration is the duration in seconds of this segment of data,
which value is always 4096 in this case; the extension can be
gwf or hdf. The file names in O2 are instead of the type obs-
ifo_GWOSC_ObservationRun_sKHZ_Rn-GPSstart-duration.extension,
with the same meaning of the italic letters, but in this case obs
and ifo can have also the values V and V1, respectively, for Virgo
data and we added the run name in the file names, so in this case
ObservationRun is O2.

The folders (or groups) included in the hdf files are:

• meta: metadata of the file containing the following fields:

– Description, e.g. ‘‘Strain data time series from LIGO’’,
– DescriptionURL: URL of the GWOSC website,
– Detector, e.g. L1, and Observatory, e.g. L,15
– Duration, GPSstart, UTCstart: duration and starting time

(in GPS and UTC, respectively) of the segment of data
contained in the file.

In the O2 files it was decided to add also the StrainChannel
and FrameType of the original files internally used by the LVC
(i.e. the content of Table 1).

• strain: array of h(t), sampled at 4 or 16 kHz depending on
the file. For the times when the detector is not in science
mode or the data does not meet the minimum required data
quality conditions (see next section), the strain values are
set to NaNs. The strain h(t) is a function of time, so it is
accompanied by the attributes Xstart and Xspacing defining
the starting GPS time of the data contained in the array and
the corresponding distance in time between the points of
the array.

• quality: this folder contains two sub-folders, one for data
quality and the other for injections, each including a bitmask
to indicate at each second the status of the data quality or
the injections and the description of each bit of the mask,
i.e. the content of Tables 3 and 4 (see section 3.2 for details).

The gwf files have a similar content but with a different
tructure. They contain 3 channels, one for the strain data, one
or the data quality and one for the injections. The channel names
iffer slightly in O1 and O2 as described in Table 2. Note that the
riginal files produced internally, whose channel names are listed
n Table 1, contain only the strain channel, while the GWOSC
iles include also the data quality and injection information in the
ame file.

15 The observatory refer to the site and it is indicated by one letter, like L for
Livingston. The addition of a number after the letter to indicate the detector,
e.g. L1, could be useful if multiple detectors are installed in the same site, as it
was at the beginning of LIGO.

http://gw-openscience.org/eventapi/
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.2. Data quality and injections in gwosc files

Several types of searches are performed on the LIGO and
irgo data. Those searches are divided into four families named
fter the type of signals they target: Compact binary coalescences
CBC), GW bursts (BURST), continuous waves (CW) and stochastic
backgrounds (STOCH).

CBC analyses (see e.g., [8,14,110,149–153]) seek signals from
merging neutron stars and black holes by filtering the data with
waveform templates. BURST analyses (see e.g., [154–158]) search
for generic GW transients with minimal assumption on the source
or signal morphology by identifying excess power in the time–
frequency representation of the GW strain data. CW searches
(see e.g., [159–162]) look for long-duration, continuous, periodic
GW signals from asymmetries of rapidly spinning neutron stars.
STOCH searches (see e.g., [163,164]) target the stochastic GW
background signal which is formed by the superposition of a wide
variety of independent and unresolved sources from different
stages of the evolution of the Universe.

Due to the fundamental differences among these searches,
some types of noise are problematic only for one or two types of
search. For this reason, the data quality related to transient noises
depends on the search type. It is provided inside the GWOSC
files for the two GW transient searches CBC and BURST, that are
most sensitive to this type of noise. The data quality information
most relevant for CW and STOCH searches is in the frequency
domain and it is provided as lists of instrumental lines in separate
files [165–169].

Data quality and signal injection information for a given GPS
second is indicated by bitmasks with a 1-Hz sampling rate. The
bit meanings are given in Tables 3 and 4 for the data quality
and injections, respectively. To describe data quality, different
categories are defined. For each category, the corresponding bit
in the bitmask shown in Table 3 has value 1 (good data) if in
that second of time the requirements of the category are fulfilled,
otherwise 0 (bad data).

The meaning of each category is the following:

DATA Failing this level indicates that LIGO and Virgo data are
not available in GWOSC data because the instruments were
not operating in nominal conditions. For O1 and O2, this
is equivalent to failing Category 1 criteria, defined below.
For these seconds of bad or absent data, NaNs have been
inserted.

CAT1 (Category 1) Failing a data quality check at this category
indicates a critical issue with a key detector component
not operating in its nominal configuration. Since these
times indicate a major known problem they are identical
for each data analysis group. However, while CBC_CAT1
and BURST_CAT1 flag the same data, they exist separately
in the dataset. GWOSC data during times that fail CAT1
criteria are replaced by NaN values in the strain time series.
The time lost due to these critical quality issues (dead time)
is: 1.683% (H1) and 1.039% (L1) of the run during O1; and
0.001% (H1), 0.003% (L1) and 0.053% (V1) of the run during
O2 (all the percentages have been calculated with respect
to the periods of science mode).

CAT2 (Category 2) Failing a data quality check at this category in-
dicates times when there is a known, understood physical
coupling between a sensor/auxiliary channel that monitors
excess noise, and the strain channel [170]. The dead times
corresponding to this veto for the CBC analysis are: 0.890%
(H1) and 0.007% (L1) of the run during O1; 0.157% (H1)
and 0.090% (L1) of the run during O2. The dead times
corresponding to this veto for the BURST analysis are:
16
Table 3
Data quality bitmasks description. Data that are not present are replaced by NaN
values in the strain time series. CBC_CAT1 and BURST_CAT1 are equivalent (see
the definition of CAT1 in the text).
Bit Short name Description

0 DATA Data present
1 CBC_CAT1 Pass CAT1 test
2 CBC_CAT2 Pass CAT1 and CAT2 test for CBC searches
3 CBC_CAT3 Pass CAT1 and CAT2 and CAT3 test for CBC searches
4 BURST_CAT1 Pass CAT1 test
5 BURST_CAT2 Pass CAT1 and CAT2 test for BURST searches
6 BURST_CAT3 Pass CAT1 and CAT2 and CAT3 test for BURST searches

Table 4
Meaning of the injection bits.
Bit Short name Description

0 NO_CBC_HW_INJ No CBC injections
1 NO_BURST_HW_INJ No burst injections
2 NO_DETCHAR_HW_INJ No detector characterization injections
3 NO_CW_HW_INJ No continuous wave injections
4 NO_STOCH_HW_INJ No stochastic injections

0.624% (H1) and 0.021% (L1) of the run during O1; 0.212%
(H1) and 0.151% (L1) of the run during O2. CAT2 was not
used for Virgo in O2.

AT3 (Category 3) Failing a data quality check at this category
indicates times when there is statistical coupling between
a sensor/auxiliary channel and the strain channel which
is not fully understood. This category was not used in O1
and O2 LVC searches, but it is still in the file format for
historical reasons.

As an example, [170] gives the list of all sensors/auxiliary
channels used to define the CAT1 and CAT2 flags for BURST and
CBC around the event GW150914.

Data quality categories are cascading: a time which fails a
given category automatically fails all higher categories. Since
CAT3 is not used in this specific case and only data passing CAT1
are provided, there is only the possibility that the data pass or
not CAT2. However, the different analysis groups qualify the data
independently: failing BURST_CAT2 does not necessarily imply
failing CBC_CAT2.

The injection bitmask marks the injection-free times. Five
different types of injections are usually performed: injections
simulating signals searched for by CBC, BURST, CW and STOCH
LVC pipelines, and injections used for detector characterization,
labeled DETCHAR. For each injection type, the bit of the bitmask,
whose meaning is described in Table 4, has value 1 if the injection
is not present, otherwise 0.

Virgo did not perform hardware injections during O2, there-
fore all the bits of the injection bitmask have value 1.

4. Technical validation

The data repackaged for public use are validated by another
independent internal team. In particular, this review team checks
that:

• the strain vectors in the GWOSC hdf and gwf files are
identical to machine precision to the corresponding strain
vectors of the LVC main archives;

• the data quality and injection information given to the user
correspond to what is included in the original LVC data
quality database. The user can get this information in two
ways: the bitmask included in the GWOSC files and the
Timeline tool described in detail in the section 5. The output

of both methods is checked against the database;
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• the documentation web pages and the content of the present
article contain correct and comprehensive information.

The data files, the Timeline and the web pages are released to
he public once all those checks have been passed.

. Usage notes

GW detectors are complex instruments, and their data reflect
his complexity. For this reason, caution should be taken when
earching for GW signals in the detector strain data, taking into
ccount all the details about the usable frequency range, noise
rtifacts, data quality and injections discussed in this paper and
n the references. In particular, the application of all data quality
lags described in the previous section does not imply that the
emaining data are free of transient noise artifacts. The user can
ind guidance to analyze the GW data in the tutorials and tools
ollected in the GWOSC website and discussed in the next sub-
ections. The data analysis techniques used to detect GW signals
nd infer the source properties are described in [132] where good
ractices and advices to avoid common errors are also provided.
he GWOSC website also contains basic information about the
eographical position16 and the current status17 of the detectors.

.1. Timeline

The LIGO and Virgo detectors are not always in observing
ode and, even when they are, it is possible that data quality
oes not meet the requirements of a given analysis. For these
easons it is necessary to restrict analysis to valid segments of data
haracterized by data quality information that indicates the data
s acceptable for the desired analysis. Timeline18 is a tool to pro-
ide a visual representation of available valid data segments over
time interval, together with the related information about data
uality and presence of injected signals (see Fig. 5 for an example
ith the O2 dataset). If the requested interval is short enough,
his is shown at the time scale of seconds. For longer intervals,
imeline shows the average value of the selected data-quality bit
ver nonoverlapping 2n-second subintervals.
Besides the visual representation, this tool allows the user

o download the list of start and stop of the segments for a
pecific data quality category or injection type, and also the
orresponding data.

.2. Courses, software packages and tutorials for gw data analysis

On-line courses that provide an introduction to GW data anal-
sis ranging from the basics to more advanced topics with hands-
n exercises are available from the GWOSC website.19 Those
ourses have been recorded during the GW Open Data Work-
hops. They include lectures on various aspects of GW science and
re supported by many tutorials that can be used to understand
ow to read and analyze the data. The tutorials on the GOWSC
ebsite20 are in the form of Jupyter notebooks [171]. They

explain how to access the data, produce time–frequency spectro-
grams, carry out matched-filtering searches, infer astrophysical
parameters, and manipulate GW localization information. A few
tutorials start from first principles and use generic and broadly
used analysis software such as scipy [143], but most are based
on the specialized software packages and libraries that the LVC

16 http://gw-openscience.org/static/param/position.txt
17 http://gw-openscience.org/detector_status/
18 http://gw-openscience.org/timeline/
19 http://gw-openscience.org/workshops/
20 http://gw-openscience.org/tutorials/
17
developed to produce observational results and other scientific
products.

A list of those packages is available on the GWOSC website21
nd includes:

• the light-weight application readligo to access data;
• general purpose application software, such as the LSC Al-

gorithm Library Suite (LALSuite) [172] and the Python
package gwpy [173];

• search-oriented software such as pycbc [149,150], Gst-
LAL [174] and Coherent Waveburst (cWB) [154];

• post-processing software for e.g., parameter estimation such
as bilby [175], LALInference [176] and Bayeswave [177,
178].

All these packages are open source and freely distributed.

5.3. Summary and additional information

The LVC is committed to providing strain data from the LIGO
and Virgo detectors to the public, according to the schedule
outlined in the LIGO Data Management Plan [16], via the Gravi-
tational Wave Open Science Center (GWOSC) [179]. They are also
committed to providing a broad range of data analysis products to
facilitate reproducing the results presented in their observational
papers. Many of these data products are available through the
LIGO Document Control Center (DCC); for example, data products
associated with the GWTC-1 event catalog [14] can be found in
[18] and [180]. Many more data offerings are planned for the
future. This includes the catalog of observed events and the bulk
strain data from the LIGO/Virgo O3 run. More GWOSC Open Data
Workshops are also planned.

All users of these data are welcome to sign up with the
GWOSC User’s Group at https://www.gw-openscience.org/join/.
Anyone who uses these data in publications and other public data
products are requested to acknowledge GWOSC by following the
guidance in [181]. Publications that acknowledge GWOSC will be
listed in https://www.gw-openscience.org/projects/; email
gwosc@igwn.org to make sure your publication(s) are included.

The Collaborations, and the GWOSC team, welcome comments
and suggestions for improving these data releases and products,
and their presentation on the GWOSC website [179], via email to
gwosc@igwn.org. Questions about the use of these data prod-
ucts may also be sent to that email, and will be entered into our
help ticket system. More general questions about LIGO, Virgo, and
GW science should go to questions@ligo.org.
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