

Photothermal circular dichroism studies of single nanoparticles

Späth, P.R.

Citation

Späth, P. R. (2022, March 3). *Photothermal circular dichroism studies of single nanoparticles. Casimir PhD Series*. Retrieved from https://hdl.handle.net/1887/3278012

Version:	Publisher's Version
License:	<u>Licence agreement concerning inclusion of doctoral</u> <u>thesis in the Institutional Repository of the University</u> <u>of Leiden</u>
Downloaded from:	https://hdl.handle.net/1887/3278012

Note: To cite this publication please use the final published version (if applicable).

Photothermal Circular Dichroism Studies of Single Nanoparticles

Proefschrift

ter verkrijging van de graad van doctor aan de Universiteit Leiden, op gezag van rector magnificus prof. dr. ir. H. Bijl, volgens besluit van het college voor promoties te verdedigen op donderdag 3 maart 2022 klokke 10:00 uur

door

Patrick Späth

geboren te Aalen, Germany in 1990

Promotores: Prof. dr. M. A. G. J. Orrit Prof. dr. M. W. Beijersbergen

Promotiecommissie:

Prof. dr. S. Bals Prof. dr. L. Kuipers Prof. dr. J. Aarts Prof. dr. J. M. van Ruitenbeek Dr. W. Löffler (Universiteit Antwerpen) (Technical University Delft)

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Printed by: Gildeprint

Front & Back: Designed by Ms Pia Stoll

Copyright © 2022 by P. Späth

Casimir PhD Series, Delft-Leiden 2022-04

ISBN 978-90-8593-515-5

An electronic version of this dissertation is available at http://openaccess.leidenuniv.nl/.

Some schematics of optical setups use components adapted from *ComponentLibrary* by Alexander Franzen, which is licensed under a CC BY-NC 3.0 Licence.

The present work is financially supported by the Netherlands Organization for Scientific Research and the Open Technology Program (TTW-OTP, Project No. 16008).

Für Nancy

"The strongest arguments prove nothing so long as the conclusions are not verified by experience. Experimental science is the queen of sciences and the goal of all speculation." — ROGER BACON

Contents

1	Intr	oductio	n	1
	1.1	Optica	l properties of gold nanoparticles	2
	1.2	Chirali	ity	2
		1.2.1	Optical manifestation of chirality	3
		1.2.2	Linear dichroism and circular dichroism	4
		1.2.3	Magnetic circular dichroism	4
	1.3	Photot	hermal effect	5
	1.4	Outline	e of this thesis	6
	1.5	Contri	bution	7
	Refe	rences .		7
2	Circ	ular di	chroism measurement of single metal nanoparticles using pho-	
	toth	ermal iı	maging	11
	2.1	Introdu	uction	12
	2.2	Metho	d	13
	2.3	Results	s and discussion	16
	2.4	Conclu	lsion	21
	2.5	Supple	ementary information	22
		2.5.1	Details of the experimental setup	22
		2.5.2	Sample design and preparation	22
		2.5.3	Numerical simulations	24
		2.5.4	Measurement of linear dichroism on gammadions	25
		2.5.5	Characterization of nanospheres shape and size	26
		2.5.6	Does linear dichroism influence photothermal circular dichroism?	27
		2.5.7	More measurements of circular dichroism of gold nanospheres	29
		2.5.8	Line profiles of PT and PT CD signal of gold nanospheres	30
		2.5.9	Temperature increase due to absorption of the heating and probe	
			beams	31
	Refe	erences .		31
3	Pho	totherm	al circular dichroism of single nanoparticles rejecting linear dichro	-
	ism	by dual	modulation	35
	3.1	Introdu	uction	36
	3.2	Results	s and discussion	39
		3.2.1	Simulations	39
		3.2.2	Experimental results	40

	3.3	Conclusion	46
	3.4	Methods and experimental	46
		3.4.1 Experimental setup	46
		3.4.2 Data analysis	47
	3.5	Supplementary information.	47
		3.5.1 Stokes representation of polarization	47
		3.5.2 Experimental alignment procedure	47
		3.5.3 Simulations	53
		3.5.4 CD of gold nanoparticle dimers	58
		3.5.5 CD of a single gold nanoparticle in carvone with LD reference	58
		3.5.6 Heat-induced reshaping	59
		3.5.7 Nanofabrication of single aluminium nanorods	60
	Refe	ences	60
4	Cor	elated optical and TEM measurements of quasi achiral and "superchi-	
	ral''	gold nanoparticles	65
	4.1	Introduction	66
	4.2	Results and discussion	67
		4.2.1 Chiral nanorods	67
		4.2.2 Nominally achiral nanoparticles	70
	4.3	Conclusion	73
	4.4	Experimental	73
		4.4.1 Sample preparation	73
		4.4.2 g-factor analysis of optical measurements	74
		4.4.3 Transmission electron microscopy and tomography	74
		4.4.4 Quantification of asphericity	74
		4.4.5 Hausdorff chirality quantification	74
		4.4.6 Boundary element method simulations	75
		4.4.7 Quantification of helicity	75
	4.5	Supplementary information	77
		4.5.1 Ensemble CD spectra of the S-enantiomer of chiral nanorods	77
	-	4.5.2 Effect of defocusing on the CD g-factor	77
	Refe	ences	78
5	Mag	netic circular dichroism of superparamagnetic nanoparticles	81
	5.1	Introduction	82
	5.2	Results and discussion	84
	5.3	Conclusion and outlook	87
	5.4	Supplementary information	88
		5.4.1 Correlated SEM images of nominally 200 nm particles	88
		5.4.2 PT of 20 nm magnetite particles	88
		5.4.3 Calibration of magnetic field vs distance	90
		5.4.4 Magnetic-field-dependent PT-CD curves	92
	Refe	ences	93

6	Conclusion and outlook	97
Sai	menvatting	101
Cu	rriculum Vitæ	103
Lis	t of Publications	105
Acl	knowledgements	107