Photothermal circular dichroism studies of single nanoparticles
Späth, P.R.

Citation

Version: Publisher's Version
License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden
Downloaded from: https://hdl.handle.net/1887/3278012

Note: To cite this publication please use the final published version (if applicable).
Photothermal Circular Dichroism Studies of Single Nanoparticles

Proefschrift

ter verkrijging van
de graad van doctor aan de Universiteit Leiden,
op gezag van rector magnificus prof. dr. ir. H. Bijl,
volgens besluit van het college voor promoties
te verdedigen op donderdag 3 maart 2022
klokke 10:00 uur

door

Patrick Späth

geboren te Aalen, Germany
in 1990
Promotores:
Prof. dr. M. A. G. J. Orrit
Prof. dr. M. W. Beijersbergen

Promotiecommissie:
Prof. dr. S. Bals (Universiteit Antwerpen)
Prof. dr. L. Kuipers (Technical University Delft)
Prof. dr. J. Aarts
Prof. dr. J. M. van Ruitenbeek
Dr. W. Löffler

Printed by: Gildeprint
Front & Back: Designed by Ms Pia Stoll
Copyright © 2022 by P. Späth
Casimir PhD Series, Delft-Leiden 2022-04

An electronic version of this dissertation is available at http://openaccess.leidenuniv.nl/.

Some schematics of optical setups use components adapted from ComponentLibrary by Alexander Franzen, which is licensed under a CC BY-NC 3.0 Licence.

The present work is financially supported by the Netherlands Organization for Scientific Research and the Open Technology Program (TTW-OTP, Project No. 16008).
Für Nancy

"The strongest arguments prove nothing so long as the conclusions are not verified by experience. Experimental science is the queen of sciences and the goal of all speculation."
— ROGER BACON
Contents

1 Introduction
1.1 Optical properties of gold nanoparticles
1.2 Chirality
1.2.1 Optical manifestation of chirality
1.2.2 Linear dichroism and circular dichroism
1.2.3 Magnetic circular dichroism
1.3 Photothermal effect
1.4 Outline of this thesis
1.5 Contribution
References

2 Circular dichroism measurement of single metal nanoparticles using photothermal imaging
2.1 Introduction
2.2 Method
2.3 Results and discussion
2.4 Conclusion
2.5 Supplementary information
2.5.1 Details of the experimental setup
2.5.2 Sample design and preparation
2.5.3 Numerical simulations
2.5.4 Measurement of linear dichroism on gammadions
2.5.5 Characterization of nanospheres shape and size
2.5.6 Does linear dichroism influence photothermal circular dichroism?
2.5.7 More measurements of circular dichroism of gold nanospheres
2.5.8 Line profiles of PT and PT CD signal of gold nanospheres
2.5.9 Temperature increase due to absorption of the heating and probe beams
References

3 Photothermal circular dichroism of single nanoparticles rejecting linear dichroism by dual modulation
3.1 Introduction
3.2 Results and discussion
3.2.1 Simulations
3.2.2 Experimental results
References
3.3 Conclusion ... 46
3.4 Methods and experimental .. 46
 3.4.1 Experimental setup .. 46
 3.4.2 Data analysis .. 47
3.5 Supplementary information .. 47
 3.5.1 Stokes representation of polarization 47
 3.5.2 Experimental alignment procedure 47
 3.5.3 Simulations .. 53
 3.5.4 CD of gold nanoparticle dimers 58
 3.5.5 CD of a single gold nanoparticle in carvone with LD reference 58
 3.5.6 Heat-induced reshaping 59
 3.5.7 Nanofabrication of single aluminium nanorods 60

References ... 60

4 Correlated optical and TEM measurements of quasi achiral and "superchiral" gold nanoparticles 65
 4.1 Introduction .. 66
 4.2 Results and discussion .. 67
 4.2.1 Chiral nanorods .. 67
 4.2.2 Nominally achiral nanoparticles 70
 4.3 Conclusion ... 73
 4.4 Experimental ... 73
 4.4.1 Sample preparation 73
 4.4.2 g-factor analysis of optical measurements 74
 4.4.3 Transmission electron microscopy and tomography 74
 4.4.4 Quantification of asphericity 74
 4.4.5 Hausdorff chirality quantification 74
 4.4.6 Boundary element method simulations 75
 4.4.7 Quantification of helicity 75
 4.5 Supplementary information 77
 4.5.1 Ensemble CD spectra of the S-enantiomer of chiral nanorods 77
 4.5.2 Effect of defocusing on the CD g-factor 77

References ... 78

5 Magnetic circular dichroism of superparamagnetic nanoparticles 81
 5.1 Introduction .. 82
 5.2 Results and discussion .. 84
 5.3 Conclusion and outlook ... 87
 5.4 Supplementary information 88
 5.4.1 Correlated SEM images of nominally 200 nm particles ... 88
 5.4.2 PT of 20 nm magnetite particles 88
 5.4.3 Calibration of magnetic field vs distance 90
 5.4.4 Magnetic-field-dependent PT-CD curves 92

References ... 93
<table>
<thead>
<tr>
<th>Chapter/Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 Conclusion and outlook</td>
<td>97</td>
</tr>
<tr>
<td>Samenvatting</td>
<td>101</td>
</tr>
<tr>
<td>Curriculum Vitæ</td>
<td>103</td>
</tr>
<tr>
<td>List of Publications</td>
<td>105</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>107</td>
</tr>
</tbody>
</table>