The relation between dynamics and activity of phospholipase A/acyltransferase homologs
Chatterjee, S.D.

Citation

Version: Publisher's Version
License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden
Downloaded from: https://hdl.handle.net/1887/3277998

Note: To cite this publication please use the final published version (if applicable).
The relation between dynamics and activity of phospholipase A/acyltransferase homologs.

Soumya Deep Chatterjee

1. The study of protein dynamics is essential to understand the structure-function relationship of PLAATs. This thesis, Chapter 2

2. Highly disordered loops influence the active sites in PLAAT3 and -4. This thesis, Chapter 3 & Nat. Chem. Biol. 2015, 11, 26–32

3. Salt-bridges determine activity in PLAATs. This thesis, Chapter 4

4. Composite pulse decoupling is better than single high power 1H decoupling in 15N relaxation dispersion experiments. This thesis, Chapter 5

5. NMR spectroscopy alone is never sufficient to obtain full understanding of protein dynamics.

6. MD rms fluctuations of principal components is a better way to gain dynamics insights than generic all-atom rms fluctuations.

7. Lifetime analysis provides more reliable information about the role of salt-bridges in protein structure than a crystal or solution structure does.

8. Full understanding of PLAAT function is not possible without studying the full-length proteins.

9. Thinking by analogy and by first principles complement each other in designing a hypothesis.