1. The study of protein dynamics is essential to understand the structure-function relationship of PLAATs.  
   This thesis, Chapter 2

2. Highly disordered loops influence the active sites in PLAAT3 and -4.  
   This thesis, Chapter 3 & Nat. Chem. Biol. 2015, 11, 26–32

3. Salt-bridges determine activity in PLAATs.  
   This thesis, Chapter 4

4. Composite pulse decoupling is better than single high power $^1$H decoupling in $^{15}$N relaxation dispersion experiments.  
   This thesis, Chapter 5

5. NMR spectroscopy alone is never sufficient to obtain full understanding of protein dynamics.

6. MD rms fluctuations of principal components is a better way to gain dynamics insights than generic all-atom rms fluctuations.

7. Lifetime analysis provides more reliable information about the role of salt-bridges in protein structure than a crystal or solution structure does.

8. Full understanding of PLAAT function is not possible without studying the full-length proteins.

9. Thinking by analogy and by first principles complement each other in designing a hypothesis.