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Introduction 

 

The PLAAT family 

Phospholipase A/acyltransferases (PLAATs) are a five-membered family of enzymes. They 

were first identified as H-Ras-like class II tumor suppressors (HRASLS).1 Numerous research 

studies in different scientific domains led to them being named in a variety of ways. These 

names are summarized in Table1.1. The five members are a part of a larger, diverse superfamily 

NlpC/P60 thiol proteases or papain-like proteases because of their sequence similarities with 

lecithin: retinol acyltransferases (LRAT), a member of the NlpC/P60 family.2  PLAATs share 

a highly conserved sequence NCEHFV, which contains cysteine that acts as the nucleophile 

and is part of the catalytic triad.2–5 This triad consists next to the cysteine of two histidines, one 

acting as the base that deprotonates the sulfhydryl group of the nucleophile and the other 

stabilizes the imidazole ring of the basic histidine in PLAAT2-5. In PLAAT1, the latter 

histidine is replaced by asparagine. This cysteine-histidine-histidine catalytic triad is a hallmark 

signature of NlpC/P60 superfamily of proteins.6 Four of the PLAAT enzymes are membrane 

anchored proteins having a C-terminal trans-membrane domain, while PLAAT5, the largest of 

all PLAATs, lacks this anchor.7 

Table 1.1. Alternative names for PLAAT proteins found in literature 

 

 

 

 

 

 

 

 

Only the three-dimensional structures of three PLAATs (PLAAT2, PLAAT3 and PLAAT4) 

are known. The PLAATs share similar secondary structure motifs and have an active site 

similar to those found in NlpC/P60 superfamily.2,8,9 The crystal structures of PLAAT2 (PDB 

PLAAT1 PLAAT2 PLAAT3 PLAAT4 PLAAT5 

A-C1 PLA/AT-2 HREV107 TIG3 HRASLS-5 

HRASLS-1 PLA1/2-2 HREV107-1 RIG1 RLP-1 

PLA/AT-1 HRASLS-2 H-REV107 PLA/AT-4 HRSL5 

HRSL1  PLA/AT-3 HRASLS-4 HRLP5 

  PLA2G16 RARRES3 iNAT 

  MCG118754 PLA1/2-3 PLA/AT-5 

  RLP-3   

  adPLA   

  HRASLS-3   
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entry 4DPZ) and PLAAT3 (4DOT) were first determined by Golczak et al.2 and the NMR 

structures of PLAAT3 (2KYT) and PLAAT4 (2MY9) were later solved by Xia et al. (Figure 

1.1).8,9 The secondary structure comprises three α-helices (crystal structures and NMR 

structure of PLAAT3) or four α-helices (NMR structure of PLAAT4) and antiparallel β-sheet 

containing four strands (crystal structures) or six strands (NMR structures), similar to classic 

segregated α+β-folds of papain-like proteases.2,6  

Functions of PLAATs 

The PLAATs catalyze the first step of reactions leading to the formation of N-

acylphosphatidylethanolamines (NAPE), which undergoes further steps to form N-

acylethanolamines (NAEs), an important class of bioactive lipids that play roles in a variety of 

processes, such as anti-inflammation (N-palmitoyethanolamine),10–12 catabolism of fat (N-

oleoylethanolamine),13 anti-apoptotic activity (N-stearoylethanolamine),13 and ligands for 

endocannabinoid receptors (anandamide), see Figure 1.2.14–16  

PLAATs, as the name suggests, demonstrate phospholipase A1/2 (PLA1/2) activities, in which 

both phosphatidylcholine (PC) and phosphatidylethanolamine (PE) act as substrates.3,7,17–20 All 

PLAATs except PLAAT3 show specificity for the PLA1 position, whereas for PLAAT3 

contradicting evidence from various studies suggest that the protein may prefer either the A1 

or the A2 position, depending on the type of substrate and assay conditions.21–23 The second 

part of the name comes from their ability to transfer the acyl-chain of a phosphoglyceride (for 

example PC) to the amino group of a phosphatidylethanolamine (PE), leading to the formation 

of NAPEs, as mentioned above. Furthermore, apart from being an N-acyltransferase, PLAATs 

can also act as O-acyltransferases, transferring an acyl-chain to the sn-1 or sn-2 position of a 

lysophospholipid, for example lysophosphatidylcholine.2,3,17,19,24 See Figure 1.3 for all the 

reactions catalyzed by PLAATs. 
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Figure 1.1 Crystal2 and NMR8,9, structures of PLAAT proteins published till date.  
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In human beings, mice and rats, the gene for PLAAT1 is expressed mostly in skeletal muscle, 

heart and testes, where its physiological role has not been investigated so far.17 PLAAT1 shows 

an N-acyltransferase activity that is higher than the PLA1/2 activity.3,17,24,25 PLAAT2 is only 

found in human beings and especially in the trachea, stomach, colon and kidneys.7 It has been 

known to suppress tumors (class II) in breast cells and cervical cancer cells.7 This protein also 

exhibits strong N-acyltransferase activity and less PLA1/2 activity and, interestingly, prefers the 

sn-1 position of PC for the former activity.19,24 PLAAT3 was also discovered as a tumor 

suppressor 20,26–32, however contradicting reports showed that PLAAT3 rather increases tumor 

progression.29,33 In contrast to PLAAT1 and PLAAT2, PLAAT3 shows a preference for PLA 

activity over N-acyltransferase activity.17,24 However, PLAAT1 and PLAAT3 both share 

common function in organelle degradation in lens.34 PLAAT3 also plays an important role in 

viral entry pathways by acting as host factor for enterovirus35–37. PLAAT3 is found mostly in 

white adipose tissue and less in brown adipose tissue21,38. In white adipose tissue, it modulates 

lipolysis and therefore is a critical factor in obesity, as was elegantly demonstrated in mice 

models by Jaworski et al.38 PLAAT3 inhibitors39,40, therefore would be potential therapeutic 

 

Figure 1.2 A) Structures of several important NAEs. B) Schematic diagram of the 

reaction catalyzed by PLAATs using phosphatidylcholine (PC) and 

phosphatidylethanolamine (PE) leading to the formation of N-

acylphosphatidylethanolamine (NAPE). NAPE-hydrolyzing phospholipase D (NAPE-

PLD) catalyses the conversion of NAPE to important bioactive lipids, N-

acylethanolamines (NAEs), which are then further metabolized into fatty acids and 

ethanolamine by fatty acid amide hydrolase (FAAH) or NAE hydrolyzing acid amidase 

(NAAA). 



Chapter 1 

10 
 

anti-obesity and anti-viral targets. Like PLAAT3, PLAAT4 was also discovered and shown to 

work as tumor suppressor.41–46 PLAAT4, like PLAAT2 is a human-specific ortholog. It is 

found in skin cells, where it interacts with and activates transglutaminase I (TG1), which in 

turn produces cornified envelope, necessary for keratinocyte proliferation and survival, and 

skin to function as a physical and water barrier.47–50 As PLAAT4 is a class II tumor suppressor, 

it was shown to be down-regulated in psoriasis and skin cancer in a study by Duvic et al.51  

PLAAT4 is a homolog of PLAAT341,42 and it also shows more PLA1/2 activity than N-

acyltransferase activity.17,19,24 However, the two enzymes exhibit a contrasting characteristic 

regarding the PLA1/2 activity. The transmembrane C-terminal domain is crucial for PLAAT3 

membrane-attachment as well as PLA1/2 activity and truncation of this domain has been shown 

by Uyama et al. to result in loss of phospholipase activity.52 In contrast, Golczak et al.2 

demonstrated with truncated N-terminal domains of PLAATs that, unlike truncated PLAAT3, 

truncated PLAAT4 is capable of phospholipase activity, suggesting that the transmembrane C-

terminal domain is not critical for PLAAT4 PLA1/2 activity. Furthermore, these authors 

demonstrated by studying the rate of breakdown of short-chain phospholipids and studying the 

protein-acyl intermediates that the truncated PLAAT4 is more active as phospholipase than 

PLAAT3. Although PLAAT3 and PLAAT4 are homologs, they clearly differ in activity and 

specificity toward substrates. Physiologically, the phospholipase activity of PLAAT3 plays an 

important role in adipose tissue as it regulates triglyceride metabolism.21 Phospholipase activity 

of PLAAT4, on the other hand, plays a crucial role in tumor suppression, particularly in 

metastasis and invasion.46 Moreover Wei et al. demonstrated that the NTD of PLAAT4 was 

found to be enhancing the cell death effect of the CTD, whereas the NTD of PLAAT3 was 

found to be inhibitory.8 Therefore, the differences in activity between the two enzymes can be 

studied by studying the roles played by the N-terminal and C-terminal domains on a molecular 

level. The findings could hold the key to the understanding of the molecular mechanisms and 

physiological significance of these enzymes that are yet to be studied in detail. Studying the 

roles of N-terminal and C-terminal domains of the two enzymes at a molecular level can help 

to obtain an understanding of the molecular mechanisms and physiological significance of 

these enzymes which may advance the design and discovery of selective PLAAT inhibitors. 

The aim of the research presented in this thesis, therefore, was to elucidate the reason for the 

difference in activities (especially phospholipase activity) between PLAAT3 and PLAAT4, 

present despite their similar sequences and structures. It was hypothesized that differences in 

the dynamic properties could be the cause of the differences in activity, so NMR spectroscopy 
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and MD simulations were used to characterize the enzymes. Both methods are briefly 

introduced below.  

 

 

NMR Spectroscopy 

Studying protein dynamics with NMR spectroscopy has created a new perspective on what 

proteins are and how they function. This applies to enzymes in particular. Proteins are no longer 

seen as static entities but as dynamic ensembles occupying various positions in an free energy 

landscape.53–55 Protein dynamics occur at many timescales and different sets of NMR 

 

Figure 1.3 Various biochemical reactions catalyzed PLAATs. A, Phospholipase A1 

(PLA1) reaction cleaves a fatty acyl chain from the sn-1 position of PC, resulting in the 

formation of a free fatty acid and lyso PC. B, Phospholipase A2 (PLA2) cleaves at the 

sn-2 position of PC to form a free fatty acid and lyso PC. C, N-acyltransferase reaction 

transfers the sn-1 fatty acyl chain from PC to PE to form NAPE. D, O-acyltransferase 

reaction converts lyso PC to PC, where the acyl donor is the sn-1 acyl chain of PC. E, 

Hydrolysis of NAPE to N-acylethanolamine (NAE) by NAPE-phospholipase D. 
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experiments allow us to probe biologically relevant phenomena occurring at those timescales 

(Figure 1.4).56 Protein motions occurring at ps-ns timescale can be studied using longitudinal 

relaxation (R1), transverse relaxation (R2) and heteronuclear nuclear Overhauser 

effect/enhancement (NOE).57–61 Several dynamics parameter, such as the order parameter (S2), 

global rotational correlation time (τc), effective rotational correlation time (τe) and the exchange 

rate (Rex) can be quantified using the model free analysis developed by Lipari and Szabo.62,63 

The order parameter ranges from 0 (highly dynamic) to 1 (rigid), τc is an indicator of molecular 

tumbling time and is highly dependent on the size of the protein. τe is in the range of ps-ns (τe 

< τc) and is a measure of local motions, such as loop flexibility. Rex indicates exchange 

contribution to the linewidth (apparent transverse relaxation rate), due either to motions in the 

µs-ms timescale that cause chemical shift changes or to chemical exchange phenomena. 

Generally, data are acquired at two magnetic fields to improve the statistical fitting of the data 

to one of five “model-free” models, because relaxation rates are field dependent. These five 

models fit the measured relaxation rates with an increasing number of parameters to obtain S2, 

τe and Rex for individual nuclei in the protein, usually of backbone 15N atoms. The term model-

free refers to the fact that these parameters are defined without a predefined notion of the type 

of motion in mind, such as rotation in a cone.64,65 The ps-ns motions are often associated with 

flexibility of loops and termini, and in many cases such motions may not be related to biological 

function but rather are a property of protein matter. However, a growing number of studies 

have shown that protein dynamics at this timescale can also affect function.66–74  

 

 

Figure 1.4 A graphical representation of different protein motions occuring at different 

timescales and NMR experiments to study such motions.  In protein dynamics, motions 

occuring at timescales below µs are termed as “fast timescale motions” whereas those 

occuring at timescales of µs or above are termed as “slow timescale motions”. 
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Biologically relevant and important phenomena occur at µs-ms timescale such as catalysis,75–

78 protein folding,79–83 protein-protein or protein-ligand interactions.84–89 NMR experiments 

such as R1ρ and CPMG relaxation dispersion (RD) and chemical exchange saturation transfer 

(CEST) are crucial in providing information about dynamics occurring at this timescale.90–95 

The general principle of all these experiments is that different states have different NMR 

properties (chemical shifts, dipolar couplings or relaxation rates) and that the exchange 

between states affects the NMR signals, by causing changes in peak intensity or linewidth. 

Thus, these experiment can extract information about the population, exchange rates and 

structures of minor conformers that are in exchange with the major ground state 

conformation.96–102 Since the minor conformation is sparsely populated, the already low 

intensity peaks are usually further broadened out due to exchange, which makes them 

‘invisible’. Therefore, information about the minor conformers is obtained from the effects of 

exchange on the NMR resonance of the major conformer, or on the signal average in case of 

fast exchange between the two states. In the CPMG-RD experiment, the chemical exchange is 

quantified by obtaining the exchange contribution to the apparent transverse relaxation rate 

(R2) of the nucleus in the major conformer. This is achieved by using a train of 180o pulses at 

a frequency of νc = 1/4τcp (where νc is the CPMG frequency and 2τcp is time between the 180o 

pulses in the train) during a period T to reduce the exchange contribution to the linewidth. By 

performing a series of experiments with varying νc, the effective apparent line width (R2,eff) can 

be determined from the peak intensities in each of these experiment (ICPMG) relative to a 

reference spectrum for which T is set to zero (I0), equation 1.1.  

𝑹𝟐,𝒆𝒇𝒇 =
𝟏

𝑻
𝒍𝒏 (

𝑰𝑪𝑷𝑴𝑮

𝑰𝟎
)      (Equation 1.1) 

Nuclei that do not undergo chemical exchange, do not have the exchange contribution and 

hence, the R2,eff is same at all CPMG frequencies and equals the intrinsic R2. A plot of R2,eff vs. 

CPMG frequency shows a dispersion profile (Figure 1.5). A nucleus undergoing exchange will 

have a profile showing a decreasing R2,eff with increasing CPMG frequency until it reaches a 

plateau, being the intrinsic R2. The parameters describing the exchange process, such as the 

rate of exchange (kex), population of the minor conformer (pB) and the absolute chemical shift 

difference between the major and the minor conformer (|Δω|) can be obtained from the 

dispersion curves by minimizing the following equation: 

Χ2(ζ) = (R’2,eff(φ)– R2,eff)/ΔR2,eff       (Equation 1.2) 
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Where R’2,eff is the calculated rate of relaxation obtained by solving the Bloch-McConnel 

equations,103,104 R2,eff is the effective transverse relaxation rate, φ is a function of dynamics 

parameters such as kex, pB and Δω. The detailed analysis of the CPMG RD experiments to 

deduce the structure of the minor conformer as well as the experiments required for calculating 

the sign of the Δω are outside the scope of this thesis and can be found in many excellent review 

papers, such as.105–110 

 

NMR spectroscopy, though a powerful tool to study protein dynamics, is not bereft of 

limitations. 

It is inherently insensitive due to the small energy gaps involved in magnetic resonance 

transitions, so concentrated samples are required. Furthermore, depending on the rate of the 

chemical process, NMR will often yield an average observable, making it difficult to determine 

the properties of the individual components that cause the averaged observable.111 Exchange 

dynamics is rich in information but can also hinder observation of nuclei considerably, for 

example if the resonances broaden beyond detection or due to exchange with solvent hydrogens 

of which the signals are necessarily suppressed in protein NMR experiments. All these factors 

can make it impossible to interpret dynamic properties in terms of structural changes.  

                

Figure 1.5 A typical relaxation dispersion plot. The dashed lines represent an imaginary 

amide with no exchange and the dispersion curves for the backbone 15N nucleus of 

residue R18 in PLAAT4 undergoing chemical exchange, as seen by its decreasing R2,eff 

with increasing CPMG frequency. The data are obtained at two magnetic fields, red: 14 T 

(600 MHz), blue: 20 T (850 MHz). 
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Molecular Dynamics Simulation 

Molecular dynamics (MD) simulation is another powerful tool for studying protein dynamics 

and can serve to complement the information obtained from NMR spectroscopy. MD 

simulations allow us to quantify and visualize atomic motions occurring in a protein at fast 

timescale as well as, due to the growth in modern computational capabilities, slower timescale. 

An introduction to MD simulations is presented in Chapter 3.  For the possibilities of 

combining NMR spectroscopy on proteins and MD simulations, the reader is referred to two 

excellent reviews, by Case112 and Fisette et al.113  

 

Thesis Outline 

At the start of the research in October 2014, NMR assignments of PLAAT3114 and PLAAT4,115 

the crystal structures of PLAAT2 and PLAAT32 and the NMR structure of PLAAT39 were 

available. The structure of PLAAT4 was reported in January 2015.8 Here, the first protein 

dynamics data of 15N-labelled PLAAT3 and PLAAT4 obtained with NMR spectroscopy are 

presented in Chapter 2. To complement our understanding of the dynamics of the two proteins 

and to get more information on the residues that could not be studied with NMR spectroscopy 

due to solvent exchange and slow-timescale-exchange-related line broadening, MD 

simulations were performed on the two proteins, described in chapter 3. The combination of 

NMR data and MD results enabled us to formulate a hypothesis to explain the differences in 

phospholipase activity of two proteins. The hypothesis was then tested by performing 

mutations both in silico and in vitro. MD simulations as well as activity assays on the variants 

were performed, leading to the remarkable conclusion that loop exchange from PLAAT4 to 

PLAAT3 can introduce enzymatic activity in the latter protein, a gain-of-function mutation. 

These results are described in Chapter 4. In Chapter 5, a study on CPMG RD NMR experiments 

is described, in which an artifact observed during the slow pulsing regimes is analyzed and the 

efficacy of different decoupling sequences in its removal was tested. Chapter 6 contains a 

general discussion on PLAAT3 and PLAAT4 dynamics and activity and the scope for future 

research on the phospholipase A/acyltransferase family. 
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