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5
Tomosipo: Flexible

tomography in Python

“The difference between right and
wrong often lies in less than five
meters.”

“Het verschil tussen goed en fout
ligt vaak in niet meer dan vijf

meter.”

Johan Cruijff,
Vrij Nederland, 21 Dec 1974

Tomographic imaging enables the examination of the internal structure of
an object. The object is typically placed between a source and detector, and
its structure is reconstructed using projection images from a range of different
positions. Collectively, the position information of the source, object, and detector
determine the acquisition geometry.

Most common tomographic techniques rely on a selection of standard acquisition
geometries, such as circular cone beam or single-axis parallel beam [31]. In recent
years, several scientific and industrial applications have emerged whose needs are
not met by the standard selection of paths. Such scientific applications include
diffraction contrast tomography (DCT) [184] and X-ray scattering tensor tomogra-
phy (XSTT) [93]. These techniques measure X-ray effects other than absorption,
which necessarily give rise to more complex acquisition geometries. Complex geome-
tries also arise in industrial applications like automotive and aerospace testing [52,

This chapter is based on:
A. A. Hendriksen, D. Schut, W. J. Palenstijn, N. Viganó, D. M. Kim Jisoo Pelt, T.
van Leeuwen, and K. J. Batenburg. “Tomosipo: Fast, Flexible, and Convenient 3D
Tomography for Complex Scanning Geometries in Python”. Optics Express (2021).
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92 CHAPTER 5. TOMOSIPO: FLEXIBLE TOMOGRAPHY IN PYTHON

101], as objects may be too large to fit in conventional scanners. Instead, a robot
arm moves the source and detector along an irregular path around the object.

Efficient reconstruction algorithms exist for many common acquisition geome-
tries [31, 89]. Such filtered backprojection (FBP)-type algorithms are typically
fast to compute [138], but require the source and detector to follow a regular path.
Algorithms that permit flexible acquisition geometries, such as SIRT [60] and total
variation minimization (TV-MIN) [168], typically follow an iterative reconstruction
scheme. As iterative algorithms tend to be more computationally demanding than
FBP-type algorithms, they benefit more from an efficient implementation.

Software packages for computing reconstructions can be roughly subdivided
by their target audience. For application scientists in electron tomography [119]
and synchrotron tomography [64, 130, 186, 188], software exists that provides
pre-processing and reconstruction capabilities. For scientists developing new re-
construction algorithms, packages exist that integrate tomography in optimization
methods [150, 193] and neural networks [175], or implement tomographic primitives
on the graphics processing unit (GPU), such as the TIGRE and ASTRA Toolbox [1,
2, 20].

Existing tomography software is typically limited in its ability to represent,
create, visualize, and reconstruct using complex acquisition geometries. Software
for application scientists usually includes optimized reconstruction routines for a
selection of acquisition geometries, but generally does not provide the flexibility
to represent arbitrary acquisition geometries. Some software packages providing
tomographic primitives, like the ASTRA Toolbox, can represent arbitrarily complex
acquisition geometries, but do not provide effective tools to create them. In fact,
the positions and orientations of the object and detector are usually computed
using trigonometric formulas, requiring tedious and error-prone handwork [1]. In
addition, limited facilities are included to visualize geometries, making it difficult
to validate the computed geometry. Therefore, defining unconventional acquisition
geometries requires extraordinary attentiveness. The lack of validation capabilities
can also be problematic when processing data from advanced experiments, as it
can be difficult or impossible to determine whether certain reconstruction artifacts
are caused by an incorrect modeling of the acquisition geometry, or are due to
other common sources of artifacts (e.g., sample motion, beam stability, etc). This
may lead to sub-optimal reconstruction results and could prohibit further analysis
of the data.

In this chapter, we introduce the tomosipo Python package1, which is designed
to alleviate the problems in defining complex acquisition geometries for tomography.
Specifically, the package provides convenient primitives for the representation,
creation, visualization, and reconstruction of complex acquisition geometries, as
described below.

Representation and creation. Tomosipo allows the user to assemble in-
creasingly complex acquisition geometries by composing geometric transforms and
applying them to primitive acquisition geometries. Several standard geometric

1Tomósipo is pronounced with the stress on the second syllable.
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transformations can be defined, such as rotation, translation, scaling, and reflection.
Tomosipo’s representation of the acquisition geometries is flexible. Therefore, the
result of applying a geometric transform, e.g., rotation, to an acquisition geome-
try can be represented in tomosipo. In addition to flexible geometries, tomosipo
provides convenience methods to create standard acquisition geometries, such as
circular cone beam and single-axis parallel beam geometries.

Visualization. To aid in validation and communication, visualization of the
resulting geometry is crucial. With tomosipo, the defined geometry can be viewed
in a 3D environment or a Jupyter notebook [145], and saved to disk as a video or
scalable vector graphic (SVG).

Reconstruction. Tomosipo provides a concise and efficient application pro-
gramming interface (API) for computing reconstructions. Its design is similar to
Matlab’s Spot operators [21] and the computations are powered by the ASTRA
Toolbox. In addition, tomosipo integrates with several packages for GPU comput-
ing, such as PyTorch [139] and CuPy, enabling the user to implement reconstruction
algorithms without moving intermediate results to and from the GPU, yielding
immediate speed benefits. These speed benefits are observed both in iterative and
FBP-type reconstruction methods, as implemented in the separate ts_algorithms
package2.

This chapter provides an overview of the design of tomosipo and case studies of
possible applications. First, the tomography problem is introduced in Section 5.1.
In Section 5.2, key concepts of the package are described. In Section 5.3, these
concepts are demonstrated on two simple absorption contrast tomography examples
and two complex acquisition schemes exploiting X-ray diffraction and scattering. In
Section 5.4, reconstructions are shown of experimental data using several algorithms.
In Section 5.5, the use of tomosipo on the GPU is demonstrated and its speed
is compared to existing reconstruction algorithms in the ASTRA Toolbox. We
conclude with a discussion in Section 5.6.

5.1 Standard tomography problem
Common tomography setups expose a sample to a beam of high energy particles,
e.g., photons, electrons, or neutrons, which are collected on a detector. Contrast in
the measured projection images is generated by differences in attenuation, refraction
index or scattering of the object (e.g. phase and diffraction, respectively), or the
emission of secondary signals (e.g. X-ray fluorescence, Compton, Auger). Many
of these problems can be modeled as a collection of line integrals through space
where the ith measurement yi ∈ R is obtained as a line integral

yi =

∫
R
x(si + tηi) dt (5.1)

through a point si ∈ R3 with direction ηi ∈ R3. The canonical case is absorption
contrast tomography, which we describe here.
2https://github.com/ahendriksen/ts_algorithms

https://github.com/ahendriksen/ts_algorithms
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In absorption contrast tomography, the reconstruction problem can be posed as
a linear discrete inverse problem. Suppose measurements y ∈ RNθ×N

2
p are acquired

from Nθ positions using a square detector that is divided into N2
p pixels. Define

the cubic reconstruction volume x ∈ RN3
v on a voxel grid and let A denote the

projection matrix such that Aij describes the absorption by object voxel j of the
ray to measurement i. The goal is to determine the value of x that gave rise to the
measurement

Ax = y. (5.2)

The computation of the linear operator A depends strongly on the geometry of
the acquisition. This includes the direction of the rays, the position and orientation
of the reconstruction volume, and the position and orientation of the detector.

5.2 Framework concepts
Three concepts are essential to the tomosipo package. These are geometries,
geometric transformations, and the projection operator A. Geometries represent
the position of the source, sample, and detector at each time step. The sample’s
position and orientation is represented by a volume geometry, and the X-ray source
and flat panel detector are represented by a projection geometry, which can model
both point sources (cone beam geometry) and parallel box beams (parallel beam
geometry). All geometries have two representations: a simple representation that
defines a standard trajectory, and a flexible representation that permits arbitrary
movement and orientation. Volume and projection geometries are discussed in
Section 5.2.2.

Geometries can be manipulated using geometric transforms, as well as split
and joined using subsampling and concatenation. In this way, complicated acqui-
sition geometries can be assembled from simple geometries. This is described in
Sections 5.2.3 and 5.2.5.

Together, a volume and projection geometry define the projection operator
A. In tomosipo, the computation using A is GPU-accelerated using the ASTRA
Toolbox. Most tomosipo geometries have an ASTRA counterpart, except for the
flexible volume geometry whose movement and orientation is compensated for
by exploiting the flexibility of ASTRA’s projection geometries. The creation of
projection operators is discussed in the next section, and the integration with the
ASTRA Toolbox and Python array libraries in Section 5.2.4. The main concepts
of tomosipo and their relation to the ASTRA toolbox and the physical geometry
are summarized in Figure 5.1.

5.2.1 Tomographic projection
In this section, we describe the creation and use of the projection operator A.
Tomosipo provides a convenient representation of the projection operatorA, offering
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Figure 5.1: The relation between tomosipo, the ASTRA Toolbox, and the physical world.
Tomosipo can be roughly divided in actions and concepts. The concepts describe the acquisition
geometry and the X-ray projection and can be directly mapped onto ASTRA primitives, except
for the flexible (moving) volume, which has no ASTRA counterpart. The actions provide the
means to transform, recombine, and visualize tomosipo’s geometry primitives.

an API that is similar to the opTomo Spot operator in the ASTRA Toolbox [21].
Given a volume geometry vg and projection geometry pg, the linear operator A
from Equation (5.2) can be obtained as follows:

import tomosipo as ts
vg = ts.volume([...]) # Argument details are described
pg = ts.parallel([...]) # in next section
A = ts.operator(vg, pg)

The operator A is a stand-alone object. It has domain_shape and range_shape
properties that facilitate the creation of data of the right shape in its mathematical
domain and range, i.e., image space and sinogram space.

x = np.ones(A.domain_shape, dtype=np.float32)

It can be applied to data as follows:

y = A(x)
backprojection = A.T(y)

The computation is performed on the GPU, and is handled by the ASTRA Toolbox.
The operator A can be used to solve the inverse problem posed in Equation 5.2.

In the code below, this is demonstrated by computing a simple Landweber itera-
tion [105] with step size eta.

x_rec = np.zeros(A.domain_shape, np.float32)
for i in range(num_iterations):

x_rec = x_rec + eta * A.T(y − A(x_rec))

In the next section, we describe how to define the volume and projection
geometries that are required to create a projection operator.
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# Parallel vector geometry

# Single-axis parallel beam # Circular cone beam

Vector (arbitrarily oriented) geometries

# Cone vector geometry# Volume vector geometry

Standard geometries

# Volume geometry
ts.volume(
    shape=(2, 2, 2),
    size=(2, 2, 2),
    pos=(0, 0, 0),
)

ts.parallel(
    angles=[0, .., 0.8 * np.pi],
    shape=(2, 2),
    size=(2, 2),
)

cone_pg = ts.cone(
    angles=100,
    shape=2,
    src_orig_dist=1,
    src_det_dist=4,
)

ts.volume_vec(
    shape=(2, 2, 2),
    pos=[(0, 0, 0)],
    w=[(1, 0, 0)],
    v=[(0, 1, 0)],
    u=[(0, 0, 1)],
)

w

v

u

ts.parallel_vec(
    shape=(2, 2),
    ray_dir=[(0, 1, 0)],
    det_pos=[(0, 2, 0)],
    det_v=[(1, 0, 0)],
    det_u=[(0, 0, 1)],
)

ts.cone_vec(
    shape=(2, 2),
    src_pos=[(0, -2, 0)],
    det_pos=[(0, 2, 0)],
    det_v=[(1, 0, 0)],
    det_u=[(0, 0, 1)],
)

u

v

src_pos
ray_dir

det_pos
u

v

      angles

 size size

shape

src_det_dist

src_orig_dist

shape

Figure 5.2: Creation of typical tomographic geometries. From left to right: a volume geometry,
single-axis parallel beam geometry, and a circular cone beam geometry. Below, arbitrarily oriented
vector geometries are shown. The parameters are specified using keyword-only arguments [179].
The pos parameter, for instance, determines the position of a volume, other parameters have
accompanying labels in the diagrams.

5.2.2 Acquisition geometry primitives

Tomosipo provides three standard geometries: the fixed volume geometry, the single-
axis parallel beam geometry, and the circular cone beam geometry. In addition,
these geometries have a flexible counterpart that permits arbitrary orientation and
movement. The flexible geometries are known as vector geometries, following the
terminology of [1]. All geometry primitives are defined in the ASTRA Toolbox
as well, except for the volume vector geometry that can represent an arbitrarily
oriented moving reconstruction grid. The geometries are illustrated in Figure 5.2
with accompanying code.

In contrast to the standard projection geometries, whose movement is param-
eterized by the rotation angle, vector geometries move arbitrarily in time. We
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therefore refer to the state of the acquisition geometry at a specific time as a time
step. Furthermore, geometries have a num_steps property that describes in how
many time steps their movement is discretized.

Standard geometries

Volume geometry. A volume geometry describes the position and size of an
axis-aligned voxel grid on which the object is reconstructed. A volume geometry
can be created with size, pos, and shape parameters, which define its physical
size, center position, and the number of voxels in each direction. By default, the
volume is centered on the origin, and if the size is not specified, it is set to equal
the shape, causing the voxel size to equal 1. Other parametrizations, such as in
terms of the volume’s extents, are described in the documentation.

Single-axis parallel beam. In the parallel beam geometry, X-rays run along
parallel lines and are collected on a flat panel detector that rotates around a single
axis on the origin. It can be created with size, shape, and angles parameters,
which define the detector’s physical size, the number of pixels in each dimension,
and the rotation angles. If an integer argument is provided for angles, equispaced
rotation angles in the interval [0, π) are used. Otherwise, a provided array is
interpreted as containing the rotation angles in radians.

Circular cone beam. Like the parallel beam geometry, the flat panel detector
of a cone beam geometry rotates around an axis located on the origin and the
angles, shape, and size parameters behave similarly. In contrast to the parallel
beam geometry, the rays in a cone beam geometry are emitted from a point source,
and the source-to-origin distance and source-to-detector distances can be specified
using the src_orig_dist and src_det_dist parameters. Also, when angles is
provided as an integer, a rotation is performed along a full arc [0, 2π) as opposed
to [0, π).

Flexible vector geometries

Any geometry g can be converted to a vector geometry by calling g.to_vec().
Vector geometries can also be created directly as described below.

Volume vector geometry. In contrast to a volume geometry, which is static,
a volume vector geometry may move over time and the reconstruction grid may be
arbitrarily oriented. It can be created by providing the shape of the voxel grid and
3 vectors describing the local frame of reference of the grid at each point in time.
In practice, a vector volume geometry is easier to obtain by applying a geometric
transformation to a standard volume geometry.

The ASTRA Toolbox, tomosipo’s computational back end, does not support
non-axis-aligned volume geometries. Internally, tomosipo aligns the volume to the
origin and moves the projection geometry with it. The transformed geometries are
handed to ASTRA, causing the projection operation to be performed in the frame
of reference of the object.
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Arbitrarily oriented parallel beam. In a parallel vector geometry, the
detector can be arbitrarily oriented and positioned. In addition, the direction of
the incoming rays can be adjusted to a direction that is not necessarily orthogonal
to the detector plane. It can be created by specifying a fixed detector shape and
varying ray directions, detector positions, and detector orientations at each time
step. The orientation is determined by parameters det_u and det_v that specify
the vector from detector pixel (0, 0) to (0, 1) and (0, 0) to (1, 0), respectively. An
example is the dual-axis parallel beam geometry, which is common in electron
tomography [128].

Arbitrarily oriented cone beam. In a cone vector geometry, the detector
can be arbitrarily oriented and the source can be placed in an arbitrary location.
For instance, this geometry can represent a helical cone beam acquisition, as we
show in Section 5.3.1. It can be created like the parallel vector geometry: instead of
a ray direction, however, a source position must be provided for each time step. In
the next section, we describe in more detail how vector geometries can be obtained
as transformations of simple geometries.

5.2.3 Geometric transforms
Tomosipo defines geometric transforms that can rotate, translate, scale, and reflect
the previously introduced geometries. In addition, the package provides a perspec-
tive transform to switch between different frames of reference. The transforms are
stand-alone objects instead of functions that act on geometries directly. We first
discuss the internal representation of the transforms and then we introduce the
built-in functions to create transforms.

Representation. Internally, homogeneous coordinates [154] are used so that a
4× 4 matrix M describes a single time step of a transformation. An orientation vec-
tor v = (v1, v2, v3) is represented in homogeneous coordinates by v = (v1, v2, v3, 0),
whereas a position p = (p1, p2, p3) is represented by p = (p1, p2, p3, 1). This way,
application of a geometric transform — notably translation — to points and vectors
can be performed by matrix multiplication. That is, in homogeneous coordinates,
the transformed vector equals Mv and the transformed point equals Mp. In code,
a vector and point in Euclidean coordinates are transformed as follows

transformed_v = T.transform_vec(v)
transformed_p = T.transform_point(p)

Application of a transform to a geometry is expressed in code as

transformed_vg = T * vg

In the internal representation, the composition of two transforms is also com-
puted by matrix multiplication. The matrix representation of the composition
T = T1 ◦ T2 of two transforms T1, T2 represented by matrices M1,M2 is equal to
the matrix product of the matrices, i.e., M = M1M2. In code, this is expressed as

T = T1 * T2
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P

P-1

# Translate
T = ts.translate(
    axis=(0, 1, 0),
    alpha=[-1, 0.5, 2.0])

# Rotate
R = ts.rotate(
    pos=0,
    axis=(1, 0, 0),
    angles=[0, np.pi / 3]
)

# Scale
S = ts.scale(
    (1, 1, 1),
    alpha=[1, 1.5]
)

# Perspective of volume
vg = ts.volume(size=0.5)
pg = ts.cone([...])

P = ts.from_perspective(
# Perspective of detector# Reflect

mirror = ts.volume([...])
M = ts.reflect(
    pos=mirror.pos,
    axis=(0, 1, 0),
)

)

    vol=pg.to_vol(),
)

ts.svg(T * vg)
ts.svg(R * vg)

ts.svg(S * vg)

M * vgvg

Mirror

ts.svg(P * vg, P * pg)ts.svg(vg, pg)

Figure 5.3: Overview of geometric transforms in tomosipo. From left to right, translation, rotation,
scaling, and reflection. In the two panes in the bottom right, a typical cone beam acquisition is
shown from two perspectives: a static volume with the source and detector rotating around it
and a static source and detector with a volume rotating in between. A perspective transform P
allows switching between the two frames of reference. The vector illustrations are created using
the ts.svg() function.

Composition of transforms is demonstrated in Section 5.3.1, where a helical cone
beam geometry is created.

Rigid and scaling transforms. Tomosipo provides functions to create a
translation, rotation, scaling, or reflection transform. These are illustrated in
Figure 5.3. A transform may change over time, i.e., at each time step it can define
a different geometric transformation. The functions that create the transforms are
designed to facilitate defining transforms that vary over time.

A translation transform is parameterized by an axis and an array alpha. The
displacement vector at time step i is defined by alpha[i] * axis.

A rotation transform is created using the axis angle representation. The axis,
pos, and angles parameters describe the orientation and location of the rotation
axis, as well as the angle of rotation. Each of these parameters may be provided as
an array to define the rotation at multiple time steps. The angles are expressed in
radians and the direction of rotation is right-handed by default.

A scaling transform describes a scaling operation centered on a position. The
scaling is not necessarily isotropic: some directions can be scaled more than others.
An alpha parameter can be used to modulate the scaling at each time step.
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A reflection transform describes a reflection in a plane that is parameterized
by a position pos and a normal vector axis. Both can be specified as an array,
defining a reflection in a moving plane at several time steps.

Perspective. The ts.from_perspective function creates a perspective trans-
form. This function takes a volume and returns the transform that moves the
volume back to the origin and rotates it back into a single axis-aligned orientation.
All projection geometries have a to_vol() method that describes the frame of
reference of the detector at each time step. This makes it easy to create a transform
that converts to the detector’s frame of reference. In the case of a circular cone
beam trajectory, for example, the source and detector rotate around the volume,
from the volume’s perspective. From the perspective of the detector, on the other
hand, the volume rotates. This change in perspective is illustrated in the last two
panes of Figure 5.3. Both perspectives yield the same projection operator A.

5.2.4 Interoperability and GPU-acceleration
In this section, we discuss tomosipo’s interoperability with NumPy arrays [65]
and GPU-accelerated Python packages. In addition, we discuss the performance
benefits of using GPU-accelerated arrays and also some trade-offs in favor of CPU
arrays.

Projection operations are calculated using the ASTRA Toolbox. We have
extended the ASTRA Toolbox API to enable direct operation on NumPy arrays.
Before any ASTRA operation, the input arrays are automatically linked to the
ASTRA runtime, and unlinked afterwards. This represents a substantial ergonomic
improvement over the existing API. Apart from NumPy arrays, array types from
other Python packages can also be linked. Out of the box, tomosipo interoperates
with PyTorch and CuPy [136, 139]. More integrations can be added though an
API, which can be used in the future to add interoperability with a variety of array
libraries through the currently developing Python array API standard3.

Integration with GPU array libraries can enable substantial performance im-
provements. In the snippet below, a NumPy array and a PyTorch array are forward
projected. The NumPy array is located in RAM attached to the CPU, and the
PyTorch array is located on the GPU.

y_numpy = A(np.ones(A.domain_shape, dtype=[...]))
y_torch = A(torch.ones(A.domain_shape, device="cuda"))

On line 1, the data is first moved to the GPU, the forward projection is calculated,
and the data is moved back to the CPU. On line 2, no data movement takes place:
the forward projection is calculated on the GPU. In iterative algorithms, where
the forward and backprojection are repeatedly executed substeps of the algorithm,
the latency imposed by CPU-GPU communication can dominate the computation
time, as we demonstrate in Section 5.5. Note that PyTorch arrays can also be
created on the CPU. In that case, the computation of the forward projection goes
through exactly the same steps as a NumPy array would.
3https://data-apis.org/array-api/latest/purpose_and_scope.html

https://data-apis.org/array-api/latest/purpose_and_scope.html
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There are cases where it is beneficial to keep data on CPU. When data is too
big to fit in GPU memory, the ASTRA Toolbox automatically splits data residing
on CPU and performs the computation on the GPU in a streaming fashion. In this
case, the user does not have to split up the data manually. When multiple GPUs
are present on the system, they can be used automatically. In the code below, the
ASTRA Toolbox is instructed to use four GPUs on line 1. The computation of the
forward projection on line 2 is distributed over the four GPUs.

astra.set_gpu_index([0, 1, 2, 3])
y_numpy = A(np.ones(A.domain_shape, dtype=[...]))

5.2.5 Splitting and joining geometries
The ability to split and join geometries in tomosipo’s API allows users to customize
their design easily. Tomosipo allows subsampling a geometry to obtain a sub-
geometry. In addition, it allows joining the time steps of sequences of geometries
into a single geometry. First, we demonstrate subsampling of projection geometries.
Subsampling of volume geometries and geometric transforms works similarly and
is described in the documentation. A projection geometry can be subsampled to
obtain a geometry describing a subset of the detector surface. In the code below,
the detector surface is cropped, removing a border of 100 pixels from each side.
On the next line, the detector surface is subsampled, selecting every other row and
column of pixels. Subsampling induces a slight shift in the detector’s center, which
is taken into account and described in detail in the documentation.

pg_cropped = pg[:, 100:−100, 100:−100]
pg_subsampled = pg[:, ::2, ::2]

Subsampling the angular dimension is also possible. In this dimension, subsampling
supports both slicing as well as Boolean masks [65]. In the code below, the angular
direction is subsampled, obtaining a geometry that contains every other projection
angle. In the line below, angles are selected when a condition array equals True.

pg_even_angles = pg[::2]
pg_boolean = pg[condition == True]

In Section 5.3.3, Boolean masking is demonstrated in the case study of X-ray
diffraction tomography, where diffraction occurs in a subset of projection angles.

In addition to indexing, tomosipo also includes functionality to concatenate
geometries and transforms. The concatenation of multiple projection geometries
combines their time steps into a single geometry. In the code below, two projection
geometries are combined. In the next line, a rotation R is repeatedly composed
with different translations T1, T2, T3.

pg_combined = ts.concatenate([pg1, pg2])
TR_combined = ts.concatenate([T1 * R, T2 * R, T3 * R])
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anim.window()
anim = animate(*vg, pg) svg = ts.svg(vg, pg)anim = animate(vg, pg)

a b c

anim.save("video.mp4") svg.save("fig.svg")

Figure 5.4: Visualization options in tomosipo: (a) interactive 3D environment, (b) video, (c)
interactive animation in a Jupyter Notebook. A single-particle Cryo-EM setup [17] is shown in
panes (a) and (b), and a circular cone beam acquisition is shown in pane (c). Code snippets
demonstrate how visualizations are created.

The concatenation of transforms is demonstrated in the case study of X-ray
scattering tensor tomography in Section 5.3.4, where it is used to define a repeated
rotation at several tilt angles.

5.2.6 Visualization

Tomosipo provides extensive support for visualizing geometries. Animations can be
saved as a video or as a scalable vector graphic (SVG). In addition, geometries can
be investigated in a 3D-accelerated environment on the desktop, allowing the user
to zoom, pan, and rotate the view. Finally, an interactive SVG animation can be
shown in an online Jupyter notebook, allowing for quick inspection of intermediate
results. These options are illustrated in Figure 5.4. All other illustrations in this
chapter have been generated using tomosipo. They were saved in the SVG format
and extended using Inkscape.

5.3 Case studies

In this section, the concepts developed in the previous section are put into practice.
We describe two simple examples and two complex acquisition schemes that are in
use at synchrotron tomography beamlines. The first example demonstrates how
geometric transforms can be composed to create a helical cone beam geometry. The
second example models single-axis parallel beam tomography with a non-standard
center of rotation in the frame of reference of the laboratory. In the first case study,
we describe X-ray diffraction contrast tomography, which demonstrates the use
of reflection and subsampling using a Boolean mask. In the second case study,
we describe X-ray scattering tensor tomography, which demonstrates the use of
concatenation. The case studies demonstrate that X-ray diffraction and scattering
can be modeled using tomosipo’s projection operators.
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t = np.linspace(-1, 1, 100)   # Time t = -1.0, -.98, ..., 1
s = 2 * np.pi * t             # Angle
radius = 2                    # Radius of helix
h = 1.0                       # Vertical "speed"

R = ts.rotate(pos=0, axis=(1, 0, 0), angles=s)
T = ts.translate(axis=(1, 0, 0), alpha = h * s / (2 * np.pi))
H = T * R

vg = ts.volume()
pg = ts.cone(src_orig_dist=radius, src_det_dist=2 * radius)

ts.svg(vg, H * pg.to_vec())

Figure 5.5: A helical cone beam geometry can be obtained as a composition of translation and
rotation. The volume and cone beam geometries are defined to be non-moving. At each time step,
the helical transform H applies a rotation R and then a translation T to the cone beam geometry.

5.3.1 Basic example: Helical cone beam geometry
As a demonstration of the composition of two primitive transforms, we define the
helical cone beam geometry [88]. Here, the source and detector follow a helical path
around the object. Using the notation of [88], we describe the helical geometry as
a composition of translation and rotation in Figure 5.5. First, a static volume and
a static cone beam geometry are defined. Next, a rotation R and translation T are
defined, which rotate around and translate along the z-axis. The helical transform
H is defined such that it applies the rotation Ri and then a translation Ti at time
step i. When it is applied to the cone beam geometry, the resulting trajectory
of the source and detector is helical. We note that the helical trajectory could
have been obtained as a translation of a non-static cone beam geometry, effectively
hiding the rotation in the cone beam geometry.

5.3.2 Basic example: Parallel beam in the lab frame
Acquisition using the single-axis parallel beam geometry is common at synchrotron
beam lines. The detector is often positioned at a fixed location and the sample is
mounted on a movable rotation stage. Typically, it is assumed that the center of
rotation and the center of the detector coincide. In many cases in practice, however,
it is difficult to achieve this with the described setup. Therefore, the offset between
the center of rotation and the center of the detector has to be taken into account
in order to achieve an accurate reconstruction. This is possible in tomosipo by
positioning the detector, volume, and rotation axis independently from each other.

In Figure 5.6, the acquisition geometry is defined in the frame of reference of
the laboratory. First, a static detector is translated from the origin to its final
position by a transform T. Next, a static volume geometry is created at the initial
position of the sample. A rotation is defined with a specific position of the rotation
axis. Finally, the rotation is applied to the static volume, obtaining a rotating
volume whose center rotates around the rotation axis.

There is an advantage to this formulation. In existing tomography packages,
the position of the volume is commonly chosen to coincide with the rotation axis.
However, this causes the reconstructed images to be translated when a different
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# Static detector at custom position
T = ts.translate(det_pos)
static_pg = ts.parallel(angles=1, shape=det_shape)
pg = T * pg_static.to_vec()

# Rotate the volume
R = ts.rotate(pos=rot_axis_pos, axis=z_axis, angles=angles)

vg_static = ts.volume(pos=vol_pos, shape=vol_shape)

vg = R * vg_static.to_vec()

# Static volume at custom position

A = ts.operator(vg, pg)

Figure 5.6: A single-axis parallel beam acquisition with a custom center of rotation. An object,
whose changing position during rotation is indicated in blue, is rotated around a non-standard
axis of rotation (in red). The center of the detector is indicated in green.

center of rotation is provided. This can cause problems when the determination of
the correct center of rotation is based on the reconstructed images. In contrast, the
proposed formulation opens up the possibility of determining the correct center of
rotation by maximizing the auto-correlation in the reconstruction at several values
of the center of rotation.

5.3.3 Complex case study: Diffraction contrast tomography
X-ray diffraction contrast tomography (DCT) [184] is an imaging technique used
to investigate the internal structure of poly-crystalline materials. The crystal
lattice is divided into grains, homogeneous regions where the lattice has a similar
orientation. The orientation, size, shape, and arrangement of individual grains
strongly influence macroscopic properties of the material. Therefore, mapping the
orientation of grains is important to characterize a poly-crystalline material [124].
Here, we take as an example the three-dimensional DCT acquisition geometry as
described in [184] to demonstrate specific features of tomosipo.

The goal of DCT is to reconstruct a vector field representing the intra-granular
orientation of the crystal lattice. This is achieved by discretizing the orientation
space on a regular grid that can be represented by unit vectors ô1, . . . , ôNo . For
each orientation ôk, a scalar field, i.e., a volume, is reconstructed that represents the
diffraction “intensity” at that orientation. A variational reconstruction algorithm
ensures that neighboring voxels have similar orientations. A crystal lattice reflects
an incoming X-ray beam at specific incidence directions, characterized by the
so-called Bragg angles. When the diffraction geometry of the material under
investigation is known beforehand, the intra-granular orientation of the crystal
lattice can be recovered from those projection images at which Bragg diffraction is
expected to occur.

As shown in Figure 5.7, the acquisition uses a monochromatic parallel box
beam and the diffracted signal of the sample is measured on a flat-panel detector.
As the sample is rotated, the reflection of the incoming beam in a voxel with
local orientation ô forms a figure of eight on the detector. Bragg diffraction only
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Figure 5.7: (a) In X-ray diffraction contrast tomography, a crystal sample is illuminated by a
monochromatic X-ray box beam. The crystal sample is divided into grains, which have a minimal
spread in local orientation. As the sample is rotated, the incoming beam is diffracted when its
incident angle with the local lattice plane equals the Bragg angle. The intersection points of the
reflected beam with the detector form a figure of eight, on which Bragg diffraction occurs only
twice (marked in red) as the sample is rotated. (b) For a random sample of 20 orientations, the
occurrence of Bragg diffraction at a rotation angle is indicated in black. Here, diffraction occurs
in just 3.3% of the orientation-rotation combinations.

occurs in the instances where the beam and local lattice are in Bragg condition.
Occurrence of the Bragg condition is relatively rare, as shown in Figure 5.7 (b).
Both the reflection and its intermittent nature can be modeled in tomosipo.

Bragg diffraction (reflection). The diffraction, i.e., reflection, of an incident
X-ray beam can be represented in tomosipo. As shown in Figure 5.7, a parallel
bundle of rays remains parallel after it has been reflected. Therefore, the measure-
ment of a diffracted parallel beam can be modeled using a standard parallel-beam
geometry with altered ray direction.

The code below models the reflection of the incoming beam by a rotating crystal
lattice. The orientation of the lattice is represented by a plane normal vector. First,
the plane normal of the crystal lattice is rotated. Then, a reflection M is created
in the rotating plane normal. The position of the reflection is arbitrary, as it is
used to transform the direction of the beam and not its location. Finally, a static
parallel beam geometry is modified such that the ray direction corresponds to that
of the beam reflected in the rotating plane normal. The position and orientation of
the detector remain static.

# Rotation of the rotation stage
R = ts.rotate(pos=0, axis=(1, 0, 0), angles=rot_angles)

def diffracted_pg(pg_static, plane_normal, R):
rotated_plane_normal = R.transform_vec(plane_normal)
M = ts.reflect(pos=0, axis=rotated_plane_normal)
return ts.parallel_vec(

shape=pg_static.det_shape,
ray_dir=M.transform_vec(pg_static.ray_dir),
det_pos=pg_static.det_pos,
det_v=pg_static.det_v,
det_u=pg_static.det_u,

)
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Bragg condition (Boolean masking). The occurrence of Bragg diffraction
can be considered as a Boolean mask, an example of which is shown in Figure 5.7 (b).
It is computed in the code below. First, the plane normal is rotated. Then, the
Bragg condition is determined at each rotation angle.

bragg_mask = np.empty((num_orientations, num_angles), dtype=bool)

for i in range(num_orientations):
rotated_normal = R.transform_vec(plane_normals[i])
for j in range(num_angles):

bragg_mask[i, j] = in_bragg_condition(
rotated_normal[j], incoming_ray_dir, bragg_angle

)

The created Boolean mask is used to select a subset of each projection geometry.
For each orientation, the code below creates an operator that computes the forward
projection only at rotation angles where Bragg diffraction occurs.

vg = R * ts.volume(shape=100).to_vec()
diffracted_pgs = [

diffracted_pg(pg_static, normal, R) for normal in plane_normals
]
# Compute an operator per orientation
operators = [

ts.operator(vg[bragg_mask[i]], diffracted_pgs[i][bragg_mask[i]])
for i in range(num_orientations)

]

Multi-orientation tomography (sums of masked operators). The for-
ward projection computes the diffraction pattern of x ∈ RNo×N3

v , representing all
discretized plane orientations at N3

v locations, onto y ∈ RNθ×N
2
p , representing the

N2
p pixel intensities at Nθ rotation angles. The operation is a linear combination

of the masked operators defined above.

x = np.zeros((num_orientations, *vg.shape), dtype=np.float32)

def fp(x):
y = np.zeros((N_p, N_angles, N_p), dtype=np.float32)
for x_oriented, A, mask in zip(x, operators, bragg_mask):

y[:, mask] += A(x_oriented)
return y

y = fp(x)

In the interest of space, the backprojection operation is omitted. The full
code listing can be found in the Supplemental materials of [74]. Implementing
the variational reconstruction algorithm described in [184] is outside of the scope
of this manuscript. We have shown how the DCT geometry can be succinctly
expressed using tomosipo’s rotation and reflection transformations. In addition,
we have used subsampling with a Boolean mask to limit the forward projection to
the few instances where Bragg diffraction occurs.



5.3. CASE STUDIES 107

5.3.4 Complex case study: X-ray scattering tensor tomogra-
phy

X-ray scattering tensor tomography (XSTT) is an imaging technique used to
investigate materials with micro- and nano-scale structures over an orders of
magnitude larger volumetric field of view, compared to conventional tomographic
modalities [110, 117]. Here, we take the XSTT acquisition geometry that is
described in [93] as an example to demonstrate specific features of tomosipo.

The goal of XSTT is to reconstruct a vector field representing the directional
scattering intensity of a sample. This is achieved by reconstructing Nŝ ≥ 6 scalar
fields that represent the squared scattering coefficient along unit vector ŝ1, . . . , ŝNŝ

at each voxel. After reconstruction, the directional scattering intensities are fine-
tuned using per-voxel PCA (principal component analysis) [187]. XSTT has various
biological and industrial applications [93]. As an example, the recovered local
directional scattering intensities can be used to predict macroscopic properties
of fibrous materials. These properties depend on the local fiber arrangement.
Fibers scatter X-rays the least along their primary fiber orientation. Therefore, the
local fiber orientation can be recovered from the shortest principal axis (smallest
scattering magnitude) of the fitted scattering ellipsoid. The possibility to investigate
these local structures over large enough volumes is valuable for the research and
development of new materials.

We describe the acquisition process to obtain one of the scalar fields xŝ, repre-
senting the squared scattering coefficient along a unit vector ŝ. First, we discuss
the forward model at a single orientation of the sample, i.e., without any rotation
or tilting. Let xŝ ∈ RN3

v represent the sample’s squared scattering coefficient along
a vector ŝ. The sample is illuminated by a monochromatic parallel X-ray beam.
Before they are measured on a detector, the X-rays travel through a panel that is
etched with a periodic array of multi-circular gratings [93], generating a reference
pattern. The panel is placed at a fixed propagation distance from the detector to
maximize the visibility of the patterns. Different types of gratings require different
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Figure 5.8: In X-ray scattering tensor tomography, a sample is illuminated by a box beam. The
sample is repeatedly rotated at several tilt angles. The scattered signal passes through an array
of gratings before being measured on a detector. The detector pixels are grouped into 9 × 9 pixel
unit cells. In each unit cell, a directional intensity is measured along vectors ĝi. In each voxel,
scattering coefficients for multiple scattering sensitivity vectors ŝk are reconstructed.
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acquisition geometries. The acquisition discussed in this case study is specifically
geared to circular gratings.

With the use of circular gratings, the pixels of the detector are grouped into
9× 9 pixel unit cells. In each unit cell, a 2D directional intensity is measured along
multiple unit vectors ĝi. The measured intensity yi along the vector ĝi on the
detector for a single beam direction b̂ is computed by scaling the forward projection
with the scalar νb̂,̂s,ĝi [117], defined by(∣∣∣b̂× ŝ

∣∣∣ 〈̂s, ĝi〉)2 Ab̂ xŝ = νb̂,̂s,ĝiAb̂ xŝ = yi. (5.3)

The scaling is the same for each unit cell on the detector and varies as the sample
(and thus ŝ) is rotated.

Rotation and tilt (concatenation). When using circular gratings, the
sample must be measured with multiple tilted rotation axes [93, 109]. In the XSTT
acquisition described in [93], the sample stage is rotated, while the stage is tilted
in steps. At each step, the stage makes a full rotation, as illustrated in Figure 5.8.
Each step can be represented in tomosipo by composing a single tilt operation with
a full rotation. In the code below, the full motion is computed by concatenating
each step.

tilt = ts.rotate(pos=0, axis=(0, 0, 1), angles=tilt_angles)
rotate = ts.rotate(pos=0, axis=(1, 0, 0), angles=rotation_angles)
# For each tilt angle, perform a full rotation:
TR = ts.concatenate([tilt_single * rotate for tilt_single in tilt])

At each tilt and rotation angle, the scaling νb̂,̂s,ĝi from Equation 5.3 is calculated
as follows:

def calculate_nu(b, s, g, TR):
nu = np.zeros(TR.num_steps)
for j, s_rot in enumerate(TR.transform_vec(s)):

nu[j] = (norm(np.cross(b, s_rot)) * np.dot(s_rot, g)) ** 2
return nu

Because the calculation is performed in the lab frame, the vector ŝ is rotated rather
than the beam direction b̂ or sensitivity vector ĝ,

Scaled linear combinations. After ν ∈ RNŝ×Nĝ×NtiltNrot is calculated for all
values of ŝ1, . . . , ŝNŝ

, all ĝi, and all tilts and rotations, then the full projection can
be calculated. Here, the measurement along ĝi is the sum of the contributions
of the Nŝ scalar fields representing the scattering coefficients of the sample, as
calculated below. In the interest of space, the backprojection operation is omitted.
The full code listing can be found in the Supplemental materials of [74].

def fp(x, nu):
y = torch.zeros(num_g, *A.range_shape, device=x.device)
for k in range(num_s):

for i in range(num_g):
y[i] += nu[k, i][None, :, None] * A(x[k])

return y
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Data size. The reconstruction problem considered in [93] fits in memory
on modern GPUs. The measured data consists of 46 tilt angles, 50 rotation
angles, and 100× 144 unit cells. Measuring along 8 ĝi vectors, the total number
of measured unit cells equals 46× 50× 100× 144× 8 ≈ 256× 106, which requires
approximately 1 GB when stored in 32 bit precision. The reconstruction volume
consists of 44× 71× 71 voxels, repeated for each of Nŝ = 7 scattering directions.
In total, it requires roughly 6 MB to store in 32 bit precision. The size of the
scaling matrix ν is negligible in comparison. Modern data center GPUs range in
memory size from 16 GB to 80 GB. Therefore, it is possible to run an iterative
SIRT reconstruction of the full problem on GPU. Benchmarks comparing the
performance on GPU versus CPU are provided in Section 5.5.

5.4 Experimental data
In this section, we show reconstructions of experimental data acquired using
the standard circular cone beam and single-axis parallel beam trajectories, as
well as a reconstruction of an X-ray scattering tensor tomography dataset. The
reconstructions have been computed using the algorithms implemented in the
separate ts_algorithms package.

Circular cone beam. A laboratory micro-CT dataset of a bell pepper was
acquired at the FleX-ray laboratory[42] at the CWI, Amsterdam, The Netherlands.
A polychromatic microfocus X-ray point source with tube voltage and power of 90 kV
and 49.5 W was used. The data consisted of 3600 projection images of 1512× 1912
pixels, acquired over a 360° rotation. A reconstruction was computed on a grid of
1512× 1912× 1912 voxels using FDK, a backprojection-type algorithm [53]. An
axial slice of the reconstruction is shown in Figure 5.9 (a).

Single axis parallel beam. A 3D micro-tomography dataset of a fuel cell
from the publicly available TomoBank [44] was used. This dataset (#81) was
acquired at the TOMCAT beamline at the Swiss Light Source (SLS) at the Paul
Scherrer Institut (PSI), Villigen, Switzerland [28]. The first 3600 projection images
of 1100× 1440 pixels were used to compute a reconstruction on an axial slice of
1400× 1400 pixels. The reconstructions were computed using FBP (Ram-Lak
filter), SIRT (200 iterations), and TV-MIN (500 iterations with λ = 2× 10−7), as
shown in Figure 5.9 (b – d).

X-ray scattering tensor tomography. The same validation sample was used
as in a previous publication [93], which was also acquired at the TOMCAT beamline.
It consisted of a 4× 4× 4 mm3 plastic box containing three orthogonally oriented
bundles of carbon fiber with a 12 µm diameter. The pixel and resulting unit cell
size was 11× 11 µm2 and 99× 99 µm2, generating the dataset size described at the
end of Section 5.3.4. An illustration of the validation sample and its reconstruction
using tomosipo is shown in Figure 5.10. The reconstructions show the orientation
of the fibers after post-processing using PCA and a similar thresholding strategy
as in [93]. Thresholding causes noise in the background to be suppressed, as the
X-ray scattering induced by plastic container is known to be negligible.
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Figure 5.9: Reconstructions of experimental data acquired using laboratory micro-CT (a) and
synchrotron micro-tomography (b – d). The yellow insets in the top-right corner show a magnified
region of interest. The yellow inset in the top-left of pane (b) displays a full view, showing
field-of-view artifacts due to the truncated projection images.
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Figure 5.10: X-ray scattering tensor tomography reconstruction of a validation sample. The sample
contains three orthogonally oriented carbon fiber bundles. A reconstruction of the orientation
map is shown in two axial slices.

5.5 Benchmarks
In this section, we give a demonstration of the computational speed of tomosipo.
First, we compare an implementation of SIRT in tomosipo to the built-in imple-
mentation in the ASTRA Toolbox. Using the tomosipo implementation, we also
investigate the impact of storing intermediate data on the CPU rather than on the
GPU. This comparison is run on the examples from Section 5.3 with data sizes
that fit on a single GPU. We exclude DCT, as its reconstruction algorithm is out
of the scope of this manuscript. We also benchmark a non-iterative algorithm on
a circular cone beam dataset that does not fit on the GPU. Here, we compare
the speed of the built-in FDK implementation of the ASTRA Toolbox to the
FDK implementation in ts_algorithms, tomosipo’s accompanying reconstruction
algorithms package.

We describe the algorithms, data size, and benchmark methodology. The
SIRT reconstructions were computed in 50 iterations. The implementation in
tomosipo used PyTorch and the ASTRA implementation used the SIRT3D_CUDA
algorithm. The FDK benchmark compared the FDK implementation provided
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Figure 5.11: Comparison of reconstruction times using SIRT on a GPU-sized problem and using
FDK on a lab-CT-sized problem. The SIRT implementations are compared on a parallel, helical
and X-ray scattering tensor tomography (XSTT) acquisition geometry. The XSTT reconstruction
cannot be implemented using the built-in ASTRA SIRT API. Because the FDK dataset is
too large, intermediate data cannot be stored on the GPU, and the ASTRA implementation is
compared to a tomosipo implementation that performs the filtering step on the CPU.

by ts_algorithms to ASTRA’s built-in accumulate_FDK implementation. The
dataset of the parallel beam and helical cone beam cases consisted of 768× 768
pixel projection images acquired over 512 angles and was reconstructed on a 5123

voxel volume. The sizes of the XSTT and circular cone beam dataset are described
in Sections 5.3.4 and 5.4, respectively. The benchmarks were conducted on a
dual-socket system containing 8-core Intel Xeon Silver 4110 CPUs at 2.10 GHz
(Intel, Santa Clara, CA, USA) with 192 GB of RAM and four Nvidia GeForce GTX
1080 Ti GPUs (Nvidia, Santa Clara, CA, USA). Each benchmark was run once
without measurement to minimize startup and caching effects. The mean and
standard deviation of three trials are reported.

SIRT on GPU-sized problems. The results of the SIRT benchmark are
shown in Figure 5.11. The ASTRA Toolbox and the Tomosipo implementation
with intermediate data on the GPU are close in performance. They are are 2 – 9×
faster than the tomosipo implementation with intermediate data located on CPU
memory. This indicates that CPU-GPU communication latency is non-negligible
and that reconstruction algorithms benefit from being completely computed on the
GPU. We note that in all three implementations the forward and backprojection
are computed on the GPU using the ASTRA Toolbox. The native ASTRA SIRT
implementation does not have an option to store intermediate data on CPU memory.

FDK on a lab-CT-sized problem. The FDK dataset is too big to fit in
GPU memory. In tomosipo’s implementation, the filtering step is performed on the
CPU and the computation of the backprojection on chunks of projection data is
distributed over multiple GPUs. The FDK implementation in the ASTRA Toolbox,
on the other hand, first distributes chunks of projection data over available GPUs
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and performs the filtering and backprojection in a single step on each GPU.
Figure 5.11 shows the results of the FDK benchmark using one and four GPUs.

Using one GPU, tomosipo’s implementation of FDK is faster than ASTRA’s. This
can be attributed to fast filtering on the CPU, which is implemented using the Fast
Fourier Transform provided by PyTorch and is approximately as fast as filtering
on a single GPU. Using four GPUs, the run times of both implementations are
reduced, but the ASTRA implementation comes out ahead. When four GPUs are
available, the ASTRA implementation distributes the computation of the filter step
over four GPUs, whereas the tomosipo implementation still computes the filtering
step on the same amount of CPU cores.

The results show that a naive implementation of an iterative algorithm in
tomosipo is not necessarily slower than a native implementation in the ASTRA
Toolbox. In addition, the results illustrate the substantial negative impact that
CPU-GPU communication has on reconstruction speed. Finally, the FDK results
illustrate the benefits of interoperability with fast array libraries, but highlight the
need for effective APIs to address multi-device streaming computation.

5.6 Discussion and conclusion
In short, tomosipo provides the expressive power to quickly and naturally define
complex geometries, thereby unlocking the flexibility provided by the ASTRA
Toolbox. We have demonstrated the ease of making common adjustments to an
acquisition geometry, such as changing the center of rotation. In addition, the
design and implementation of more complex geometries, such as the demonstrated
X-ray diffraction and scattering setups, is made considerably easier by using
tomosipo, especially compared to entering the formulas for all directional vectors
manually. Reconstructions of real-world data from synchrotron and laboratory
micro-CT sources are shown, computed using several common reconstruction
algorithms. Finally, bechmarks demonstrate that the package enables the user to
write fully GPU-accelerated reconstruction algorithms in Python whose speed is
on par with native implementations. Because of tomosipo’s interoperability with
GPU-accelerated Python array libraries, intermediate results can remain on the
GPU, avoiding the latency imposed by CPU-GPU communication.

The tomosipo package follows best practices. It has a comprehensive unit
test suite, it is installable through the Anaconda package manager, it follows
semantic versioning, it is developed in the open on GitHub, and it has extensive
documentation.

Future developments are expected to go hand in hand with improvements
in the ASTRA Toolbox. This includes support for curved detectors and more
fine grained control of streams on the GPU, allowing for concurrency through
pipelining. In addition, we intend to extend the interoperability of tomosipo’s
projection operator to more optimization packages. We note that the integration
of tomosipo’s projection operator in deep learning-based reconstruction methods
using PyTorch is possible and is described in the documentation.
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Compared to existing tomographic software packages, two features set tomosipo
apart. First, the facilities to manipulate geometries significantly simplify defining
complex acquisition geometries such as those in the described case studies. Although
other packages including the ASTRA Toolbox and the Core Imaging Library
(CIL) [82] can represent these acquisition geometries, they do not provide tools to
define them. Specifically, the geometric transforms, subsampling, concatenation,
and visualization features are not provided by the ASTRA Toolbox. Second, the
extensible integration of tomosipo with GPU-accelerated Python array libraries
provides two advantages. It enables the user to write custom reconstruction
algorithms in Python that are comparable in computational efficiency to a native
implementation. In addition, it enables integrating tomographic operators in
deep learning-based reconstruction methods. This is technically possible using the
ASTRA Toolbox, but the APIs that it exposes are designed to be wrapped by a
user-friendly library, such as tomosipo.

We stress that tomosipo aims to be a building block in a larger system. Therefore,
other software packages may be preferable for many purposes. Facilities for loading
of various file formats, preprocessing of tomographic data, or post-processing
of reconstructed images are present in TomoPy, Savu, and CIL [64, 82, 188].
Packages such as PyLops, CIL, and JUDI [82, 150, 193] provide building blocks
and built-in optimization algorithms that enable rapid prototyping of variational
reconstruction methods, among others. The reconstruction algorithms show-cased
in this manuscript, on the other hand, are implemented in a separate package [70].
An advantage of the focused scope of tomosipo, is that it has only two required
dependencies (NumPy and the ASTRA Toolbox), making it easy to install on
various platforms, but contains several integrations with third-party packages,
making it easy integrate into an existing system.

In summary, tomosipo provides scientists with an excellent tool to model
and visualize complex tomographic acquisition geometries while maintaining and
extending the fast reconstruction capabilities of the ASTRA Toolbox.




