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3
Noise2Inverse:

Self-supervised denoising

“You only start to see it once you
understand.”

“Je gaat het pas zien als je het
doorhebt.”

Johan Cruijff,
Vrij Nederland, 8 Jan 1994

Reconstruction algorithms compute an image from indirect measurements. For
a subclass of these algorithms, the relation between the reconstructed image and
the measured data can be described by a linear operator. Such linear reconstruction
methods are used in a variety of applications, including X-ray and photo-acoustic
tomography, ultrasound imaging, deconvolution microscopy, and X-ray hologra-
phy [10, 102, 118, 121, 123, 148, 167, 197, 198]. These methods are well-suited for
fast, parallel computation [140], but are also generally sensitive to measurement
noise, leading to errors in the reconstructed image [31, 167]. Controlling this error,
i.e., denoising, is a central problem in inverse problems in imaging [16, 27, 34, 85,
123, 140, 174].

Supervised deep convolutional neural network (CNN)-based methods are able
to accurately denoise reconstructed images in several inverse problems [16, 85, 123,
140, 174]. These networks are trained in a supervised setting, which amounts to
finding the network parameters that best compute a mapping from noisy to clean

This chapter is based on:
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reconstructed images on a dataset of example image pairs. However, the success of
these supervised deep learning methods critically depends on the availability of
such a high-quality training dataset of similar images [16, 112].

For photographic image denoising, recent work has shown that deep learning
may be possible without obtaining high quality target images, by instead training
on paired noisy images [107]. Nonetheless, such Noise2Noise training still requires
additional noisy data. The feasibility of image denoising by self-supervised training,
that is, training with single instead of paired noisy images, was demonstrated
by [14, 100, 104]. These self-supervised training methods, such as Noise2Self,
depend on the assumption that noise in one pixel is statistically independent from
noise in another pixel.

In inverse problems, reconstructed images may exhibit coupling of the measured
noise [85]. In CT, for instance, backprojection smears out the noise in a detector
pixel across a line through the reconstructed image. Naturally, this causes the
noise in one pixel to be statistically dependent on noise in other pixels of the
reconstructed image.

In this chapter, we demonstrate that a straightforward application of Noise2Self
to reconstructed CT images delivers substantially inferior results compared to
results obtained on photographic images, for which it was developed. We analyze
the cause of this apparent mismatch, and propose Noise2Inverse, a new approach
that is specifically designed for linear reconstruction methods in imaging to overcome
these limitations.

In the proposed Noise2Inverse approach, the training regime explicitly takes
into account the structure of the noise in the inverse problem. In its simplest form,
our method splits the measured data in two parts, from which two reconstructions
are computed. We train a CNN to transform one reconstruction into the other,
and vice versa. The properties of the physical forward model cause the noise in
the reconstructed images to be statistically independent. This enables the CNN to
perform blind image denoising on the reconstructed images. That is, our method
does not assume a known noise model. We stress that our method can be applied
to existing datasets without acquiring additional data.

In recent years, a range of deep learning approaches have been developed for
denoising in imaging with limited training data. Several weight-regularized self-
supervised methods exist that require a known Gaussian noise model [32, 126,
170, 200]. While such a model is often available in direct imaging modalities,
the noise model for reconstructed images in an inverse problem setting is often
more complex and hard to characterize by such a Gaussian model. Unsupervised
approaches using the Deep Image Prior [37, 120, 177] have been proposed for image
restoration and inverse problems [46, 80]. A key obstacle for the application of such
techniques to large-scale 3D image reconstruction problems is their computational
cost, as they involve training a new network for every 2D slice of the reconstruction.
For inverse problems, approaches that rely on splitting the measurement data
have recently been proposed for magnetic resonance imaging (MRI) [112, 196]
and Cryo-transmission electron microscopy (Cryo-EM) [27] showing image quality
improvement with respect to denoising applied on the reconstructed image. While
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these results are highly promising, a solid theoretical underpinning that allows
analysis and insights into the interplay between the underlying noise model of the
inverse problem and the obtained solution is currently lacking.

In this chapter — motivated by these promising results — we present a frame-
work for generalizing the self-supervised denoising approach in the setting of linear
reconstruction methods. Our framework pinpoints exactly the underlying theoret-
ical properties that explain the differences in observed results of self-supervised
approaches. We perform a qualitative and quantitative comparison to conventional
iterative reconstruction and state-of-the-art image denoising techniques. We evalu-
ate these methods on several simulated low-dose CT datasets, and include results
on an existing experimentally acquired CT dataset, for which no low-noise data is
available. In addition, we present a systematic analysis of the hyper-parameters of
the proposed method.

This chapter is structured as follows. In Section 3.1, we introduce linear inverse
problems and deep learning for image denoising, including self-supervised methods.
In Section 3.2, we introduce the proposed Noise2Inverse method, and show its
theoretical properties, which we use to develop an implementation for computed
tomography. In Section 3.3, we perform experiments to compare the performance
of Noise2Inverse, conventional reconstruction techniques, and Noise2Self-based
methods on real and simulated CT datasets. In addition, we perform a hyper-
parameter study of the proposed method. We discuss these results in Section 3.4.

3.1 Notation and concepts
As prerequisites for describing our Noise2Inverse approach, we first discuss deep
learning methods for image denoising, including strategies for training neural
networks when clean images are unavailable. In addition, we review linear in-
verse problems, where we discuss that denoising reconstructed images introduces
additional difficulties.

3.1.1 Deep learning for image denoising
The goal of image denoising is to recover a 2D image y ∈ Y = Rm from a
measurement ỹ ∈ Y that is corrupted by random noise ε, taking values in Y . This
problem is described by the equation

ỹ = y + ε. (3.1)

It is common to assume that the entries of the noise vector ε are mutually indepen-
dent. Many image denoising methods rely on this assumption [43, 100, 199]. In
addition, these methods assume that the image exhibits some statistically mean-
ingful structure that can be exploited to remove the noise. The popular BM3D
algorithm [43], for example, exploits non-local self-similarity, i.e., the expectation
that certain structures of the image are repeated elsewhere in the image. Note that
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Figure 3.1: Three training regimes for CNN-based image denoising. Supervised training is
performed with noisy and clean images, and the trained CNN is applied to unseen noisy data.
Noise2Noise training is performed with pairs of noisy images. Noise2Self training is performed
with just noisy images, which are split into input-target pairs. The loss is only computed where
target pixels are non-zero. The red inset displays one of these locations. For Noise2Noise and
Noise2Self, the trained CNN can be applied to the training data to obtain clean images.

it is also possible to include BM3D as a prior inside iterative algorithms for inverse
problems using a plug-and-play framework [182].

Instead of relying on an explicit image prior, prior knowledge can be based
on a range of example images, as is done in deep learning. In particular, deep
convolutional neural networks (CNNs) have been recognized as a powerful and
versatile denoising technique [199]. We briefly introduce three training schemes for
denoising with CNNs: supervised[199], Noise2Noise [107], and Noise2Self [14].

The supervised training scheme has access to a training dataset containing
pairs of noisy input and clean target images

(ỹi, yi) ∼ (y + ε, y), i = 1, . . . , N, (3.2)

where y is a random variable taking values in Y that represents the clean images.
The supervised training objective is to find the regression function

h∗ = arg min
h

Ey,ε

[
‖h(y + ε)− y‖ 22

]
, (3.3)

that minimizes the expected prediction error [66]. The most common loss function
is the pixel-wise mean square error, which we use here. Alternative training losses
are also used, such as the L1 loss and perceptual losses [107]. Solving Equation (3.3)
is usually intractable. Therefore, the expectation is estimated by the sample mean
over the training dataset, which is minimized over neural networks fϕ : Y → Y
with parameters ϕ. The training task is then to find the optimal parameters

ϕ̂ = arg min
ϕ

N∑
i=1

‖fϕ(ỹi)− yi‖ 22, (3.4)

which minimize the loss on the sampled image pairs. The trained network fϕ̂ is
applied to unseen noisy images to obtain denoised images, as displayed in Figure
3.1.



3.1. NOTATION AND CONCEPTS 49

The regression function that minimizes the expected prediction error in Equation
(3.3) is the conditional expectation

h∗(ỹ) = E [y | y + ε = ỹ ] . (3.5)

In practice, the trained neural network fϕ̂ does not equal h∗ and an approximation
is obtained.

Noise2Noise training may be applied if no clean images are available, but
one can measure independent instances of the noise for each image. The training
dataset contains pairs of independent noisy images

(yi + εi, yi + δi) ∼ (y + ε, y + δ), i = 1, . . . , N, (3.6)

where the noise δ is a random variable that is statistically independent of ε. The
training task is to determine

ϕ̂ = arg min
ϕ

N∑
i=1

‖fϕ(yi + εi)− (yi + δi)‖ 22, (3.7)

and the trained neural network fϕ̂ approximates

h∗ = arg min
h

Ey,ε,δ

[
‖h(y + ε)− (y + δ)‖ 22

]
. (3.8)

If the noise δ is mean-zero, i.e., E [δ] = 0, the expected prediction error in Equation
(3.8) is minimized by the same regression function h∗ as in the supervised regime
(Equation (3.5)). In practice, Noise2Noise and supervised training indeed yield
trained networks with similar denoising performance.

Noise2Self enables training a neural network denoiser without any additional
images. The training dataset contains only noisy images

ỹi ∼ y + ε, i = 1, . . . , N. (3.9)

The method depends on the assumption that the noise is element-wise statisti-
cally independent and mean-zero, and that the clean images exhibit some spatial
correlation.

Noise2Self training uses a masking scheme that ensures that the loss compares
two statistically independent images. For simplicity, we describe a simplified version
of Noise2Self training, and refer to [14] for a more in-depth explanation. In each
training step, the noisy image is split into two sub-images: one sub-image — the
target — contains non-adjacent pixels and the other sub-image — the input —
contains the remaining surrounding pixels. The network is trained to predict the
value of a noisy pixel from its surrounding noisy pixels, as is shown in Figure 3.1.

The division of pixels between the input and target image is determined by a
partition J of the pixels such that adjacent pixels are in different subsets. We
denote by J ∈ J the target section, and by JC the input section, where JC denotes
the set complement of J , containing all pixel locations not contained in J . The
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input and target images 1JC ỹi and 1J ỹi have non-zero pixels only in the input
and target section, respectively. Here, 1J denotes the indicator function such that
element-wise multiplication of 1J with an image retains pixel values in J and sets
pixels to zero elsewhere. The training task is to determine the set of network
parameters minimizing the training loss

ϕ̂ = arg min
ϕ

N∑
i=1

∑
J∈J
‖1Jfϕ(1JC ỹi)− 1J ỹi‖22, (3.10)

where the loss is only computed on the target sections.
The inference step is performed by the section-wise combined network gϕ̂ : Y →

Y,

gϕ̂(ỹ) :=
∑
J∈J

1Jfϕ̂(1JC ỹ), (3.11)

that computes the output in each target section by applying the trained network
to the input section.

The piecewise-combined network is an approximation of the regression function

g∗(ỹ) =
∑
J∈J

1JE[1Jy | 1JC (y + ε) = 1JC ỹ ]. (3.12)

This regression function computes the conditional expectation of the clean image
in each target section using the surrounding noisy pixels.

Although aforementioned methods can produce accurately denoised photo-
graphic images in many cases [14, 107, 199], a subclass of these algorithms —
Noise2Self in particular — has strong requirements on the element-wise indepen-
dence of the noise. These requirements do not generally hold for solutions of linear
inverse problems, as we discuss next.

3.1.2 Linear inverse problems
We are concerned with inverse problems that are described by the equation

Ax = y, (3.13)

where x ∈ X = Rn denotes an unknown image that we wish to recover, and
y ∈ Y = Rm denotes the indirect measurement. The linear forward operator
A : Rn → Rm describes the physical model by which the measurement arises from
the image x. As in the image denoising setting, these measurements are corrupted
by element-wise independent noise ε, and we write

ỹ = Ax + ε. (3.14)

Although noise in Equation (3.14) is modeled as an additive term, we note that
this model also covers non-additive noise, such as Poisson noise, where the noise
term typically depends on the signal intensity.
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Reconstruction algorithms approximate the image x from measured data y. A
subclass of these reconstruction algorithms computes a linear operator R : Y → X .
Examples of linear reconstruction algorithms include the filtered backprojection
algorithm for tomography and Wiener filtering for deconvolution microscopy [31,
167]. We denote the reconstruction from a noisy measurement by

x̃ = Rỹ = Ry + Rε, (3.15)

which can contain artifacts unrelated to the measurement noise, e.g., reconstruction
and/or under-sampling artifacts. The reconstruction operatorRmay cause elements
of the reconstructed noise Rε to be statistically coupled, even if ε is element-
wise independent [85]. That Rε does not satisfy the element-wise independence
property is unavoidable for all but the most trivial cases, since inverse problems
are essentially defined by the intricate coupling of the unknown image with its
indirect measurement.

This coupling of the noise seriously degrades the effectiveness of the Noise2Self
approach, as we will see in Section 3.3.4. In the next section, we propose a self-
supervised method that does take into account the properties of noise in inverse
problems.

3.2 Noise2Inverse
In this section, we present the proposed Noise2Inverse method. First, we describe
the assumed noise model, and give a general description of the method. In
Section 3.2.1, we provide a theoretical explanation how and why the convolutional
neural network learns to denoise. Here, we also discuss how these results can guide
implementation in practice. In Section 3.2.2, we give a more practical description
of the implementation for tomography, and discuss implementation choices with
regard to the obtained theoretical results.

Suppose that we wish to examine several unknown images x1, . . . , xN ∼ x,
sampled from some random variable x. We obtain noisy indirect measurements

ỹi ∼ Axi + ε, i = 1, . . . , N, (3.16)

where we assume that the noise ε is element-wise independent and mean-zero
conditional on the data, i.e.,

Ex,ε [Ax + ε | Ax = y] = y. (3.17)

As in Equation (3.14), we assume the noisy may be non-additive. Our goal is to
recover the clean reconstructions that would have been obtained in the absence of
noise, i.e., x∗i = Ryi with yi = Axi, i = 1, . . . , N .

One approach is to compute noisy reconstructions, and use Noise2Self to
remove the noise in the reconstructed images. Given the noisy reconstructions
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x̃i = Rỹi, i = 1, . . . , N , the training task is to determine the network parameters
minimizing the training loss

ϕ̂ = arg min
ϕ

∑
J∈Jx

N∑
i=1

‖1Jfϕ(1JC x̃i)− 1J x̃i‖ 22, (3.18)

where the target sections are contained in Jx, a partition of the pixels of the
reconstructed images. As discussed before, however, the noise in the input and
target pixels of the reconstructed images are unlikely to be statistically independent.

The key idea of the proposed Noise2Inverse method is that it partitions the data
in the measurement domain — where the noise is element-wise independent — but
trains the CNN in the reconstruction domain. In each training step, the measured
data is partitioned into an input and target component, and a neural network is
trained to predict the reconstruction of one from the reconstruction of the other.
After training, the neural network is applied to denoise the reconstructions.

The division of measured data between input and target is determined by
the collection J of target sections J ⊂ {1, 2, . . . ,m} that represent subsets of
the measurement domain Y = Rm. We note that J can be chosen such that it
contains structured subsets of the measurement domain, rather than all subsets.
For each target section J ∈ J , the measurement is split into input and target
sub-measurements ỹi,JC and ỹi,J , where JC denotes the set complement of J with
respect to {1, 2, . . . ,m}. The input and target sub-reconstructions are computed
by linear reconstruction operators RJ : YJ → X that take into account only the
measurements in section J ∈ J . We define

x̃i,JC = RJC ỹi,JC and x̃i,J = RJ ỹi,J

to be the input and target sub-reconstructions of ỹi, respectively.
The training task is to determine the parameters

ϕ̂ = arg min
ϕ

1

|J |
∑
J∈J

N∑
i=1

‖fϕ(x̃i,JC )− x̃i,J‖ 22, (3.19)

that best enable the network fϕ̂ to predict the target sub-reconstruction from the
complementary input sub-reconstruction.

The final output is computed by the section-wise averaged network, which
applies the trained network to each input sub-reconstruction, and computes the
average, yielding

x∗i,out =
1

|J |
∑
J∈J

fϕ̂
(
x̃i,JC

)
. (3.20)

In the next section, we show why the final result approximates the clean recon-
struction.
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3.2.1 Theoretical framework
In this section, we embed Noise2Inverse in a theoretical framework that explains why
it is an accurate denoising method. In addition, we describe design considerations
that enable it to operate successfully.

Below, we show that Noise2Inverse recovers an average clean reconstruction in
theory. This result is founded upon Proposition 1, which shows that the expected
prediction error is the sum of the variance of the reconstructed noise and the
supervised prediction error, which is the expected prediction error that would have
obtained if the target reconstructions were noise-free. Hence, the regression function
that minimizes the expected prediction error also minimizes the loss with respect to
the unknown clean reconstruction. Therefore, it predicts a clean sub-reconstruction
when given a noisy sub-reconstruction.

As before, we represent the clean and noisy measurements by the random
variables y = Ax and ỹ = y + ε. The input and target sub-reconstructions are
represented by random variables x̃JC = RJC ỹJC and x̃J = RJ ỹJ for J ∈ J . In
this case, the trained network fϕ̂ obtained in Equation (3.19) approximates the
regression function

h∗ = arg min
h

1

|J |
∑
J∈J

Ex,ε‖h(x̃JC )− x̃J‖ 2, (3.21)

which minimizes the expected prediction error. We randomize the section J as well,
representing it by J taking values uniformly at random in J . The input and target
sub-reconstructions become random in J as well, which is denoted by x̃JC = RJC ỹJC
and x̃J = RJỹJ. The expected prediction error then becomes

1

|J |
∑
J∈J

Ex,ε‖h(x̃JC )− x̃J‖ 2 = Eµ‖h(x̃JC )− x̃J‖ 2,

where we replace the average over J ∈ J by the expectation with respect to J. We
denote with µ the joint measure of x, ε, and J. Define the sub-reconstruction of the
clean measurement

x∗J = RJyJ, (3.22)

which describes the clean target reconstruction. Now the expected prediction error
can be decomposed into two parts.

Proposition 1 (Expected prediction error decomposition). Let x̃J, x̃JC , x∗J, and µ
be as above. Let ε be element-wise independent and satisfy (3.17). Let RJ be linear
for all J ∈ J . Then, for any measurable function h : X → X , we have

Eµ‖h(x̃JC )− x̃J‖ 22 = Eµ‖h(x̃JC )− x∗J‖ 22 + Eµ‖x∗J − x̃J‖ 22. (3.23)

Proof. First, expand the squared norm [158, Lemma 3.12]

‖h(x̃JC )− x̃J‖ 2 =‖h(x̃JC )− x∗J + x∗J − x̃J‖ 2

=‖h(x̃JC )− x∗J‖ 2 + ‖x∗J − x̃J‖ 2

+ 2〈h(x̃JC )− x∗J, x
∗
J − x̃J〉.
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Let x ∈ X , y = Ax , and J ∈ J . Then, from Equation (3.17), we obtain

Eµ [x̃J | x , J ] = Eµ [RJ ỹJ | x , J ]

= RJ Ex,ε [yJ + εJ | x ]

= RJ yJ

= x∗J , (3.24)

where we use that RJ is linear.
The noisy random variables x̃JC and x̃J are independent conditioned on x and

J , since domains of RJ and RJC do not overlap, and the noise ε is element-wise
statistically independent. This independence condition allows us to interchange
the order of the expectation and inner product [47, Proposition 2.3], which yields,
using Equation (3.24),

E [〈h(x̃JC )− x∗J, x
∗
J − x̃J〉 | x , J ]

= 〈E [h(x̃JC )− x∗J | x , J ] ,E [x∗J − x̃J | x , J ]〉
= 〈E [h(x̃JC )− x∗J | x , J ] , 0〉
= 0.

Using the tower property of expectation, we obtain

Eµ‖h(x̃JC )− x̃J‖ 2

= E
[
E
[
‖h(x̃JC )− x̃J‖ 2 | x, J

]]
= E

[
E
[
‖h(x̃JC )− x∗J‖ 2 + ‖x∗J − x̃J‖ 2 | x, J

]]
= Eµ‖h(x̃JC )− x∗J‖ 2 + Eµ‖x∗J − x̃J‖ 2.

Similar proofs can be found in [4, 14]. Proposition 1 states that the expected
prediction error can be decomposed into the supervised prediction error, which
depends on the choice of h, and the variance of the reconstruction noise, which does
not depend on h. Therefore, when minimizing (3.23), the function h minimizes
the difference between its output and the unknown clean target sub-reconstruction
x∗J. Note that the minimization of h occurs with respect to x∗J instead of the fully
sampled reconstruction x∗. When the target sections have been chosen such that
EJ [x∗J] = x∗ holds, however, the difference is minimized.

The supervised prediction error, Eµ‖h(x̃JC )− x∗J‖22, is minimized [4] by the
regression function

h∗(x̃ ) = Eµ [x∗J | x̃JC = x̃ ] . (3.25)

The section-wise averaged network, defined in Equation (3.20), therefore approxi-
mates the section-wise average of the regression function, defined by

g∗(ỹ) =
1

|J |
∑
J∈J

Eµ [x∗J | x̃JC = x̃JC ] , (3.26)
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where we write x̃JC = RJC ỹJC for ỹ ∈ Y and J ∈ J .
Using these results, we can explain why the section-wise average obtains a

denoised output. A noisy sub-reconstruction can be explained by different values
of the clean reconstruction x∗. The expectation Eµ [x∗J | x̃JC = x̃JC ] is the mean of
noiseless reconstructed images consistent with the observed noisy reconstruction
x̃JC . Equation (3.25) therefore predicts that our method produces denoised images.
In fact, our method computes the mean over all clean sub-reconstructions indicated
by J ∈ J .

The obtained results may be used to guide implementation in practice. Equation
(3.26) explains how to choose subsets J . First of all, the mean of the clean sub-
reconstructions 1/|J |

∑
J∈J x∗J must resemble the desired clean image. This can

be achieved by choosing J to be a partition of {1, . . . ,m}, or, by choosing J such
that each measured data point is contained in the same number of overlapping
subsets J ∈ J . Not doing so introduces a systematic bias into the reconstruction.

Second, the sub-reconstructions should be homogeneously informative through-
out the image. If the sub-reconstructions are very different, or contain limited
information about large parts of the image, then many dissimilar clean images are
consistent with the observed noisy reconstruction, and the average over all these
images will become blurred.

We note that x∗ denotes the clean reconstruction, rather than the unknown
image. This has two consequences. First, the theory predicts that artifacts
that are unrelated to the measurement noise, e.g. under-sampling artifacts and
reconstruction artifacts, will not be removed by the proposed network. Second,
if the reconstruction method also performs denoising operations, for instance by
blurring, then the result of our method might become blurred. The same effect
might occur when a non-linear reconstruction method is used, for which Proposition
1 does not generally hold. In this case, the regression function averages the bias
introduced by the non-linear reconstruction of the noise. In the next section, we use
the considerations discussed above to devise an approach for computed tomography.

3.2.2 Noise2Inverse for computed tomography
In this section, we describe our implementation of Noise2Inverse for 3D parallel-
beam tomography, and discuss how the implementation relates to the theoretical
considerations discussed before.

The 3D parallel-beam tomography problem may be considered as a stack of
2D parallel-beam problems. In 2D parallel-beam tomography, a parallel X-ray
beam penetrates an object, after which it is measured on a line detector. The line
detector rotates around the object while capturing the intensity of the attenuated
X-ray beam, as illustrated in the top panel of Figure 3.2.

In practice, a finite number of Nθ projections are acquired on a line grid of
Np detector elements at fixed angular intervals. Hence, the projection data can
be described by a vector ỹ ∈ Y = Rm,m = Nθ × Np, which is known as the
sinogram. Likewise, the two-dimensional imaged object is represented by a vector
x ∈ X = Rn, n = N2

x . We can formulate 2D parallel-beam tomography as a discrete
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Figure 3.2: Noise2Inverse for computed tomography. First, 3D parallel-beam tomography obtains
a stack of noisy sinograms by integrating over parallel lines at several angles. Next, the stack of
sinograms is split along the angular axis. Then, the split sinograms are reconstructed to act as
training dataset. During training, a dynamic subset of slices is averaged to form the input; the
target is the average of the remaining slices. To obtain a low-noise result, the trained CNN is
applied to all arrangements of input slices and averaged.
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linear inverse problem, where A = (aij) is an m×n matrix such that aij represents
the contribution of object pixel j to detector pixel i. In 3D tomography, a sequence
of 2D projection images of the 3D structure is acquired, which may be converted
to a stack of 2D sinograms.

The imaged object can be recovered from the sinogram by a reconstruction
algorithm, such as the filtered back-projection algorithm (FBP) [31]. FBP is an
example of a linear operator that couples the measured noise in the reconstruction,
as described in Equation (3.15). In addition, it is typically fast to compute, although
its reconstructions tend to be noisy [34].

The Noise2Inverse method is well-suited to denoise this kind of problem. Sup-
pose we have obtained a stack of 2D noisy sinograms ỹ1, ỹ2, . . . , ỹN , acquired from
a range of Nθ equally-spaced angles θ1, θ2, . . . , θNθ . Our approach follows the
following steps.

First, we split each sinogram ỹi into K sub-sinograms ỹi,1, . . . , ỹi,K such that
each sub-sinogram ỹi,j contains projection data from every Kth angle. The number
of splits K is a hyper-parameter of the method.

Using the FBP algorithm, we compute sub-reconstructions

x̃i,j = Rj(ỹi,j), j = 1, . . . ,K. (3.27)

For training, the division of the sub-reconstructions over the input and target
is determined by a collection J , which contains subsets J ⊂ {1, . . . ,K}. For
J ⊂ {1, . . . ,K}, we define the mean sub-reconstruction as

x̃i,J =
1

|J |
∑
j∈J

x̃i,j . (3.28)

As before, training of the neural network fϕ aims to find

ϕ̂ = arg min
ϕ

N∑
i=1

∑
J∈J

∥∥fϕ (x̃i,JC)− x̃i,j
∥∥2
2
. (3.29)

The final output, x∗i,out, is computed slice by slice by section-wise averaging of the
output of the trained network

x∗i,out =
1

|J |
∑
J∈J

fϕ̂
(
x̃i,JC

)
.

We identify two training strategies specifying J :
X:1 Using this strategy, the input is the mean of K − 1 sub-reconstructions, and

the target is the remaining sub-reconstruction, i.e.,

JX:1 = {{1}, {2}, . . . , {K}}. (3.30)

1:X This is the reverse of the previous strategy: the input is a single sub-recon-
struction, and the target is the mean of the remaining sub-reconstructions,
i.e.,

J1:X = {JC | J ∈ JX:1}. (3.31)
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In the 1:X strategy, the input is noisier than the target image, which corresponds
to supervised training, where the quality of the target images is usually higher than
the input images. The opposite is the case for the X:1 strategy, which corresponds
more closely to Noise2Self denoising in its distribution of data between input and
target, where more pixels are used to compute the input than to compute the target
images. Note that other splits are possible, but we focus on these two strategies
because they represent two extremes in the trade-off between input quality and
target quality.

Our implementation of Noise2Inverse for tomography is consistent with the
theoretical considerations discussed in the previous section. In both strategies,
we prevent biasing the reconstructions, by ensuring that each projection angle
occurs in reconstructions at the same rate. In fact, a property of FBP is that
the full reconstruction is the mean of the sub-reconstructions. In theory, this
means that training converges to the conditional expectation of the full clean
FBP reconstruction. Furthermore, we use every Kth projection angle to compute
the reconstructions. This ensures that the reconstructions are homogeneously
informative throughout the image, and we prevent missing wedge artifacts, which
occur when adjacent projection angles are used [127]. In addition, we use the FBP
algorithm with the Ram-Lak filter[31], which does not blur the reconstructions to
remove noise. Finally, we remark that our method is not geometry-specific, and
can also be applied to non-parallel geometries, as is demonstrated in Section 3.3.3.
In the next section, we describe the performance of this implementation in practice.

3.3 Results
We performed several experiments on tomographic reconstruction problems. These
experiments were performed with the aim of assessing the performance of the
proposed Noise2Inverse method, determining the suitability of Noise2Self denoising
for tomographic images, and analyzing the impact of hyper-parameters on the
performance of Noise2Inverse.

Comparison to denoising techniques Noise2Inverse is compared to tomo-
graphic reconstruction algorithms, an image denoising method, and an unsupervised
deep learning method in Sections 3.3.1, 3.3.2, and 3.3.3. These sections describe
a quantitative evaluation on simulated tomographic data, medical CT data with
simulated noise, and a qualitative evaluation on an existing experimental dataset.

Noise2Self on tomographic images The experiments in Section 3.3.4 in-
vestigate a transfer of Noise2Self denoising to inverse problems. The Noise2Self
method was evaluated on two datasets: one dataset with noise common to tomo-
graphic reconstructions and one with similar but element-wise independent noise.
In addition, Noise2Inverse was compared to several variations of Noise2Self.

Hyper-parameters In Section 3.3.6, the impact on the reconstruction quality
of several variables was investigated, specifically, the number of projection angles
Nθ, the number of splits K, the training strategy J , and the neural network archi-
tecture. In addition, we analyze the generalization performance of the Noise2Inverse
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Clean α = 10%, I0 = 100 α = 50%, I0 = 10 α = 10%, I0 = 1000

Figure 3.3: Displays of the clean reconstruction (left) and low-dose reconstructions of the central
slice of the foam phantom. Both α, the absorption of the phantom and I0, the initial photon
count per pixel, were varied. The yellow insets show an enlarged view of the reconstructions.

approach by training on progressively smaller subsets of the training dataset.
We first describe the simulated tomographic dataset and our implementation of

Noise2Inverse. Both are used throughout the experiments.
Simulated data A cylindrical foam phantom was generated with 100,000

randomly-placed non-overlapping bubbles. Analytical projection images of the
phantom were computed using the foam_ct_phantom package [140]. The value of
each detector pixel was calculated by taking the average projection value of four
equally-spaced rays through the pixel. Projection images were acquired from 1024
equally spaced angles.

The projection images of the foam dataset were corrupted with various levels
of Poisson noise. The noise was varied by altering the average absorption of the
sample α and the incident photon count per pixel I0. The average absorption of
the sample was calculated as the mean of the vector 1− e−yi for positions i where
yi was non-zero, and it was adjusted by modifying the intensity of the sinogram.
The pixels in the noisy projections where sampled from p̃, which for clean pixel
value p was distributed as

I0e
−p̃ ∼ Poisson

(
I0e
−p) .

i.e., a Poisson distribution on the pre-log raw data. As discussed in Section 1.1.3,
this type of noise is typically mean-zero conditional on the clean projections, as
described in Equation (3.17).

FBP reconstructions were computed on a 5123 voxel grid with the Ram-Lak
filter using the ASTRA toolbox [2]. On this grid, the radius of the random spheres
ranged between 1.5 and 51 voxels. A reconstruction of the central slice of the
foam phantom can be found in Figure 3.3, along with reconstructions of the noisy
projection datasets.

Noise2Inverse We describe the Noise2Inverse implementation in terms of
neural network architecture and training procedure.

The principal network architecture used throughout the experiments was the
mixed-scale dense (MS-D) network [143], of which we used the msd_pytorch
implementation [71]. The MS-D network has 100 single-channel intermediate
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layers, and the convolutions in layer i are dilated by di = 1 + (i mod 10). With
45,652 trainable network parameters, the MS-D architecture has considerably fewer
parameters than comparable network architectures, reducing the risk of overfitting
to the noise. The MS-D architecture is compared with other architectures in Section
3.3.6. The networks were trained for 100 epochs using the ADAM algorithm [94]
with a mini-batch size of 12 and a learning rate of 10−3.

3.3.1 Simulation study
In this section, Noise2Inverse is compared to two conventional iterative recon-
struction techniques: the simultaneous iterative reconstruction technique (SIRT)
[60] and Total-Variation Minimization (TV-MIN) [15]. In addition, we compare
to the BM3D image denoising algorithm [43], the Deep Image Prior[177], and to
supervised training. The reconstruction quality of these methods is assessed on a
simulated foam phantom dataset with various noise profiles.

For Noise2Inverse, we used the X:1 training strategy with K = 4 splits. We
show that this is a robust choice in Section 3.3.6.

Iterative reconstruction The hyper-parameters of SIRT and TV-MIN were
tuned using the usually unavailable clean reconstructions. Therefore, the results of
SIRT and TV-MIN might be better than what is achievable in practice, but they
serve as a useful reference for comparison to Noise2Inverse. SIRT has no explicit
hyper-parameters, but its iterative nature can be exploited for regularization: early
stopping of the algorithm can attenuate high-frequency noise in the reconstructed
image [60]. We selected the number of iterations (with a maximum of 1000) with
the lowest Peak Signal to Noise Ratio (PSNR) on the central slice with respect to
the clean reconstruction.

The FISTA algorithm [15] was used to calculate the TV-MIN reconstruction.
TV-MIN has a regularization parameter λ that effectively penalizes steps in the
gray value of the reconstructed image. As with SIRT, we selected the optimal
number of iterations (with a maximum of 500) based on the PSNR of the central
slice with respect to the clean reconstruction, and the value of the λ parameter
maximizing the PSNR was determined using the Nelder-Mead method [185].

BM3D We used the BM3D implementation described in [116]. The BM3D
algorithm was applied to the noisy FBP reconstructions and provided with the
standard deviation of the noise, which was calculated from the difference image be-
tween the noisy and clean FBP reconstruction. The addition of a prewhitening step
can improve denoising performance [163], but was not included as its computation
becomes infeasible for large image sizes.

Supervised A separate training dataset was created to train MS-D networks
with a supervised training approach. Here, the input and target images were noisy
and clean reconstructions, respectively. The training parameters for supervised
training — learning rate, batch size, network architecture — were exactly the same
as for the Noise2Inverse network.

Deep Image Prior We used the Deep Image Prior implementation from [177].
The quality of the result can be improved by adding noise to the input and by
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Figure 3.4: Results of supervised training, Noise2Inverse, Deep Image Prior (DIP), TV-MIN,
BM3D, and SIRT on simulated foam phantoms with varying absorption α and photon count I0.
Results are shown on the central slice. The insets display the noisy and clean reconstructions
(yellow) and the algorithm output (red).

Full Volume Central slice
PSNR SSIM PSNR SSIM

α I0 Method

10% 100

Supervised 20.01 0.83 20.02 0.80
Noise2Inverse 19.71 0.78 19.63 0.74
Deep Image Prior 17.98 0.59
TV-MIN 16.89 0.46 16.78 0.40
BM3D 14.79 0.38 14.81 0.33
SIRT 15.56 0.36 15.54 0.32

50% 10

Supervised 21.77 0.86 21.71 0.83
Noise2Inverse 21.66 0.79 21.62 0.75
Deep Image Prior 19.75 0.67
TV-MIN 18.08 0.53 17.99 0.48
BM3D 16.65 0.49 16.74 0.45
SIRT 16.53 0.42 16.50 0.37

10% 1000

Supervised 26.55 0.91 26.50 0.88
Noise2Inverse 26.25 0.89 26.24 0.87
Deep Image Prior 24.03 0.86
TV-MIN 21.24 0.68 21.24 0.61
BM3D 21.14 0.69 21.11 0.65
SIRT 18.84 0.53 18.82 0.48

Table 3.1: On the full volume and on the central slice: comparison of PSNR and SSIM metrics
for SIRT, TV-MIN, BM3D, Deep Image Prior, Noise2Inverse, and a supervised CNN at several
noise profiles. Bold font is used to emphasize the best metrics, excluding supervised training,
which serves as an oracle case for comparison.
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employing an exponentially decaying average of recent iterations [37]. We used
both techniques. To maximize the PSNR with respect to the ground truth, the
training is stopped early with a maximum of 10000 iterations, and the σ parameter
of the input noise is optimized using a line search.

Metrics and evaluation The output of each method was compared to the
clean FBP reconstruction using two metrics: the structural similarity index (SSIM)
[191] and the Peak Signal to Noise Ratio (PSNR). Because the reconstructed images
did not fall in the [0, 1] range, these metrics were computed with a data range that
was determined by the minimum and maximum intensity of the clean reconstructed
images. The metrics were calculated on the convex hull surrounding the object,
which diminishes the importance of the background image quality. Due to the
computational demands of deep image prior, we compute metrics on a single slice
of the reconstruction rather than on the whole volume.

The top row of Figure 3.4 displays the output of Noise2Inverse for the central
slice of the three simulated datasets. Denoising these datasets is challenging, as
can be seen when comparing with SIRT and TV-MIN: these algorithms fail to
recover several fine details. In contrast, our method achieves a much improved
visual impression on all three datasets. As can be seen in Table 3.1, the PSNR and
SSIM metrics of the Noise2Inverse method are considerably higher. The supervised
network attains the best metrics, although by a slight margin compared to the
Noise2Inverse method.

3.3.2 Medical CT
To assess the quality of reconstruction on medical data, we evaluate our method
on simulated data from human abdomen CT scans from the low-dose CT Grand
Challenge dataset [123]. This dataset contains full-dose reconstructions of 10
patients, consisting of a total of 2378 slices of 512 × 512 pixels. Following [5],
sinograms were computed from these reconstructions by projecting onto a fan-beam
geometry. Noise was applied, corresponding to a photon count of 10, 000 incident
photons per pixel. Reconstructions are shown in Figure 3.5.

We compare the same methods as before. The dataset was split into a training

Site 1 (Clean) Site 1 (Noisy) Site 2 (Clean) Site 2 (Noisy)

Figure 3.5: Original high-dose reconstructions of low-dose CT grand challenge (clean) and
reconstructions with simulated noise (noisy).
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Supervised Noise2Inverse Deep Image Prior TV-MIN BM3D SIRT

Figure 3.6: Results of supervised training, Noise2Inverse, Deep Image Prior, TV-MIN, BM3D,
and SIRT on Low-dose CT grand challenge data with simulated noise. The red insets display the
algorithm output.

Full volume Single slice
PSNR SSIM PSNR SSIM

Method

Supervised 46.34 0.99 46.29 0.99
Noise2Inverse 45.06 0.99 45.46 0.99
TV-MIN 44.91 0.99 45.65 0.98
Deep Image Prior 44.57 0.98
BM3D 43.84 0.99 43.97 0.98
SIRT 39.87 0.97 40.61 0.95

Table 3.2: Medical data: comparison of PSNR and SSIM metrics for SIRT, TV-MIN, BM3D,
Deep Image Prior, a supervised CNN, and Noise2Inverse. Bold font is used to emphasize the best
metrics, excluding supervised training, which serves as an oracle case for comparison.

dataset, consisting of nine patients, and a test set, containing the remaining patient.
Both Noise2Inverse and the supervised CNN were trained on the training set. The
optimal hyperparameters for SIRT, TV-MIN, and BM3D were determined on the
training set. The Deep Image Prior, including its hyperparameters, was directly
optimized with respect to the slices displayed in Figure 3.6. Metrics were calculated
on the full volume of the test patient, and on the top displayed slice in Figure 3.6.

Results are shown in Figure 3.6 and Table 3.2. The Noise2Inverse method
achieves similar results to TV-MIN, but without the staircasing artifacts. The
difference between the methods is smaller in this experiment. For the SSIM
metric, this is likely due to the low contrast of structures of interest compared to
the full intensity range of the reconstructions. In general, compared to previous
experiments, the noise has significantly lower intensity, and many different objects
structures are present, each of which must be learned by the neural network.
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3.3.3 Experimental data

The Noise2Inverse method was compared to SIRT and TV-MIN on an existing
real-world experimental dataset from TomoBank [44]. The dataset, Dorthe_F_002,
was acquired at the Advanced Photon Source at Argonne National Laboratory,
and contained 900 noisy projection images of 960× 600 pixels depicting a cylinder
of glass beads that was scanned at experimental conditions designed to capture
the dynamics of fast evolving samples. At 6 milliseconds per projection image, the
exposure time was therefore much shorter than what is required for low-noise data
acquisition [44]. The data was pre-processed with the TomoPy software package
[64] and reconstructed with FBP[2], resulting in 900 2D slices of 960× 960 pixels.
We stress that no low-noise projection images were available.

For Noise2Inverse, an MS-D network was trained with the X:1 strategy and 4
splits for 100 epochs. The best parameter settings for SIRT and TV-MIN were
determined by visual inspection. For SIRT, the best reconstruction was chosen
from 1000 iterations on the central slice. For TV-MIN, the number of iterations
was fixed at 500, and the optimal value of the regularization parameter was chosen
from several values regularly spaced on an exponential grid. For BM3D, the best
image was chosen from various values of the standard deviation parameter. We
have omitted the Deep Image Prior since there was no ground truth with respect
to which to perform early stopping.

After initial reconstructions, we found that the reported value of the center
of rotation offset — 4.5 pixels from center — yielded unsatisfactory results. The
reconstructions in Figure 3.7 were computed with a center of rotation that was
shifted by 8.9 pixels. Results are shown for the central slice of the reconstructed
volume. The FBP and SIRT reconstructions exhibit severe noise. The TV-MIN
reconstruction improves on the level of noise, but contains stepping artifacts that
reduce the effective resolution. Our method is able to remove the noise while
retaining the finer structure of the image.

FBP SIRT BM3D TV-MIN Noise2Inverse

Figure 3.7: Reconstructions of cylinder containing glass beads [44] using: FBP, SIRT, BM3D,
TV-MIN, and the proposed Noise2Inverse method. The red insets show an enlarged view of the
algorithm output.
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Figure 3.8: The effect of element-wise independence of the noise on the Noise2Self method. In
the top row, Gaussian noise is added to a reconstruction, and Noise2Self is applied to remove it.
In the bottom row, Gaussian noise is added to the projections before reconstruction, resulting in
a reconstructed image with similar but coupled noise. Noise2Self achieves lower PSNR in the
bottom row than in the top row.

3.3.4 Self-supervised image denoising for tomography
The performance of Noise2Self on tomographic images was evaluated in two experi-
ments. The first experiment tested the element-wise independence requirement,
by evaluating Noise2Self on images corrupted by element-wise independent noise
and on images reconstructed from noisy projection data. The second experiment
was a comparison of Noise2Inverse to Noise2Self, including variations of Noise2Self
applied to projection and sinogram images.

Noise2Self We used the original implementation of Noise2Self [14], which
obtains better performance than the simplified scheme discussed in Section 3.1.1.
The training procedure was the same as for Noise2Inverse: an MS-D network was
trained for 100 epochs as described at the beginning of Section 3.3.

Tomographic versus photographic noise Noise2Self was applied to images
with coupled reconstructed noise and to similar but element-wise independent noise.
In these experiments, the same foam phantom was used as before, and Gaussian
noise was used throughout the comparison to strictly compare the independence
properties of the noise. First, we confirmed that Noise2Self obtained denoised
images when the noise satisfied the element-wise independence property. In this first
case, a clean reconstruction was computed on a 5123 voxel grid, and independent
and identically distributed (i.i.d.) Gaussian noise was added to the reconstructed
images. The PSNR of the noisy volume with respect to the clean reconstruction was
11.06. Then, Noise2Self was applied to obtain a denoised volume with significantly
improved PSNR of 25.23. This process is displayed in the top row of Figure 3.8.

Next, the performance of Noise2Self on coupled reconstructed noise was inves-
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Figure 3.9: From top to bottom, results on the central slice of the foam phantom of Noise2Self
applied to reconstructed, projection, and sinogram images. For comparison, the insets show the
output of Noise2Inverse (yellow) and Noise2Self (red).

tigated. Here, i.i.d. Gaussian noise was added to the projection images, and a
reconstruction was computed afterwards. The PSNR of this noisy reconstruction
with respect to the clean reconstruction was 11.59. When Noise2Self was applied
to the noisy reconstruction, it obtained a PSNR of 16.14, substantially less than in
the first case. This is displayed in the bottom row of Figure 3.8.

The results in Figure 3.8 demonstrate that the performance of Noise2Self is sub-
stantially degraded when the noise is not element-wise independent. Even though
the starting PSNR in the bottom row is slightly higher, the PSNR improvement is
only half of the top row. In the top row, the validation error continued to improve
for 100 epochs, whereas in the bottom row, training started to overfit to the noise
within the first 10 epochs of training, which could be caused by the statistical
dependence between the input and target images.

Noise2Self on sinogram and projections To mitigate the effect of coupled
noise, Noise2Self was also applied to images that do satisfy the pixel-wise indepen-
dence property: the projection images and sinograms. In these cases, Noise2Self
was first applied to denoise the raw images, and reconstructions were computed
from the denoised projection images or sinograms.

As can be seen in Figure 3.9, the variations of Noise2Self did improve results,
but not beyond Noise2Inverse. Although applying Noise2Self on the projection and



3.3. RESULTS 67

Absorption I0 Method PSNR SSIM

10% 100
N2S Reconstructions 6.37 0.27
N2S Projections 16.43 0.44
N2S Sinograms 16.98 0.45
Noise2Inverse 19.71 0.78

50% 10
N2S Reconstructions 9.12 0.20
N2S Projections 17.49 0.49
N2S Sinograms 18.06 0.51
Noise2Inverse 21.66 0.79

10% 1000
N2S Reconstructions 15.39 0.50
N2S Projections 19.57 0.62
N2S Sinograms 20.62 0.60
Noise2Inverse 26.25 0.89

Table 3.3: Comparison of Noise2Self results on reconstruction, projection, and sinogram images.

sinogram images did accurately denoise the raw images, the resulting reconstruc-
tions of these denoised images exhibited some blurring (projections) and streaks
(sinograms). As displayed in Table 3.3, the Noise2Self-based method with the best
metrics, Noise2Self on sinograms, obtains PSNR on par with TV-MIN and SSIM
worse than TV-MIN, see Table 3.1.

3.3.5 Noise2Inverse and missing wedge artifacts
The quality of tomographic reconstructions may be degraded due to artifacts other
than measurements noise, such as missing wedge artifacts. These artifacts arise
when projection data is acquired along an arc spanning less than 180°. The results
in Section 3.2.1 predict that Noise2Inverse preserves these artifacts. To test this
prediction, we apply Noise2Inverse to a foam dataset where the reconstructions are
computed from 400 projection images along an arc of approximately 60°. Noise
is applied consistent with an absorption of 10% and an incident photon count of
1000 photons per pixel. As can be seen in Figure 3.10, Noise2Inverse accurately
denoises the reconstructed image, but leaves the missing wedge artifacts intact.

α
=

1
0
%
,I

0
=

1
0
0
0

Missing wedge (clean) Missing wedge (noisy) Noise2Inverse

Figure 3.10: Noise2Inverse applied to a noisy dataset with missing wedge artifacts. The red and
yellow insets show an enlarged view of the output and ground-truth, respectively.
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3.3.6 Hyper-parameters
We analyzed how the effectiveness of Noise2Inverse was influenced by the number
of splits, training strategy, number of projection angles, and neural network ar-
chitecture. In addition, we tested the generalization by training on subsets of the
data.

The same foam phantom was used, and noisy projection data were acquired
from 512, 1024, and 2048 angles, of which the first and last acquisitions were under-
sampling and over-sampling the projection angles, respectively. For each dataset,
the total number of incident photons remained constant: we used I0 = 400, 200, 100
for Nθ = 512, 1024, 2048, respectively. The average absorption was 23%, which is
the default value of the foam_ct_phantom package.

Splits and strategy The performance of the Noise2Inverse method was
evaluated with a number of splits K = 2, 4, 8, 16, 32, and with strategies X:1 and
1:X, see Equations (3.30) and (3.31). These experiments were performed with
MS-D networks, which were trained for 100 epochs, and used the same training
procedure as before.
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Figure 3.11: The PSNR metric for the Noise2Inverse method with the MS-D network applied
on the foam phantom with varying number of splits, angles, and varying input-target splitting
strategies. The X:1 strategy attains higher PSNR than the 1:X strategy.

The PSNR metrics are displayed in Figure 3.11. The figure shows that the
X:1 strategy yields considerably better results than the 1:X strategy, except for
K = 2, where they are equivalent. Setting the number of splits to K = 2 yields
good results across the board, but the PSNR can be improved by setting K to 4 or
8, if the projection angles are not under-sampled. In general, the figure shows that
increasing the number of acquired projection images can improve reconstruction
quality without increasing the photon count. On the other hand, we note that
reducing the number of projection images further can reduce the reconstruction
quality as the artifacts arising from undersampling are not removed by the neural
network.

Neural network architectures We compared three neural network architec-
tures: the U-Net [156], DnCNN [199], and the previously described MS-D [143]
network architectures, all of which were implemented in PyTorch [139].

The U-net is based on a widely available open source implementation1, which
1https://github.com/milesial/Pytorch-UNet/

https://github.com/milesial/Pytorch-UNet/
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Figure 3.12: Comparison of the PSNR metric. The MS-D, U-Net, and DnCNN networks were
trained for 100 epochs on the foam phantom with 1024 projection angles.

is a mix of the architectures described in [38, 156]. Like [156], the images are
down-sampled four times using 2 × 2 max-pooling, the “up-convolutions” have
trainable parameters, and the convolutions have 3 × 3 kernels. Like [38], this
implementation uses batch normalization before each ReLU, the smallest image
layers are 512 channels instead of 1024 channels, and zero-padding is used instead
of reflection-padding. The resulting network has 14,787,777 trainable network
parameters.

We used the DnCNN implementation from [14] with a depth of 20 layers, which
is advised for non-Gaussian denoising [199]. The resulting network has 667,008
trainable network parameters.

The previous experiment was repeated on the dataset containing 1024 projection
images. The networks were trained for 100 epochs, and used the same training
procedure as before. The results are displayed in Figure 3.12. The figure shows
that the U-net achieved overall highest performance using the X:1 strategy with
4 splits. In addition, the effect of the number of splits K is roughly the same
across strategies and network architectures, except for U-net. In fact, the PSNR
metric of the U-Net with the 1:X strategy initially increases when K is increased,
which might be due to the large network architecture and number of parameters
compared to the other two neural network architectures. Nonetheless, the X:1
strategy consistently attains higher PSNR than the 1:X for the U-net as well. We
note that the U-Nets performed worse than the other networks with 2 splits, which
suggests that training might have overfit the noise.

Overfitting We tested if the networks overfit the noise when trained for a long
time. All three networks were trained for 1000 epochs using the X:1 strategy and
K = 4 on the same foam dataset with 1024 projection angles. The resulting PSNR
on the central slice as training progressed is displayed in Figure 3.13a. The figure
shows that U-Net and DnCNN started to fit the noise, whereas the PSNR of the
MS-D network continued to increase. This matches earlier results on overfitting [73,
140, 143]. If the training dataset had been larger, these effects could have been less
pronounced.

Generalization We tested whether the network could be trained on fewer data
samples and generalize to unseen data. We used the 1024-angle foam dataset, the
MS-D network, 4 splits, and the X:1 strategy. The network was trained on the
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Figure 3.13: a) The PSNR on the central slice as training progressed. A U-Net, DnCNN, and
MS-D network were trained with the X:1 strategy and number of splits K = 4 for 1000 epochs on
the foam phantom reconstructed from 1024 projection angles.
b) An MS-D network was trained on subsets of the data. The PSNR on the training set (black)
and test set (remaining data; red) are displayed.

first 4, 8, 16, 32, 64, 128, and 256 slices of the data. We report PSNR metrics on
this training set and on the remaining slices, which we refer to as the test set. The
number of epochs was corrected for the smaller dataset size, such that all networks
were trained for the same number of iterations. When the training set exceeds
32 slices, the PSNR on the training and test set is comparable, as can be seen in
Figure 3.13b.

3.4 Discussion and conclusion
The results show that the proposed Noise2Inverse method outperforms conventional
reconstruction algorithms SIRT and TV-MIN by a large margin as measured in
PSNR and SSIM. This improvement is accomplished despite optimizing the hyper-
parameters of SIRT and TV-MIN on the clean reconstruction and without likewise
optimizing the Noise2Inverse hyper-parameters. In addition, Noise2Inverse is able
to significantly reduce noise in challenging real-world experimental data, improving
on the visual impression obtained by SIRT and TV-MIN.

Extending the Noise2Self framework[14], we describe a general framework for
denoising linear image reconstructions that provides a theoretical rationale for the
success of our method. The framework shows that clean reconstructions may be
recovered from noisy measurements without observing clean measurements, under
the common assumption that the measured noise is element-wise independent and
mean-zero. We remark that in low-noise situations, the trained network does not
introduce additional artifacts in its output, as predicted by the theory.

We now focus on the comparison between the proposed Noise2Inverse approach
and the existing Noise2Noise and Noise2Self approaches. As in Noise2Noise, the
network is presented with two noisy images during training. In Noise2Inverse,
however, these images are sub-sampled reconstructions, and since the artifacts
arising from sub-sampling the data are correlated, the input and target images
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are not statistically independent — although the reconstructed noise in these
images is statistically independent. Therefore, our results fall outside of the
Noise2Noise framework. As in Noise2Self, Noise2Inverse trains a denoiser from
unpaired measurements. The key difference is that the noise is element-wise
independent in the measurement domain, rather than in the reconstruction domain,
where denoising takes place. Therefore, the results from [14] do not carry over to
the inverse problems setting. However, we are able to prove Proposition 1 using
essentially similar arguments to those in [14].

The framework points the way to new applications of Noise2Inverse to linear im-
age reconstruction methods. The implementation of Noise2Inverse for tomography
shows that several aspects are worth considering. If reconstruction artifacts arise
in the absence of noise, they will be preserved. In addition, if the reconstruction
algorithm filters the noise at the expense of resolution, this will cause blurring in
the output of our method. Moreover, splitting the measurement uniformly can
avoid biasing the output of the method towards a particular subset of the measured
data. Finally, the performance of the neural network can be improved by ensuring
that the sub-reconstructions are homogeneously informative throughout the image.

Noise2Inverse is well-suited to imaging modalities that permit trading acquisition
speed for measurement noise, as it aims to remove measurement noise but does not
remove artifacts resulting from under-sampling, Whether this trade-off is possible,
depends on the specifics of the imaging modality. Tomographic acquisition, for
instance, permits acquiring the same number of projection images by lowering the
exposure time at the cost of increased noise [123]. Magnetic Resonance Imaging
(MRI), on the other hand, is usually accelerated by reducing the number of
measurements, rather than by acquiring noisier measurements [96]. Examples of
imaging modalities that permit trading speed for noise include ultrasound imaging
[121], deconvolution microscopy [167], and X-ray holography [197].

The comparison of Noise2Inverse with Noise2Self demonstrates that the success
of our method depends not only on considerations of statistical independence, but
also on taking account of the physical forward model. Regarding statistical inde-
pendence, we have demonstrated that a straightforward application of Noise2Self
fails on noisy tomographic reconstructions due to coupling of the noise. Regarding
the forward model, we have investigated a two-step approach, where Noise2Self
is applied to projection or sinogram images — which do satisfy the element-wise
independence requirement — before reconstructing. This approach performs worse
than TV-MIN and Noise2Inverse in terms of visual impression and quality metrics.
This matches earlier results [27], and could result from the fact that the consistency
of the projection and sinogram images with respect to the forward operator is not
necessarily preserved. These results suggest that taking into account the properties
of the inverse problem — as Noise2Inverse does — significantly improves the quality
of the reconstruction.

Several variables affect the performance of Noise2Inverse. Most importantly,
the training strategy that reconstructs the input images from at least as many
projection angles as the target images — the X:1 strategy — yields better results
than vice versa. This conclusion holds regardless of network architecture, number
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of splits, or number of projection angles. This suggests that noise in the gradient
is less problematic than noise in the input for neural network training, as was
observed before [107]. Another variable that consistently predicts performance
is the number of angles; acquiring more projections yields a small but consistent
performance boost. The number of parts in which the measured data is split,
however, deserves more nuance: when the projection angles are under-sampled,
the results indicate that two parts yield the best results; otherwise, splitting into
more parts yields better results. Finally, maximal performance can be obtained by
tuning the neural network architecture and number of training iterations. When
tuning is not an option, an MS-D network can be trained with limited risk of
overfitting the noise. Finally, the object under study influences the comparative
advantage of our method to conventional reconstruction techniques. When the
aim is to retrieve low-contrast details from low-noise reconstructions, the difference
may be minimal. When the object is self-similar and the noise has high intensity,
on the other hand, our method can significantly outperform other methods.

In conclusion, we have proposed Noise2Inverse, a CNN-based method for
denoising linear image reconstructions that does not require any additional clean
or noisy data beyond the acquired noisy dataset. On tomographic reconstruction
problems, it strongly outperforms both standard reconstruction techniques such as
Total-Variation Minimization, and self-supervised image denoising-based techniques,
such as Noise2Self. We also demonstrate that the method is able to significantly
reduce noise in challenging real-world experimental datasets.


