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2
Improving image resolution

“I think that the referee did not
allow much, but didn’t see much.
You can hardly whistle for some-
thing you cannot see.”

“Ik denk dat die scheidsrechter niet
zoveel toe liet, maar zag niet zoveel.

Je kan moeilijk fluiten als je iets
niet ziet.”

Johan Cruijff,
NOS television, 7 July 1998

Tomography is a powerful technique for reconstructing an image of the interior
of an object from a series of its projections, acquired from a range of angles. In com-
puted tomography (CT), a 3D volumetric representation of the object is computed
from a set of projections using a tomographic reconstruction algorithm. A broad
range of imaging modalities can be used for acquiring the projection images, includ-
ing X-ray imaging [39], electron imaging [128], neutron imaging [86], and optical
imaging [8], all resulting in similar computational reconstruction problems.

Improving the resolution of tomographic 3D volumes is an important goal in
the development of new tomographic scanners and their accompanying software.
Improvements in resolution enable new developments in materials science [159],
geology [39], and other fields of inquiry [172]. In some cases, the resolution
of the acquired projections is limited by the effective pixel size of the detector,
which imposes a discretization on the measured data that is carried over into
the reconstructed 3D volume. For certain tomographic scanners, this limit can
be overcome by zooming into a region of interest, decreasing the effective pixel
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22 CHAPTER 2. IMPROVING IMAGE RESOLUTION

size of the detector [39]. Often, other properties of the imaging process also limit
the resolution, such as the spot-size of the radiation source or pixel cross-talk
on the detector. In such cases, the actual resolution at which a 3D image can
be reconstructed is lower than the theoretical maximum based on the detector
resolution [31]. When using standard reconstruction algorithms, such as the
well-known Filtered Backprojection method (FBP) or Algebraic Reconstruction
Technique (ART), the resolution of the reconstructed volume is inherently limited
by the resolution and signal-to-noise ratio of the acquired projection data [61,
132].

Various tomographic techniques permit zooming in to a specific parts of an
object, leading to magnified projection images. At synchrotron light sources, X-ray
images are acquired by converting the high energy photons transmitted through the
object into visible light using a scintillator. The visible light is converted into digital
images by a conventional high-resolution image sensor. Magnification of the region
of interest is achieved by magnifying the visible light using optical instruments
placed between the scintillator and image sensor [172]. Laboratory CT systems,
on the other hand, have a natural zooming ability, since the X-rays emanate from
a point source and are projected onto a linear (fan beam) or planar detector (cone
beam). Therefore, moving the object closer to the source magnifies the projected
image on the detector. In this chapter, we focus on the 3D cone-beam setup,
although the proposed approach is applicable to other tomographic techniques as
well, including synchrotron tomography.

A variety of strategies have been proposed for increasing the resolution of
tomographic volumes, either by changing the scanning process, or by changing the
reconstruction method. When changing the scanning process, several strategies are
commonly used:

• High-resolution 3D images can be obtained if a small section can be physically
extracted from the object and then scanned at a higher magnification. This
provides only information on the particular section, and involves the destruction
of the full sample [92].

• Region-of-interest tomography focuses the imaging system on a sub-region of
the object, obtaining a set of projections in which that region is always visible,
but also superimposed on the surrounding structures. This only recovers high-
quality 3D information of the region of interest and leads to challenging image
reconstruction problems, as truncation artifacts can hamper the reconstruction
quality [135].

• In some cases, it is possible to move the detector while performing a scan,
creating a large projection by stitching the images for several detector posi-
tions [183]. This permits capturing the full object at a high zoom factor, yet at
the cost of a strong increase in radiation dose, scanning time, and computation
time.

The resolution of the reconstruction can also be increased by incorporating
certain prior knowledge about the scanned object into the reconstruction algorithm,
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resulting in super-resolution reconstruction. In CT, such prior knowledge comes
in many forms, e.g., sparsity of the reconstructed image [108], sparsity of its
gradient [19, 169], or knowledge of the materials constituting the object and their
attenuation coefficients [13]. However, such prior knowledge is often not available
in practice and introduces the risk of making assumptions that are not in good
agreement with the actual scanned object, which can decrease the quality of the
reconstructed image.

In recent years, machine learning has shown the ability to improve resolution
in a range of imaging applications [106, 155]. In particular, convolutional neural
networks (CNN) have been applied successfully to attain super-resolution for a wide
range of imaging modalities [106]. By training the CNN to compute the mapping
between low-resolution data and specially obtained high-resolution training data,
the characteristics of the datasets can be learned, removing the need for manually
choosing a model. However, this approach relies on the availability of high quality
training data for a series of similar objects, which for tomography would consist
of high- and low-resolution scans of these objects. Such data are often difficult to
obtain in practice for two main reasons:

• when the objects under investigation are unique (i.e., no batches of similar
objects are available), it is not possible to obtain the training data;

• creating high-resolution scans requires long scanning time and may also require
high radiation dose, which can be unacceptable for dose-sensitive objects.

Therefore, existing machine learning approaches to achieve super-resolution in
tomographic imaging are often infeasible in practice.

In this chapter, we propose a novel technique for computationally improving
image resolution in tomography. The technique integrates a specially designed
scheme for acquiring the scan data and a machine learning method for super-
resolution imaging. The data acquisition protocol ensures that certain sub-regions
of the scanned object can be reconstructed at high resolution, while still keeping
the total scanning time and dose relatively low. By using these high-resolution
sub-regions as a training target for creating a super-resolution version of the full
object, key morphological properties of the scanned object can be captured even if
the scanned object is unique and no similar objects are available.

Rather than exploiting similarity between a large batch of objects, our approach
exploits self-similarity within a single object. As such, it is expected to perform
properly if the object has high self-similarity, meaning that the local structure
of the material is consistent throughout the entire object. Objects with such
self-similar structures are abundantly available in nature, and are investigated
in detail specifically for their structure. Examples include the crystallization
of rare fossils and meteorites, or the porosity and texture of rocks and soils in
geology [92]. Furthermore, in materials science, investigations are conducted on
the micro-structure of metal foams, batteries, and other materials to improve their
physical properties [87, 159]. The goal of this chapter is to present an approach for
improving the resolution of tomographic reconstructions of these type of objects.
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We show visual and quantitative results for simulated and experimentally acquired
cone-beam CT datasets.

This chapter is structured as follows. Section 2.1 introduces necessary notation.
In Section 2.2, we present our method. In Section 2.3, we describe the experiments
that were performed to evaluate the accuracy of the proposed approach. Results
are presented on simulated and experimentally acquired data. In Section 2.4, we
discuss these results and provide possibilities for further research. Finally, our
conclusions are presented in Section 2.5.

2.1 Background and Notation

2.1.1 Tomography
In circular cone-beam CT, an X-ray point source and flat-panel detector are fixed
opposite to each other at some distance, which we refer to as the source-detector
distance (SDD). In between, at a distance SOD (source-object distance) to the
source, the object under study is mounted on a rotation stage. Equivalently,
the object can be fixed while the source and detector rotate around it. In either
case, X-ray images are acquired at discrete angles during rotation. The resulting
stack of pictures is called the projection dataset. The setup is displayed in Figure 2.1.

Cone beam tomography can be modeled as follows. Let the object function
f : Ω→ R represent the density of an unknown 3D volume supported on Ω ⊂ R3.
From the frame of reference of the object, the formation of the projection on the
detector is given by

Pθ(u, v) =

∫ 1

0

f(l(t)) dt, (2.1)

where l(t) : [0, 1]→ R3 is the parameterization of the line segment connecting the
position of the source at angle θ with position (u, v) on the detector.

In practice, only a finite number Nθ of projections are acquired on a discrete
grid of Nu × Nv detector pixels of size r × r. Hence, the projection data can
be described by a vector p ∈ Rm,m = Nθ × Nu × Nv. Likewise, the object f
is represented by a three-dimensional voxel grid x ∈ RNx×Nx×Nx describing a
physical volume Ωx ⊇ Ω. Here, solely for ease of exposition, we choose all grids
to be cubes. The physical dimensions of a single voxel, the voxel size, is naturally
determined by the number of voxels in x and choice of Ωx, and can in principle be
made arbitrarily small. The discrete formulation gives rise to the linear inverse
problem

Ax = p, (2.2)

with A = (aij) an m× n matrix where aij represents the contribution of volume
voxel j to detector pixel i. The goal of tomographic reconstruction is to estimate x
such that it matches the Nx ×Nx ×Nx voxel discretization of f .
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Figure 2.1: A schematic overview of the cone-beam geometry. The object is mounted on a
rotation stage at distance SOD from the source. The object is supported on Ω, and the voxel
grid x is supported on Ωx. The detector is at distance SDD from the source and is divided into
Nu ×Nv pixels of size r × r. We use the coordinates (u, v) to denote a location on the detector.

For the circular cone beam trajectory, several methods exist to compute x from
projections p. One of these methods is the widely used Feldkamp–Davis–Kress
(FDK) algorithm [53], FDK : RNθ×Nu×Nv → RNx×Nx×Nx , which computes

x̃ = FDK (p) = AT (h ∗ p̃)1D, (2.3)

where AT ∈ Rn×m, the transpose of A, is the discrete backprojection of p onto x,
h ∈ RNu is the convolution kernel associated with the FDK algorithm, and (h∗p̃)1D
is the horizontal one-dimensional convolution of h with p̃, a weighted version of p
with diminished intensity at higher distance from the detector center. The FDK
algorithm is computationally efficient and results in accurate reconstructions when
the projection data have a low noise profile and have been acquired from a sufficient
number of angles.

The resolution of the reconstruction cannot be arbitrarily improved by choosing a
finer reconstruction grid. Even in the absence of noise and other effects, the minimal
voxel size is limited by the detector pixel size [26]

v = r · SOD
SDD

. (2.4)

The angular resolution of the CT scan also influences the voxel size. The
number of angles from which the projection data has been acquired also influences
the minimal voxel size, but, when a sufficiently large number of angles has been
used, the voxel size as determined in Equation (2.4) is not further limited [95].

In addition to the detector pixel size, multiple optical phenomena influence
the formation of projection images. Many of these optical effects introduce a
blurring effect on the projection images. For instance, pixel cross-talk causes an
element of the photo-multiplier array to measure some fraction of the incoming
photons of its neighboring pixels [147]. Cross-talk can occur both in the scintillator,
where the high-energy photons are converted into the visible spectrum, and in the
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photo-sensor itself. Blurring can also be introduced when the focal spot, the region
where the X-rays originate from, is a larger disc-like region rather than a point
source [31, Chapter 9]. These optical effects can be modeled by a point spread
function (PSF), e.g., a 2D Gaussian filter, describing the projection on the detector
of a point-like object. A consequence of these optical effects is that the effective
resolution on the detector is lower than the pixel resolution, thereby increasing the
effective voxel size [31].

Even though detector resolution is limited, Equation (2.4) shows that the voxel
resolution can be increased by modifying the acquisition geometry. The projection
of a feature located on the rotation axis has a magnification factor of

α =
SDD
SOD

. (2.5)

By moving the object closer to the source, this magnification factor is increased,
which, thereby, as a consequence of Equation (2.4), decreases the minimal voxel size.
As the object is moved closer to the source, the projections of the object may become
truncated. Consequently, only a part of the object, the region of interest (ROI),
is consistently projected onto the detector at every angle. This causes truncation
artifacts in the reconstruction. Various techniques exist to minimize these artifacts
[98, 176, 180, 194]. Nonetheless, these methods only improve resolution in the
region of interest, hence new methods are required to reconstruct the entire volume
at high resolution.

2.1.2 Deep Convolutional Neural Networks
A recently proposed strategy to improve the resolution of photographic images is
the use of deep convolutional neural networks (CNNs) [106]. This class of machine
learning algorithms processes the image by applying multiple convolution kernels
and saves the intermediate results in layers. Each layer consists of several images,
and is computed by convolving the previous layer with learned kernels, adding a
scalar bias term, and applying a nonlinear activation function to each pixel. The
network

NetC,ϕ : RC×N×N → RN×N (2.6)

is trained to find a set of parameters ϕ̂ ∈ Φ such that it best transforms a stack
of C images into a desired image of N ×N pixels. In modern CNN architectures,
the number of parameters can range up to millions.

The training procedure applies the network to a training set of input data,
(xi)

n
i=1, and compares the output to target data (zi)

n
i=1, where the goal is to

minimize a user-specified empirical loss function L. Here, we use the pixel-wise
mean square error

L(ϕ) =
1

n

n∑
i=1

‖NetC,ϕ(xi)− zi‖ 22. (2.7)
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Training is not usually carried out to completion, i.e., the training is stopped
before the absolute minimum of L is attained on the training set. This is done
to prevent overfitting the network to the training data. When the network is
overfit, the empirical loss is low for data in the training set, but high for data not
included in the training set. The performance of a network that is being trained
is commonly tested on a validation set that is not part of the training set. Once
the performance on the validation set stops improving, training is stopped. An
alternative to using a validation set is early stopping, where training is stopped at
some predetermined time.

Most existing state-of-the-art CNNs process 2D images. To process 3D volumes,
we can subdivide the input and target voxel grids x̃input and x̃target into 2D
horizontal slices. As input, the network is provided with a slab containing not
just a single input slice but also surrounding slices, supplying the network with
quasi-3D information. Although network architectures exist that process entire 3D
volumes at once, their memory requirements are challenging when applied to voxel
grids with sizes that are common in tomography.

2.2 Method
In this section, we describe the main contribution of this chapter: an integrated data
acquisition and machine learning approach for improving resolution in cone-beam
tomography. Our approach consists of several steps. First, we perform a standard
CT scan of the object under study. In addition to a standard CT scan, we acquire
additional projection images with the object moved closer to the radiation source.
Second, we reconstruct the entire volume at low resolution. Next, using both
projection datasets, we reconstruct a region of interest at high resolution. These
two reconstructions are used to train a neural network to compute a mapping
between the low-resolution volume in the region of interest and its high-resolution
counterpart. The trained neural network is then applied to the entire low-resolution
volume to obtain a final high-resolution volume representation. This process is
illustrated in Figure 2.2. In the next subsections, we describe the steps of our data
acquisition and reconstruction strategy in detail.

2.2.1 Data Acquisition
Our data acquisition protocol consists of two scans. The first scan with magnifi-
cation factor αlow = SDD/SOD is a standard circular cone beam scan and yields
projection dataset plow, as shown in Figure 2.1. In addition to the standard
acquisition, we propose to acquire an additional projection dataset phigh. Here,
the object is moved closer to the source such that the resulting projection on the
detector has a magnification factor of αhigh = SDD/SOD2. Now, only a region of
interest ΩROI ⊆ Ω ⊆ R3 is in full view on the detector at all times, as is depicted
in Figure 2.3. The addition of the second projection dataset phigh permits the
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Figure 2.2: Method summary. We make a high- and low-resolution reconstruction of a region of
interest to train a neural network to obtain a high-resolution representation of the entire object.
(1) Acquire projection data; (2) Acquire zoomed in projection data; (3) Reconstruct on a coarse
grid; (4) Restrict to a region of interest; (5) Reconstruct the region of interest on a fine grid using
both projection datasets; (6) Train a neural network to transform the low-resolution region of
interest to a high-resolution volume; (7) Apply the network to the entire low-resolution volume.

high-resolution reconstruction of a rectangular sub-region of the region of interest.
This is described below.

2.2.2 Reconstruction
From the acquired datasets, two reconstructions are computed. The first recon-
struction contains the entire object at low resolution, and the second reconstruction
describes the region of interest at high resolution. Because these reconstructions
are later used for the training of a neural network, we ensure that their voxel grids
are aligned.

The dimensions of the low-resolution reconstruction grid are determined using
the pixel size r and the physical dimensions Ω of the object. We calculate the
effective voxel size vlow = r/αlow using Equations (2.4) and (2.5). Given the voxel
size, the shape of the voxel grid xlow, Nlow ×Nlow ×Nlow, is established such
that its real-world volume Ωlow ⊂ R3 covers the object, i.e., Ω ⊆ Ωlow. On this
grid, the low-resolution reconstruction is computed using the FDK algorithm

x̃low = FDK
(
plow

)
∈ RN

3
low . (2.8)

Next, we determine the shape and voxel size vhigh of the high-resolution voxel

grid xhigh. We set the voxel size to equal vhigh = vlow/k, where k equals αhigh/αlow
rounded to the nearest integer. In practice, magnification factors αlow and αhigh
can be carefully chosen to avoid the need for rounding. The voxel size vhigh is
close to the limit defined by Equation (2.4), since, by Equation (2.5), we have

vhigh =
vlow
k
≈ vlow

αlow
αhigh

=
r

αlow

αlow
αhigh

=
r

αhigh
. (2.9)

We fix the physical volume of the high-resolution grid, Ωhigh, to be contained in
the region of interest, i.e., Ωhigh ⊆ ΩROI, and set its shape, Nhigh×Nhigh×Nhigh,
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Figure 2.3: An illustration of the second tomographic scan. The object, supported on Ω, is
scanned at magnification αhigh = SDD/SOD2. Now, only the region of interest, ΩROI, is always

in full view of the detector. The high-resolution reconstruction grid xhigh is thus constrained to
the rectangular volume Ωhigh. Part of the object outside of Ωhigh contributes to the acquired
projection data. This is highlighted in red.

such that Nhigh is divisible by k. Now, voxels from xlow relate to cubes of k×k×k
voxels in xhigh. This assists in modeling the forward projection of the second scan.

As shown in Figure 2.3, the rays forming the projection data, phigh, have been
transmitted through both Ωhigh and Ω \ Ωhigh. This is modeled by the discrete
linear equation

phigh ≈ A(high)xhigh + A(low→high)Mxlow, (2.10)

where M ∈ RN
3
low×N

3
low is a matrix that masks all voxels in xlow that are contained

in Ωhigh. In other words, M is a diagonal matrix where the diagonal is 0 on row i

if voxel i of the large grid xlow overlaps Ωhigh, and is 1 elsewhere. The matrix

A(low→high) = (aij) is defined such that aij represents the contribution of the

low-resolution volume voxel xlowj to detector pixel phighi at magnification αhigh.

The matrix A(high) similarly defines the projection of the high-resolution volume
xhigh at magnification αhigh.

To reconstruct xhigh, we subtract the reprojection of the masked reconstruction
Mx̃low from the acquired high-resolution projection data

p̂ = phigh −A(low→high)Mx̃low. (2.11)

Next, we apply the FDK algorithm to the processed projection data to obtain
the reconstruction

x̃high = FDK (p̂) ∈ RN
3
high . (2.12)
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In a conventional FDK reconstruction, the outside contributions of Ω \ Ωhigh
to the projection data phigh cause truncation artifacts. Because we have ap-
proximately removed these contributions, we can apply the FDK algorithm to
obtain a high-resolution reconstruction of the region of interest. Note that similar
subtraction methods have been proposed before to remove truncation artifacts
in region-of-interest tomography [114, 176, 180]. Some artifacts may occur on
the border of the region of interest, which may be due to the specifics of the
interpolation kernel that is used in the forward projection A(low→high) or due
to discontinuity at the image borders enhanced by the FDK filter kernel. Water
cylinder extrapolation or truncation robust FBP methods like [45] may alleviate
these artifacts. These artifacts are not a problem in practice, as the affected border
voxels may be ignored.

2.2.3 Machine Learning
At this point in the process, the tomographic reconstruction method yields a
low-resolution voxel grid x̃low and a high-resolution voxel grid x̃high. For the
neural network to match the low-resolution input to the high-resolution target, it
is necessary that both input and target relate to the same physical space, and have
the same voxel size. In this section, we outline how x̃low and x̃high are processed
to match in physical space and voxel size. We also describe the training procedure,
and motivate the choice of neural network architecture.

The voxel grid x̃low corresponds to the physical space Ωlow and x̃high corre-
sponds to Ωhigh. To serve as input data for neural network training, we use the

voxels from x̃low that are contained in Ωhigh. We denote this restriction operation

by R : RN
3
low → RN3

high/k3 . The resulting voxel grid

x̃lowROI = R
(
x̃low

)
∈ RN3

high/k3 (2.13)

corresponds to the physical volume Ωhigh, and each of its voxels can thus be

matched with voxels from x̃high.
The voxel sizes of x̃lowROI and x̃high can be equalized by either up-sampling the

input data x̃lowROI or down-sampling the target data x̃high. We present both options,
which we designate as method A and method B, respectively. By up-sampling the
input data with an interpolation method Uk : RN3

high/k3 → RN3

by a factor k with
N = Nhigh, we obtain training data on a fine grid

x̃input = Uk

(
x̃lowROI

)
∈ RN

3

, (method A) (2.14)

x̃target = x̃high ∈ RN
3

. (2.15)

By down-sampling the target data by a factor k with an interpolation method
Dk : RN

3
high → RN3

with N = Nhigh/k, we obtain training data on a coarse grid
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Downsample (Dk)

k

NhighNhigh / k Nhigh

Figure 2.4: Two voxel grids at different resolution. The low-resolution grid on the left can be up-
sampled (Uk) to a high-resolution grid. This transforms a slice (in red, left) into a slab (in green,
right), which consists of multiple slices. The down-sampling operation (Dk) performs the reverse
transformation. Here, the up-sampling and down-sampling are performed with magnification
factor k = 4, which increases or decreases the number of voxels in each dimension by a factor of k.

x̃input = x̃lowROI ∈ RN
3

, (method B) (2.16)

x̃target = Dk

(
x̃high

)
∈ RN

3

. (2.17)

The interpolation methods Uk and Dk are open to choice. Various methods can
be used, including, for instance, cubic interpolation. The up- and down-sampling
operations are illustrated in Figure 2.4.

The properties of the acquired projection data can be used to inform the choice
whether to up-sample the input (method A), or down-sample the target (method
B). When optical blurring on the detector is negligible, the small-scale features
that can be seen in x̃high will be hard to visualize on the coarse grid of x̃lowROI.
Therefore, it is recommended to use method A where x̃target is defined on a fine
grid. If, on the other hand, optical blurring limits the effective resolution of x̃lowROI,
and its resolution can be improved without reducing the voxel size, then it is
recommended to use method B, where the grid size is smaller, and training and
applying the network is thus computationally faster. The differences between the
input and target grids are summarized in Table 2.1.

The input and target voxel grids x̃input and x̃target serve to train the con-
volutional neural network. The voxel grids x̃input and x̃target are divided into
slices x̃inputi , x̃

target
i , i = 1, . . . , N as illustrated in Figure 2.4. In this chapter, xi

denotes both a single voxel at position i and a horizontal slice i of a voxel grid x.
The surrounding text always distinguishes between a voxel and a slice.

The input slices are combined into slabs
[
x̃
input
j

]i+s
j=i−s

, i = s+ 1, . . . , N − s,
containing the input slice and the s slices above and below. The target slices are
not combined into slabs. The training procedure now minimizes

Ls(ϕ) =
1

N

N−s∑
i=s+1

‖Net2s+1,ϕ

([
x̃
input
j

]i+s
j=i−s

)
− x̃

target
i ‖

2

2

, (2.18)
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Method A Method B

Training
Grid size (N3) N3

high
N3

high/k3

Input (x̃input) Uk(x̃lowROI) x̃lowROI
Target (x̃target) x̃high Dk(x̃high)

Processing
Grid size (kNlow − 2s)3 (Nlow − 2s)3

Input Uk(x̃low) x̃low

Table 2.1: An overview of the grid sizes of method A, where the input is up-sampled, and method
B, where the target is down-sampled. The grid size and input are tabulated for the training phase
and the processing phase, in which the final output is calculated. The grid size is in number of
voxels. The processing grid size is the size of the output x̃final when the network is applied to
x̃low, and s is the number of additional input slices that the network takes as input.

which yields the set of parameters, ϕ̂. Other norms, such as the L1 norm, could
also be used.

Multiple deep network architectures can be used to improve the quality of recon-
structions [81, 143, 156, 165]. One of these is the mixed-scale dense (MS-D) network,
which is a neural network architecture specifically developed for scientific settings.
The mixed-scale dense network has several properties that make it well-suited for
our method. The MS-D network has relatively few parameters compared to other
neural network structures, making it easier to train and less likely to overfit. This is
especially useful if a small training set is available, and no part of the training set is
sacrificed to serve as a validation set, as is the case here. Another advantage is that
the MS-D network maximally reuses the intermediate images in each layer, thus
requiring fewer intermediate images compared to other deep convolutional neural
network architectures. Therefore, the MS-D network can transform large images
using less memory and computation time compared to other popular convolutional
neural network architectures [143]. Finally, the network has shown good results for
removing noise and other artifacts from tomographic images when a large training
set of similar objects scanned at high dose is available. This is described in [140],
where the network was applied to tomographic images reconstructed from a dataset
of parallel beam projections, rather than cone beam projections.

2.2.4 Improving Resolution
After training the network, a set of network parameters ϕ̂ is obtained. The trained
neural network Netϕ̂ is applied to the initially reconstructed low-resolution volume
x̃low to obtain a final volume representation x̃final. This process consists of
several steps. If the training input has been up-sampled using method A, then the
reconstruction x̃low must likewise be up-sampled to Uk(x̃low), which is k times
larger in every dimension. If method B has been used, no up-sampling of the
reconstruction is necessary. The resulting voxel grid is processed by the network
slice by slice. These slices must be collected in slabs containing s slices above and
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below the input slice. This influences the output size, since the top and bottom s

slices of x̃low do not have enough surrounding slices to be processed by the network.
This is usually not a problem because s is small (s < 10) and the low-resolution
grid can be chosen large enough that any important features are at some distance
from the top and bottom. Finally, the network can be applied to each of these
slabs in turn, the result of which we collect into x̃final. In summary, this process
results in the final volume representation

x̃final =

[
Net2s+1,ϕ̂

([
UK

(
x̃low

)
j

]i+2s

j=i

)]Nfinal

i=1

(Method A),

x̃final =

[
Net2s+1,ϕ̂

([
x̃lowj

]i+2s

j=i

)]Nfinal

i=1

(Method B).

For both methods, the size of the final grid x̃final is summarized in Table 2.1.

2.3 Results
We evaluate the accuracy of our method on simulated and experimental data, which
is described below. Before going through the specifics of each experiment, we first
provide details on the steps that all experiments have in common.

Data acquisition For each experiment, three projection datasets are acquired.
The first projection dataset has the entire object in the field of view and has a low
magnification factor αlow. The second and third projection datasets are acquired
of a central and upper region of interest and have a higher magnification factor
αhigh. This is illustrated in Figure 2.5.

Reconstruction In all experiments, high-resolution reconstructions are com-
puted of a central and upper region of interest to serve as target data for the
training set and test set, respectively. A low-resolution reconstruction is computed
of the entire object, which serves as input data for both training and testing. In
all experiments, the low-resolution voxels are k = 4 times as large as the high-
resolution voxels. FDK reconstructions were computed using the ASTRA toolbox
[2].

Input Train target Test target

Figure 2.5: For each object, three projection datasets are acquired. The first dataset has the
entire object in the field of view, and its reconstruction is used as input data for the learning
step. The second dataset has a central region of interest in view (dark gray), the reconstruction
of which is used as target data for the learning step. The third dataset has an upper region of
interest in view (dark gray), the reconstruction of which is used as target data for evaluation.
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Up- and down-sampling The up- and down-sampling of the reconstructed
volumes can be performed in various ways. In the experiments, up-sampling in
method A is carried out by nearest-neighbor up-sampling, where each voxel is
repeated k times in each direction. Empirically, we found this to be sufficient, as cu-
bic up-sampling did not improve the quality of the network output. Down-sampling
of the target voxel grid in method B is carried out using three-dimensional cubic
interpolation, where the image is interpolated to a coarser grid using polynomials
of degree at most 3 determined by a window of 4× 4× 4 voxels.

Neural network implementation For each experiment, three separate net-
works are trained using: (i) method A and a single input slice, (ii) method A and a
slab of nine input slices, (iii) method B and a single input slice. The MS-D network
is implemented in PyTorch [139]. Each trained network has 100 single-channel in-
termediate layers, and the convolution in layer i is dilated by di = 1 + (i mod 10),
as is described in [143]. The network has 45,652 parameters when there is a single
input slice, and it has 52,948 parameters when the input is a slab of nine slices.

Training procedure The network is trained on the central region of interest.
Because we chose not to use a validation set, a criterion was set for early stopping.
In all experiments, training finished after two days or 1000 epochs, whichever came
first. All networks are trained from scratch in each experiment. The training
procedure minimizes the mean square error between the output and target images,
and the networks are trained using the ADAM algorithm [94] with a mini-batch
size of one. The network output is evaluated on a test set containing the low- and
high-resolution reconstructions of the upper region of interest. The training and
test set are thus non-overlapping.

Metrics and evaluation On both datasets, the on-the-fly machine learning
approach is evaluated using the structural similarity index (SSIM) [191] and the
mean square error (MSE) metrics. These metrics are used to compare the output
slices of the networks to target slices from the upper ROI reconstruction. To
compare methods A and B on the same grid, the output volume of method B is
cubically up-sampled before computing the MSE and SSIM metrics. The output
slices of method A are not processed, since they are the same size as the target
slices of the test set. Both metrics are computed slice by slice and averaged. To
prevent the influence of reconstruction artifacts at the boundaries of the high-
resolution reconstructions, all metrics are calculated on pixels that are at least
eight pixels from the boundary of the volume. Likewise, all displayed images are
cropped to remove eight pixels from all sides. The error metrics of our approach are
compared to a baseline: a full-volume three-dimensional cubic up-sampling of the
low-resolution input volume. We visually compare all methods on the central slice
of the upper ROI reconstruction on both the simulated and the experimental data.

All computations were performed on a server with 192 GB of RAM and four
Nvidia GeForce GTX 1080 Ti GPUs (Nvidia, Santa Clara, CA, USA) or on a
workstation with 64 GB of RAM and one Nvidia GeForce GTX 1070.
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Foam Foam Oatmeal

Pixel-Limited Optics-Limited

Detector
Shape 1000 × 1000 1000 × 1000 1536 × 1944
Pixel size 0.0012 0.0012 75 µm
Number of angles 1500 1500 2000

Full object
Grid shape 1064 × 1064 × 1064 1064 × 1064 × 1064 1647 × 2084 × 2084
Voxel size 0.0012 0.0012 68.26 µm

Central ROI
Grid shape 888 × 664 × 664 888 × 664 × 664 1364 × 1304 × 1304
Voxel size 0.0003 0.0003 17.07 µm

Top ROI
Grid shape 880 × 664 × 664 880 × 664 × 664 1364 × 1304 × 1304
Voxel size 0.0003 0.0003 17.07 µm

Training epochs
Method A 9 slices 230 230 30
Method A 1 slice 260 250 40
Method B 1 slice 1000 1000 950

Table 2.2: A summary of the pixel and voxel grids used for the reconstructions of the full object
and regions of interest (ROIs). For each dataset, the network was trained by up-sampling the
input (method A) with a slab of nine slices and one slice as input, and by down-sampling the
target (method B) with a slab of one slice as input.

2.3.1 Simulations
First, we investigated the performance of the proposed on-the-fly machine learning
technique on simulated tomographic data.

Simulation phantom A foam ball simulation phantom was generated by
removing 90,000 randomly-placed non-overlapping spheres from a large sphere
made of one material. The foam ball has diameter 1. All other dimensions in
the simulation are relative to this unit length. The radius of the random spheres
ranges between 0.0025 and 0.2. The central slice of this phantom is displayed in
Figure 2.6.

Data simulation Using the foam phantom, three projection datasets were
computed. For the first projection dataset, which has the entire foam ball in the
field of view, the source-object distance is equal to the source-detector distance,
yielding a magnification factor of αlow = 1. In practice, having an equal source-
object and source-detector distance is not possible, since the detector and object
would share the same physical space. In simulations, however, this is both possible
and natural, since it results in a minimal voxel size that is equal to the detector
pixel size. The second and third projection dataset were acquired at a magnification
factor of αhigh = 4.

To simulate how our method copes with optical phenomena, another set of
projections was created by post-processing the projections using a Gaussian blur
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(a) (b) (c) (d)

Figure 2.6: (a) A projection image of the foam ball; (b) a magnified projection image of the
central region of interest (ROI); (c) a magnified projection image of the upper ROI; (d) the
central cross-sectional slice of the phantom.

with standard deviation of two pixels. The Gaussian blur convolves the projection
images with a 2D filter defined by g(x) = exp(−‖x‖2/2σ2)/

√
2πσ2, where σ is the chosen

standard deviation. We refer to the blurred data as optics-limited, and to the
non-blurred data as pixel-limited.

The projections were carried out using the GPU-accelerated cone_balls software
package, which we have made available as an open source package [67]. This package
analytically computes the linear cone beam projection of solid spheres of constant
density. For each dataset, 1500 projections were acquired over 360 degrees on a
virtual detector with 1000× 1000 pixels. For each detector pixel, four rays were
cast through the phantom, and their projection values were averaged.

Processing The reconstruction and training of the foam phantom was per-
formed as described before in Section 2.3. The details are summarized in Table 2.2.
Methods A and B are evaluated on the upper ROI reconstruction, and compared
below for both the pixel-limited and optics-limited case.

Evaluation For the simulated data, the MSE and SSIM metrics are computed
between the network outputs and the original phantom data, rather than the
high-resolution reconstruction. As the SSIM metric is designed to operate on
images with a fixed intensity interval, we clip the network outputs such that all
images have the same minimum and maximum intensity as the phantom data.
Similarly, the images displayed in Figure 2.7 are clipped to the range [0, 1]. The
MSE metrics are calculated on the unclipped data.

The quantitative results for the foam phantom are given in Table 2.3. Both

Pixel-limited Optics-limited
Method MSE SSIM MSE SSIM

Method A: 9 slices in slab 0.0044 0.9578 0.0143 0.8275
Method A: 1 slice in slab 0.0089 0.9281 0.0154 0.8220
Method B: 1 slice in slab 0.0111 0.8065 0.0178 0.8135
Cubic up-sampling 0.0125 0.6893 0.0463 0.6038

Table 2.3: Foam ball phantom: comparison of the MSE and SSIM between the output of the
three approaches described in this section and cubic up-sampling. For each dataset and metric,
the best results are shown in bold.
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Figure 2.7: Results of applying the trained networks to the central slice of the upper region of
interest. The low-resolution slice (shown left) was not part of the training set. The high-resolution
slice is the result of reconstruction (Equation (2.12)). The images in the right-most four columns
are computed from the input using our proposed methods and cubic up-sampling. Magnifications
of the central yellow square are displayed in the even rows. The first row displays the results
on the non-blurred foam phantom reconstructions, and the third row displays the results on
reconstructions of blurred foam phantom projections. The output of method B is cubically
up-sampled by a factor of 4 to be the same size as the other images.

variants of method A significantly outperform cubic up-sampling on both MSE
and SSIM metrics. On the pixel-limited dataset, the SSIM score of method B
is lower than the methods A but higher than cubic up-sampling. The fine scale
features in the pixel-limited high-resolution image can simply not be represented
on the coarser grid that method B operates on. On the optics-limited dataset,
on the other hand, the SSIM score of method B is comparable to the SSIM scores
of methods A, and is significantly higher than that of cubic up-sampling.

In Figure 2.7, the methods are visually compared on both the pixel-limited
dataset and the optics-limited dataset. In the pixel-limited dataset, the low-
resolution input suffers from partial volume effects, where some voxels contain more
than one material. In this case, the foam and void contributions to a voxel are
averaged, which leads to jagged edges. The high-resolution data are significantly
sharper, but still has some non-smooth texture in the foam and voids. The output of
method A with nine input slices makes the edges as sharp as in the high-resolution
image, and removes the non-smooth texture in the foam and voids. Moreover, it
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does not introduce any voids where there are none in the target data. Method A
with one input slice performs similarly, but has some difficulty with features that
are rapidly introduced in the vertical direction. This is apparent in the magnified
image in Figure 2.7, where the top or bottom of one void in the input data are not
correctly removed. As discussed before, method B performs worse than method A
when the high-resolution features cannot be represented on the coarse grid.

In the optics-limited dataset, both low- and high-resolution slices are less
sharp than in the pixel-limited case. Due to the additional blur on the projection
data, some of the smaller features in the low-resolution image cannot easily be
distinguished. Nonetheless, the output of both methods A has significantly improved
resolution and is visually similar to the target slice. With few exceptions, all voids
in the output are round, and, without exception, all voids in the output are also
present in the target. Method B produces output that looks similar to the output
of methods A, although it fuses some voids that can still be distinguished in the
output of methods A.

2.3.2 Experimental Data
To verify the practical applicability of our approach, we have investigated the
performance of our method on experimentally acquired cone-beam CT data.

Sample A plastic jar filled with oatmeal was scanned. The oatmeal was
specifically chosen for its structure, which is consistent throughout the entire object.
A package of oatmeal contains thousands of flakes, which all have roughly the same
dimensions and shape, but still exhibit fine-scale features, requiring high-resolution
tomography to accurately capture. Projection and reconstruction images of the
oatmeal are displayed in Figure 2.8.

Data acquisition The projection images were acquired using the custom-
built and flexible CT scanner, FleX-ray Laboratory, developed by XRE NV and
located at CWI [42]. The apparatus consists of a cone-beam microfocus X-ray
point source that projects polychromatic X-rays onto a 1944× 1536 pixels, 14-bit,
flat detector panel. The data was acquired over 360 degrees in circular motion
with 2000 projections distributed evenly over the full circle. The projections were

(a) (b) (c)
(d)

Figure 2.8: (a) A projection image of the oatmeal sample; (b) a magnified projection image of
the central ROI; (c) a magnified projection image of the upper ROI; (d) a central slice of the
oatmeal sample.
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Emitted Beam Energy (J) Scanning Time (Minutes)

Full low-resolution scan η× 27,720 11
High-resolution ROI scan η× 27,720 11
Full high-resolution scan η× 443,520 176
(Estimate for tiling)

Table 2.4: The scanning times and emitted beam energy of the experiments. The third row
contains an estimate of the duration of a full high-resolution scan with a detector tiling strategy,
where a virtual large projection image is created by stitching the images for several detector
positions. To achieve similar resolution as the high-resolution ROI scan, 16 detector positions
would have to be stitched together. The emitted beam energy is used as a proxy for the radation
dose absorbed by the object. The efficiency of the source η is multiplied by the power P = 42W
applied to the X-ray tube, and the scanning time in seconds.

collected with 250 ms exposure time and the total scanning time was 11 minutes
per acquisition. The tube voltage was 70 kV and the tube power was 42 W.
This acquisition strategy was performed three times with magnification factors
α = 1.09, 4.38, and 4.38. Examples of the acquired projection images are displayed
in Figure 2.8 and an overview of scanning time and emitted beam energy is given in
Table 2.4. The object was centered on the detector for the first two scans, and the
object was moved down to capture a region of interest above the center of the
object for the final scan. These data are publicly available via [40].

Processing Reconstructions were computed of the full object, a central region
of interest (serving as training set), and an upper region of interest (serving as test
set). An example of the central slice of the oatmeal is displayed in Figure 2.8d.
The voxels in the full-object reconstruction are four times larger in each dimension
than the voxels in the region-of-interest reconstructions. The training step was also
performed in the same way as for the simulated data. The details are summarized
in Table 2.2. Up-sampling the low-resolution region-of-interest slices to 1304× 1304
pixels takes roughly 0.56 s per slice and 13 min in total using method A with one
input slice. Using method B, up-sampling a single slice takes 0.03 s, and the entire
region of interest can be up-sampled in less than a minute.

Evaluation The attenuation coefficients of the voxels in the high-resolution
reconstruction are contained in the range [−0.039, 0.105]. To enable comparison
of the MSE and SSIM metrics of the experimental data with the simulated data,
we rescaled the attenuation coefficients of the target volume to the range [0, 1],
and used the same scaling factors to rescale the values of all other volumes. In
addition, before calculating the SSIM, all volumes are clipped to the range [0, 1],
similar to the simulated data. Likewise, the slices displayed in Figure 2.9 are
rescaled and clipped to the unit range.

The experimental results on the oatmeal dataset are visually compared on
the central slice of the upper region of interest. This low-resolution input slice,
which is displayed in Figure 2.9, is thus not part of the training set. The low-
and high-resolution slices of the oatmeal both suffer from some noise. The high-
resolution slice contains significantly more visible fine-scale features. The output
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Figure 2.9: Oatmeal data: results of applying the trained networks to the central slice of the
upper region of interest. The low-resolution slice (shown left) was not part of the training set. The
high-resolution slice is the result of reconstruction (Equation (2.12)). The four images on the right
are computed from the input using our proposed methods and cubic up-sampling. Magnifications
of the central yellow square are displayed in the second row. The red ellipse highlights a flake
that is partially visible in the input, and is correctly removed by all three methods. The output
of method B is cubically up-sampled by a factor of 4 to be the same size as the other images.

Method MSE SSIM

Method A: 9 slices in slab 0.0027 0.4508
Method A: 1 slice in slab 0.0026 0.4529
Method B: 1 slice in slab 0.0025 0.4521
Cubic up-sampling 0.0035 0.4192

Table 2.5: Oatmeal: comparison of the MSE and SSIM between the output of the three approaches
described in this section and cubic up-sampling. The best results are shown in bold for each
metric.

of the three methods is virtually indistinguishable in the non-magnified images. In
the magnified images, we see that not all fine details can be retrieved: some small
features are removed and others are slightly deformed compared to the target. In
the red ellipse, a large flake is visible in the low-resolution slice that appears larger
than it really is due to partial volume effects. The high-resolution slice, on the
other hand, shows only a small fragment of the large flake. All three networks are
able to filter away a large part of the flake and retain the ridge that is visible in
the high-resolution slice. The three methods significantly reduce the background
noise that is present in the high-resolution target beyond what can be achieved
using cubic up-sampling. Overall, all three methods sharpen features that are
hard to distinguish in the input, significantly reduce the background noise, and do
not introduce new features that are not present in the high-resolution slice. The
quantitative results paint a similar picture, and are displayed in Table 2.5. The
difference between the three proposed methods in terms of MSE and SSIM is small,
whereas the cubic up-sampling performs worse on both metrics.

Comparing method A and method B, we observe a difference between simulation
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and experimental data. For the pixel-limited dataset, method A performs better on
the MSE and SSIM metrics, and it outputs visually more appealing and accurate
results. For the real-world data, however, there appears to be qualitatively little
difference between method B and method A. In this case, the coarse voxel grid
seems fine enough to represent almost all details that can be reconstructed.

2.3.3 Comparison with Other Network Structures
In this section, we compare the results of the MS-D network to the widely used
U-net approach described in [156] on both the simulated and experimental data.
The data acquisition and reconstruction procedures remain unchanged, and the
U-net is trained on the low- and high-resolution data for two days or 1000 epochs,
whichever comes first. As before, the metrics on the simulated data are computed
based on the original phantom and the output of the network, and the metrics on
the experimental data are computed based on the high-resolution target and the
output of the network.

Neural network implementation The U-net network is implemented in
PyTorch, and is based on a widely available open source implementation. We
have provided our code as an open source package [68]. This implementation of
the U-net architecture is almost identical to that described in [156]: the images
are down-sampled four times using 2× 2 max-pooling, the “up-convolutions” have
trainable parameters, and the convolutions have 3 × 3 kernels. Like [38], this
implementation uses batch normalization before each ReLU. Moreover, the smallest
image layers are 512 channels instead of 1024 channels, and zero-padding is used
instead of reflection-padding. An adaptation was made to allow the network to
process images whose width or height was not divisible by 16: these images were
padded to the right dimensions using reflection padding. All U-net networks are
trained from scratch in each experiment.

Metrics and evaluation The quantitative results are given in Table 2.6,
and the network outputs are visually compared in Figure 2.10. On the whole,
the output of the U-net is visually similar to the MS-D network, and apart from a

Method A Method A Method B

Slab: 9 Slices Slab: 1 Slice Slab: 1 Slice

MSE SSIM MSE SSIM MSE SSIM

Pixel-limited U-net 0.0057 0.4225 0.0092 0.9149 0.0111 0.6850
MS-D 0.0044 0.9578 0.0089 0.9281 0.0111 0.8065

Optics-limited U-net 0.0159 0.7436 0.0402 0.1339 0.0178 0.7959
MS-D 0.0143 0.8275 0.0154 0.8220 0.0178 0.8135

Oatmeal U-net 0.0030 0.4372 0.0029 0.4372 0.0037 0.4221
MS-D 0.0027 0.4508 0.0026 0.4529 0.0025 0.4521

Table 2.6: Comparison of the MSE and SSIM between MS-D and U-net for all three datasets.
For each dataset and metric, the best results are shown in bold.
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Figure 2.10: Comparison of U-net and MS-D on the central slice of the upper region of interest.
The high-resolution slice (left-most column) is the result of reconstruction (Equation (2.12)). The
four columns on the right are computed from a low-resolution reconstruction using a U-net or
MS-D network. The first and third row display the results on simulated data, and the fifth row
displays the results on experimentally acquired oatmeal data. Magnifications of the central yellow
square are displayed in the even rows. The output of method B is cubically up-sampled by a
factor of 4 to be the same size as the other images.
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Figure 2.11: Oatmeal dataset, method B: the mean square error for MS-D and U-net calculated
on the central slice of the training and test set. The training error decreases as the networks are
trained longer. The test error of the U-net increases, whereas the test error of the MS-D network
remains stable.

few negative outliers, the metrics of U-net are similar to those of the MS-D network.
The lower SSIM metrics of the U-net could be explained by the fact that, on the
pixel-limited dataset, the U-net appears to introduce the same non-smooth texture
in the foam (method A—9 slices) and in the voids (method B) that is present in
the high-resolution image. Likewise, the oatmeal flakes in the U-net outputs appear
to have a distinct texture, especially for method B. It appears that some care must
be taken to prevent the U-net from overfitting to the training data. In Figure 2.11,
we compare the training and test error of the U-net and MS-D networks as training
progresses. The mean square error metric is computed on the central slice of the
training and test set of the oatmeal dataset. For both networks, the MSE decreases
on the training slice. On the test slice, however, the MSE metric of the MS-D
network remains consistently low, but the MSE of the U-net increases as training
progresses, indicating that the network overfits to the training data.

2.4 Discussion
The experimental results demonstrate the feasibility of applying our combined
acquisition scheme and on-the-fly machine learning technique to improve the
resolution of tomographic reconstructions. Although our approach already achieves
substantial improvement in image resolution, we believe our approach can still
be improved. In this section, we discuss possible improvements to the network
training procedure, and possible adaptations to less self-similar objects.

We believe that training the neural network can be accomplished faster and that
the training procedure can be made less sensitive to small changes in alignment.
In its current form, the computations of the learning step take considerably longer
than the reconstruction step. In fact, the reconstruction for both the simulated
data and the experimental data took less than fifteen minutes, while the learning
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step took up to two days. By using a validation set, for instance, the training can
be cut short when the validation error does not improve. Sacrificing part of the
training set for validation appears possible without making the training set too
small for the network to learn a useful transformation from low- to high-resolution
data. Based on the results in Figure 2.11, we expect that training for a considerably
shorter period is possible, and will lead to results comparable to those reported
here. The neural networks were trained using the mean square error, which is
sensitive to small changes in alignment. Hence, the alignment of the low-resolution
and high-resolution reconstructions is critical, but can in practice not always be
guaranteed. Therefore, using an error metric that does not depend on the exact
alignment of the input and target data could improve robustness. Resolving this
problem has received considerable attention, for instance by learning the loss
function in an adversarial setting [78, 106].

The experimental results indicate that super-resolution can be obtained using
our method if objects are self-similar, thus providing a super-resolution approach
that does not rely on a training set of similar objects. There are cases, however,
where not all parts of the object have similar structure. For example, an object may
consist of multiple parts with different characteristics. In that case, the network
may be trained on multiple ROI reconstructions in these parts to ensure that it
is able to improve the resolution of the various structures within the object. The
areas where the local structure are different can usually be identified using just the
low-resolution reconstruction.

2.5 Conclusions
In this chapter, we have presented a novel technique for improving the resolution of
tomographic volumes using a custom scanning procedure combined with on-the-fly
machine learning. The technique relies on combining high-resolution projection
data of a small region of interest with low-resolution projection data of the entire
object. Reconstructions of both projection sets are used to train a neural network,
which is then able to improve the resolution of the low-resolution reconstruction
of the entire object. The effectiveness of our approach was tested on simulated
data and real-world experimental data. The proposed approach is able to recover
a large fraction of high-resolution features without introducing additional artifacts.
Moreover, it requires a limited increase in scanning time and radiation dose.
We have proposed two variants of our approach (A and B). The first variant (A)
performs better on synthetic data but is more computationally costly to compute.
The second variant (B) is considerably cheaper to compute, results in smaller
output images, and produces results qualitatively similar to method A on real-
world experimental data. Our proposed approach has the added advantage of
removing noise from reconstructions of experimental data. The results show that
the proposed machine learning method is able to significantly improve resolution
of tomographic reconstructions without requiring a training set of similar objects.


